EP0832411B1 - Capillary pumped heat transfer loop - Google Patents
Capillary pumped heat transfer loop Download PDFInfo
- Publication number
- EP0832411B1 EP0832411B1 EP96918533A EP96918533A EP0832411B1 EP 0832411 B1 EP0832411 B1 EP 0832411B1 EP 96918533 A EP96918533 A EP 96918533A EP 96918533 A EP96918533 A EP 96918533A EP 0832411 B1 EP0832411 B1 EP 0832411B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- evaporator
- loop
- capillary
- tank
- reservoir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 239000012530 fluid Substances 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 30
- 239000011148 porous material Substances 0.000 claims description 19
- 239000013529 heat transfer fluid Substances 0.000 claims description 18
- 238000005086 pumping Methods 0.000 claims description 18
- 230000005679 Peltier effect Effects 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 description 48
- 239000007789 gas Substances 0.000 description 22
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 230000003071 parasitic effect Effects 0.000 description 5
- 238000009834 vaporization Methods 0.000 description 5
- 230000008016 vaporization Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000021183 entrée Nutrition 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/043—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
Definitions
- the present invention relates to a loop with capillary heat transport pumping comprising at at least one evaporator, at least one condenser and one tank arranged to store a heat transfer fluid, said evaporator comprising an outlet connected by a line of steam at a condenser inlet, a condenser outlet being connected to the reservoir, said evaporator comprising an evaporator body and being provided with a material porous arranged to produce a capillary pressure of pumping inside the loop and exerting it on said heat transfer fluid from the surface of the material in contact with the evaporator body, said evaporator being also arranged to evaporate the heat transfer fluid by heat absorption.
- Such a capillary pumping loop is known from the publication "Computer Model of satellite Thermal Control System Using a controlled capillary pumped loop "by K.A. Goncharov, E. Yu Kotlyarov and G.P. Serov published in SAE Technical Paper Series No. 932306.
- Such loops are for example used in satellites and allow heat transfer from a heat source, for example electronic equipment, to the condenser where the removed heat is dissipated.
- the loop is not good heard not limited to weightless applications because it also works in the presence of gravity.
- the porous material present in the evaporator has a axial channel which supplies heat transfer liquid porous material. The liquid saturation of the material porous allows the creation of capillary pressure.
- the loop configuration allows circulation of the evaporator to the condenser and then to the tank, which in turn supplies the evaporator with heat transfer liquid.
- the capillary material of the evaporator is thus supplied with heat transfer liquid and is therefore constantly saturated with liquid. In this way the capillary material allows to develop capillary pumping pressures able to compensate for pressure drops in the loop.
- the capillary pressure obtained with capillary materials currently known allows the heat transfer fluid to be pumped from the condenser to the evaporator even over a height of several meters under a gravity field.
- the heat transfer fluid completely fills the liquid line, vapor line and condenser, and partially the evaporator assembly.
- the liquid of the steam line and condenser will be pushed by steam generated by the evaporator to the tank. This pushed comes from a pressure difference between the evaporator and the tank caused by the external heat flow applied to the evaporator, which flux increases in one first the temperature of the evaporator. Volume of liquid vis-à-vis the volume of vapor contained by the tank therefore depends on the volume of steam vis-à-vis the volume of liquid in the vapor line and condenser.
- This phase change loop and capillary pumping is called "auto-start" because it does not require any related device or special procedure starting. It is indeed the heat flux applied to the evaporator which causes the loop to start.
- the tank temperature is mainly dictated by parasitic heat flow flowing from the evaporator to the tank. Pressure which prevails within the reservoir depends on the temperature and thus the vaporization pressure and temperature and condensation at which heat transport occurs in the loop is equal to the temperature of the tank.
- the heat source temperature is thus not sufficiently regulated, because it depends on the heat balance said parasitic flux and heat losses from the tank towards the atmosphere.
- the solution applied by the state of the technique lies in active thermal control of the tank via a Peltier cell which links the reservoir to the evaporator or other related devices that allow to regulate the tank temperature and so the temperature of the entire transport loop heat. This solution, however, makes the loop more complex. In addition, if the heat flux supplied by the heat source is too low, the temperature of the tank equals that of the evaporator surface and it there is no steam circulation.
- the object of the invention is to remedy these disadvantages.
- a capillary pumping loop heat transport is characterized in that the tank and the evaporator are isolated thermally from each other and interconnected by a pipe comprising a first part formed by a capillary connection arranged to pump the heat transfer fluid from the reservoir to the porous material and a second part arranged to evacuate gas bubbles and / or vapor formed in the evaporator to the tank, which tank being arranged to be maintained at a temperature lower than that of the evaporator. Insulation the thermal value of the tank and the evaporator consequence of thermally decoupling them and allowing thus conditioning the tank to a temperature independent of that of the evaporator. The heat flow direct interference from the evaporator to the tank is thus checked.
- the temperature of the tank is thus mainly given by the temperature of the liquid coming from the condenser and by the temperature of the environment. These two temperatures are also stable and low, the tank and therefore the evaporator (s) are kept at a minimum temperature. This result is very widely desired because it allows heat exchange with a minimum temperature difference between the source of heat and condenser.
- the capillary bond that brings the heat transfer liquid from the tank to the evaporator ensures that the porous material of the evaporator is always sufficiently supplied with heat transfer liquid and so that the capillary pumping pressure can be developed to maintain circulation in the loop.
- the second part allows for evacuation to the tank the vapor and the non-condensable gas formed by the stray heat flow through the capillary material of the evaporator. Since the tank is one lower temperature than the evaporator, this is the temperature difference between tank and evaporator which will ensure the circulation of gas and steam in said second part towards the reservoir.
- a first preferred embodiment of a capillary pumping loop for transporting heat according to the invention is characterized in that in said pipe which connects the evaporator to the tank the first part comprises at least a first channel and the second part at least one second channel, the diameter of the first channel being less than that of the second channel. Thanks to this configuration, any gas or vapor in the second part does not hinder the circulation of heat transfer fluid from the reservoir to the capillary material of the evaporator, because the smaller diameter of the first channel allows greater pumping pressure.
- a second preferred embodiment of a capillary pumping loop for transporting heat according to the invention is characterized in that the pipe that connects the evaporator to the tank extends in the central axis of the evaporator, said porous material of the evaporator being coaxially arranged with respect to the driving. This ensures an adequate supply of capillary material in heat transfer liquid and allows operation of the evaporator on all of its outer casing.
- a third preferred embodiment of a loop according to the invention is characterized in that the tank is thermally connected to the minus one of the evaporators by a thermoelectric cell Peltier effect arranged to regulate the temperature of the tank.
- This configuration allows you to vary the temperature difference between the tank and the evaporator, while keeping the tank temperature lower to that of the loop, and thereby influence the circulation in the loop.
- This configuration allows also active tank temperature control and as a consequence of the vaporization temperature and loop condensation.
- This embodiment has the advantage of using an evaporator as a cold source of the tank rather than an auxiliary transport device heat.
- the condenser Preferably it includes an evaporator auxiliary connected to a line of fluid leaving the condenser.
- This configuration has the advantage of avoiding a link capillary between the auxiliary evaporator and the tank.
- the performance of the hair bond no longer limits that of the auxiliary evaporators. Therefore the distances between the evaporator and the tank are no longer limited.
- the return line of the condensed fluid from of the condenser thus ensures the circulation of the non-condensable vapor and gas. These will be transported to the tank by circulation existing in the loop.
- said evaporator auxiliary is connected to the fluid line by a capillary bond.
- the auxiliary evaporator is working so in the same way with respect to the fluid line than the one that the evaporator works in relation to tank.
- the end of the link capillary in contact with the fluid line is thermally connected to the auxiliary evaporator by a cell thermoelectric Peltier effect arranged to cool the line in relation to the auxiliary evaporator. Regulation fluid line temperature becomes possible.
- FIG. 1 schematically illustrates a first example of a pumping loop heat transport capillary.
- This loop has a tank 1 in which a heat transfer liquid is stored.
- Tank 1 is thermally isolated from an evaporator 2. This keeps the tank at a lower temperature than the evaporator as in will be described below.
- the connection between tank 1 and the evaporator 2 is provided by a line 3 which comprises a first part 18 formed by a connection capillary and a second part 4 formed by a channel axial.
- the evaporator 2 includes a capillary material porous 5 arranged to produce capillary pressure within the evaporator.
- An evaporator outlet is connected by a steam line 6 to an inlet of a condenser 9.
- An output of the condenser is connected by a line 10 for the fluid which brings the fluid under form of liquid condensed in the condenser towards the tank thus closing the loop.
- the line fluid can also be directly connected to the evaporator.
- the loop can contain one or more evaporators.
- the loop comprises a second evaporator 8 connected by a pipe 7 at a tank outlet 1.
- the second evaporator 8 is also thermally dissociated from the tank.
- the evaporator 2 has a body 13 evaporator which forms the outer envelope of this last.
