EP0976184A2 - Laser device - Google Patents
Laser deviceInfo
- Publication number
- EP0976184A2 EP0976184A2 EP98931917A EP98931917A EP0976184A2 EP 0976184 A2 EP0976184 A2 EP 0976184A2 EP 98931917 A EP98931917 A EP 98931917A EP 98931917 A EP98931917 A EP 98931917A EP 0976184 A2 EP0976184 A2 EP 0976184A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- laser
- laser device
- diodes
- laser diodes
- waveguide structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000008878 coupling Effects 0.000 claims abstract description 5
- 238000010168 coupling process Methods 0.000 claims abstract description 5
- 238000005859 coupling reaction Methods 0.000 claims abstract description 5
- 230000005855 radiation Effects 0.000 claims description 14
- 239000004065 semiconductor Substances 0.000 claims description 5
- 230000002745 absorbent Effects 0.000 claims description 2
- 239000002250 absorbent Substances 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000013515 script Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4062—Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4068—Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/0632—Thin film lasers in which light propagates in the plane of the thin film
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/06233—Controlling other output parameters than intensity or frequency
- H01S5/0624—Controlling other output parameters than intensity or frequency controlling the near- or far field
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
Definitions
- the invention relates to a laser device with at least ⁇ least a laser diode row.
- Laser diode arrays are for example tronic from R. Paul, Optoelek ⁇ semiconductor devices, Teubner study scripts, 2nd Edition, BG Teubner Stuttgart 1992, pages 205,206 known. Such laser diode arrays achieve high radiation powers, high radiation densities and efficiencies.
- IOW-lOkW powers are required on the workpiece to be irradiated with power densities between 0.1 and 10 MW / cm 2 .
- solid-state lasers eg Nd: YAG, (7) are currently preferred.
- Such two-stage systems which have to be pumped optically with the aid of flash lamps or semiconductor lasers, are technically complex and achieve conversion efficiencies of only 2 to 15%.
- lamp-pumped systems are very maintenance-intensive.
- Diode lasers achieve the necessary power densities, but the maximum power in a spatially coherent mode is only approx. 0.2W or approx. 1W in combination with semiconductor amplifiers.
- the object of the present invention is therefore to develop a laser device with which an increased maximum power can be achieved in a spatially coherent mode.
- This object is achieved by means of a laser device with a laser diode line which connects a plurality of side by side ordered mutually incoherent, ie laterally uncoupled laser diodes, and an external resonator in which the external resonator has a passive planar waveguide structure for coupling the modes of the individual laser diodes.
- This laser device advantageously uses uncoupled laser diodes (preferably single-mode laser diodes) which are very stable.
- the passive planar waveguide structure can be produced monolithically on a single mounting surface (which can be cooled during operation), as a result of which both a high degree of adjustment accuracy and, particularly because of the uniform temperature distribution and temperature stability, high stability the waveguide is reached.
- the waveguide structure is preferably implemented in a planar hybrid waveguide technology (eg Si0 2 on Si, diffused, ion-exchanged, deposited glass).
- planar lenses and lattice structures can be easily applied to the mounting surface in addition to the waveguide structure.
- the laser diode array has single-mode laser diodes and an optical device with branched waveguides is provided. Laser radiation from the individual laser diodes can be coupled into this.
- the optical arrangement guides the laser radiation of the individual laser diodes arranged next to one another into a laser beam that is compared to the number of laser diodes. smaller number, in particular in a single username and password, etc.
- the laser diode array has multimode laser diodes, in particular broad-strip laser diodes, and also an optical device with branched waveguides, into which laser radiation from the individual laser diodes can be coupled and which converts this laser radiation into a smaller number than the number of laser diodes. in particular merges into a single output waveguide.
- the monomode waveguides At the ends facing the laser diode array, the monomode waveguides have taper structures which convert the laser radiation of the individual laser diodes as adiabatically as possible into the respectively assigned monomode waveguide. Arrays of multi-mode broad-strip lasers advantageously allow very high area power densities.
- the optical device has a preferably binary tree-like branching structure.
- N 1 branching structure
- the or the output waveguides additionally have a DFB (Distributed Feed Back) grating structure for the longitudinal mode selection.
