[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0972282B1 - Device for controlling a matrix display cell - Google Patents

Device for controlling a matrix display cell Download PDF

Info

Publication number
EP0972282B1
EP0972282B1 EP98949077A EP98949077A EP0972282B1 EP 0972282 B1 EP0972282 B1 EP 0972282B1 EP 98949077 A EP98949077 A EP 98949077A EP 98949077 A EP98949077 A EP 98949077A EP 0972282 B1 EP0972282 B1 EP 0972282B1
Authority
EP
European Patent Office
Prior art keywords
signal
transistor
elementary
control circuit
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98949077A
Other languages
German (de)
French (fr)
Other versions
EP0972282A1 (en
Inventor
François Maurice
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Avionics LCD SA
Original Assignee
Thales Avionics LCD SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Avionics LCD SA filed Critical Thales Avionics LCD SA
Publication of EP0972282A1 publication Critical patent/EP0972282A1/en
Application granted granted Critical
Publication of EP0972282B1 publication Critical patent/EP0972282B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0814Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0259Details of the generation of driving signals with use of an analog or digital ramp generator in the column driver or in the pixel circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/066Waveforms comprising a gently increasing or decreasing portion, e.g. ramp
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes

Definitions

  • the present invention relates to a control device matrix, more particularly a matrix control device used in a flat screen such as a matrix type liquid crystal display active or other types of flat screen.
  • a matrix control device is used, for example, to control the cells of a flat screen such than liquid crystal cells.
  • a screen to liquid crystals of the active matrix type also known by the abbreviation AM-LCD.
  • Such an active matrix type liquid crystal screen is shown in Figure 1.
  • the screen consists of a certain number of electro-optical cells each formed by an electrode and a counter-electrode enclosing the liquid crystal. These cells are referenced XL in said figure.
  • the electro-optical cells are arranged in rows and columns, and each controlled by a switching circuit forming part of a control device matrix type.
  • the circuit switching is carried out by a transistor T of which one of the electrodes is connected to a column Cj and the other electrode of which is connected to the XL electro-optical cell.
  • the gate of transistor T is connected to one of the lines Li of the control device.
  • the XL electro-optical cell is associated with a capacity of CP storage mounted in parallel on the capacity formed by the cell electro-optics at the output of transistor T.
  • the assembly formed by the transistor T and the capacity CP form an elementary control circuit referenced Pij in Figure 1.
  • each of the lines of selection Li is connected to a control circuit 2 or "line driver" which successively applies a pulse of control with a voltage typically varying between - 10 and + 20 volts.
  • each of the columns Cj or rows of data is connected to a column control circuit 3 or "column driver" which sends on the columns Cj an analog signal corresponding to the video signal representing more particularly a gray scale whose voltage typically varies between + and - 5 volts.
  • the control of a XL electro-optical cell is carried out as follows.
  • the transistor switching T becomes conducting. Therefore, the analog voltage applied to column Cj is transmitted across the electrodes of the XL electro-optical cell which displays a gray level corresponding to the data signal.
  • a matrix control device of this type has switching transistors which are most often constituted by TFT thin film transistors for "Thin Film Transistor ".
  • Such a device is generally made of amorphous silicon.
  • the lines and columns control circuits 2,3 can be integrated on the substrate plate on which the flat screen is made or be done independently. When integrated on the plate substrate, they are also made using amorphous silicon.
  • Another problem encountered with this structure when it is made with polycrystalline silicon or silicon transistors monocrystalline, relates to the leakage current of the switching transistor T in the blocked state which tends to discharge the elementary points or cells electro-optics XL.
  • the object of the present invention is to remedy the drawbacks cited above by proposing a matrix control device having a new structure for the control circuit elementary of each elementary point, this structure being particularly well suited to the use of polycrystalline silicon or monocrystalline for the production of transistors or other semiconductor circuits.
  • the present invention therefore relates to a device for matrix control comprising a set of control circuits arranged in rows and columns and each commanding an elementary point, the state of each elementary point being a function of first and second control signals applied to the control circuit respectively by rows and columns, characterized in that each control circuit is an electrical circuit provided with two independent inputs supplied by the first and the second signal, and with an output which generates the control signal for the elementary point (XL). impedance of this circuit between its output and that of one of its inputs which carries the first signal becomes weak following application of an adequate voltage pulse on this first signal, and this same impedance becomes very high following the application of an adequate voltage on the second signal.
  • the first signal is a signal which, in a first step, activates all line control circuits corresponding by making them passers-by then applying a ramp of voltage which is transmitted from the control circuit to the point corresponding elementary.
  • the first signal consists of a ramp-shaped signal preceded by a negative precharge pulse.
  • the instant of triggering of the ramp-shaped signal is adjusted from line to line to compensate for propagation delays on the columns.
  • the second signal is a switching signal of numerical type determining the duration during which the circuits of activated commands remain passers-by.
  • the second switching signal consists of PWM type pulses for "Pulse Width Modulation" in language English.
  • the moment of triggering of the pulses is adjusted from column to column to compensate for delays on the lines.
  • the control circuit consists of a first transistor connecting the elementary point to the corresponding line receiving the first signal and a second transistor of which a first electrode is connected to the gate of the first transistor, the gate of which is connected to the corresponding column receiving the second signal and the second of which electrode is connected to a reference potential.
  • the elementary control circuit further comprises a capacitance connected between the gate of the first transistor and the line corresponding.
  • the second electrode of the second transistor is connected to the previous line.
  • the circuits are made using silicon Polycrystalline.
  • FIG 2 there is shown a control device matrix according to the present invention associated with a circuit control lines 20 and a column control circuit 30, said circuits which may or may not be integrated on the same substrate as the matrix control device.
  • the elementary control circuit referenced P'ij has been modified to limit power consumption and thus allowing production in polycrystalline silicon.
  • the elementary control circuit P'ij arranged in lines and in columns commands an elementary point made up, in the mode of realization represented, by an electro-optical cell XL, more particularly a liquid crystal cell.
  • an electro-optical cell XL more particularly a liquid crystal cell.
  • a CP storage capacity is mounted in parallel, said cell itself playing the role of a capacitance and its optical properties being modified according to the value of the electric field which crosses liquid crystal.
  • the control circuit P'ij consists of essentially by a switching device MN2 consisting of preferably by a thin film transistor or TFT.
  • An electrode of the transistor MN2 is connected to an electrode of the electro-optical cell XL while its other electrode is connected to a line L'i.
  • the gate of transistor MN2 is connected to an electrode of a second transistor MN1, the other electrode of which is connected to ground in the embodiment shown and the grid of which is connected to a column C'j.
  • a capacity referenced CB is connected between the gate of the switching transistor MN2 and the line L'i.
  • the connection point between the capacitor CB and the gate of the transistor MN2 is referenced A while the connection point between the electrode of the transistor MN2 and the electrode of the electro-optical cell XL is referenced B.
  • the lines L'i are connected to a line control circuit 20 which provides on the lines a data signal constituted by a signal which, initially, activates all the elementary circuits of command of the corresponding line by making them passers-by, then then apply a voltage ramp which is transmitted at the output of the elementary control circuit at the XL cell.
  • the whole columns C'j is connected to a column control circuit 30 which provides, on each column, a second signal consisting of a signal digital type switching, more particularly pulses of PWM type determining the duration during which the P'ij command activated remain passers-by.
  • the signal applied to the lines L'i, L'i + 1 is consisting of a negative pulse enabling all the elementary control circuits of a line followed by a ramp including the amplitude typically varies between - 5 volts and + 10 volts preferably.
  • the duration T of the signal L'i corresponds to a line time.
  • the same signal is applied but offset by a time T as shown on figure 3.
  • a signal of switching constituted by PWM type pulses to modulate the pulses in width the signal having levels included typically between 0 and 2 volts, in the case of a silicon realization polycrystalline or monocrystalline silicon.
  • the control circuit elementary consisting mainly of the two transistors MN1 and MN2 works as follows.
  • the second electrode of transistor MN1 is at a reference potential at know either to ground in the embodiment shown or to potential of the previous line which is itself at a voltage of reference, because it is not addressed.
  • the transistor MN1 becomes conducting and point A, namely the gate of transistor MN2 goes to the reference potential.
  • the source gate voltage Vgs of transistor MN2 is zero and the current "off" of transistor MN2 is minimum.
  • the electro-optical cell XL does not not discharge.
  • the new elementary control circuit above allows therefore to display gray levels corresponding to the duration during which the ramp is applied at point A.
  • the voltage of each elementary cell P'ij can therefore reach any value in the range of variation of the ramp provided by the first signal.
  • the polarity of each cell can therefore be chosen independently of that of its neighbors provided that the counter electrode voltage is adjusted to a value close to the half of the maximum voltage reached by the first signal.
  • the control circuit described above makes it possible to effectively reduce consumption. Indeed, the consumption is given by 1 ⁇ 2 f CV 2 , f being the line frequency, V the amplitude of the applied signal and C the capacities.
  • the table below shows the difference in consumption between the control device in FIG. 1 and in FIG. 2 for a liquid crystal screen comprising 600 rows and 2400 columns on a diagonal of the order of 30 cm.
  • COLUMNS APPLIED SIGNALS LINE FREQUENCY POWER prior art analog +/- 5 V 30 KHz ⁇ 1 ⁇ 2 W invention
  • PWM 0 - 1 V 30 KHz 20 mW
  • LINE FREQUENCY POWER prior art digital 40 V 30 KHz 1 line at a time ⁇ 10 mW invention analog data ramp: 15 V 30 KHz 1 line at a time ⁇ 2 mW
  • the MN2 transistors operate with a gate-source voltage Vgs controlled, which gives a lower "off" current.
  • FIG. 4 presents a variant of the invention where the outlet of the elementary control circuits P'ij identical to those represented on Figure 3 is no longer connected to a liquid crystal element, but to the gate of a transistor MN3 whose role is to deliver, to a material electroluminescent, an excitation current controlled by this voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Description