- the evaporator body is in contact with the capillary material 5 which is arranged coaxially by relative to the central axis of the evaporator.
- the material capillary 5 contains heat transfer liquid from of the tank.
- the capillary material 5 is provided with grooves 12 vapor collectors at the interface between this material and the evaporator body 13.
- the grooves 12 are in contact with steam line 6 to allow the evacuation of the vapor formed in the evaporator to the vapor line.
- capillary pressure Using capillary pressure a circulation of the heat transfer fluid is produced in the capillary material and across the entire loop. This pressure is such that it can defeat all of the pressure drops in the loop as long as the capillary material remains supplied with liquid.
- Driving involves a first part 18 formed by a capillary connection whose structure is comparable to that of the material capillary 5 present in the evaporator but whose permeability and pore size of the capillary material is greater than that of porous material 5.
- the porous material 5 and the capillary material are of preferably arranged coaxially with respect to channel 4.
- An axial channel 4 and the capillary link 18 which extend in the central axis of the evaporator.
- the material capillary 18 joins the porous material 5 of the evaporator.
- the heat transfer fluid contained in the tank 1 circulates by capillarity in the capillary connection 18 to reach the porous material 5 of the evaporator. Continuity between the capillary connection and the material porous ensures a supply of heat transfer liquid on the entire length of the link.
- the first part of line 3 includes at least a first channel formed between the particles of solid material of the capillary material 18.
- the second part 4 has at least one second channel.
- the diameter dl of the first channel being less than that of d2 of the second channel to allow greater capillary pressure in the first channel and therefore ensure the supply of liquid to the evaporator.
- the tank 1 is thermally isolated from the evaporator does not prevent the circulation of the fluid towards the evaporator. Indeed, it is the capillary pressure produced by the porous material 5 supplied with liquid by the material 18 which ensures circulation in the loop.
- the insulation of the reservoir with respect to the evaporator makes it possible to maintain the reservoir at a temperature T A lower than that of T F of the evaporator as illustrated in FIG. 6.
- the reservoir being in connection with the condenser it receives the fluid condensed which is at a temperature T I when it leaves the condenser.
- T I temperature difference between the tank and the porous material of the evaporator has already been suggested in the article cited in the preamble.
- the lower tank temperature by compared to the evaporator also allows to store in the tank a large amount of non-condensable gas.
- a large amount of non-condensable gas produced after several years of operation of the loop generates significant partial pressure.
- the increase partial pressure must be compensated by a decrease in partial pressure of the heat transfer fluid. The latter can be obtained by reducing the tank temperature compared to that of the evaporator.
- the external heat flow Q e will not only cause the evaporation of the heat transfer liquid at the liquid / vapor interface 17 but also a production of vapor at the level of the pipe 4 at the other interface between the first and the second part of the pipe up to its extension in the evaporator.
- the heat flow Q E also causes a parasitic heat flow Q P which passes through the capillary material 5 of the evaporator and evaporates the heat transfer liquid present in the capillary connection 18 connecting the tank and the evaporator and more particularly in the evaporator.
- This is schematically illustrated in FIG. 4.
- the presence of a capillary material 18 in the pipe 3 within the evaporator will cause a capillary pressure P C - P B (FIG. 5) on the vapor produced by Q P in l 'evaporator.
- the temperature T A of the tank being lower than that T C at the level of the second part of the pipe a heat pipe will form between the evaporator and the tank.
- the capillary link 18 will operate as a heat pipe if T C reaches a temperature equal to or greater than the saturation temperature. Otherwise the channel 4 of the evaporator is filled with liquid and there is no risk of drying of the capillary material. If non-condensable gas is dissolved in the fluid carried by the capillary link, bubbles of non-condensable gases emerge from the liquid by the contribution of parasitic heat Q P.
- the steam condenses on contact with the cooler fluid present. in tank 1.
- the non-condensable gas is transported to the tank by steam.
- the gas bubbles then escape to the top of the tank left free by the liquid.
- the drying of the capillary link is caused by both the parasitic heat flow Q P and the flow Q E - Q P.
- This drying causes capillary pumping pressures to arise which cause a depression of the liquid in the capillary link 18 and an overpressure of the gas and the vapor in the channel 4 relative to the reservoir 1 (P B ⁇ P A ).
- This pressure difference then causes pumping by the capillary link 18 of the fluid from the reservoir to the evaporator. It is therefore thanks to the fact that the temperature of the tank is lower than that of the evaporator that the non-condensable gas and the vapor produced by Q p is transported to the tank.
- the pressure P B at the inlet of the evaporator must be lower than the pressure P E at the outlet of the evaporator. It is the porous material 5 which makes it possible to support this pressure difference thanks to the capillary pressure which it can generate.
- the pressure P A at the tank is dictated by the temperature T A and the pressure P E at the evaporator is dictated by its temperature T E according to the saturation curve of the heat transfer fluid, it is thanks to the fact that the temperature of the tank is lower than that of the evaporator that the circulation of the fluid in the loop can be realized.
- the configuration of the capillary link 18 is preferably that described in Belgian patent n ° 903187. This configuration has the advantage of releasing bubbles from gas towards the center of the canal.
- Point J in Figure 6 represents a situation where the fluid has been further cooled before entering the tank.
- an auxiliary evaporator is connected to the line of fluid which connects the condenser 9 to the tank 1.
- All like evaporator 2 auxiliary evaporator 21 can be connected to the fluid line by a capillary link. he it is also possible to mount the auxiliary evaporator 21 on line 10 of fluid so that the fluid passes through the auxiliary evaporator.
- the heat transfer fluid leaving the condenser and flows through the fluid line 10 is colder than the one at points 22 and 23 in the evaporator auxiliary 21.
- the capillary link of the evaporator auxiliary works in a heat pipe in a similar way evaporator 2.
- the vapor bubbles are condensed in the laundry 10 and those of non-condensable gases are entrained by the circulation of the liquid towards the tank.
- This configuration has the advantage of avoiding a link capillary between the auxiliary evaporator and the tank without limiting the performance of the evaporator auxiliary. Therefore the distance between tank and evaporator is not limited.
- Figure 8 shows a preferred example a capillary pumped heat transport loop according to the invention.
- the configuration of the evaporator assembly and tank compared to Figure 1 is more particularly dedicated to transport applications weightless heat for spacecraft.
- the evaporator assembly comprises, according to the example, three evaporators 2, 31 and 32 connected in parallel.
- the capillary links 3 guarantee following the invention the supply of coolant tank 1 to the evaporators. During the ground tests, the coolant supply to evaporator B located slightly above the tank is carried out thanks to the capillary pumping pressure developed by the capillary link 3.
- the heat flow q e produces a vapor flow which is conveyed by the steam line 6 to the condensers 9 and 30.
- the heat flow q e absorbed at the evaporators by vaporization of the heat transfer liquid is transferred to the condensers by condensation of the flow of steam.
- the condensation formed on the walls of condensers is conveyed along capillary grooves 36 to the ends of the condensers.
- a structure capillary only allows the passage of condensed liquid to the liquid line 33.
- the tank 1 is thermally controlled by a cell thermoelectric (Peltier effect) 33.
- a sole 34 linking the Peltier cell to the evaporator 2 allows the supply or the extraction of thermal energy 35 from the reservoir to the evaporator. It is the Peltier 33 cell which performs the temperature difference between tank 1 and the sole 34 to direct the heat energy in the direction wish.
- the tank temperature control is thus realized.
- the pressure in the tank is dependent of the tank temperature following the curve of saturation of the heat transfer fluid and therefore the vaporization and condensation pressure and temperature in the loop is identical to that of the tank.
- Tank 1 contains a structure capillary 37 in order to manage in weightlessness the localization heat transfer liquid vis-à-vis steam or gases non-condensable contained by the tank.
- non-condensable gas is generated in the loop, this will be collected by tank 1. Due to the partial pressure of non-condensable gas in the tank, its temperature must be maintained at a temperature below that of vaporization evaporators to maintain pressure equality between the tank and the rest of the loop.
- thermoelectric cell can also be applied to the auxiliary evaporator to cool the fluid line relative to the evaporator auxiliary.
- the end of the link capillary connecting the auxiliary evaporator to the line of fluid is connected by the cell to the evaporator auxiliary. Cooling the fluid line as well obtained makes it possible to condense the steam produced by the flow heat supply to the auxiliary evaporator and limit the size of the non-condensable gas bubbles.