- DFB Distributed Feed Back
- the waveguide structure can advantageously be designed as a multimode interference filter (MMI in planar technology).
- MMI multimode interference filter
- the invention described above enables a compact and, in particular, cooling-technically advantageous realization of power laser diodes with spatially (and temporally) coherent output and thus the highest power densities, e.g. B. for the ma- material processing, printer technology and medical applications.
- the planar optical resonator coherently couples the emission of the individual emitters (laser diodes) into a monomode waveguide at the output of the resonator.
- FIGS. 1 to 8. 1 shows a schematic illustration of a laser diode array in an external resonator
- FIG. 2 shows a schematic illustration of a laser diode array in an external resonator with a device for mode filtering
- FIG. 3 shows a schematic illustration of a laser device according to a first exemplary embodiment
- FIG. 4 shows a schematic illustration of a laser device according to a second exemplary embodiment
- FIG. 5 shows a schematic illustration of a laser device according to a third exemplary embodiment
- FIG. 6 shows a schematic illustration of a laser device according to a fourth exemplary embodiment
- Figure 7 is a schematic representation of a laser device according to a fifth embodiment and Figure 8 is a schematic representation of a laser device according to a sixth embodiment.
- a laser diode array 1, z. B. a power semiconductor laser diode array, which is provided only on one resonator side with a resonator mirror layer, arranged in an external optical resonator.
- the external optical resonator can be implemented using free beam technology or planar waveguide technology and optionally with a ner phase plate for correcting the phase fronts.
- the external optical resonator for mode selection is provided with a mode diaphragm (for example a monomode fiber), which can be implemented either in the resonator or in connection with a resonator mirror.
- a mode diaphragm for example a monomode fiber
- a single-mode laser diode array 1 is coupled to a passive single-mode waveguide plate 2.
- the single-mode waveguide plate 2 has a passive planar single-mode waveguide branching structure 6 m in the form of a binary branching tree composed of single-mode waveguides 7, which, starting from a single output waveguide 4 to the laser diode array 1 hm m, splits a number of single-mode waveguides 7, the number of which corresponds to the individual laser diodes of the laser diode array 1.
- the laser beams of the individual laser diodes of the laser diode array 1 arranged next to one another are coherently coupled to a single output waveguide 4 by means of a plurality of binary branches 3 m.
- a multimode laser diode array 1 is likewise connected to a passive single-mode
- Waveguide plate 2 coupled to a passive planar single-mode waveguide branching structure 6, which corresponds in principle to that of Figure 3.
- the single-mode waveguides each have a taper structure 5 which transfers the emitted laser radiation from the associated individual laser diode m to the single-mode waveguide 7 assigned to them.
- the starting point is Waveguide 4 additionally arranged a DFB grating structure, whereby a single-mode operation is achieved.
- the exemplary embodiment of FIG. 6 has a multimode interference filter plate 8 instead of the waveguide plate 2.
- the waveguides additionally have phase shifters 10 and contain the
- the resonator has at least one absorbent medium 11 for mode selection.
- These two components, phase shifter 10 and absorbing medium 11, can be used completely independently of one another, so that optionally only one of the two or both components can be implemented.
- FIG. 8 has curved, single-mode waveguides 7 for mode selection, which bring the laser radiation onto several or, as shown in the figure, onto a single output waveguide 4.
- the waveguides 7 and / or the laser diodes are widened by adiabatic taper and / or the widened coupling point is inclined to the optical axis of the Laser diodes arranged.
- the optical resonator has a phase plate or individually adjustable planar-optical phase shifters on the single-mode waveguides or the laser diodes for the correction of phase fronts.
- the laser diode array 1 and the passive planar waveguide structure are advantageously monolithically integrated.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Lasers (AREA)
- Radiation-Therapy Devices (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
Beschreibungdescription
LaservorrichtungLaser device
Die Erfindung bezieht sich auf eine Laservorrichtung mit min¬ destens einer Laserdiodenzeile.The invention relates to a laser device with at least ¬ least a laser diode row.