La présente invention concerne un dispositif de commande matriciel, plus particulièrement un dispositif de commande matriciel utilisé dans un écran plat tel qu'un écran à cristaux liquides du type à matrice active ou d'autres types d'écran plat.The present invention relates to a control device matrix, more particularly a matrix control device used in a flat screen such as a matrix type liquid crystal display active or other types of flat screen.

Dans l'art antérieur, un dispositif de commande matriciel est utilisé, par exemple, pour commander les cellules d'un écran plat telles que des cellules à cristaux liquides. Dans ce cas, il s'agit d'un écran à cristaux liquides du type à matrice active connu aussi sous l'abréviation AM-LCD. Un tel écran à cristaux liquides du type matrice active est représenté sur la figure 1. Dans ce cas, l'écran est constitué d'un certain nombre de cellules électro-optiques formées chacune d'une électrode et d'une contre-électrode enfermant le cristal liquide. Ces cellules sont référencées XL sur ladite figure. Les cellules électro-optiques sont arrangées en lignes et en colonnes, et commandées chacune par un circuit de commutation faisant partie d'un dispositif de commande de type matriciel. Comme représenté sur la figure 1, le circuit de commutation est réalisé par un transistor T dont une des électrodes est connectée à une colonne Cj et dont l'autre électrode est connectée à la cellule électro-optique XL. D'autre part, la grille du transistor T est connectée à une des lignes Li du dispositif de commande. Le plus souvent, la cellule électro-optique XL est associée à une capacité de stockage CP montée en parallèle sur la capacité formée par la cellule électro-optique en sortie du transistor T. L'ensemble formé du transistor T et de la capacité CP forme un circuit de commande élémentaire référencé Pij dans la figure 1. D'autre part, chacune des lignes de sélection Li est connectée à un circuit 2 de commande ou "driver ligne" qui applique successivement sur chaque ligne une impulsion de commande présentant une tension variant typiquement entre - 10 et + 20 volts. De même, chacune des colonnes Cj ou lignes de données est connectée à un circuit 3 de commande de colonnes ou "driver colonnes" qui envoie sur les colonnes Cj un signal analogique correspondant au signal vidéo représentant plus particulièrement une échelle de gris dont la tension varie typiquement entre + et - 5 volts. In the prior art, a matrix control device is used, for example, to control the cells of a flat screen such than liquid crystal cells. In this case, it is a screen to liquid crystals of the active matrix type also known by the abbreviation AM-LCD. Such an active matrix type liquid crystal screen is shown in Figure 1. In this case, the screen consists of a certain number of electro-optical cells each formed by an electrode and a counter-electrode enclosing the liquid crystal. These cells are referenced XL in said figure. The electro-optical cells are arranged in rows and columns, and each controlled by a switching circuit forming part of a control device matrix type. As shown in Figure 1, the circuit switching is carried out by a transistor T of which one of the electrodes is connected to a column Cj and the other electrode of which is connected to the XL electro-optical cell. On the other hand, the gate of transistor T is connected to one of the lines Li of the control device. most often the XL electro-optical cell is associated with a capacity of CP storage mounted in parallel on the capacity formed by the cell electro-optics at the output of transistor T. The assembly formed by the transistor T and the capacity CP form an elementary control circuit referenced Pij in Figure 1. On the other hand, each of the lines of selection Li is connected to a control circuit 2 or "line driver" which successively applies a pulse of control with a voltage typically varying between - 10 and + 20 volts. Likewise, each of the columns Cj or rows of data is connected to a column control circuit 3 or "column driver" which sends on the columns Cj an analog signal corresponding to the video signal representing more particularly a gray scale whose voltage typically varies between + and - 5 volts.

Avec ce dispositif de commande matriciel, la commande d'une cellule électro-optique XL s'effectue de la manière suivante. Lorsqu'une impulsion est appliquée sur une ligne de sélection Li, le transistor de commutation T devient passant. De ce fait, la tension analogique appliquée sur la colonne Cj est transmise aux bornes des électrodes de la cellule électro-optique XL qui affiche un niveau de gris correspondant au signal de données.With this matrix control device, the control of a XL electro-optical cell is carried out as follows. when pulse is applied to a selection line Li, the transistor switching T becomes conducting. Therefore, the analog voltage applied to column Cj is transmitted across the electrodes of the XL electro-optical cell which displays a gray level corresponding to the data signal.

En général, un dispositif de commande matriciel de ce type présente des transistors de commutation qui sont le plus souvent constitués par des transistors en couches minces TFT pour "Thin Film Transistor". Un tel dispositif est en général réalisé en silicium amorphe. D'autre part, les circuits 2,3 de commande lignes et colonnes peuvent être intégrés sur la plaque substrat sur laquelle est réalisé l'écran plat ou être réalisés indépendamment. Lorsqu'ils sont intégrés sur la plaque substrat, ils sont fabriqués en utilisant aussi du silicium amorphe.In general, a matrix control device of this type has switching transistors which are most often constituted by TFT thin film transistors for "Thin Film Transistor ". Such a device is generally made of amorphous silicon. On the other hand, the lines and columns control circuits 2,3 can be integrated on the substrate plate on which the flat screen is made or be done independently. When integrated on the plate substrate, they are also made using amorphous silicon.

Un des problèmes rencontrés avec ce type de dispositif de commande matriciel est un problème de consommation dû notamment à l'amplitude des signaux appliqués sur les lignes et les colonnes. Ce problème est d'autant plus important que l'on utilise pour l'adressage lignes de l'écran matriciel, la technique connue sous le terme "inversion de ligne", l'inversion de polarité ayant lieu à chaque ligne. Dans ce cas, on peut obtenir une consommation allant jusqu'à un watt pour une fréquence ligne de 30 KHz.One of the problems encountered with this type of device matrix control is a consumption problem due in particular to the amplitude of the signals applied to the rows and columns. This problem is all the more important that one uses for addressing lines of the matrix screen, the technique known as "inversion line ", the polarity reversal occurring on each line. In this case, you can get consumption of up to one watt for one line frequency of 30 KHz.

Un autre problème rencontré avec cette structure lorsqu'elle est réalisée avec des transistors en silicium polycristallin ou en silicium monocristallin, concerne le courant de fuite du transistor de commutation T à l'état bloqué qui tend à décharger les points élémentaires ou cellules électro-optiques XL.Another problem encountered with this structure when it is made with polycrystalline silicon or silicon transistors monocrystalline, relates to the leakage current of the switching transistor T in the blocked state which tends to discharge the elementary points or cells electro-optics XL.

La présente invention a pour but de remédier aux inconvénients cités ci-dessus en proposant un dispositif de commande matriciel présentant une nouvelle structure pour le circuit de commande élémentaire de chaque point élémentaire, cette structure étant particulièrement bien adaptée à l'utilisation du silicium polycristallin ou monocristallin pour la réalisation des transistors ou autres circuits semiconducteurs.The object of the present invention is to remedy the drawbacks cited above by proposing a matrix control device having a new structure for the control circuit elementary of each elementary point, this structure being particularly well suited to the use of polycrystalline silicon or monocrystalline for the production of transistors or other semiconductor circuits.

La présente invention a donc pour objet un dispositif de commande matriciel comportant un ensemble de circuits de commande disposés en lignes et en colonnes et commandant chacun un point élémentaire, l'état de chaque point élémentaire étant fonction de premier et second signaux de commande appliqués sur le circuit de commande respectivement par les lignes et les colonnes, caractérisé en ce que chaque circuit de commande est un circuit électrique pourvu de deux entrées indépendantes alimentées par le premier et le second signal, et d'une sortie qui génère le signal de commande du point élémentaire (XL). L'impédance de ce circuit entre sa sortie et celle d'une de ses entrées qui véhicule le premier signal devient faible suite à l'application d'une impulsion de tension adéquate sur ce premier signal, et cette même impédance devient très élevée suite à l'application d'une tension adéquate sur le deuxième signal.The present invention therefore relates to a device for matrix control comprising a set of control circuits arranged in rows and columns and each commanding an elementary point, the state of each elementary point being a function of first and second control signals applied to the control circuit respectively by rows and columns, characterized in that each control circuit is an electrical circuit provided with two independent inputs supplied by the first and the second signal, and with an output which generates the control signal for the elementary point (XL). impedance of this circuit between its output and that of one of its inputs which carries the first signal becomes weak following application of an adequate voltage pulse on this first signal, and this same impedance becomes very high following the application of an adequate voltage on the second signal.

Dans ce cas, le premier signal est un signal qui, dans un premier temps, permet d'activer tous les circuits de commande de la ligne correspondante en les rendant passants puis d'appliquer une rampe de tension qui est transmise en sortie du circuit de commande au point élémentaire correspondant. Selon un mode de réalisation préférentiel, le premier signal est constitué par un signal en forme de rampe précédé par une impulsion négative de précharge. Selon un perfectionnement, de préférence, l'instant de déclenchement du signal en forme de rampe est ajusté de ligne en ligne de manière à compenser les délais de propagation sur les colonnes.In this case, the first signal is a signal which, in a first step, activates all line control circuits corresponding by making them passers-by then applying a ramp of voltage which is transmitted from the control circuit to the point corresponding elementary. According to a preferred embodiment, the first signal consists of a ramp-shaped signal preceded by a negative precharge pulse. According to an improvement, preferably, the instant of triggering of the ramp-shaped signal is adjusted from line to line to compensate for propagation delays on the columns.

D'autre part, le second signal est un signal de commutation de type numérique déterminant la durée pendant laquelle les circuits de commande activés restent passants. Selon un mode de réalisation préférentiel, le second signal de commutation est constitué par des impulsions de type PWM pour "Pulse Width Modulation" en langue anglaise. De préférence, l'instant de déclenchement des impulsions est ajusté de colonne en colonne pour compenser les délais sur les lignes. On the other hand, the second signal is a switching signal of numerical type determining the duration during which the circuits of activated commands remain passers-by. According to one embodiment preferential, the second switching signal consists of PWM type pulses for "Pulse Width Modulation" in language English. Preferably, the moment of triggering of the pulses is adjusted from column to column to compensate for delays on the lines.

Selon un mode de réalisation préférentiel de la présente invention, le circuit de commande est constitué par un premier transistor connectant le point élémentaire à la ligne correspondante recevant le premier signal et un second transistor dont une première électrode est connectée à la grille du premier transistor, dont la grille est reliée à la colonne correspondante recevant le second signal et dont la deuxième électrode est connectée à un potentiel de référence.According to a preferred embodiment of the present invention, the control circuit consists of a first transistor connecting the elementary point to the corresponding line receiving the first signal and a second transistor of which a first electrode is connected to the gate of the first transistor, the gate of which is connected to the corresponding column receiving the second signal and the second of which electrode is connected to a reference potential.

Selon une caractéristique supplémentaire de la présente invention, le circuit de commande élémentaire comporte de plus une capacité connectée entre la grille du premier transistor et la ligne correspondante. De même, la deuxième électrode du second transistor est connectée à la ligne précédente. Selon une autre caractéristique de la présente invention, les circuits sont réalisés en utilisant du silicium polycristallin.According to an additional feature of this invention, the elementary control circuit further comprises a capacitance connected between the gate of the first transistor and the line corresponding. Likewise, the second electrode of the second transistor is connected to the previous line. According to another characteristic of the present invention, the circuits are made using silicon Polycrystalline.

D'autres caractéristiques et avantages de la présente invention apparaítront à la lecture de la description faite ci-après d'un mode de réalisation préférentiel, cette description étant faite avec référence aux dessins ci-annexés dans lesquels :

  • la figure 1 déjà décrite est une représentation schématique d'un dispositif de commande matriciel utilisé dans le cas d'un écran à cristaux liquides à matrice active associé à des circuits de commande lignes et colonnes conformément à l'art antérieur ;
  • la figure 2 est une représentation schématique d'un dispositif de commande matriciel conforme à la présente invention dans le cas où le point élémentaire est constitué par une cellule à cristaux liquides, ce dispositif étant associé à des circuits de commande lignes et colonnes,
  • la figure 3 représente la forme des différents signaux appliqués respectivement sur les lignes, les colonnes, au point A, au point B et la tension grille source du transistor MN2 dans le cas du circuit de commande élémentaire de la figure 2, et,
  • la figure 4 est une représentation schématique d'un dispositif de commande matriciel conforme à la présente invention dans le cas où le point élémentaire est constitué par un matériau électroluminescent, ce dispositif étant associé à des circuits de commande lignes et colonnes.
Other characteristics and advantages of the present invention will appear on reading the description given below of a preferred embodiment, this description being made with reference to the attached drawings in which:
  • Figure 1 already described is a schematic representation of a matrix control device used in the case of an active matrix liquid crystal screen associated with row and column control circuits according to the prior art;
  • FIG. 2 is a schematic representation of a matrix control device in accordance with the present invention in the case where the elementary point is constituted by a liquid crystal cell, this device being associated with row and column control circuits,
  • FIG. 3 represents the shape of the different signals applied respectively to the rows, the columns, at point A, at point B and the source gate voltage of the transistor MN2 in the case of the elementary control circuit of FIG. 2, and,
  • Figure 4 is a schematic representation of a matrix control device according to the present invention in the case where the elementary point is constituted by an electroluminescent material, this device being associated with row and column control circuits.

Dans les figures, pour simplifier la description, les mêmes éléments portent les mêmes références. D'autre part, la présente invention sera décrite en se référant à un écran à cristaux liquides. Toutefois, il est évident pour l'homme de l'art que l'invention peut s'appliquer à des points élémentaires constitués par tout circuit de stockage d'un signal électrique tel qu'une cellule électro-optique ou autre.In the figures, to simplify the description, the same elements have the same references. On the other hand, this invention will be described with reference to a liquid crystal display. However, it is obvious to those skilled in the art that the invention can apply to elementary points constituted by any circuit of storage of an electrical signal such as an electro-optical cell or the like.

Sur la figure 2, on a représenté un dispositif de commande matriciel conforme à la présente invention associé à un circuit de commande lignes 20 et un circuit de commande colonnes 30, lesdits circuits pouvant être intégrés ou non sur le même substrat que le dispositif de commande matriciel. Dans le dispositif de commande matriciel de la figure 2, le circuit de commande élémentaire référencé P'ij a été modifié de manière à limiter la consommation électrique et permettre ainsi une réalisation en silicium polycristallin. De manière plus spécifique, le circuit de commande élémentaire P'ij disposé en lignes et en colonnes commande un point élémentaire constitué, dans le mode de réalisation représenté, par une cellule électro-optique XL, plus particulièrement une cellule à cristal liquide. Sur cette cellule électro-optique est montée en parallèle une capacité de stockage CP, ladite cellule jouant elle-même le rôle d'une capacité et ses propriétés optiques étant modifiées en fonction de la valeur du champ électrique qui traverse le cristal liquide.In Figure 2, there is shown a control device matrix according to the present invention associated with a circuit control lines 20 and a column control circuit 30, said circuits which may or may not be integrated on the same substrate as the matrix control device. In the control device matrix of Figure 2, the elementary control circuit referenced P'ij has been modified to limit power consumption and thus allowing production in polycrystalline silicon. In a more specific, the elementary control circuit P'ij arranged in lines and in columns commands an elementary point made up, in the mode of realization represented, by an electro-optical cell XL, more particularly a liquid crystal cell. On this electro-optical cell a CP storage capacity is mounted in parallel, said cell itself playing the role of a capacitance and its optical properties being modified according to the value of the electric field which crosses liquid crystal.

On décrira maintenant un mode de réalisation d'un circuit de commande élémentaire P'ij dont la caractéristique principale est d'avoir un signal de sortie suivant le signal d'entrée lorsqu'il est activé par un premier signal, à savoir celui appliqué sur les lignes L'i, et dont l'impédance entre l'entrée et la sortie devient très grande sous l'effet d'un deuxième signal, à savoir le signal appliqué sur les colonnes C'j. Dans le cas de la figure 2, le circuit de commande P'ij est constitué essentiellement par un dispositif de commutation MN2 constitué de préférence par un transistor en couches minces ou TFT. Une électrode du transistor MN2 est reliée à une électrode de la cellule électro-optique XL tandis que son autre électrode est reliée à une ligne L'i. D'autre part, la grille du transistor MN2 est reliée à une électrode d'un second transistor MN1 dont l'autre électrode est connectée à la masse dans le mode de réalisation représenté et dont la grille est connectée à une colonne C'j. Comme représenté sur la figure 2, une capacité référencée CB est connectée entre la grille du transistor de commutation MN2 et la ligne L'i. Le point de connexion entre la capacité CB et la grille du transistor MN2 est référencé A tandis que le point de connexion entre l'électrode du transistor MN2 et l'électrode de la cellule électro-optique XL est référencé B. Les lignes L'i sont connectées à un circuit de commande de lignes 20 qui fournit sur les lignes un signal de données constitué par un signal qui, dans un premier temps, permet d'activer tous les circuits élémentaires de commande de la ligne correspondante en les rendant passants, puis d'appliquer ensuite une rampe de tension qui est transmise en sortie du circuit élémentaire de commande à la cellule XL. De même, l'ensemble des colonnes C'j est relié à un circuit de commande de colonnes 30 qui fournit, sur chaque colonne, un second signal constitué par un signal de commutation de type numérique, plus particulièrement des impulsions de type PWM déterminant la durée pendant laquelle les circuits de commande P'ij activés restent passants.We will now describe an embodiment of a circuit of elementary command P'ij whose main characteristic is to have an output signal following the input signal when activated by a first signal, namely that applied to the lines L'i, and of which the impedance between the input and the output becomes very large under the effect of a second signal, namely the signal applied to the columns C'j. In the case of FIG. 2, the control circuit P'ij consists of essentially by a switching device MN2 consisting of preferably by a thin film transistor or TFT. An electrode of the transistor MN2 is connected to an electrode of the electro-optical cell XL while its other electrode is connected to a line L'i. On the other hand, the gate of transistor MN2 is connected to an electrode of a second transistor MN1, the other electrode of which is connected to ground in the embodiment shown and the grid of which is connected to a column C'j. As shown in Figure 2, a capacity referenced CB is connected between the gate of the switching transistor MN2 and the line L'i. The connection point between the capacitor CB and the gate of the transistor MN2 is referenced A while the connection point between the electrode of the transistor MN2 and the electrode of the electro-optical cell XL is referenced B. The lines L'i are connected to a line control circuit 20 which provides on the lines a data signal constituted by a signal which, initially, activates all the elementary circuits of command of the corresponding line by making them passers-by, then then apply a voltage ramp which is transmitted at the output of the elementary control circuit at the XL cell. Likewise, the whole columns C'j is connected to a column control circuit 30 which provides, on each column, a second signal consisting of a signal digital type switching, more particularly pulses of PWM type determining the duration during which the P'ij command activated remain passers-by.

On expliquera maintenant, avec référence à la figure 3, le fonctionnement du circuit de commande représenté à la figure 2. Comme représenté sur la figure 3, le signal appliqué sur les lignes L'i, L'i + 1 est constitué par une impulsion négative permettant d'activer tous les circuits de commande élémentaires d'une ligne suivie d'une rampe dont l'amplitude varie typiquement entre - 5 volts et + 10 volts de préférence. La durée T du signal L'i correspond à un temps ligne. Sur la ligne L'i + 1 , le même signal est appliqué mais décalé d'un temps T comme représenté sur la figure 3. D'autre part, sur les colonnes C'j est appliqué un signal de commutation constitué par des impulsions de type PWM pour moduler les impulsions en largeur, le signal présentant des niveaux compris typiquement entre 0 et 2 volts, dans le cas d'une réalisation en silicium polycristallin ou en silicium monocristallin.We will now explain, with reference to Figure 3, the operation of the control circuit shown in Figure 2. As represented in FIG. 3, the signal applied to the lines L'i, L'i + 1 is consisting of a negative pulse enabling all the elementary control circuits of a line followed by a ramp including the amplitude typically varies between - 5 volts and + 10 volts preferably. The duration T of the signal L'i corresponds to a line time. On the line L'i + 1, the same signal is applied but offset by a time T as shown on figure 3. On the other hand, on the columns C'j is applied a signal of switching constituted by PWM type pulses to modulate the pulses in width, the signal having levels included typically between 0 and 2 volts, in the case of a silicon realization polycrystalline or monocrystalline silicon.

Lorsque la ligne L'i n'est pas adressée, le circuit de commande élémentaire constitué principalement des deux transistors MN1 et MN2 fonctionne de la manière suivante. Comme représenté sur la figure 2, la deuxième électrode du transistor MN1 est à un potentiel de référence à savoir soit à la masse dans le mode de réalisation représenté soit au potentiel de la ligne précédente qui se trouve elle-même à une tension de référence, car elle n'est pas adressée. Lorsqu'une impulsion est appliquée sur la colonne C'j, à savoir sur la grille du transistor MN1, le transistor MN1 devient passant et le point A, à savoir la grille du transistor MN2 passe au potentiel de référence. A ce moment, la tension grille source Vgs du transistor MN2 est à zéro et le courant "off" du transistor MN2 est minimum. Il en résulte que la cellule électro-optique XL ne se décharge pas.When the line L'i is not addressed, the control circuit elementary consisting mainly of the two transistors MN1 and MN2 works as follows. As shown in Figure 2, the second electrode of transistor MN1 is at a reference potential at know either to ground in the embodiment shown or to potential of the previous line which is itself at a voltage of reference, because it is not addressed. When a pulse is applied on column C'j, namely on the gate of transistor MN1, the transistor MN1 becomes conducting and point A, namely the gate of transistor MN2 goes to the reference potential. At this point, the source gate voltage Vgs of transistor MN2 is zero and the current "off" of transistor MN2 is minimum. As a result, the electro-optical cell XL does not not discharge.

Lorsque la ligne L'i est adressée, à savoir lorsqu'elle applique un signal tel que représenté par L'i sur la figure 3, la ligne L'i subit tout d'abord une chute de tension négative - V. Le point A, du fait de la capacité CB, subit la même chute de tension instantanée. La colonne C'j recevant une impulsion positive, comme représenté sur la figure 3, le transistor MN1 est passant et, de ce fait, le potentiel du point A est ramené au niveau du potentiel de référence, à savoir à la masse ou zéro, dans le cas du mode de réalisation représenté. La tension grille source Vgs du transistor MN2 devient positive et passe à une valeur correspondant à la chute de tension sur la ligne L'i ce qui rend le transistor MN2 passant. Immédiatement après, la tension appliquée sur la colonne C'j chute à zéro, entraínant le passage à l'état "off" ou haute impédance du transistor MN1. La tension grille source Vgs du transistor MN2 reste constante du fait de la capacité CB. Lorsque la rampe de tension est appliquée sur la ligne L'i, le transistor MN2 étant passant, la tension au point B recopie la tension de la rampe jusqu'à ce qu'une nouvelle impulsion positive sur la colonne rende le transistor MN1 passant, ce qui a pour effet de ramener la tension au point A au potentiel de référence. A ce moment, le transistor MN2 devient non passant et la tension au point B reste constante comme représenté sur la figure 3.When the line L'i is addressed, i.e. when it applies a signal as represented by L'i in FIG. 3, the line L'i undergoes all first a negative voltage drop - V. Point A, due to the CB capacity, undergoes the same instantaneous voltage drop. Column C'j receiving a positive pulse, as shown in Figure 3, the transistor MN1 is conducting and, therefore, the potential of point A is reduced to the level of the reference potential, namely to ground or zero, in the case of the embodiment shown. Source grid voltage Vgs of transistor MN2 becomes positive and goes to a value corresponding to the voltage drop on the line L'i which makes the MN2 transistor on. Immediately afterwards, the voltage applied to the column C'j drops to zero, causing the transition to the "off" or high state impedance of transistor MN1. The source gate voltage Vgs of the transistor MN2 remains constant due to the capacity CB. When the ramp of voltage is applied to the line L'i, the transistor MN2 being on, the voltage at point B copies the voltage of the ramp until a new positive pulse on the column returns the transistor MN1 passing, which has the effect of reducing the voltage at point A to the potential reference. At this moment, the transistor MN2 becomes non-conducting and the voltage at point B remains constant as shown in Figure 3.

Le nouveau circuit de commande élémentaire ci-dessus permet donc d'afficher des niveaux de gris correspondant à la durée pendant laquelle la rampe est appliquée au point A. Pour une utilisation dans un écran plat à cristaux liquides, la tension de chaque cellule élémentaire P'ij peut donc atteindre une valeur quelconque dans la gamme de variation de la rampe fournie par le premier signal. La polarité de chaque cellule peut donc être choisie indépendamment de celle de ses voisines pour peu que la tension de la contre électrode soit ajustée à une valeur voisine de la moitié de la tension maximale atteinte par le premier signal.The new elementary control circuit above allows therefore to display gray levels corresponding to the duration during which the ramp is applied at point A. For use in a flat liquid crystal display, the voltage of each elementary cell P'ij can therefore reach any value in the range of variation of the ramp provided by the first signal. The polarity of each cell can therefore be chosen independently of that of its neighbors provided that the counter electrode voltage is adjusted to a value close to the half of the maximum voltage reached by the first signal.

Le circuit de commande décrit ci-dessus permet de diminuer efficacement la consommation. En effet, la consommation est donnée par ½ f CV2, f étant la fréquence ligne, V l'amplitude du signal appliqué et C les capacités.The control circuit described above makes it possible to effectively reduce consumption. Indeed, the consumption is given by ½ f CV 2 , f being the line frequency, V the amplitude of the applied signal and C the capacities.

Le tableau ci-après montre la différence de consommation entre le dispositif de commande de la figure 1 et de la figure 2 pour un écran à cristaux liquides comprenant 600 lignes et 2400 colonnes sur une diagonale de l'ordre de 30 cm. COLONNES SIGNAUX APPLIQUES FREQUENCE LIGNE PUISSANCE art antérieur analogique: +/- 5 V 30 KHz ≈ ½ W invention PWM: 0 - 1 V 30 KHz 20 mW LIGNES SIGNAUX APPLIQUES FREQUENCE LIGNE PUISSANCE art antérieur numérique: 40 V 30 KHz
1 ligne à la fois
≈ 10 mW
invention analogique rampe de données: 15 V 30 KHz
1 ligne à la fois
≈ 2 mW
The table below shows the difference in consumption between the control device in FIG. 1 and in FIG. 2 for a liquid crystal screen comprising 600 rows and 2400 columns on a diagonal of the order of 30 cm. COLUMNS APPLIED SIGNALS LINE FREQUENCY POWER prior art analog: +/- 5 V 30 KHz ≈ ½ W invention PWM: 0 - 1 V 30 KHz 20 mW LINES APPLIED SIGNALS LINE FREQUENCY POWER prior art digital: 40 V 30 KHz
1 line at a time
≈ 10 mW
invention analog data ramp: 15 V 30 KHz
1 line at a time
≈ 2 mW

D'autre part, lorsque l'on utilise du silicium polycristallin réalisé sur verre ou du silicium monocristallin pour réaliser le dispositif de commande, les transistors MN2 fonctionnent avec une tension grille-source Vgs contrôlée, ce qui donne un courant "off" plus faible.On the other hand, when using polycrystalline silicon produced on glass or monocrystalline silicon to make the device control, the MN2 transistors operate with a gate-source voltage Vgs controlled, which gives a lower "off" current.

Un autre avantage de cette invention est que les « drivers colonne » 30 ont une fonction uniquement numérique, et fonctionnent à basse tension, ce qui facilite leur conception et diminue leur coût.Another advantage of this invention is that the "drivers column »30 have a numerical function only, and operate at low voltage, which facilitates their design and reduces their cost.

La figure 4 présente une variante de l'invention où la sortie des circuits de commande élémentaires P'ij identiques à ceux représentés sur la figure 3 est non plus connectée à un élément à cristal liquide, mais à la grille d'un transistor MN3 dont le rôle est de délivrer, à un matériau électroluminescent, un courant d'excitation contrôlé par cette tension.FIG. 4 presents a variant of the invention where the outlet of the elementary control circuits P'ij identical to those represented on Figure 3 is no longer connected to a liquid crystal element, but to the gate of a transistor MN3 whose role is to deliver, to a material electroluminescent, an excitation current controlled by this voltage.

Claims (13)

  1. Matrix drive device including a set of control circuits (P'ij) arranged in rows and columns and each controlling an elementary point (XL), the state of each elementary point being a function of first and second control signals (L'i, C'j) applied to the control circuit (P'ij) respectively via the rows (L'i) and columns (C'j), characterized in that each control circuit (P'ij) is an electrical circuit provided with two independent inputs, supplied by the first signal and the second signal, and with one output which generates the signal for controlling the elementary point (XL), the impedance of this electrical circuit between the output and that one of its inputs which is carrying the first signal becoming low following the application of an adequate voltage pulse on this first signal (L'i), and in that this same impedance becomes very high following the application of an adequate voltage on the second signal.
  2. Device according to Claim 1, characterized in that the first signal (L'i) is a signal which, in a first stage, makes it possible to activate all the control circuits (P'ij) of the corresponding row (L'i) by turning them on, then to apply a voltage ramp which is sent as the output of the control circuit (P'ij) to the corresponding elementary point.
  3. Device according to Claim 2, characterized in that the first signal (L'i) consists of a ramp-shaped signal preceded by a negative precharge pulse.
  4. Device according to either of Claims 2 and 3, characterized in that the triggering of the ramp-shaped signal is adjusted from row to row so as to compensate for the propagation delays on the columns (C'j).
  5. Device according to Claim 1, characterized in that the second signal (C'j) is a switching signal of digital type determining the duration for which the activated control circuits (P'ij) remain on.
  6. Device according to Claim 5, characterized in that the second switching signal (C'j) consists of pulses of PWM (Pulse Width Modulation) type.
  7. Device according to either of Claims 5 and 6, characterized in that the triggering of the pulses is adjusted from column to column in order to compensate for the delays on the rows (L'i).
  8. Device according to any one of Claims 1 to 7, characterized in that the control circuit (P'ij) consists of a first transistor (MN2) connecting the elementary point (XL) to the corresponding row (L'i) receiving the first signal, and a second transistor (MN1) a first electrode of which is connected to the gate of the first transistor, the gate of which is linked to the corresponding column (C'j) receiving the second signal and the second electrode of which is connected to a reference potential.
  9. Device according to Claim 8, characterized in that it further includes a capacitor (CB) connected between the gate of the first transistor (MN2) and the corresponding row (L'i).
  10. Device according to Claim 8, characterized in that the second electrode of the second transistor (MN1) is connected to the preceding row (L'i-1).
  11. Device according to any one of the preceding claims, characterized in that the circuits are produced using polycrystalline silicon, amorphous silicon or single-crystal silicon.
  12. Device according to any one of the preceding claims, characterized in that the elementary points are electro optic cells.
  13. Device according to any one of the preceding claims, characterized in that the output of the elementary points (P'ij) serves to modulate the excitation current of an electroluminescent material.
EP98949077A 1997-12-15 1998-10-19 Device for controlling a matrix display cell Expired - Lifetime EP0972282B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9715863A FR2772501B1 (en) 1997-12-15 1997-12-15 MATRIX CONTROL DEVICE
FR9715863 1997-12-15
PCT/FR1998/002236 WO1999031650A1 (en) 1997-12-15 1998-10-19 Device for controlling a matrix display cell

Publications (2)

Publication Number Publication Date
EP0972282A1 EP0972282A1 (en) 2000-01-19
EP0972282B1 true EP0972282B1 (en) 2004-12-15

Family

ID=9514608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98949077A Expired - Lifetime EP0972282B1 (en) 1997-12-15 1998-10-19 Device for controlling a matrix display cell

Country Status (7)

Country Link
US (1) US6844874B2 (en)
EP (1) EP0972282B1 (en)
JP (1) JP2001512588A (en)
KR (1) KR20000070943A (en)
DE (1) DE69828158T2 (en)
FR (1) FR2772501B1 (en)
WO (1) WO1999031650A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3475938B2 (en) * 2000-05-26 2003-12-10 セイコーエプソン株式会社 Electro-optical device driving method, electro-optical device driving circuit, electro-optical device, and electronic apparatus
JP3725458B2 (en) * 2001-09-25 2005-12-14 シャープ株式会社 Active matrix display panel and image display device having the same
US20040090402A1 (en) * 2002-11-04 2004-05-13 Ifire Technology Inc. Method and apparatus for gray-scale gamma correction for electroluminescent displays
CN1729498A (en) * 2002-12-30 2006-02-01 皇家飞利浦电子股份有限公司 Line-at-a-time addressed display and its drive method
US20050044186A1 (en) * 2003-06-13 2005-02-24 Petrisor Gregory C. Remote interface optical network
DE10360816A1 (en) 2003-12-23 2005-07-28 Deutsche Thomson-Brandt Gmbh Circuit and driving method for a light-emitting display
KR100628277B1 (en) * 2005-03-18 2006-09-27 엘지.필립스 엘시디 주식회사 A Electro-Luminescence Display Device and a method for driving the same
TWI429327B (en) 2005-06-30 2014-03-01 Semiconductor Energy Lab Semiconductor device, display device, and electronic appliance
TWI424408B (en) * 2005-08-12 2014-01-21 Semiconductor Energy Lab Semiconductor device, display device and electronic device equipped with the semiconductor device
EP1938484A2 (en) * 2005-09-19 2008-07-02 Lumexis, Inc. Fiber-to-the-seat in-flight entertainment system
WO2008033870A2 (en) * 2006-09-11 2008-03-20 Lumexis Corporation Fiber-to-the-seat (ftts) fiber distribution system
TWI359301B (en) * 2007-09-29 2012-03-01 Novatek Microelectronics Corp Driver apparatus and system and method for reducin
JP5596145B2 (en) 2009-08-06 2014-09-24 ルメクシス・コーポレーション Serial networking fiber-to-the-seat in-flight entertainment system
US20110162015A1 (en) * 2009-10-05 2011-06-30 Lumexis Corp Inflight communication system
US8424045B2 (en) * 2009-08-14 2013-04-16 Lumexis Corporation Video display unit docking assembly for fiber-to-the-screen inflight entertainment system
WO2011022708A1 (en) 2009-08-20 2011-02-24 Lumexis Corp. Serial networking fiber optic inflight entertainment system network configuration
JP5499638B2 (en) * 2009-10-30 2014-05-21 セイコーエプソン株式会社 Electrophoretic display device, driving method thereof, and electronic apparatus
US9747834B2 (en) * 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
CN104299573B (en) * 2014-11-13 2016-06-29 京东方科技集团股份有限公司 A kind of image element circuit, display floater and driving method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2489994B1 (en) * 1980-09-09 1987-09-11 Thomson Csf METHOD FOR FORMING CONTROL SIGNALS OF AN ALTERNATIVE PLASMA PANEL AND PLASMA PANEL CONTROLLED BY SIGNALS DEVELOPED ACCORDING TO THIS METHOD
US5122676A (en) * 1990-12-03 1992-06-16 Thomson, S.A. Variable pulse width generator including a timer vernier
JP2794499B2 (en) * 1991-03-26 1998-09-03 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2775040B2 (en) * 1991-10-29 1998-07-09 株式会社 半導体エネルギー研究所 Electro-optical display device and driving method thereof
ATE173839T1 (en) * 1992-09-11 1998-12-15 Kopin Corp COLOR FILTER SYSTEM FOR DISPLAY BOARDS
JP2821347B2 (en) * 1993-10-12 1998-11-05 日本電気株式会社 Current control type light emitting element array
FR2720185B1 (en) * 1994-05-17 1996-07-05 Thomson Lcd Shift register using M.I.S. of the same polarity.
US5434899A (en) * 1994-08-12 1995-07-18 Thomson Consumer Electronics, S.A. Phase clocked shift register with cross connecting between stages
US5684365A (en) * 1994-12-14 1997-11-04 Eastman Kodak Company TFT-el display panel using organic electroluminescent media
JPH08241057A (en) * 1995-03-03 1996-09-17 Tdk Corp Image display device
US5701136A (en) * 1995-03-06 1997-12-23 Thomson Consumer Electronics S.A. Liquid crystal display driver with threshold voltage drift compensation
JP3234131B2 (en) * 1995-06-23 2001-12-04 株式会社東芝 Liquid crystal display
FR2743662B1 (en) * 1996-01-11 1998-02-13 Thomson Lcd IMPROVEMENT IN SHIFT REGISTERS USING TRANSISTORS OF THE SAME POLARITY
US5949398A (en) * 1996-04-12 1999-09-07 Thomson Multimedia S.A. Select line driver for a display matrix with toggling backplane
JP3530341B2 (en) * 1997-05-16 2004-05-24 Tdk株式会社 Image display device
US6175345B1 (en) * 1997-06-02 2001-01-16 Canon Kabushiki Kaisha Electroluminescence device, electroluminescence apparatus, and production methods thereof
JP4092827B2 (en) * 1999-01-29 2008-05-28 セイコーエプソン株式会社 Display device

Also Published As

Publication number Publication date
EP0972282A1 (en) 2000-01-19
DE69828158T2 (en) 2005-12-22
FR2772501B1 (en) 2000-01-21
KR20000070943A (en) 2000-11-25
WO1999031650A1 (en) 1999-06-24
JP2001512588A (en) 2001-08-21
US20020130827A1 (en) 2002-09-19
DE69828158D1 (en) 2005-01-20
FR2772501A1 (en) 1999-06-18
US6844874B2 (en) 2005-01-18

Similar Documents

Publication Publication Date Title
EP0972282B1 (en) Device for controlling a matrix display cell
EP0815562B1 (en) Improvement to shift registers using mis transistors having the same polarity
EP0760149B1 (en) Shift register using mis transistors having the same polarity
EP0815552B1 (en) Method for addressing a flat screen using pixel precharging, driver for carrying out the method, and use thereof in large screens
FR2626705A1 (en) INTEGRATED MATRIX DISPLAY ASSEMBLY
EP0145520B1 (en) Display screen with active matrix without intersection of the row and column address lines
FR2626706A1 (en) INTEGRATED MATRIX DISPLAY ASSEMBLY
EP2013863A1 (en) Organic electroluminescent display
FR2783342A1 (en) RESIDUAL IMAGE ELIMINATION APPARATUS AND METHOD FOR A LIQUID CRYSTAL DISPLAY DEVICE
EP2311042A1 (en) Shift register based on field-effect transistors
FR2863758A1 (en) Electronic control cell for e.g. flat screen, has control transistor operated as switch and capacitive storage circuit storing control signal with capacitor whose terminals have voltages that are decreased during time period
EP0435750B1 (en) Addressing method for every column of a matrix LCD screen
EP1156491A2 (en) Improvements in shift registers using single type "MIS" transistors
EP1964094B1 (en) Method for controlling a display panel by capacitive coupling
EP0487389A1 (en) Active matrix flat screen
EP0078193A1 (en) Control circuit for an AC plasma panel
EP1697920B1 (en) Device for displaying images on an oled active matrix
WO2005073948A1 (en) Image display screen and method of addressing said screen
FR2615993A1 (en) METHOD AND DEVICE FOR THE ELIMINATION OF COUPLING IN MATRIX ADDRESSED THIN FILM TRANSISTOR LIQUID CRYSTAL SCREENS
FR2488016A1 (en) Thin-film matrix display panel using elementary modules - has each module provided with addressing transistor and power transistor
EP1102235A1 (en) Voltage generator for a liquid crystal display with voltage divider, differential amplifier and switching circuit
EP1622120A1 (en) Active matrix display device and method of driving such a device
EP1697919A1 (en) Image display screen
FR2896610A1 (en) METHOD AND DEVICE FOR CONTROLLING A MATRICIAL PLASMA SCREEN
EP1968037A2 (en) Device and method for controlling addressing electrodes of a plasma display panel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES AVIONICS LCD S.A.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 09G 3/32 B

Ipc: 7G 09G 3/30 B

Ipc: 7G 09G 3/36 A

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 09G 3/32 B

Ipc: 7G 09G 3/30 B

Ipc: 7G 09G 3/36 A

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69828158

Country of ref document: DE

Date of ref document: 20050120

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050406

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071011

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071027

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081015

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081019

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091019

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171018

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527