- a excessively large bubble size gas with respect to the speed of circulation of the fluid towards the tank could cause the draining line to drain fluid to the condenser and therefore interrupt the supply of liquid from the evaporator.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
La présente invention concerne une boucle à pompage capillaire de transport de chaleur comprenant au moins un évaporateur, au moins un condenseur et un réservoir agencé pour stocker un fluide caloporteur, ledit évaporateur comprenant une sortie reliée par une ligne de vapeur à une entrée du condenseur, une sortie du condenseur étant reliée au réservoir, ledit évaporateur comprenant un corps évaporateur et étant pourvu d'un matériau poreux agencé pour produire une pression capillaire de pompage à l'intérieur de la boucle et l'exercer sur ledit fluide caloporteur à partir de la surface du matériau en contact avec le corps évaporateur, ledit évaporateur étant également agencé pour faire évaporer le fluide caloporteur par absorption de chaleur.The present invention relates to a loop with capillary heat transport pumping comprising at at least one evaporator, at least one condenser and one tank arranged to store a heat transfer fluid, said evaporator comprising an outlet connected by a line of steam at a condenser inlet, a condenser outlet being connected to the reservoir, said evaporator comprising an evaporator body and being provided with a material porous arranged to produce a capillary pressure of pumping inside the loop and exerting it on said heat transfer fluid from the surface of the material in contact with the evaporator body, said evaporator being also arranged to evaporate the heat transfer fluid by heat absorption.
Une telle boucle à pompage capillaire est connue de la publication "Computer Model of satellite Thermal Control System Using a controlled capillary pumped loop" de K.A. Goncharov, E. Yu Kotlyarov et G.P. Serov paru dans SAE Technical Paper Series n°932306. De telles boucles sont par exemple utilisées dans des satellites et permettent le transfert thermique d'une source de chaleur, par exemple un équipement électronique, vers le condenseur où la chaleur prélevée est dissipée. La boucle n'est bien entendu pas limitée à des applications en apesanteur car elle fonctionne également en présence de la gravité. Le matériau poreux présent dans l'évaporateur comporte un canal axial qui permet d'alimenter en liquide caloporteur le matériau poreux. La saturation en liquide du matériau poreux permet la création d'une pression capillaire. C'est cette pression capillaire qui va permettre la circulation de la vapeur de l'évaporateur vers le condenseur ainsi que le retour du fluide condensé vers l'évaporateur sans qu'il fasse faire appel à des moyens mécaniques de pompage. La configuration en boucle permet une circulation de l'évaporateur vers le condenseur et ensuite vers le réservoir, qui alimente à son tour l'évaporateur en liquide caloporteur. Le matériau capillaire de l'évaporateur est ainsi alimenté en liquide caloporteur et est donc constamment saturée en liquide. De cette façon le matériau capillaire permet de développer des pressions de pompage capillaire aptes à compenser les pertes de charges dans la boucle. La pression capillaire obtenue avec les matériaux capillaires actuellement connus permet de pomper le fluide caloporteur du condenseur vers l'évaporateur même sur une hauteur de plusieurs mètres sous un champ de pesanteur.Such a capillary pumping loop is known from the publication "Computer Model of satellite Thermal Control System Using a controlled capillary pumped loop "by K.A. Goncharov, E. Yu Kotlyarov and G.P. Serov published in SAE Technical Paper Series No. 932306. Such loops are for example used in satellites and allow heat transfer from a heat source, for example electronic equipment, to the condenser where the removed heat is dissipated. The loop is not good heard not limited to weightless applications because it also works in the presence of gravity. The porous material present in the evaporator has a axial channel which supplies heat transfer liquid porous material. The liquid saturation of the material porous allows the creation of capillary pressure. It is this capillary pressure which will allow circulation vapor from the evaporator to the condenser and the return of the condensed fluid to the evaporator without it use mechanical pumping means. The loop configuration allows circulation of the evaporator to the condenser and then to the tank, which in turn supplies the evaporator with heat transfer liquid. The capillary material of the evaporator is thus supplied with heat transfer liquid and is therefore constantly saturated with liquid. In this way the capillary material allows to develop capillary pumping pressures able to compensate for pressure drops in the loop. The capillary pressure obtained with capillary materials currently known allows the heat transfer fluid to be pumped from the condenser to the evaporator even over a height of several meters under a gravity field.
Si, avant la circulation de vapeur, la boucle est au repos avec l'évaporateur au-dessus du condenseur, le fluide caloporteur remplit complètement la ligne liquide, la ligne vapeur et le condenseur, et partiellement l'ensemble évaporateur. Le liquide de la ligne vapeur et du condenseur sera poussé par la vapeur générée par l'évaporateur jusqu'au réservoir. Cette poussé provient d'une différence de pression entre l'évaporateur et le réservoir provoquée par le flux de chaleur externe appliqué à l'évaporateur, lequel flux fait accroítre en un premier temps la température de l'évaporateur. Le volume de liquide vis-à-vis du volume de vapeur contenu par le réservoir dépend donc du volume de la vapeur vis-à-vis du volume de liquide que contient la ligne vapeur et le condenseur. Cette boucle à changement de phase et à pompage capillaire est qualifié d'"auto-start", car elle ne requiert aucun dispositif connexe ni procédure spéciale de démarrage. C'est en effet le flux thermique appliqué à l'évaporateur qui provoque le démarrage de la boucle. If, before steam circulation, the loop is at rest with the evaporator above the condenser, the heat transfer fluid completely fills the liquid line, vapor line and condenser, and partially the evaporator assembly. The liquid of the steam line and condenser will be pushed by steam generated by the evaporator to the tank. This pushed comes from a pressure difference between the evaporator and the tank caused by the external heat flow applied to the evaporator, which flux increases in one first the temperature of the evaporator. Volume of liquid vis-à-vis the volume of vapor contained by the tank therefore depends on the volume of steam vis-à-vis the volume of liquid in the vapor line and condenser. This phase change loop and capillary pumping is called "auto-start" because it does not require any related device or special procedure starting. It is indeed the heat flux applied to the evaporator which causes the loop to start.
Un inconvénient de la boucle connue est que l'évaporateur et le réservoir sont reliés pour former un ensemble indivisible. La température du réservoir est principalement dictée par le flux thermique parasitaire circulant de l'évaporateur vers le réservoir. La pression qui règne au sein du réservoir dépend de la température et ainsi la pression et la température de vaporisation et de condensation à laquelle se produit le transport de chaleur dans la boucle est égale à la température du réservoir. La température de la source de chaleur n'est ainsi pas suffisamment régulée, car elle dépend du bilan thermique dudit flux parasite et des pertes de chaleur du réservoir vers l'ambiance. La solution appliquée par l'état de la technique réside en un contrôle thermique actif du réservoir via une cellule Peltier qui lie le réservoir à l'évaporateur ou aux autres dispositifs connexes qui permettent de réguler la température du réservoir et ainsi la température de l'ensemble de la boucle de transport de chaleur. Cette solution rend toutefois la boucle plus complexe. De plus si le flux thermique fournit par la source de chaleur est trop faible, la température du réservoir égale celle de la surface de l'évaporateur et il n'y a pas de circulation de vapeur.One drawback of the known loop is that the evaporator and the tank are connected to form a indivisible together. The tank temperature is mainly dictated by parasitic heat flow flowing from the evaporator to the tank. Pressure which prevails within the reservoir depends on the temperature and thus the vaporization pressure and temperature and condensation at which heat transport occurs in the loop is equal to the temperature of the tank. The heat source temperature is thus not sufficiently regulated, because it depends on the heat balance said parasitic flux and heat losses from the tank towards the atmosphere. The solution applied by the state of the technique lies in active thermal control of the tank via a Peltier cell which links the reservoir to the evaporator or other related devices that allow to regulate the tank temperature and so the temperature of the entire transport loop heat. This solution, however, makes the loop more complex. In addition, if the heat flux supplied by the heat source is too low, the temperature of the tank equals that of the evaporator surface and it there is no steam circulation.
L'invention a pour but de remédier à ces inconvénients.The object of the invention is to remedy these disadvantages.