Laserdiodenarrays sind beispielsweise aus R. Paul, Optoelek¬ tronische Halbleiterbauelemente, Teubner Studienskripten, 2. Auflage, B. G. Teubner Stuttgart 1992, Seiten 205,206 bekannt. Derartige Laserdiodenarrays erzielen hohe Strahlungsleistungen, hohe Strahlungsdichten und Wirkungsgrade.Laser diode arrays are for example tronic from R. Paul, Optoelek ¬ semiconductor devices, Teubner study scripts, 2nd Edition, BG Teubner Stuttgart 1992, pages 205,206 known. Such laser diode arrays achieve high radiation powers, high radiation densities and efficiencies.
Für viele Anwendungen, wie beispielsweise zur Materialbear- beitung oder für Druckeranwendungen werden auf dem zu bestrahlenden Werkstück Leistungen von IOW-lOkW bei Leistungsdichten zwischen 0.1 und 10MW/cm2 benötigt. Um dieser Anforderungen zu erfüllen werden derzeit bevorzugt Festkörperlaser (z.B. Nd:YAG, ...) eingesetzt. Solche zweistufigen Systeme, die mit Hilfe von Blitzlichtlampen oder Halbleiterlaser optisch gepumpt werden müssen, sind technisch aufwendig und erreichen Konversionswirkungsgrade von nur 2 bis 15%. Außerdem sind lampengepumpte Systeme sehr wartungsintensiv.For many applications, such as material processing or printer applications, IOW-lOkW powers are required on the workpiece to be irradiated with power densities between 0.1 and 10 MW / cm 2 . In order to meet these requirements, solid-state lasers (eg Nd: YAG, ...) are currently preferred. Such two-stage systems, which have to be pumped optically with the aid of flash lamps or semiconductor lasers, are technically complex and achieve conversion efficiencies of only 2 to 15%. In addition, lamp-pumped systems are very maintenance-intensive.
Diodenlaser erreichen zwar die nötigen Leistungsdichten, aber die maximale Leistung in einer räumlich kohärenten Mode beträgt nur ca. 0.2W bzw. in Kombination mit Halbleiterverstärkern ca. 1W.Diode lasers achieve the necessary power densities, but the maximum power in a spatially coherent mode is only approx. 0.2W or approx. 1W in combination with semiconductor amplifiers.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Laservorrichtung zu entwickeln, mit der eine erhöhte maximale Leistung in einer räumlich kohärenten Mode erreicht werden kann.The object of the present invention is therefore to develop a laser device with which an increased maximum power can be achieved in a spatially coherent mode.
Diese Aufgabe wird gelöst durch eine Laservorrichtung mit einer Laserdiodenzeile, die eine Mehrzahl von nebeneinander an- geordneten zueinander inkohärenten, d.h. lateral ungekoppelten Laserdioden aufweist, und einem externen Resonator, bei der zur Kopplung der Moden der einzelnen Laserdioden der externe Resonator eine passive planare Wellenleiterstruktur aufweist .This object is achieved by means of a laser device with a laser diode line which connects a plurality of side by side ordered mutually incoherent, ie laterally uncoupled laser diodes, and an external resonator in which the external resonator has a passive planar waveguide structure for coupling the modes of the individual laser diodes.
Bei dieser Laservorrichtung sind vorteilhafterweise ungekoppelte Laserdioden (bevorzugt monomodige Laserdioden) verwendet, die sehr stabil sind.This laser device advantageously uses uncoupled laser diodes (preferably single-mode laser diodes) which are very stable.
Weiterhin ist von besonderem Vorteil, daß die passive planare Wellenleiterstruktur monolithisch auf einer einzigen Montagefläche (die im Betrieb gekühlt werden kann) herstellbar ist, wodurch sowohl eine hohe Justagegenauigkeit als auch - insbe- sondere wegen der gleichmäßigen Temperaturverteilung und Tem- peraturstabilität - eine hohe Stabilität der Wellenleiter erreicht wird.It is also of particular advantage that the passive planar waveguide structure can be produced monolithically on a single mounting surface (which can be cooled during operation), as a result of which both a high degree of adjustment accuracy and, particularly because of the uniform temperature distribution and temperature stability, high stability the waveguide is reached.
Die Wellenleiterstruktur ist vorzugsweise in einer planaren Hybrid-Wellenleitertechnologie (z.B. Si02 auf Si, diffundiertem, ionenausgetauschtem, abgeschiedenem Glas) realisiert.The waveguide structure is preferably implemented in a planar hybrid waveguide technology (eg Si0 2 on Si, diffused, ion-exchanged, deposited glass).
Auf die Montagefläche können zur weiteren Optimierung auf einfache Weise zusätzlich zu der Wellenleiterstruktur planare Linsen und Gitterstrukuren aufgebracht werden.For further optimization, planar lenses and lattice structures can be easily applied to the mounting surface in addition to the waveguide structure.
Vorteilhafte Weiterbildungen der Laservorrichtung sind Gegenstand der Unteransprüche.Advantageous developments of the laser device are the subject of the dependent claims.
Bei einer besonders bevorzugten Ausführungsform der Laservorrichtung weist das Laserdiodenarray monomodige Laserdioden auf und ist eine optische Einrichtung mit verzweigten Wellenleitern vorgesehen. In diese ist eine Laserstrahlung der einzelnen Laserdioden einkoppelbar . Die optische Anordnung .führt die Laserstrahlung der einzelnen, nebeneinander angeordneten Laserdioden in eine gegenüber der Anzahl von Laserdioden ge- ringere Anzahl, insbesondere in einen einzigen Ausgangswel¬ lenleiter zusammen.In a particularly preferred embodiment of the laser device, the laser diode array has single-mode laser diodes and an optical device with branched waveguides is provided. Laser radiation from the individual laser diodes can be coupled into this. The optical arrangement guides the laser radiation of the individual laser diodes arranged next to one another into a laser beam that is compared to the number of laser diodes. smaller number, in particular in a single Ausgangswel ¬ lenleiter together.
Bei einer anderen besonders bevorzugten Ausführungsform weist das Laserdiodenarray multimodige Laserdioden, insbesondere Breitstreifenlaserdioden und ebenfalls eine optische Einrichtung mit verzweigten Wellenleitern auf, in die eine Laserstrahlung der einzelnen Laserdioden einkoppelbar ist und die diese Laserstrahlung in eine gegenüber der Anzahl von Laser- dioden geringere Anzahl von, insbesondere in einen einzigen Ausgangswellenleiter zusammenführt. Die monomodigen Wellenleiter besitzen an den dem Laserdiodenarray zugewandten Enden Taperstrukturen, die die Laserstrahlung der einzelnen Laserdioden möglichst adiabatisch in den jeweils zugeordneten mo- nomodigen Wellenleiter überführen. Arrays von mulitmodigen Breitstreifenlasern erlauben vorteilhafterweise sehr hohe Flächenleistungsdichten.In another particularly preferred embodiment, the laser diode array has multimode laser diodes, in particular broad-strip laser diodes, and also an optical device with branched waveguides, into which laser radiation from the individual laser diodes can be coupled and which converts this laser radiation into a smaller number than the number of laser diodes. in particular merges into a single output waveguide. At the ends facing the laser diode array, the monomode waveguides have taper structures which convert the laser radiation of the individual laser diodes as adiabatically as possible into the respectively assigned monomode waveguide. Arrays of multi-mode broad-strip lasers advantageously allow very high area power densities.
Die optische Einrichtung weist in beiden oben genannten Fäl- len eine vorzugsweise binäre baumartige Verzweigungsstruktur auf. Es ist jedoch auch jede beliebige andere N:l- Verzweigungsstruktur denkbar.In both cases mentioned above, the optical device has a preferably binary tree-like branching structure. However, any other N: 1 branching structure is also conceivable.
In einer weiteren bevorzugten Weiterbildung der Laservorrich- tung weist der oder weisen die Ausgangswellenleiter zur lon- gitudinalen Modenselektion zusätzlich eine DFB (Distributed Feed Back) -Gitterstruktur auf.In a further preferred development of the laser device, the or the output waveguides additionally have a DFB (Distributed Feed Back) grating structure for the longitudinal mode selection.
Die Wellenleiterstruktur kann vorteilhafterweise alternativ zu den oben genannten Ausführungsformen als Multimode- Interferenzfilter (MMI in Planar-Technik) ausgeführt sein.As an alternative to the above-mentioned embodiments, the waveguide structure can advantageously be designed as a multimode interference filter (MMI in planar technology).