A cette fin une boucle à pompage capillaire de transport de chaleur suivant l'invention est caractérisée en ce que le réservoir et l'évaporateur sont isolés thermiquement l'un de l'autre et reliés entre eux par une conduite comportant une première partie formée par une liaison capillaire agencée pour pomper le fluide caloporteur du réservoir vers le matériau poreux et une deuxième partie agencée pour évacuer des bulles de gaz et/ou de la vapeur formées dans l'évaporateur vers le réservoir, lequel réservoir étant agencé pour être maintenu à une température inférieure à celle de l'évaporateur. L'isolation thermique du réservoir et de l'évaporateur a pour conséquence de les découpler thermiquement et de permettre ainsi de conditionner le réservoir à une température indépendante à celle de l'évaporateur. Le flux thermique parasite directe de l'évaporateur au réservoir est ainsi enrayé. La température du réservoir est ainsi principalement donnée par la température du liquide provenant du condenseur et par la température de l'environnement. Ces deux températures sont également stables et basses, le réservoir et en conséquence le ou les évaporateur(s) sont maintenus à une température minimum. Ce résultat est très largement souhaité car il permet un échange thermique avec un minimum de différence de température entre la source de chaleur et le condenseur. La liaison capillaire qui amène le liquide caloporteur du réservoir vers l'évaporateur assure que le matériau poreux de l'évaporateur soit toujours suffisamment alimenté en liquide caloporteur et donc que la pression de pompage capillaire peut être développée pour maintenir la circulation dans la boucle. La deuxième partie permet quant à elle d'évacuer vers le réservoir la vapeur et le gaz non-condensable formé par le flux de chaleur parasite qui traverse le matériau capillaire de l'évaporateur. Puisque le réservoir est à une température inférieure à celle de l'évaporateur, c'est la différence de température entre le réservoir et l'évaporateur qui va assurer la circulation du gaz et de la vapeur dans ladite deuxième partie vers le réservoir.To this end a capillary pumping loop heat transport according to the invention is characterized in that the tank and the evaporator are isolated thermally from each other and interconnected by a pipe comprising a first part formed by a capillary connection arranged to pump the heat transfer fluid from the reservoir to the porous material and a second part arranged to evacuate gas bubbles and / or vapor formed in the evaporator to the tank, which tank being arranged to be maintained at a temperature lower than that of the evaporator. Insulation the thermal value of the tank and the evaporator consequence of thermally decoupling them and allowing thus conditioning the tank to a temperature independent of that of the evaporator. The heat flow direct interference from the evaporator to the tank is thus checked. The temperature of the tank is thus mainly given by the temperature of the liquid coming from the condenser and by the temperature of the environment. These two temperatures are also stable and low, the tank and therefore the evaporator (s) are kept at a minimum temperature. This result is very widely desired because it allows heat exchange with a minimum temperature difference between the source of heat and condenser. The capillary bond that brings the heat transfer liquid from the tank to the evaporator ensures that the porous material of the evaporator is always sufficiently supplied with heat transfer liquid and so that the capillary pumping pressure can be developed to maintain circulation in the loop. The second part allows for evacuation to the tank the vapor and the non-condensable gas formed by the stray heat flow through the capillary material of the evaporator. Since the tank is one lower temperature than the evaporator, this is the temperature difference between tank and evaporator which will ensure the circulation of gas and steam in said second part towards the reservoir.
Une première forme de réalisation préférentielle d'une boucle à pompage capillaire de transport de chaleur suivant l'invention est caractérisée en ce que dans ladite conduite qui relie l'évaporateur au réservoir la première partie comporte au moins un premier canal et la deuxième partie au moins un deuxième canal, le diamètre du premier canal étant inférieur à celui du deuxième canal. Grâce à cette configuration, tout gaz ou vapeur dans la deuxième partie ne gène pas la circulation du fluide caloporteur du réservoir vers le matériau capillaire de l'évaporateur, car le diamètre inférieur du premier canal permet une plus grande pression de pompage.A first preferred embodiment of a capillary pumping loop for transporting heat according to the invention is characterized in that in said pipe which connects the evaporator to the tank the first part comprises at least a first channel and the second part at least one second channel, the diameter of the first channel being less than that of the second channel. Thanks to this configuration, any gas or vapor in the second part does not hinder the circulation of heat transfer fluid from the reservoir to the capillary material of the evaporator, because the smaller diameter of the first channel allows greater pumping pressure.
Une deuxième forme de réalisation préférentielle d'une boucle à pompage capillaire de transport de chaleur suivant l'invention est caractérisée en ce que la conduite qui relie l'évaporateur au réservoir se prolonge dans l'axe central de l'évaporateur, ledit matériau poreux de l'évaporateur étant coaxialement disposé par rapport à la conduite. Ceci assure une alimentation adéquate du matériau capillaire en liquide caloporteur et permet un fonctionnement de l'évaporateur sur l'ensemble de son enveloppe extérieure.A second preferred embodiment of a capillary pumping loop for transporting heat according to the invention is characterized in that the pipe that connects the evaporator to the tank extends in the central axis of the evaporator, said porous material of the evaporator being coaxially arranged with respect to the driving. This ensures an adequate supply of capillary material in heat transfer liquid and allows operation of the evaporator on all of its outer casing.
Une troisième forme de réalisation préférentielle d'une boucle suivant l'invention est caractérisée en ce que le réservoir est connecté thermiquement à au moins un des évaporateurs par une cellule thermoélectrique à effet Peltier agencée pour régulariser la température du réservoir. Cette configuration permet de faire varier la différence de température entre le réservoir et l'évaporateur, tout en gardant la température du réservoir inférieure à celle de la boucle, et d'influencer ainsi la circulation dans la boucle. Cette configuration permet également le contrôle actif de la température du réservoir et en conséquence de la température de vaporisation et de condensation de la boucle. Cette forme de réalisation a l'avantage d'utiliser un évaporateur comme source froide du réservoir plutôt qu'un dispositif annexe de transport de chaleur.A third preferred embodiment of a loop according to the invention is characterized in that the tank is thermally connected to the minus one of the evaporators by a thermoelectric cell Peltier effect arranged to regulate the temperature of the tank. This configuration allows you to vary the temperature difference between the tank and the evaporator, while keeping the tank temperature lower to that of the loop, and thereby influence the circulation in the loop. This configuration allows also active tank temperature control and as a consequence of the vaporization temperature and loop condensation. This embodiment has the advantage of using an evaporator as a cold source of the tank rather than an auxiliary transport device heat.
De préférence elle comporte un évaporateur auxiliaire relié à une ligne de fluide sortant du condenseur. Cette configuration a l'avantage d'éviter un lien capillaire entre l'évaporateur auxiliaire et le réservoir. La performance du lien capillaire ne limite plus ainsi celle des évaporateurs auxiliaires. De ce fait les distances entre l'évaporateur et le réservoir ne sont plus limitées. La ligne de retour du fluide condensé en provenance du condenseur assure ainsi la circulation de la vapeur et du gaz non-condensable. Ces derniers seront transportés vers le réservoir grâce à la circulation existante dans la boucle.Preferably it includes an evaporator auxiliary connected to a line of fluid leaving the condenser. This configuration has the advantage of avoiding a link capillary between the auxiliary evaporator and the tank. The performance of the hair bond no longer limits that of the auxiliary evaporators. Therefore the distances between the evaporator and the tank are no longer limited. The return line of the condensed fluid from of the condenser thus ensures the circulation of the non-condensable vapor and gas. These will be transported to the tank by circulation existing in the loop.
Suivant une autre forme préférentielle de réalisation de la boucle suivant l'invention ledit évaporateur auxiliaire est relié à la ligne de fluide par une liaison capillaire. L'évaporateur auxiliaire fonctionne ainsi de la même façon par rapport à la ligne de fluide que celle dont fonctionne l'évaporateur par rapport au réservoir.According to another preferred form of realization of the loop according to the invention said evaporator auxiliary is connected to the fluid line by a capillary bond. The auxiliary evaporator is working so in the same way with respect to the fluid line than the one that the evaporator works in relation to tank.
De préférence l'extrémité de la liaison capillaire en contact avec la ligne de fluide est thermiquement reliée à l'évaporateur auxiliaire par une cellule thermoélectrique à effet Peltier agencée pour refroidir la ligne par rapport à l'évaporateur auxiliaire. Une régulation de température de la ligne de fluide devient ainsi possible.Preferably the end of the link capillary in contact with the fluid line is thermally connected to the auxiliary evaporator by a cell thermoelectric Peltier effect arranged to cool the line in relation to the auxiliary evaporator. Regulation fluid line temperature becomes possible.
L'invention sera maintenant décrite plus en
détail à l'aide d'exemples de réalisation d'une boucle à
pompage capillaire de transport de chaleur repris dans les
figures où:
Dans les figures une même référence a été attribuée à un même élément ou à un élément analogue.In the figures, the same reference has been attributed to the same element or to an analogous element.
La figure 1 illustre schématiquement un
premier exemple de réalisation d'une boucle à pompage
capillaire de transport de chaleur. Cette boucle comporte
un réservoir 1 dans lequel est stocké un liquide caloporteur.
Le réservoir 1 est thermiquement isolé d'un évaporateur
2. Ceci permet de maintenir le réservoir à une
température inférieure à celle de l'évaporateur comme in
sera décrit ci-dessous. La liaison entre le réservoir 1 et
l'évaporateur 2 est assurée par une conduite 3 qui comporte
une première partie 18 formée par une liaison
capillaire et une deuxième partie 4 formée par un canal
axial.Figure 1 schematically illustrates a
first example of a pumping loop
heat transport capillary. This loop has
a
L'évaporateur 2 comporte un matériau capillaire
poreux 5 agencé pour produire une pression capillaire
au sein de l'évaporateur. Une sortie de l'évaporateur
est reliée par une ligne de vapeur 6 à une entrée
d'un condenseur 9. Une sortie du condenseur est reliée par
une ligne 10 pour le fluide qui ramène le fluide sous
forme de liquide condensé dans le condenseur vers le
réservoir fermant ainsi la boucle. Le cas échéant la ligne
de fluide peut également directement être reliée à l'évaporateur.
La boucle peut contenir un ou plusieurs évaporateurs.
Dans l'exemple repris à la figure 1 la boucle
comporte un deuxième évaporateur 8 relié par une conduite
7 à une sortie du réservoir 1. Le deuxième évaporateur 8
est également thermiquement dissocié du réservoir.The
Le fonctionnement de l'évaporateur sera
décrit à l'aide de la figure 2. L'évaporateur 2 comporte
un corps 13 évaporateur qui forme l'enveloppe externe de
ce dernier. Le corps évaporateur est en contact avec le
matériau capillaire 5 qui est disposé coaxialement par
rapport à l'axe central de l'évaporateur. Le matériau
capillaire 5 contient du liquide caloporteur en provenance
du réservoir. Le matériau capillaire 5 est pourvu de
rainures 12 collectrices de vapeurs à l'interface entre ce
matériau et le corps évaporateur 13. Les rainures 12 sont
en contact avec la ligne de vapeur 6 pour permettre
l'évacuation de la vapeur formée dans l'évaporateur vers
la ligne de vapeur.The operation of the evaporator will be
described using Figure 2. The
Lorsque le corps évaporateur 13 est soumis
à un flux de chaleur Qe provenant d'une source externe
comme par exemple un appareil électronique, la chaleur Qe
fait évaporer le liquide caloporteur contenu dans le
matériau capillaire 5. La vapeur 15 ainsi produite va se
dégager vers les rainures 12 collectrices de vapeur pour
ensuite pénétrer dans la ligne de vapeur 6. Dans l'évaporateur
se trouve donc aussi bien du liquide que de la
vapeur produisant une interface 17 liquide/vapeur à la
surface du matériau capillaire poreux en contact avec le
corps évaporateur. Cette interface liquide/vapeur présente
un rayon de courbure. La valeur du rayon de courbure du
ménisque liquide contenu entre les particules 16 de
matière solide du matériau poreux fait naítre par la
tension superficielle du liquide caloporteur la pression
capillaire PE - PD. Cette pression PE - PD est illustrée à
la figure 5 qui représente un diagramme de pression. Cette
pression de pompage capillaire est exercée sur le fluide
caloporteur. Le liquide est en dépression dans le matériau
poreux au niveau de l'interface 17, ce qui provoque une
succion du liquide en amont du matériau poreux. La vapeur
est en surpression par rapport au liquide et va donc
diriger ce dernier à partir de l'interface 17 vers la
ligne de vapeur. La pression capillaire répond à l'équation
suivante:
- σl =
- tension superficielle du liquide caloporteur.
- R =
- rayon de courbure du ménisque liquide à l'interface liquide/vapeur
- σl =
- surface tension of the heat transfer liquid.
- R =
- radius of curvature of the liquid meniscus at the liquid / vapor interface
A l'aide de la pression capillaire une circulation du fluide caloporteur est produite dans le matériau capillaire et dans l'ensemble de la boucle. Cette pression est telle qu'elle peut vaincre l'ensemble des pertes de charges dans la boucle pour autant que le matériau capillaire reste alimenté en liquide.Using capillary pressure a circulation of the heat transfer fluid is produced in the capillary material and across the entire loop. This pressure is such that it can defeat all of the pressure drops in the loop as long as the capillary material remains supplied with liquid.
Pour maintenir la pression capillaire dans
la boucle il est donc nécessaire d'alimenter l'évaporateur
en liquide caloporteur afin que le liquide évaporé soit
remplacé par du liquide en provenance du réservoir. Comme
mentionné au préalable le réservoir est relié à l'évaporateur
par la conduite 3, dont une vue en coupe est illustrée
à la figure 3c. Les figures 3 a + b illustrant une
vue en coupe à travers l'évaporateur. La conduite comporte
une première partie 18 formée par une liaison capillaire
dont la structure est comparable à celle du matériau
capillaire 5 présent dans l'évaporateur mais dont la
perméabilité et la dimension des pores du matériau capillaire
est supérieure à celle du matériau poreux 5. Le
matériau poreux 5 et le matériau capillaire sont de
préférence disposés coaxialement par rapport au canal 4.
Un canal axial 4 et le lien capillaire 18 qui se prolongent
dans l'axe central de l'évaporateur. Le matériau
capillaire 18 rejoint le matériau poreux 5 de l'évaporateur.
Ainsi le fluide caloporteur contenu dans le réservoir
1 circule par capillarité dans la liaison capillaire
18 pour atteindre le matériau poreux 5 de l'évaporateur.
La continuité entre la liaison capillaire et le matériau
poreux assure une alimentation en liquide caloporteur sur
toute la longueur de la liaison. To maintain capillary pressure in
the loop so it is necessary to power the evaporator
in heat transfer liquid so that the evaporated liquid is
replaced by liquid from the tank. As
mentioned before the tank is connected to the evaporator
via
La première partie de la conduite 3 comporte
au moins un premier canal formé entre les particules de
matière solide du matériau capillaire 18. La deuxième
partie 4 comporte au moins un deuxième canal. Le diamètre
dl du premier canal étant inférieur à celui d2 du deuxième
canal pour permettre une plus grande pression capillaire
dans le premier canal et donc assurer l'apport de liquide
vers l'évaporateur.The first part of
Le fait que le réservoir 1 soit thermiquement
isolé de l'évaporateur n'empêche pas la circulation
du fluide vers l'évaporateur. En effet c'est la pression
capillaire produite par le matériau poreux 5 alimenté en
liquide par le matériau 18 qui assure la circulation dans
la boucle. L'isolation du réservoir par rapport à l'évaporateur
permet de maintenir le réservoir à une température
TA inférieure à celle de TF de l'évaporateur comme illustré
à la figure 6. Le réservoir étant en liaison avec le
condenseur il reçoit le fluide condensé qui est à une
température TI lorsqu'il quitte le condenseur. Il faut dans
ce contexte noter qu'une différence de température entre
le réservoir et le matériau poreux de l'évaporateur a déjà
été suggéré dans l'article cité dans le préambule. Toutefois
rien dans cet article suggère de séparer le réservoir
et l'évaporateur qui doivent selon l'article rester
indivisible. L'isolation thermique entre réservoir et
évaporateur permettant la différence de température entre
les deux a une influence positive sur le fonctionnement de
la boucle qui sera décrit ci-dessous.The fact that the
La température inférieure du réservoir par rapport à l'évaporateur permet également de stocker dans le réservoir une large quantité de gaz non-condensable. Une grande quantité de gaz non-condensable produit après plusieurs années de fonctionnement de la boucle, génère une pression partielle importante. Dans ce cas l'augmentation de la pression partielle devra être compensée par une diminution de la pression partielle du fluide caloporteur. Cette dernière peut être obtenue par une diminution de la température du réservoir par rapport à celle de l'évaporateur.The lower tank temperature by compared to the evaporator also allows to store in the tank a large amount of non-condensable gas. A large amount of non-condensable gas produced after several years of operation of the loop, generates significant partial pressure. In this case the increase partial pressure must be compensated by a decrease in partial pressure of the heat transfer fluid. The latter can be obtained by reducing the tank temperature compared to that of the evaporator.