Die oben beschriebene Erfindung ermöglicht eine kompakte und insbesondere kühltechnisch günstige Realisierung von Lei- stungslaserdioden mit räumlich (und zeitlich) kohärentem Ausgang und damit höchster Leistungsdichten z. B. für die Ma- terialbearbeitung, Druckertechnik und medizinische Anwendungen. Der planar optische Resonator koppelt die Emission der einzelnen Emitter (Laserdioden) kohärent in einen monomodigen Wellenleiter am Ausgang des Resonators.The invention described above enables a compact and, in particular, cooling-technically advantageous realization of power laser diodes with spatially (and temporally) coherent output and thus the highest power densities, e.g. B. for the ma- material processing, printer technology and medical applications. The planar optical resonator coherently couples the emission of the individual emitters (laser diodes) into a monomode waveguide at the output of the resonator.
Weitere vorteilhafte Aufsführungsformen und Weiterbildungen der Laservorrichtung werden im Weiteren anhand von Ausführungsbeispielen in Verbindung mit den Figuren 1 bis 8 näher erläutert. Es zeigen: Figur 1 eine schematische Darstellung eines Laserdiodenarrays in einem externen Resonator,Further advantageous forms of performance and further developments of the laser device are explained in more detail below on the basis of exemplary embodiments in conjunction with FIGS. 1 to 8. 1 shows a schematic illustration of a laser diode array in an external resonator,
Figur 2 eine schematische Darstellung eines Laserdiodenarrays in einem externen Resonator mit einer Vorrichtung zur Modenfilterung, Figur 3 eine schematische Darstellung einer Laservorrichtung gemäß einem ersten Ausführungsbeispiel,2 shows a schematic illustration of a laser diode array in an external resonator with a device for mode filtering, FIG. 3 shows a schematic illustration of a laser device according to a first exemplary embodiment,
Figur 4 eine schematische Darstellung einer Laservorrichtung gemäß einem zweiten Ausführungsbeispiel, Figur 5 eine schematische Darstellung einer Laservorrichtung gemäß einem dritten Ausführungsbeispiel,FIG. 4 shows a schematic illustration of a laser device according to a second exemplary embodiment, FIG. 5 shows a schematic illustration of a laser device according to a third exemplary embodiment,
Figur 6 eine schematische Darstellung einer Laservorrichtung gemäß einem vierten Ausführungsbeispiel,FIG. 6 shows a schematic illustration of a laser device according to a fourth exemplary embodiment,
Figur 7 eine schematische Darstellung einer Laservorrichtung gemäß einem fünften Ausführungsbeispiel und Figur 8 eine schematische Darstellung einer Laservorrichtung gemäß einem sechsten Ausführungsbeispiel .Figure 7 is a schematic representation of a laser device according to a fifth embodiment and Figure 8 is a schematic representation of a laser device according to a sixth embodiment.
In den Figuren sind gleiche oder gleichwirkende Teile immer mit den gleichen Bezugszeichen versehen.In the figures, the same or equivalent parts are always provided with the same reference numerals.
Bei der Anordnung von Figur 1 ist ein Laserdiodenarray 1, z. B. ein Leistungs-Halbleiterlaserdiodenarray, das nur auf einer Resonatorseite mit einer Resonatorspiegelschicht versehen ist, in einem externen optischen Resonator angeordnet. Der externe optische Resonator kann in Freistrahltechnik oder in planarer Wellenleitertechnik realisiert und optional mit ei- ner Phasenplatte zur Korrektur der Phasenfronten versehen sein.In the arrangement of Figure 1, a laser diode array 1, z. B. a power semiconductor laser diode array, which is provided only on one resonator side with a resonator mirror layer, arranged in an external optical resonator. The external optical resonator can be implemented using free beam technology or planar waveguide technology and optionally with a ner phase plate for correcting the phase fronts.
Bei der Anordnung von Figur 2 ist der externe optische Reso- nator zur Modenselektion mit einer Modenblende (z. B. eine Monomodefaser) versehen, die entweder im Resonator oder m Verbindung mit einem Resonatorspiegel realisiert sein kann.In the arrangement of FIG. 2, the external optical resonator for mode selection is provided with a mode diaphragm (for example a monomode fiber), which can be implemented either in the resonator or in connection with a resonator mirror.