Le flux de chaleur externe Qe va non seulement
provoquer l'évaporation du liquide caloporteur à
l'interface liquide/vapeur 17 mais également une production
de vapeur au niveau de la conduite 4 à l'autre
interface entre la première et la deuxième partie de la
conduite à hauteur de son prolongement dans l'évaporateur.The external heat flow Q e will not only cause the evaporation of the heat transfer liquid at the liquid /
Le flux de chaleur QE provoque également un
flux de chaleur QP parasite qui traverse le matériau
capillaire 5 de l'évaporateur et fait évaporer le liquide
caloporteur présent dans la liaison capillaire 18 reliant
le réservoir et l'évaporateur et plus particulièrement
dans l'évaporateur. Ceci est schématiquement illustré à la
figure 4. La présence d'un matériau capillaire 18 dans la
conduite 3 au sein de l'évaporateur va provoquer une
pression capillaire PC - PB (figure 5) sur la vapeur
produite par QP dans l'évaporateur. La température TA du
réservoir étant inférieure à celle TC au niveau de la
deuxième partie de la conduite un caloduc va se former
entre l'évaporateur et le réservoir.The heat flow Q E also causes a parasitic heat flow Q P which passes through the
Le lien capillaire 18 va fonctionner en
caloduc si TC atteint une température égale ou supérieure
à la température de saturation. Dans le cas contraire le
canal 4 de l'évaporateur est rempli de liquide et il n'y
a pas de risque d'assèchement du matériau capillaire. Si
du gaz non condensable est dissout dans le fluide véhiculé
par le lien capillaire, des bulles de gaz non condensables
ressortent du liquide par l'apport de chaleur parasitaire
QP. La vapeur saturée produit au niveau du lien capillaire
à une température TC supérieure à celle TA du réservoir. Il
s'en suit que la pression PC est supérieure à PA au niveau
du réservoir. Cette différence de pression de saturation
va provoquer le transport de la vapeur et du gaz non
condensable de l'évaporateur vers le réservoir via le
canal 4 formé par la deuxième partie de la conduite 3. La
vapeur se condense au contact du fluide plus froid présent
dans le réservoir 1. Le gaz non condensable est transporté
vers le réservoir par la vapeur. Les bulles de gaz s'échappent
alors vers le haut du réservoir laissé libre par
le liquide.The
L'assèchement du lien capillaire est provoqué
à la fois par le flux de chaleur parasite QP et le flux
QE - QP. Cet assèchement fait naítre des pressions capillaires
de pompage qui provoquent une dépression du liquide
dans le lien capillaire 18 et une surpression du gaz et de
la vapeur dans le canal 4 par rapport au réservoir 1 (PB <
PA). Cette différence de pression provoque alors un pompage
par le lien capillaire 18 du fluide à partir du réservoir
vers l'évaporateur. C'est donc grâce au fait que la
température du réservoir est inférieure à celle de l'évaporateur
que le gaz non condensable et la vapeur produite
par Qp est transporté vers le réservoir.The drying of the capillary link is caused by both the parasitic heat flow Q P and the flow Q E - Q P. This drying causes capillary pumping pressures to arise which cause a depression of the liquid in the
Pour permettre la circulation du fluide dans
la boucle il faut que la pression PB à l'entrée de l'évaporateur
soit inférieure à la pression PE de sortie de
l'évaporateur. C'est le matériau poreux 5 qui permet de
soutenir cette différence de pression grâce à la pression
capillaire qu'il peut générer. Comme la pression PA au
réservoir est dictée par la température TA et que la
pression PE à l'évaporateur est dictée par sa température
TE suivant la courbe de saturation du fluide caloporteur,
c'est grâce au fait que la température du réservoir est
inférieure à celle de l'évaporateur que la circulation du
fluide dans la boucle peut se réaliser.To allow the circulation of the fluid in the loop, the pressure P B at the inlet of the evaporator must be lower than the pressure P E at the outlet of the evaporator. It is the
Le flux de gaz et de vapeur dans le canal 4
à contre-courant n'empêche pas la circulation du fluide
vers l'évaporateur dû à la présence du lien capillaire 18.The gas and vapor flow in
La configuration du lien capillaire 18 est
de préférence celle décrit dans le brevet belge n°903187.
Cette configuration a l'avantage de dégager les bulles de
gaz vers le centre du canal.The configuration of the
Dans les figures 5 et 6 les autres valeurs
de température et de pressions ne seront pas décrits plus
en détail car elles représentent des valeurs connus d'une
boucle à pompage capillaire de transport de chaleur.
Toutefois par souci de clarté les différents points dans
la boucle seront nommés:
Le point J dans la figure 6 représente une
situation où le fluide a encore été refroidi davantage
avant de rentrer dans le réservoir. Comme illustré à la
figure 7 un évaporateur auxiliaire est relié à la ligne de
fluide qui relie le condenseur 9 au réservoir 1. Tout
comme l'évaporateur 2, l'évaporateur auxiliaire 21 peut
être relié à la ligne de fluide par un lien capillaire. Il
est également possible de monter l'évaporateur auxiliaire
21 sur la ligne 10 de fluide de telle façon que le fluide
traverse l'évaporateur auxiliaire.Point J in Figure 6 represents a
situation where the fluid has been further cooled
before entering the tank. As illustrated in
Figure 7 an auxiliary evaporator is connected to the line of
fluid which connects the
Le fluide caloporteur qui quitte le condenseur
et circule dans la ligne de fluide 10 est plus froid
que celui qui se trouve au points 22 et 23 dans l'évaporateur
auxiliaire 21. Ainsi le lien capillaire de l'évaporateur
auxiliaire fonctionne en caloduc de façon similaire
à l'évaporateur 2. Les bulles de vapeur sont condensées
dans la linge 10 et celles de gaz non condensables sont
entraínées par la circulation du liquide vers le réservoir.
Cette configuration a l'avantage d'éviter un lien
capillaire entre l'évaporateur auxiliaire et le réservoir
sans pour autant limiter la performance de l'évaporateur
auxiliaire. De ce fait la distance entre réservoir et
évaporateur n'est pas limitée.The heat transfer fluid leaving the condenser
and flows through the
La figure 8 présente un exemple préférentiel d'un boucle à pompage capillaire de transport de chaleur selon l'invention. La configuration de l'ensemble évaporateur et réservoir comparée à la figure 1 est plus particulièrement dédiée à des applications de transport de chaleur en apesanteur pour les engins spatiaux.Figure 8 shows a preferred example a capillary pumped heat transport loop according to the invention. The configuration of the evaporator assembly and tank compared to Figure 1 is more particularly dedicated to transport applications weightless heat for spacecraft.
L'ensemble évaporateur comporte, suivant
l'exemple, trois évaporateurs 2, 31 et 32 branchés en
parallèle. Les liens capillaires 3 garantissent suivant
l'invention l'alimentation en liquide caloporteur du
réservoir 1 aux évaporateurs. Lors des test au sol,
l'alimentation en liquide caloporteur de l'évaporateur B
localisé légèrement au-dessus du réservoir est réalisée
grâce à la pression de pompage capillaire développé par le
lien capillaire 3.The evaporator assembly comprises, according to
the example, three
Le flux de chaleur qe produit un flux de
vapeur qui est véhiculé par la ligne vapeur 6 jusqu'au
condenseurs 9 et 30. Le flux de chaleur qe absorbé aux
évaporateurs par vaporisation du liquide caloporteur est
cédé aux condenseurs par condensation du flux de vapeur.The heat flow q e produces a vapor flow which is conveyed by the
La condensation formée sur les parois des
condenseurs est véhiculée le long de rainures capillaires
36 jusqu'aux extrémités des condenseurs. Une structure
capillaire permet seulement le passage du liquide condensé
vers la ligne liquide 33.The condensation formed on the walls of
condensers is conveyed along capillary grooves
36 to the ends of the condensers. A structure
capillary only allows the passage of condensed liquid
to the
De préférence, suivant l'invention, le
réservoir 1 est contrôlé thermiquement par une cellule
thermoélectrique (à effet Peltier) 33. Une semelle 34
liant la cellule Peltier à l'évaporateur 2 permet l'apport
ou l'extraction d'énergie thermique 35 du réservoir à
l'évaporateur. C'est la cellule Peltier 33 qui réalise la
différence de température entre le réservoir 1 et la
semelle 34 pour diriger l'énergie calorifique dans le sens
souhaité. Le contrôle de température du réservoir est
ainsi réalisé. La pression dans le réservoir est fonction
de la température du réservoir suivant la courbe de
saturation du fluide caloporteur et par conséquent, la
pression et la température de vaporisation et de condensation
dans la boucle est identique à celle du réservoir.Preferably, according to the invention, the
Le réservoir 1 contient une structure
capillaire 37 afin de gérer en apesanteur la localisation
du liquide caloporteur vis-à-vis de la vapeur ou des gaz
non condensables contenus par le réservoir.
Si du gaz non condensable est généré dans la
boucle, celui-ci sera collecté par le réservoir 1. Due à
la pression partielle de gaz non condensable dans le
réservoir, la température de celui-ci devra être maintenue
à une température inférieure à celle de vaporisation aux
évaporateurs afin de maintenir une égalité des pressions
entre le réservoir et le restant de la boucle.If non-condensable gas is generated in the
loop, this will be collected by
Une cellule thermoélectrique à effet Peltier peut également être appliquée à l'évaporateur auxiliaire afin de refroidir la ligne de fluide par rapport à l'évaporateur auxiliaire. Dans ce cas l'extrémité de la liaison capillaire reliant l'évaporateur auxiliaire à la ligne de fluide est connectée par la cellule à l'évaporateur auxiliaire. Le refroidissement de la ligne de fluide ainsi obtenu permet de condenser la vapeur produite par le flux de chaleur fournit à l'évaporateur auxiliaire et de limiter la taille des bulles de gaz non-condensables. Un accroissement trop important de la taille des bulles de gaz par rapport à la vitesse de circulation du fluide vers le réservoir pourrait provoquer la vidange de la ligne de fluide vers le condenseur et donc rompre l'alimentation en liquide de l'évaporateur.A Peltier effect thermoelectric cell can also be applied to the auxiliary evaporator to cool the fluid line relative to the evaporator auxiliary. In this case the end of the link capillary connecting the auxiliary evaporator to the line of fluid is connected by the cell to the evaporator auxiliary. Cooling the fluid line as well obtained makes it possible to condense the steam produced by the flow heat supply to the auxiliary evaporator and limit the size of the non-condensable gas bubbles. A excessively large bubble size gas with respect to the speed of circulation of the fluid towards the tank could cause the draining line to drain fluid to the condenser and therefore interrupt the supply of liquid from the evaporator.