Bei dem Ausfuhrungsbeispiel gemäß Figur 3 ist ein Monomode- Laserdiodenarray 1 an eine passive Monomode- Wellenleiterplatte 2 gekoppelt. Die Monomode- Wellenleiterplatte 2 weist eine passive planare Monomode- Wellenleiter-Verzweigungsstruktur 6 m Form eines binaren Verzweigungsbaumes aus Monomode-Wellenleitern 7 auf, die sich ausgehend von einem einzigen Ausgangswellenleiter 4 zum Laserdiodenarray 1 hm m eine Anzahl von Monomodewellenleitern 7 aufspaltet, die der Anzahl der einzelnen Laserdioden des Laserdiodenarrays 1 entspricht. Bei diesem Ausfuhrungsbeispiel werden die Laserstrahlen der einzelnen nebeneinander angeordneten Laserdioden des Laserdiodenarrays 1 mittels einer Mehrzahl von binaren Verzweigungen 3 m einen einzigen Ausgangswellenleiter 4 kohärent gekoppelt.In the exemplary embodiment according to FIG. 3, a single-mode laser diode array 1 is coupled to a passive single-mode waveguide plate 2. The single-mode waveguide plate 2 has a passive planar single-mode waveguide branching structure 6 m in the form of a binary branching tree composed of single-mode waveguides 7, which, starting from a single output waveguide 4 to the laser diode array 1 hm m, splits a number of single-mode waveguides 7, the number of which corresponds to the individual laser diodes of the laser diode array 1. In this exemplary embodiment, the laser beams of the individual laser diodes of the laser diode array 1 arranged next to one another are coherently coupled to a single output waveguide 4 by means of a plurality of binary branches 3 m.
Bei dem Ausfuhrungsbeispiel von Figur 4 ist ein Multimode- Laserdiodenarray 1 ebenfalls an eine passive Monomode-In the exemplary embodiment from FIG. 4, a multimode laser diode array 1 is likewise connected to a passive single-mode
Wellenleiterplatte 2 mit einer passiven planaren Monomode- Wellenleiter-Verzweigungsstruktur 6 gekoppelt, die prinzipiell derjenigen von Figur 3 entspricht. Die Monomode- Wellenleiter weisen aber an ihrem zum Laserdiodenarray 1 hin gewandten Enden jeweils eine Taperstruktur 5 auf, die die emittierte Laserstrahlung der jeweils zugehörigen einzelnen Laserdiode m den dieser zugeordneten Monomodewellenleiter 7 überfuhrt .Waveguide plate 2 coupled to a passive planar single-mode waveguide branching structure 6, which corresponds in principle to that of Figure 3. At their ends facing the laser diode array 1, however, the single-mode waveguides each have a taper structure 5 which transfers the emitted laser radiation from the associated individual laser diode m to the single-mode waveguide 7 assigned to them.
Bei dem Ausfuhrungsbeispiel von Figur 5, das prinzipiell dem Ausfuhrungsbeispiel von Figur 3 entspricht, ist am Ausgangs- Wellenleiter 4 zusätzlich eine DFB-Gitterstruktur angeordnet, wodurch ein Single-Mode-Betrieb erreicht wird.In the exemplary embodiment of FIG. 5, which in principle corresponds to the exemplary embodiment of FIG. 3, the starting point is Waveguide 4 additionally arranged a DFB grating structure, whereby a single-mode operation is achieved.
Das Ausfuhrungsbeispiel von Figur 6 weist im Unterschied zum Ausfuhrungsbeispiel von Figur 4 an Stelle der Wellenleiter- platte 2 eine Multimode-Interferenzfllter-Platte 8 auf.In contrast to the exemplary embodiment of FIG. 4, the exemplary embodiment of FIG. 6 has a multimode interference filter plate 8 instead of the waveguide plate 2.
Bei dem Ausfuhrungsbeispiel von Figur 7, das im Prinzip dem Ausfuhrungsbeispiel von Figur 3 entspricht, weisen die Wel- lenleiter zusätzlich Phasenschieber 10 auf und enthalt derIn the exemplary embodiment from FIG. 7, which in principle corresponds to the exemplary embodiment from FIG. 3, the waveguides additionally have phase shifters 10 and contain the
Resonator daruberhinaus mindestens ein absorbierendes Medium 11 zur Modenselektion. Diese beiden Komponenten, Phasenschieber 10 und absorbierendes Medium 11, können völlig unabhängig voneinander genutzt werden, so daß wahlweise nur eine der beiden oder beide Komponenten realisiert sein können.In addition, the resonator has at least one absorbent medium 11 for mode selection. These two components, phase shifter 10 and absorbing medium 11, can be used completely independently of one another, so that optionally only one of the two or both components can be implemented.
Das Ausfuhrungsbeispiel von Figur 8 weist zur Modenselektion gekrümmte monomodige Wellenleiter 7 auf, die die Laserstrahlung auf mehrere oder, wie in der Figur gezeigt, auf einen einzigen Ausgangswellenleiter 4 zusammenfuhren.The exemplary embodiment of FIG. 8 has curved, single-mode waveguides 7 for mode selection, which bring the laser radiation onto several or, as shown in the figure, onto a single output waveguide 4.
Bei besonders bevorzugten Ausführungsformen der oben beschriebenen Ausfuhrungsbeispiele sind zur Reduktion von Koppelverlusten und Ruckreflexionen zwischen der Laserdiodenzei- le 1 und der passiven planaren Welleleiterstruktur 6 die Wellenleiter 7 und/oder die Laserdioden durch adiabatische Taper aufgeweitet und /oder die aufgeweitete Koppelstelle schräg zur optischen Achse der Laserdioden angeordnet.In particularly preferred embodiments of the exemplary embodiments described above, in order to reduce coupling losses and jerk reflections between the laser diode line 1 and the passive planar waveguide structure 6, the waveguides 7 and / or the laser diodes are widened by adiabatic taper and / or the widened coupling point is inclined to the optical axis of the Laser diodes arranged.
Bei einer weiterhin bevorzugten Laservorrichtung weist der optische Resonator eine Phasenplatte oder einzeln verstellbare planaroptische Phasenschieber auf den monomodigen Wellenleitern oder den Laserdioden zur Korrektur von Phasenfronten auf. Vorteilhafterweise sind die Laserdiodenzeile 1 und die passive planare Wellenleiterstruktur monolithisch integriert. In a further preferred laser device, the optical resonator has a phase plate or individually adjustable planar-optical phase shifters on the single-mode waveguides or the laser diodes for the correction of phase fronts. The laser diode array 1 and the passive planar waveguide structure are advantageously monolithically integrated.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19716422 | 1997-04-18 | ||
DE19716422 | 1997-04-18 | ||
PCT/DE1998/001053 WO1998048495A2 (en) | 1997-04-18 | 1998-04-14 | Laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0976184A2 true EP0976184A2 (en) | 2000-02-02 |
Family
ID=7827025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98931917A Withdrawn EP0976184A2 (en) | 1997-04-18 | 1998-04-14 | Laser device |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0976184A2 (en) |
CN (1) | CN1252901A (en) |
CA (1) | CA2286774A1 (en) |
WO (1) | WO1998048495A2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10019826A1 (en) * | 2000-04-20 | 2001-10-31 | Infineon Technologies Ag | Laser array |
US6580850B1 (en) | 2000-11-24 | 2003-06-17 | Applied Wdm, Inc. | Optical waveguide multimode to single mode transformer |
US6668003B2 (en) * | 2002-02-12 | 2003-12-23 | Quintessence Photonics Corporation | Laser diode array with an in-phase output |
DE102004038283B4 (en) * | 2004-08-03 | 2008-04-03 | Forschungsverbund Berlin E.V. | Optoelectronic element and method for the coherent coupling of active regions of optoelectronic elements |
CN106454648B (en) * | 2016-07-15 | 2019-07-02 | 南京大学 | a sound guide |
CN106338800B (en) * | 2016-10-31 | 2018-06-12 | 华中科技大学 | It is a kind of to be used for optical fiber and the horizontal coupler of chip chamber optical signal transmission |
JP7302430B2 (en) * | 2019-10-24 | 2023-07-04 | 富士通株式会社 | Wavelength tunable light source, optical transmission device using the same, and wavelength tunable light source control method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4578791A (en) * | 1982-12-20 | 1986-03-25 | Trw Inc. | High-power injection laser diode structure |
US4878724A (en) * | 1987-07-30 | 1989-11-07 | Trw Inc. | Electrooptically tunable phase-locked laser array |
US5023882A (en) * | 1990-05-07 | 1991-06-11 | Xerox Corporation | Phased locked arrays with single lobe output beam |
DE4123858C1 (en) * | 1991-07-18 | 1992-12-03 | Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De | Semiconductor laser array stabilising arrangement - provides fibre-shaped reflectors so that radiation characteristic extends as ray along X=axis |
JPH07168040A (en) * | 1993-12-14 | 1995-07-04 | Nippon Steel Corp | Semiconductor laser focusing device |
EP0723323B1 (en) * | 1994-12-22 | 2002-03-27 | CeramOptec GmbH | Compound laser system for high power density |
US5513196A (en) * | 1995-02-14 | 1996-04-30 | Deacon Research | Optical source with mode reshaping |
-
1998
- 1998-04-14 CN CN 98804305 patent/CN1252901A/en active Pending
- 1998-04-14 CA CA002286774A patent/CA2286774A1/en not_active Abandoned
- 1998-04-14 WO PCT/DE1998/001053 patent/WO1998048495A2/en not_active Application Discontinuation
- 1998-04-14 EP EP98931917A patent/EP0976184A2/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO9848495A3 * |
Also Published As
Publication number | Publication date |
---|---|
WO1998048495A3 (en) | 1999-01-28 |
CA2286774A1 (en) | 1998-10-29 |
CN1252901A (en) | 2000-05-10 |
WO1998048495A2 (en) | 1998-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69736133T2 (en) | DIRECT HIGH-PERFORMANCE LASER DIODE SYSTEM WITH HIGH EFFICIENCY AND APPROPRIATE METHOD | |
DE60026071T2 (en) | TUNABLE LASER SOURCE WITH INTEGRATED OPTICAL AMPLIFIER | |
DE60315599T2 (en) | Multimode interference optical waveguide device | |
DE19725262C2 (en) | Optical beam transformation device | |
DE69022301T2 (en) | Illumination structure of a laser rod with delocalized optical sources. | |
EP1145390B1 (en) | Laser amplification system | |
WO1997031284A1 (en) | Arrangement for shaping the geometrical cross-section of a plurality of solid and/or semiconductor lasers | |
EP0383138A2 (en) | Device for the direct optical reception of a plurality of wave lengths | |
DE69821447T2 (en) | Wavelength-tunable laser source | |
DE112016002585T5 (en) | Pulse laser device | |
EP1151344B1 (en) | Laser radiation source for producing a coherent and entire laser radiation field | |
EP1540786B1 (en) | Semiconductor laser device | |
EP0704946B1 (en) | Optoelectronic multiwavelength element | |
WO1998048495A2 (en) | Laser device | |
DE19838518A1 (en) | arrangement | |
EP1241749B1 (en) | Pump source with increased power for broadband optical Raman amplification | |
EP0688069B1 (en) | Interferometric semiconductor laser with low loss outcoupler and assembly comprising such a laser | |
DE60113041T2 (en) | System for optically pumping a long-wavelength laser with a short-wave laser | |
DE69928801T2 (en) | Stabilized laser source | |
EP0262435A2 (en) | Narrow-band laser transmitter with an external resonator, the output power being extractable from the resonator | |
DE2205728C3 (en) | Optical component consisting of a multilayer semiconductor body | |
DE69210130T2 (en) | Optical amplifier with a semiconductor laser as a multiplexer | |
WO1998022999A9 (en) | Laser system and amplifying system to produce single-frequency laser irradiation | |
DE19647677A1 (en) | Laser and amplifier system for generating single-frequency laser radiation | |
DE102004040608B4 (en) | Diode laser with an optical device for increasing the radiance of an output laser beam emerging from it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19991005 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE FR GB IT LI NL |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7H 01S 5/40 A |
|
17Q | First examination report despatched |
Effective date: 20010126 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: INFINEON TECHNOLOGIES AG |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20021207 |