Claims (8)
- A capillary pumped heat transfer loop comprising at least one evaporator, at least one condenser and a reservoir for storing a heat transfer fluid, said evaporator comprising an output connected by a vapour line to an input of the condenser, an output of the condenser being connected to the reservoir, said evaporator comprising an evaporator body and being provided with a porous material provided for producing a capillary pumping pressure inside the loop and applying that pressure on the heat transfer fluid starting from the surface of the material in contact with the evaporator body, said evaporator being also provided for evaporating the heat transfer fluid by heat absorption, characterised in that the reservoir and the evaporator are thermally isolated from each other and connected with each other by a conduit comprising a first part formed by a capillary link provided for pumping the heat transfer fluid from the reservoir towards the porous material and a second part provided for evacuating gas bubbles and/or vapour formed within the evaporator towards the reservoir, which reservoir is provided to be kept at a temperature inferior to the one of the evaporator.
- A loop as claimed in claim 1, characterised in that within said conduit, which connects the evaporator to the reservoir, the first part comprises at least a first channel and the second part at least a second channel, the diameter of the first channel being smaller than the one of the second channel.
- A loop as claimed in claim 1 or 2, characterised in that the conduit, which connects the evaporator to the reservoir extends along the central axis of the evaporator, said porous material of the evaporator being coaxially applied with respect to the conduit.
- A loop as claimed in any one of the claims 1 to 3, characterised in that the reservoir is thermally linked to at least one of the evaporators by a thermo-electrical cell with Peltier effect, provided for regularising the temperature of the reservoir.
- A loop as claimed in any one of the claims 1 to 4, characterised in that it comprises an auxiliary evaporator connected to a fluid line issuing the condenser.
- A loop as claimed in claim 5, characterised in that said fluid line crosses the auxiliary evaporator.
- A loop as claimed in claim 5, characterised in that said auxiliary evaporator is connected to the fluid line by a capillary link.
- A loop as claimed in claim 7, characterised in that the extremity of the capillary link, which is in contact with the fluid line, is thermally linked to the auxiliary evaporator by a thermo-electrical cell with Peltier effect, provided for cooling the line with respect to the auxiliary evaporator.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE9500530A BE1009410A3 (en) | 1995-06-14 | 1995-06-14 | Device heat transport. |
BE9500530 | 1995-06-14 | ||
PCT/BE1996/000061 WO1997000416A1 (en) | 1995-06-14 | 1996-06-13 | Capillary pumped heat transfer loop |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0832411A1 EP0832411A1 (en) | 1998-04-01 |
EP0832411B1 true EP0832411B1 (en) | 2000-01-19 |
Family
ID=3889039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96918533A Revoked EP0832411B1 (en) | 1995-06-14 | 1996-06-13 | Capillary pumped heat transfer loop |
Country Status (6)
Country | Link |
---|---|
US (1) | US5944092C1 (en) |
EP (1) | EP0832411B1 (en) |
AU (1) | AU6116996A (en) |
BE (1) | BE1009410A3 (en) |
DE (1) | DE69606296T2 (en) |
WO (1) | WO1997000416A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3093458A1 (en) | 2015-05-12 | 2016-11-16 | Benteler Automobiltechnik GmbH | Motor vehicle heat transfer system |
DE102015017121A1 (en) | 2015-05-12 | 2016-11-17 | Benteler Automobiltechnik Gmbh | Automotive heat exchanger system |
DE102015107442A1 (en) | 2015-05-12 | 2016-11-17 | Benteler Automobiltechnik Gmbh | Automotive heat exchanger system |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6125228A (en) * | 1998-03-04 | 2000-09-26 | Swales Aerospace, Inc. | Apparatus for beam splitting, combining wavelength division multiplexing and demultiplexing |
US6938679B1 (en) * | 1998-09-15 | 2005-09-06 | The Boeing Company | Heat transport apparatus |
FR2783313A1 (en) | 1998-09-15 | 2000-03-17 | Matra Marconi Space France | HEAT TRANSFER DEVICE |
JP2000241089A (en) * | 1999-02-19 | 2000-09-08 | Mitsubishi Electric Corp | Evaporator, heat sink, and system and method for transporting heat |
US6397936B1 (en) * | 1999-05-14 | 2002-06-04 | Creare Inc. | Freeze-tolerant condenser for a closed-loop heat-transfer system |
KR100294317B1 (en) * | 1999-06-04 | 2001-06-15 | 이정현 | Micro-cooling system |
US7251889B2 (en) * | 2000-06-30 | 2007-08-07 | Swales & Associates, Inc. | Manufacture of a heat transfer system |
US8047268B1 (en) | 2002-10-02 | 2011-11-01 | Alliant Techsystems Inc. | Two-phase heat transfer system and evaporators and condensers for use in heat transfer systems |
US7708053B2 (en) * | 2000-06-30 | 2010-05-04 | Alliant Techsystems Inc. | Heat transfer system |
EP1305562B1 (en) * | 2000-06-30 | 2006-03-08 | Swales Aerospace | Phase control in the capillary evaporators |
US8109325B2 (en) * | 2000-06-30 | 2012-02-07 | Alliant Techsystems Inc. | Heat transfer system |
US8136580B2 (en) | 2000-06-30 | 2012-03-20 | Alliant Techsystems Inc. | Evaporator for a heat transfer system |
US7004240B1 (en) * | 2002-06-24 | 2006-02-28 | Swales & Associates, Inc. | Heat transport system |
US7549461B2 (en) | 2000-06-30 | 2009-06-23 | Alliant Techsystems Inc. | Thermal management system |
US7931072B1 (en) | 2002-10-02 | 2011-04-26 | Alliant Techsystems Inc. | High heat flux evaporator, heat transfer systems |
RU2224967C2 (en) * | 2001-08-09 | 2004-02-27 | Сидоренко Борис Револьдович | Evaporative chamber of contour heating pipe |
US6533029B1 (en) * | 2001-09-04 | 2003-03-18 | Thermal Corp. | Non-inverted meniscus loop heat pipe/capillary pumped loop evaporator |
US6981543B2 (en) * | 2001-09-20 | 2006-01-03 | Intel Corporation | Modular capillary pumped loop cooling system |
US20030124026A1 (en) * | 2001-11-05 | 2003-07-03 | Hal Williams | Apparatus and process for concentrating a sterilant and sterilizing articles therewith |
TW200306402A (en) | 2001-12-21 | 2003-11-16 | Tth Res Inc | Loop heat pipe method and apparatus |
US7775261B2 (en) * | 2002-02-26 | 2010-08-17 | Mikros Manufacturing, Inc. | Capillary condenser/evaporator |
WO2003073032A1 (en) * | 2002-02-26 | 2003-09-04 | Mikros Manufacturing, Inc. | Capillary evaporator |
US20040079100A1 (en) * | 2002-10-25 | 2004-04-29 | Sun Microsystems, Inc. | Field replaceable packaged refrigeration module with capillary pumped loop for cooling electronic components |
JP4998933B2 (en) * | 2002-10-28 | 2012-08-15 | アリアント・テツクシステムズ・インコーポレーテツド | Heat transfer system |
CN100449244C (en) * | 2002-10-28 | 2009-01-07 | 斯沃勒斯联合公司 | Heat transfer system |
US6865897B2 (en) * | 2003-07-10 | 2005-03-15 | Praxair Technology, Inc. | Method for providing refrigeration using capillary pumped liquid |
TW592033B (en) * | 2003-10-20 | 2004-06-11 | Konglin Construction & Mfg Co | Heat transfer device and manufacturing method thereof |
US6948556B1 (en) | 2003-11-12 | 2005-09-27 | Anderson William G | Hybrid loop cooling of high powered devices |
US20060044524A1 (en) * | 2004-08-31 | 2006-03-02 | Feliss Norbert A | System and method for cooling a beam projector |
WO2007035295A1 (en) * | 2005-09-16 | 2007-03-29 | University Of Cincinnati | Silicon mems based two-phase heat transfer device |
US7661464B2 (en) * | 2005-12-09 | 2010-02-16 | Alliant Techsystems Inc. | Evaporator for use in a heat transfer system |
US8188595B2 (en) | 2008-08-13 | 2012-05-29 | Progressive Cooling Solutions, Inc. | Two-phase cooling for light-emitting devices |
DE102008054224A1 (en) * | 2008-10-31 | 2010-05-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method of transporting liquids, thermal capillary pump and their use |
US20100132404A1 (en) * | 2008-12-03 | 2010-06-03 | Progressive Cooling Solutions, Inc. | Bonds and method for forming bonds for a two-phase cooling apparatus |
FR2949642B1 (en) * | 2009-08-27 | 2012-05-04 | Alstom Transport Sa | ELECTRIC POWER CONVERTER FOR A RAILWAY VEHICLE |
CN101943531A (en) * | 2010-09-17 | 2011-01-12 | 中国科学院上海技术物理研究所 | Double-evaporator loop heat pipe sharing one compensator |
CN103189708B (en) * | 2010-11-01 | 2015-04-01 | 富士通株式会社 | Loop-shaped heat pipe and electronic device equipped with same |
CN102723316A (en) * | 2011-03-29 | 2012-10-10 | 北京奇宏科技研发中心有限公司 | Loop heat pipe structure |
FR2979981B1 (en) * | 2011-09-14 | 2016-09-09 | Euro Heat Pipes | CAPILLARY PUMP HEAT DELIVERY DEVICE |
ES2648877T3 (en) | 2012-12-28 | 2018-01-08 | Ibérica Del Espacio, S.A. | Loop heat pipe apparatus for heat transmission and thermal control |
FR3002028B1 (en) * | 2013-02-14 | 2017-06-02 | Euro Heat Pipes | DEVICE FOR TRANSPORTING HEAT WITH DIPHASIC FLUID |
FR3006431B1 (en) * | 2013-05-29 | 2015-06-05 | Euro Heat Pipes | DEVICE FOR TRANSPORTING HEAT WITH A DIPHASIC FLUID |
EP2985556B1 (en) | 2014-08-14 | 2017-03-15 | Ibérica del Espacio, S.A. | Advanced control two phase heat transfer loop |
DE102015107427A1 (en) * | 2015-05-12 | 2016-11-17 | Benteler Automobiltechnik Gmbh | Automotive heat exchanger system |
CN104930893B (en) * | 2015-05-29 | 2016-08-24 | 西安交通大学 | A kind of plate loop circuit heat pipe of ejector assist type |
US10455735B2 (en) * | 2016-03-03 | 2019-10-22 | Coolanyp, LLC | Self-organizing thermodynamic system |
DE102016105592A1 (en) * | 2016-03-24 | 2017-09-28 | Benteler Automobiltechnik Gmbh | Heating device and method for heating a motor vehicle |
US12066254B1 (en) * | 2017-06-02 | 2024-08-20 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Two-phase thermal protection of the hypersonic leading edge |
US11467637B2 (en) | 2018-07-31 | 2022-10-11 | Wuxi Kalannipu Thermal Management Technology Co., Ltd. | Modular computer cooling system |
JP7184594B2 (en) * | 2018-10-23 | 2022-12-06 | 新光電気工業株式会社 | loop heat pipe |
CN110030860B (en) * | 2019-05-15 | 2020-11-24 | 北京航空航天大学 | Double-lead-tube type double-liquid-reservoir loop heat pipe |
TWI767421B (en) * | 2020-11-24 | 2022-06-11 | 財團法人金屬工業研究發展中心 | Heat transferring system |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2216537B1 (en) * | 1973-02-06 | 1975-03-07 | Gaz De France | |
US4312402A (en) * | 1979-09-19 | 1982-01-26 | Hughes Aircraft Company | Osmotically pumped environmental control device |
SU1104350A2 (en) * | 1979-11-15 | 1984-07-23 | Институт Тепло-И Массообмена Им.А.В.Лыкова | Heat pipe |
US4336837A (en) * | 1981-02-11 | 1982-06-29 | The United States Of America As Represented By The United States Department Of Energy | Entirely passive heat pipe apparatus capable of operating against gravity |
CA1195187A (en) * | 1981-11-04 | 1985-10-15 | Cornelius R. Russell | Nozzle cooled by heat pipe means |
US4516631A (en) * | 1981-11-04 | 1985-05-14 | Combustion Engineering, Inc. | Nozzle cooled by heat pipe means |
US4523636A (en) * | 1982-09-20 | 1985-06-18 | Stirling Thermal Motors, Inc. | Heat pipe |
US4554966A (en) * | 1983-06-02 | 1985-11-26 | Vasiliev Leonard L | Heat-transfer device |
US4515209A (en) * | 1984-04-03 | 1985-05-07 | Otdel Fiziko-Tekhnicheskikh Problem Energetiki Uralskogo Nauchnogo Tsentra Akademi Nauk Ssr | Heat transfer apparatus |
BE903187A (en) * | 1985-09-05 | 1986-03-05 | Belge Const Aeronautiques | Hermetically sealed tube capillary - has sheet defining permeable partitions with heat exchange surface |
SU1449823A1 (en) * | 1987-03-17 | 1989-01-07 | Одесский технологический институт пищевой промышленности им.М.В.Ломоносова | Antigravity heat pipe |
US4917173A (en) * | 1988-11-15 | 1990-04-17 | The United States Of America As Represented By The National Aeronautics And Space Administration | Monogroove liquid heat exchanger |
US4957157A (en) * | 1989-04-13 | 1990-09-18 | General Electric Co. | Two-phase thermal control system with a spherical wicked reservoir |
US5117901A (en) * | 1991-02-01 | 1992-06-02 | Cullimore Brent A | Heat transfer system having a flexible deployable condenser tube |
US5103897A (en) * | 1991-06-05 | 1992-04-14 | Martin Marietta Corporation | Flowrate controller for hybrid capillary/mechanical two-phase thermal loops |
US5303768A (en) * | 1993-02-17 | 1994-04-19 | Grumman Aerospace Corporation | Capillary pump evaporator |
-
1995
- 1995-06-14 BE BE9500530A patent/BE1009410A3/en not_active IP Right Cessation
-
1996
- 1996-06-13 DE DE69606296T patent/DE69606296T2/en not_active Revoked
- 1996-06-13 EP EP96918533A patent/EP0832411B1/en not_active Revoked
- 1996-06-13 AU AU61169/96A patent/AU6116996A/en not_active Abandoned
- 1996-06-13 WO PCT/BE1996/000061 patent/WO1997000416A1/en not_active Application Discontinuation
-
1998
- 1998-01-28 US US08973981 patent/US5944092C1/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3093458A1 (en) | 2015-05-12 | 2016-11-16 | Benteler Automobiltechnik GmbH | Motor vehicle heat transfer system |
DE102015107473A1 (en) | 2015-05-12 | 2016-11-17 | Benteler Automobiltechnik Gmbh | Automotive heat exchanger system |
DE102015017121A1 (en) | 2015-05-12 | 2016-11-17 | Benteler Automobiltechnik Gmbh | Automotive heat exchanger system |
DE102015107442A1 (en) | 2015-05-12 | 2016-11-17 | Benteler Automobiltechnik Gmbh | Automotive heat exchanger system |
EP3098556A1 (en) | 2015-05-12 | 2016-11-30 | Benteler Automobiltechnik GmbH | Motor vehicle heat transfer system |
Also Published As
Publication number | Publication date |
---|---|
US5944092C1 (en) | 2001-06-12 |
DE69606296T2 (en) | 2000-08-10 |
BE1009410A3 (en) | 1997-03-04 |
EP0832411A1 (en) | 1998-04-01 |
US5944092A (en) | 1999-08-31 |
AU6116996A (en) | 1997-01-15 |
WO1997000416A1 (en) | 1997-01-03 |
DE69606296D1 (en) | 2000-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0832411B1 (en) | Capillary pumped heat transfer loop | |
EP0855013B1 (en) | Capillary evaporator for diphasic loop of energy transfer between a hot source and a cold source | |
EP1293428B1 (en) | Heat exchanger | |
EP0772757B1 (en) | Energy transfer system between a hot source and a cold source | |
EP2795226B1 (en) | Cooling device | |
EP3859135B1 (en) | Turbine engine for aircraft provided with a thermoacoustic system | |
EP2802834B1 (en) | Cooling device suitable for regulating the temperature of a heat source of a satellite, and method for producing the associated cooling device and satellite | |
FR3002028A1 (en) | DEVICE FOR TRANSPORTING HEAT WITH A DIPHASIC FLUID | |
WO2009019380A1 (en) | Thermal regulation passive device with fluid micro loop and capillary pumping | |
FR2783313A1 (en) | HEAT TRANSFER DEVICE | |
WO1999018387A1 (en) | Method and installation for filling a tank under pressure | |
EP3295106B1 (en) | Device for storing thermal energy | |
EP3250870A1 (en) | Diphasic cooling loop with satellite evaporators | |
WO2012101384A1 (en) | Cooling device for an electronic power system in a vehicle | |
EP0767081A1 (en) | Device for the recovery of heat from the exhaust gases of a vehicle | |
EP2474216A1 (en) | Cooling device for an electronic power system in a vehicle | |
EP3194874A1 (en) | Heat pipe and method for making a heat pipe | |
FR2783312A1 (en) | Fluid loop for capillary pumping of heat transfer liquid in satellite has condenser with duct having curved surface | |
BE851734A (en) | HEAT TRANSFER SYSTEM WITH HEAT TRANSFER FLUID | |
BE820164A (en) | Refrigerant circulation control system - pilot heat exchanger in parallel with accumulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980114 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB IT NL SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19990317 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 69606296 Country of ref document: DE Date of ref document: 20000224 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000425 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: SWALES AEROSPACE Effective date: 20001018 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: SWALES AEROSPACE |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: EURO HEAT PIPES S.A. |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: EURO HEAT PIPES S.A. |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030611 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20030617 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20030619 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20030626 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030829 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030901 Year of fee payment: 8 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20040609 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 20040609 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: ECNC |
|
NLR2 | Nl: decision of opposition |
Effective date: 20040609 |
|
APAA | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOS REFN |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |