EP0805333B1 - Method for creating a decoy target - Google Patents
Method for creating a decoy target Download PDFInfo
- Publication number
- EP0805333B1 EP0805333B1 EP97105393A EP97105393A EP0805333B1 EP 0805333 B1 EP0805333 B1 EP 0805333B1 EP 97105393 A EP97105393 A EP 97105393A EP 97105393 A EP97105393 A EP 97105393A EP 0805333 B1 EP0805333 B1 EP 0805333B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- projectile
- ignition
- decoy
- active substance
- blow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 31
- 239000013543 active substance Substances 0.000 claims description 16
- 239000003380 propellant Substances 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- 238000002485 combustion reaction Methods 0.000 claims description 7
- 239000011888 foil Substances 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 5
- 239000011111 cardboard Substances 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 239000003365 glass fiber Substances 0.000 claims description 2
- 239000000123 paper Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- 239000000126 substance Substances 0.000 claims 2
- 239000004411 aluminium Substances 0.000 claims 1
- 239000002985 plastic film Substances 0.000 claims 1
- 238000009826 distribution Methods 0.000 description 14
- 239000000843 powder Substances 0.000 description 7
- 230000004913 activation Effects 0.000 description 5
- 230000003628 erosive effect Effects 0.000 description 5
- 238000007664 blowing Methods 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000007123 defense Effects 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 239000011087 paperboard Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- XRTARFSQULSBLO-UHFFFAOYSA-N [N+](=O)([O-])[O-].[Mg+2].[Ba+2].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-] Chemical compound [N+](=O)([O-])[O-].[Mg+2].[Ba+2].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-] XRTARFSQULSBLO-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- ZRGUXTGDSGGHLR-UHFFFAOYSA-K aluminum;triperchlorate Chemical compound [Al+3].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O ZRGUXTGDSGGHLR-UHFFFAOYSA-K 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001535 kindling effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H11/00—Defence installations; Defence devices
- F41H11/02—Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H9/00—Equipment for attack or defence by spreading flame, gas or smoke or leurres; Chemical warfare equipment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/02—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
- F42B12/36—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
- F42B12/56—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies
- F42B12/70—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies for dispensing radar chaff or infrared material
Definitions
- the present invention relates to a method for providing a dummy target for Protection of land, air or water vehicles or the like from missiles, the one in the infrared (IR) or radar (RF) range or one in both wavelength ranges have simultaneous or serial target search head, according to the preamble of claim 1.
- IR infrared
- RF radar
- a threat from modern, autonomously operating missiles will increase significantly, because even missiles with the most modern homing systems by the collapse of the former Great power of the Soviet Union and in particular through generous export regulations Asian countries are widespread.
- the targeting systems of such missiles work mainly in the radar range (RF) and in the infrared range (IR). Both the radar backscatter behavior and the radiation of specific infrared radiation from targets, such as. Ships, planes, tanks etc., used for target finding and target tracking.
- RF radar range
- IR infrared range
- targets such as. Ships, planes, tanks etc.
- Multispectral IR homing heads work with two detectors in the short- and long-wave infrared range are sensitive, to differentiate wrong targets.
- So-called dual mode homing heads work in the radar and infrared range. Missiles with such seekers are in the Approach and search phases are radar-controlled and switch to an IR seeker head in the tracking phase around or switch him to it.
- a target criterion of dual mode homing heads is the co-location of the RF backscatter and the IR radiation center of gravity. By the Possible target coordinate comparison can be wrong targets (e.g. clutter, like decoys old Species) can be better sorted out.
- a generic method is, for example, from “Le ancestral franco-britannique Sibyl”, Revue International De Defense, Cointrin-Genève, Volume 15, No. 10, 1982, pages 1405 to 1408, (basis for the preamble of claim 1) "Cartouche-leurre Gemini”, Revue International De Defense, Cointrin-Genève, Volume 10, No. 3, 1997, page 500, "Wallop élargit sa Jur de materials de boat opposition", Revue International De Defense, Cointrin-Genève, Volume 15, No. 12, 1982, page 1741 to 1744, and US-A-3,841,219.
- the invention is based on the object of further developing the generic method in such a way that that IR and / or RF guided missiles are safe from an actual one Aim, that is, an object to be protected, directed away and directed towards an apparent target become.
- the invention is based on the surprising finding that when used simultaneously an IR and an RF active mass, which simultaneously and at the same place (co-location) Be brought into effect, thereby providing an effective dummy target, the dual-mode seekers, but also only in one wavelength range (IR or RF range) Working seekers distracted from an object to be protected that the projectile is set in rotation, on the one hand to stabilize the projectile in the trajectory and to the other home reaching the destination by the centrifugal force an effective Ensure turbulence and disassembly of the active masses.
- the active masses with a projectile sleeve surrounding them is shot through a special embodiment of the method according to the invention, in which the active substances together with the Activation and distribution device ejected from the projectile sleeve and only subsequently activated and distributed, also a good 3-dimensional distribution in the air reached.
- Fig. 1 shows the phases II to IV schematically.
- the ignition and the Phase I shoot goes as it is of technology.
- the decoy shows a spin-stabilized flight phase in order to define a defined phase To reach the inflow of the RF and IR active mass.
- the Angular momentum remains largely until the active masses are distributed received and is transferred to the active mass, which in turn an improved distribution of the active mass results.
- the active substances including an activation and in-flight distribution mechanism ejected the projectile sleeve of the camouflage body to a subsequent one Distribution of the active masses without achieving insulation, which has the advantage that the distribution of Active masses do not exert excessive pressure on the active masses.
- phase IV there will be an effective distribution of active substances through rotation and air flow as well as a central one Blow out achieved.
- Fig. 2 shows a longitudinal section through a decoy, the according to the particular embodiment of the inventive method works.
- the secondary part 1 consists of magnetic Material, preferably iron.
- the windings of the secondary coil 2 consist of copper wire treated with insulating varnish. The number of windings preferably corresponds to that a primary coil, but with a transformation is possible in principle.
- a preferably flanged bottom cover 3 serves as the lower fuse closure of the decoy.
- the bottom cover 3 is preferably made of metal.
- a version made of glass or carbon fiber reinforced plastic is also possible.
- the outer launching body forms a housing sleeve 4, which is preferably made of pure aluminum an aluminum content of more than 99%.
- the housing sleeve 4 remains in the magazine.
- a bottom ring 5 represents a distance to a pressure chamber 6 ago.
- the pressure chamber 6 takes that Propellant gas, which when a propellant charge 8 burns off Ejection of the decoy floor is created. Furthermore the pressure chamber 6 is necessary to complete a To form pressure chamber for the ignition of a rotary engine.
- the Propellant charge 8 is ignited by means of a squib 7 and exists preferably from a powder driving set, preferably Black powder or black powder-like propellants such as nitrocellulose powder.
- Rotational charges 9 preferably consist of pressed powder fuel with additional binder for mechanical Stabilization, e.g. Black powder with plastic binder, or from a commercial solid rocket propellant. Density, shape, surface and depth of the rotating charges 9 determine the erosion parameters such as the erosion duration and pulse / time unit. The specific impulse is through the choice of Propellant set.
- the rotational charges 9 are preferred tablet-shaped and preferably in Combustion chambers (see reference number 10) pressed. This Pressing the rotary charges 9 is mainly used for Stabilization of the erosion behavior, since that of the metal and Areas of the rotary charges not facing the combustion chamber 9 don't burn. There is also the possibility that Controlling erosion behavior by passivating the surfaces.
- the amount of the rotary charge 9 is dependent of the erosion behavior and the desired pulse-time behavior. For this embodiment, there was a burn-up time of about 1.5 seconds.
- the reference number 10 denotes Rotation nozzles including those already mentioned above Combustion chamber.
- the rotary nozzles consist of one Nozzle neck and a nozzle cone, both of which are preferably made be milled or drilled in a full aluminum casting.
- the nozzle cone preferably has an incline of approximately 10 ° to 20 ° from the nozzle axis.
- the nozzle neck length is preferred smaller than the nozzle cone length.
- the combustion chamber is preferably cylindrical.
- the combustion chambers are connected by an annular channel to equalize pressure to achieve, which causes a uniform burn.
- the nozzle axis is inclined radially to the projectile. Preferably the nozzle axis should be more than 30 ° to the radius of the projectile be inclined, since otherwise the impulse to generate little contributes to the rotation. Angles greater than 80 ° to the radius cause excessive turbulence at the transition from the combustion chamber to the Nozzle neck and thus a weakening of the thrust.
- An ignition retarder 11 is used to determine the route to Ejection of an IR active mass 19 and an RF active mass 21.
- the Ignition delay 11 is pyrotechnic and has one Burning time of 2 seconds. Such ignition retarders are commercially available.
- Connecting part 12 connects the rotary motor to a spreading part 14 for the active masses 19 and 21.
- the connecting part 12 includes the ignition retarder 11 and an ejection propellant 13 for ejecting the spreading part 14.
- the connecting part 12 is preferably made of metal.
- the ejection propellant 13 comprises a powder driving set, preferably black powder or black powder-like propellants such as nitrocellulose.
- the Discharge part 14 serves as a sabot for the ejection propellant 13 and is designed such that it as a holder for an ignition retarder 15 and for a blow-out pipe 16.
- the application part 14 is preferably made of a cast aluminum or milled part.
- the ignition delay 15 includes a pyrotechnic delay piece, which is an ignition / disassembly kit 18 ignites when the application part 14 the projectile sleeve has left.
- the ignition delay 15 has a burning time of about 0.1 seconds.
- the blow-out pipe 16 serves as a sensor for the ignition / disassembly kit 18 and for controlling the blow-out speed.
- the blowing speed depends on the Length of the blow pipe 16 and the ratio of the total cross section from blow-out openings 17 to the amount of ignition / dismantling kit 18. In general it can be said that the higher the amount of ignition / dismantling kit 18 and the smaller the The total cross section of the blow-out openings 17 is the larger the blowing speed is.
- the ratio is preferably chosen so that a blow-out time of 0.1 seconds is reached.
- the blow-out pipe 16 must be manufactured in this way be that if possible no plastic deformation during of the blowing process occurs.
- the exhaust pipe 16 was made of steel.
- the exhaust openings 17 must be attached so that a uniform Distribution of the RF and IR active masses 19 and 21 reached becomes. This is preferably achieved in such a way that one Blow-out opening 17 meets a position of the RF active mass 21.
- the ignition / disassembly set 18 comprises a pyrotechnic set, a comparable amount of gas as a burn-up product delivers. Magnesium barium nitrate is preferred for this purpose or aluminum perchlorate.
- the amount of kindling / disassembly kit 18 depends on the blow-out pipe 16.
- the IR active mass 19 contains the from German patent DE-PS 43 27 976 known IR active mass with MWIR flares. Are basically however, all IR active materials can be used, which are characterized by an ignition charge activate. In the embodiment disc-shaped MWIR flares with 1/3 division used.
- a cutting disc 20 protects the RF active mass 21 from the burning MWIR flares of the IR active mass 19.
- the cutting disc 20 can be made of metal or preferably fire-resistant foil be made. The design of the RF active mass 21 is more detailed shown in Fig. 3.
- RF active mass 21 Radar dowels rolled up with dipoles for heat protection reasons made of aluminum or silver coated glass fiber threads used with a thickness in the range of about 10 to 100 microns.
- the dipole length is 17.9 mm. But they are also dipole lengths Possible and planned from approx. 1 mm to approx. 25 mm.
- the number the wraps of the individual dipole packages (chaff packages) variable from 1 upwards. Preferably for the packages 1.5 windings used.
- the output of the active masses before Activation and distribution as well as the appropriate "packaging" the dipole serves to avoid clumping and merging and a dipole to dipole distance of about 7 to 10 ⁇ and thus to generate a high radar backscatter cross section.
- the packaging must always be flexible enough, the dipoles and release them without external influence before the heat from the ignition and blow-out charge protect.
- the packaging of the dipoles is based on the distribution principle coordinated, i.e. the packaged dipoles are like this arranged that they open immediately when blowing out.
- Capton® is preferred to prevent the dipoles from slipping into each other or Milinex® used.
- intermediate foils 32 can aluminum foils of various thicknesses can also be used.
- a thin aluminum shell 33, but also a paper or Cardboard sleeve can be that the RF active mass 21 after Ejection from the projectile sleeve is not immediately distributed, but instead remains together until the ignition / splitter charge 18 burns. This ensures that the total energy of the Charge can act on the RF active mass 21.
- a lid 23 serves to complete a projectile sleeve 22 and fixed from above the blow-out pipe 16.
- the cover 23 can be made of heavy metals, such as. Cast iron or brass, to be manufactured Center of gravity of the decoy as far forward as possible move. This allows stabilization in addition to rotation of the flight.
- the lid 23 is through sealed a sealing ring 24 to the projectile sleeve 22, the preferably made of aluminum with a purity of over 99% is drawn.
- 25 represents a closure piece of the blow-out pipe 16 represents and ensures that the relatively dangerous fragmentation charge introduced as the last step in the decoy can be.
- FIG. 4 is another embodiment of a decoy shown that according to a particular embodiment of the method works. 4 are the same reference numerals as used in Fig. 2. In the following, i.w. only on the differences to be entered into the decoy according to FIG. 2. An essential difference is that the projectile no projectile sleeve (identified by reference number 22 in FIG. 2) having. The IR active mass 19 and RF active mass 21 is not sufficient before it is activated and distributed a projectile sleeve are ejected and are thus the ejection propellant (marked with reference number 13 in FIG. 2) for the application part 14 and the ignition retarder (with Reference number 15 in Fig. 2) is no longer necessary and therefore not available.
- the projectile no projectile sleeve identified by reference number 22 in FIG. 2 having.
- the IR active mass 19 and RF active mass 21 is not sufficient before it is activated and distributed a projectile sleeve are ejected and are thus the ejection propellant (marked with reference
- the application part 14 also serves no longer for ejecting the active masses 19, 21 from a projectile sleeve.
- the RF active mass 21 is from a paper or Cardboard sleeve 33a instead of an aluminum sleeve (reference number 33 in Fig. 3) surrounded.
- This paper or cardboard sleeve 33a is sufficient together with the central exhaust pipe 16, the RF active mass 21 despite the inflow of air in the flight phase before to hold the actual activation and distribution together.
- On Securing element 15, ensures front pipe safety.
- the Rotational charge (reference numeral 9 in Fig. 2) and rotary nozzle (Reference number 10 in Fig. 2) by a rotary motor 9a replaced.
- the decoy shown in Fig. 4 has the missing bullet sleeve has the advantage that it is in proportion to make a decoy with bullet sleeve easier and is much cheaper.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zum Bereitstellen eines Scheinziels zum Schutz von Land-, Luft- oder Wasserfahrzeugen oder dergleichen vor Flugkörpern, die einen im Infrarot (IR)- oder Radar (RF)-Bereich oder einen in beiden Wellenlängenbereichen gleichzeitig oder seriell operierenden Zielsuchkopf aufweisen, nach dem Oberbegriff von Anspruch 1.The present invention relates to a method for providing a dummy target for Protection of land, air or water vehicles or the like from missiles, the one in the infrared (IR) or radar (RF) range or one in both wavelength ranges have simultaneous or serial target search head, according to the preamble of claim 1.
Eine Bedrohung durch moderne, autonom operierende Flugkörper wird deutlich zunehmen, da selbst Flugkörper mit modernsten Zielsuchsystemen durch den Zusammenbruch der ehemaligen Großmacht Sowjetunion sowie durch großzügige Exportbestimmungen insbesondere asiatischer Staaten große Verbreitung finden. Die Zielsuchsysteme derartiger Flugkörper arbeiten hauptsächlich im Radarbereich (RF) und im Infrarotbereich (IR). Dabei werden sowohl das Radarrückstreuverhalten sowie die Abstrahlung spezifischer Infrarotstrahlung von Zielen, wie z.B. Schiffen, Flugzeugen, Panzern etc., zur Zielfindung und Zielverfolgung genutzt. Bei modernsten Flugkörpern geht die Entwicklung eindeutig in Richtung multispektraler Zielsuchsysteme, die gleichzeitig oder auch seriell im Radar- und Infrarotbereich arbeiten, um eine verbesserte Falsehzielunterseheidung durchführen zu können. Multispektrale IR-Zielsuchköpfe arbeiten mit zwei Detektoren, die im kurz- und langwelligen Infrarotbereich empfindlich sind, zur Falschzielunterscheidung. Sogenannte Dual Mode-Zielsuchköpfe arbeiten im Radar- und Infrarotbereich. Flugkörper mit derartigen Zielsuchköpfen werden in der Anflug- und Suchphase radargesteuert und schalten in der Verfolgungsphase auf einen IR-Suchkopf um oder schalten ihn dazu. Ein Zielkriterium von Dual Mode-Zielsuchköpfen ist die Co-Location der RF-Rückstreuung und des IR-Strahlungsschwerpunktes. Durch den möglichen Zielkoordinatenvergleich können Falschziele (z.B. Clutter, wie Täuschkörper alter Art) besser ausgesondert werden. Die Co-Location von RF- und IR-Wirksamkeit ist demnach eine zwingende Voraussetzung für einen Dual Mode-Täuschkörper, um moderne Dual Mode-Zielsuchköpfe wirksam täuschen zu können, d.h. von einem zu schützenden Objekt auf ein Scheinziel zu lenken. Dabei ist lediglich die kleinstmögliche Auflösungszelle des Zielsuchkopfes (RF und IR) für die Co-Location relevant.A threat from modern, autonomously operating missiles will increase significantly, because even missiles with the most modern homing systems by the collapse of the former Great power of the Soviet Union and in particular through generous export regulations Asian countries are widespread. The targeting systems of such missiles work mainly in the radar range (RF) and in the infrared range (IR). Both the radar backscatter behavior and the radiation of specific infrared radiation from targets, such as. Ships, planes, tanks etc., used for target finding and target tracking. At most modern missiles, the development clearly goes in the direction of multispectral homing systems, that work simultaneously or in series in the radar and infrared range in order to to be able to carry out an improved misdiagnosis. Multispectral IR homing heads work with two detectors in the short- and long-wave infrared range are sensitive, to differentiate wrong targets. So-called dual mode homing heads work in the radar and infrared range. Missiles with such seekers are in the Approach and search phases are radar-controlled and switch to an IR seeker head in the tracking phase around or switch him to it. A target criterion of dual mode homing heads is the co-location of the RF backscatter and the IR radiation center of gravity. By the Possible target coordinate comparison can be wrong targets (e.g. clutter, like decoys old Species) can be better sorted out. The co-location of RF and IR effectiveness is accordingly a mandatory requirement for a dual mode decoy to use modern dual mode homing heads being able to effectively deceive, i.e. from an object to be protected to a To steer the apparent target. It is only the smallest possible resolution cell of the target seeker (RF and IR) relevant for the co-location.
Ein gattungsgemäßes Verfahren ist, beispielsweise, aus "Le système franco-britannique Sibyl",
Revue International De Defense, Cointrin-Genève, Band 15, Nr. 10, 1982, Seiten 1405
bis 1408, (Basis für den Oberbegriff der Anspruchs 1) "Cartouche-leurre Gemini", Revue International De Defense, Cointrin-Genève,
Band 10, Nr. 3, 1997, Seite 500, "Wallop élargit sa gamme de materials de guerre électronique",
Revue International De Defense, Cointrin-Genève, Band 15, Nr.12, 1982, Seite 1741
bis 1744, und US-A-3,841,219 bekannt.A generic method is, for example, from "Le système franco-britannique Sibyl",
Revue International De Defense, Cointrin-Genève,
Der Erfindung liegt die Aufgabe zugrunde, daß gattungsgemäße Verfahren dahingehend weiterzuentwickeln, daß IR- und/oder RF-gelenkte Flugkörper sicher von einem eigentlichen Ziel, daß heißt einem zu schützenden Objekt, weggelenkt und auf ein Scheinziel hingelenkt werden.The invention is based on the object of further developing the generic method in such a way that that IR and / or RF guided missiles are safe from an actual one Aim, that is, an object to be protected, directed away and directed towards an apparent target become.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren nach Anspruch 1 gelöst.This object is achieved by a method according to claim 1.
Die Unteransprüche 2 bis 14 beschreiben bevorzugte Ausführungsformen gemäß der Erfindung.
Der Erfindung liegt die überraschende Erkenntnis zugrunde, daß bei gleichzeitiger Verwendung einer IR- und einer RF-Wirkmasse, die simultan und am selben Ort (Co-Location) zur Wirkling gebracht werden, dadurch ein wirksames Scheinziel bereitgestellt wird, das Dual-Mode-Zielsuchköpfe, aber auch lediglich in einem Wellenlängenbereich (IR- bzw. RF-Bereicht) arbeitende Zielsuchköpfe von einem zu schützenden Objekt abgelenkt, daß das Geschoß in Rotation versetzt wird, um zum einen das Geschoß in der Flugbahn zu stabilisieren und zum anderen Heim Erreichen des Zielortes durch die Zentrifugalkraft eine wirksame Verwirbelung und Zerlegung der Wirkmassen zu gewährleisten. Sofern die Wirkmassen mit einer sie umgebenden Geschoßhülse abgeschossen werden, wird durch eine besondere Ausführungsform des erfindungsgemäßen Verfahrens, bei der die Wirkmassen zusammen mit der Aktivierungs- und Verteilungseinrichtung aus der Geschoßhülse ausgestoßen und erst nachfolgend aktiviert und verteilt werden, ebenfalls eine gute 3-dimensional Verteilung in der Luft erreicht.The invention is based on the surprising finding that when used simultaneously an IR and an RF active mass, which simultaneously and at the same place (co-location) Be brought into effect, thereby providing an effective dummy target, the dual-mode seekers, but also only in one wavelength range (IR or RF range) Working seekers distracted from an object to be protected that the projectile is set in rotation, on the one hand to stabilize the projectile in the trajectory and to the other home reaching the destination by the centrifugal force an effective Ensure turbulence and disassembly of the active masses. If the active masses with a projectile sleeve surrounding them is shot through a special embodiment of the method according to the invention, in which the active substances together with the Activation and distribution device ejected from the projectile sleeve and only subsequently activated and distributed, also a good 3-dimensional distribution in the air reached.
Weitere Merkmale und Vorteile der Erfindung ergeben sich anhand der beigefügten Ansprüche und der nachfolgenden Beschreibung, in der der grundsätzliche Verfahrensablauf sowie zwei Ausführungsbeispiele für nach dem erfindungsgemäßen Verfahren arbeitende Täuschkörper anhand der beigefügten Zeichnungen erläutert sind. Dabei zeigt:
- Fig. 1
- eine Prinzipskizze zu einer Ausführungsform des erfindungsgemäßen Verfahrens;
- Fig. 2
- eine Schnittansicht einer Ausführungsform eines nach dem erfindungsgemäßen Verfahren arbeitenden Täuschkörpers;
- Fig. 3
- eine schematische Ansicht einer RF-Wirkmasse des Täuschkörpers von Fig. 2; und
- Fig. 4
- eine Schnittansicht einer weiteren Ausführungsform eines gemäß der vorliegenden Erfindung arbeitenden Täuschkörpers.
- Fig. 1
- a schematic diagram of an embodiment of the method according to the invention;
- Fig. 2
- a sectional view of an embodiment of a decoy working according to the inventive method;
- Fig. 3
- a schematic view of an RF active mass of the decoy of Fig. 2; and
- Fig. 4
- a sectional view of another embodiment of a decoy operating according to the present invention.
Fig. 1 dient zur Veranschaulichung des prinzipiellen Verfahrensablaufes gemäß einer besonderen Ausführungsform der Erfindung. Das erfindungsgemäße Verfahren läßt sich am besten an dem zeitlichen Verlauf von dem Abschuß eines nach dem erfindungsgemäßen Verfahren arbeitenden Täuschkörpers bis zur Verteilung der Wirkmassen darstellen. Der zeitliche Verlauf läßt sich grob in vier Phasen einteilen:
- Phase I
- Abschuß eines Täuschkörpers
- Phase II
- drallstabilisierte Flugphase des Täuschkörpers
- Phase III
- Ausstoß der IR- und RF-Wirkmasse und
- Phase IV
- Aktivierung und Verteilung der Wirkmassen
- Phase I
- Firing a decoy
- Phase II
- spin-stabilized flight phase of the decoy
- Phase III
- Ejection of the IR and RF active mass and
- Phase IV
- Activation and distribution of the active masses
Fig. 1 gibt die Phasen II bis IV schematisch wieder. Die Zündung und der Abschuß gemäß Phase I geht entsprechend dem Stand der Technik vonstatten. In der Phase II weist der Täuschkörper eine drallstabilisierte Flugphase auf, um hierdurch eine definierte Anströmung der RF- und IR-Wirkmasse zu erreichen. Der Drehimpuls bleibt bis zur Verteilung der Wirkmassen weitgehend erhalten und wird auf die Wirkmassen übertragen, was wiederum eine verbesserte Verteilung der Wirkmassen zur Folge hat. In der Phase III werden die Wirkmassen einschließlich eines Aktivierungs- und Verteilungsmechanismus während des Fluges aus der Geschoßhülse des Tarnkörpers ausgestoßen, um eine nachfolgende Verteilung der Wirkmassen ohne Verdämmung zu erzielen, womit der Vorteil verbunden ist, daß bei der Verteilung der Wirkmassen kein überhöhter Druck auf die Wirkmassen einwirkt. Dies führt dazu, daß die Verteilung der IR-Wirkmasse, aber insbesondere die Verteilung der RF-Wirkmasse nachhaltig verbessert wird. In der Phase IV wird eine effektive Wirkmassenverteilung durch Rotation und Luftanströmung sowie ein zentrales Ausblasen erzielt.Fig. 1 shows the phases II to IV schematically. The ignition and the Phase I shoot goes as it is of technology. In phase II the decoy shows a spin-stabilized flight phase in order to define a defined phase To reach the inflow of the RF and IR active mass. The Angular momentum remains largely until the active masses are distributed received and is transferred to the active mass, which in turn an improved distribution of the active mass results. In phase III, the active substances including an activation and in-flight distribution mechanism ejected the projectile sleeve of the camouflage body to a subsequent one Distribution of the active masses without achieving insulation, which has the advantage that the distribution of Active masses do not exert excessive pressure on the active masses. This causes the distribution of the IR active mass, however in particular, the distribution of the RF active mass is sustainably improved becomes. In phase IV there will be an effective distribution of active substances through rotation and air flow as well as a central one Blow out achieved.
Fig. 2 zeigt einen Längsschnitt durch einen Täuschkörper, der
gemäß der in Fig. 1 skizzierten besonderen Ausführungsform des
erfindungsgemäßen Verfahrens arbeitet. Mit 1 ist ein kompletter
Sekundärteil zur induktiven Zündenergieaufnahme von einem
Primärteil gekennzeichnet. Der Sekundärteil 1 besteht aus magnetischem
Material, vorzugsweise Eisen. In einer Sekundärspule
2 wird die Zündenergie induziert. Die Wicklungen der Sekundärspule
2 bestehen aus mit Isolierlack behandeltem Kupferdraht.
Die Anzahl der Wicklungen entspricht vorzugsweise derjenigen
einer Primärspule, wobei aber eine Transformation
prinzipiell möglich ist. Ein vorzugsweise aufgebördelter Bodendeckel
3 dient als unterer Sicherungsabschluß des Täuschkörpers.
Der Bodendeckel 3 besteht vorzugsweise aus Metall.
Eine Ausführung aus glas- oder kohlefaserverstärktem Kunststoff
ist aber auch möglich. Den äußeren Abschußkörper bildet
eine Gehäusehülse 4, die vorzugsweise aus Reinaluminium mit
einem Aluminiumanteil von mehr als 99% besteht. Die Gehäusehülse
4 verbleibt im Magazin. Ein Bodenring 5 stellt eine Distanz
zu einer Druckkammer 6 her. Die Druckkammer 6 nimmt das
Treibgas auf, das bei einem Abbrand einer Treibladung 8 zum
Ausstoßen des Täuschkörpergeschosses entsteht. Darüber hinaus
ist die Druckkammer 6 notwendig, um einen abgeschlossenen
Druckraum zur Anzündung eines Rotationsmotors zu bilden. Die
Treibladung 8 wird mittels einer Zündpille 7 gezündet und besteht
vorzugsweise aus einem Pulvertreibsatz, vorzugsweise
Schwarzpulver oder schwarzpulverähnliche Treibsätze wie Nitrocellulosepulver.
Rotationsladungen 9 bestehen vorzugsweise aus
verpreßtem Pulvertreibstoff mit zusätzlichem Binder zur mechanischen
Stabilisierung, wie z.B. Schwarzpulver mit Kunststoffbinder,
oder aus einem handelsüblichen Feststoffraketentreibsatz.
Dichte, Form, Oberfläche und Tiefe der Rotationsladungen
9 bestimmen die Abbrandparameter wie Abbranddauer und Impuls/Zeiteinheit.
Der spezifische Impuls ist durch die Wahl des
Treibsatzes festgelegt. Die Rotationsladungen 9 sind vorzugsweise
tablettenförmig ausgebildet und vorzugsweise in
Brennkammern (vergleiche Bezugszeichen 10) eingepreßt. Dieses
Einpressen der Rotationsladungen 9 dient hauptsächlich zur
Stabilisierung des Abbrandverhaltens, da die dem Metall und
nicht der Brennkammer zugewandten Flächen der Rotationsladungen
9 nicht brennen. Zusätzlich besteht die Möglichkeit, das
Abbrandverhalten durch eine Passivierung der Flächen zu steuern.
Eine weitere Möglichkeit zur Steuerung des Abbrandverhaltens
besteht in dem bekannten Verfahren der Formgebung, wie
z.B. Sternbrenner. Die Menge der Rotationsladung 9 ist abhängig
vom Abbrandverhalten und dem gewünschten Impuls-Zeit-Verhalten.
Für dieses Ausführungsbeispiel wurde eine Abbrandzeit
von ca. 1,5 Sekunden realisiert. Das Bezugszeichen 10 kennzeichnet
Rotationsdüsen einschließlich der bereits oben erwähnten
Brennkammer. Die Rotationsdüsen bestehen aus einem
Düsenhals und einem Düsenkonus, die beide vorzugsweise aus
einem vollen Aluminiumgußteil gefräßt bzw. gebohrt werden. Der
Düsenkonus weist vorzugsweise eine Steigung von ca. 10° bis
20° von der Düsenachse aus auf. Die Düsenhalslänge ist vorzugsweise
kleiner als die Düsenkonuslänge. Die Brennkammer ist
vorzugsweise zylinderförmig ausgebildet. Die Brennkammern sind
durch einen ringförmigen Kanal verbunden, um einen Druckausgleich
zu erreichen, der einen gleichmäßigen Abbrand bewirkt.
Die Düsenachse ist radial zum Geschoß geneigt. Vorzugsweise
sollte die Düsenachse um mehr als 30° zum Radius des Geschosses
geneigt sein, da ansonsten der Impuls nur wenig zur Erzeugung
der Rotation beiträgt. Winkel größer als 80° zum Radius
bewirken zu große Turbulenzen am Übergang der Brennkammer zum
Düsenhals und somit eine Abschwächung des Schubes. Ein Anzündverzögerer
11 dient zur Festlegung der Flugstrecke bis zum
Ausstoß einer IR-Wirkmasse 19 und einer RF-Wirkmasse 21. Der
Anzündverzögerer 11 ist pyrotechnisch ausgeführt und hat eine
Durchbranddauer von 2 Sekunden. Derartige Anzündverzögerer
sind im Handel erhältlich. Denkbar ist aber auch die Verwendung
eines frei programmierbaren elektronischen Anzündverzögerers
zur variablen Festlegung der Flugdauer. Ein
Verbindungsteil 12 verbindet den Rotationsmotor mit einem Ausbringteil
14 für die Wirkmassen 19 und 21. Das Verbindungsteil
12 enthält den Anzündverzögerer 11 und eine Ausstoßtreibladung
13 zum Ausstoß des Ausbringteiles 14. Das Verbindungsteil 12
ist vorzugsweise aus Metall gefertigt. Die Ausstoßtreibladung
13 umfaßt einen Pulvertreibsatz, vorzugsweise Schwarzpulver
oder schwarzpulverähnliche Treibsätze wie Nitrocellulose. Das
Ausbringteil 14 dient als Treibspiegel für die Ausstoßtreibladung
13 und ist derart ausgeführt, daß es als Halterung für
einen Anzündverzögerer 15 und für ein Ausblasrohr 16 dient.
Das Ausbringteil 14 ist vorzugsweise aus einem Aluminiumguß-
oder Frästeil gefertigt. Der Anzündverzögerer 15 umfaßt ein
pyrotechnisches Verzögerungsstück, das einen Anzünd-/Zerlegersatz
18 zündet, wenn das Ausbringteil 14 die Geschoßhülse
verlassen hat. Der Anzündverzögerer 15 hat eine Brenndauer von
ca. 0,1 Sekunden. Das Ausblasrohr 16 dient als Aufnehmer für
den Anzünd-/Zerlegersatz 18 und zur Steuerung der Ausblasgeschwindigkeit.
Die Ausblasgeschwindigkeit ist abhängig von der
Länge des Ausblasrohres 16 und von dem Verhältnis des Gesamtquerschnittes
von Ausblasöffnungen 17 zur Menge des Anzünd/Zerlegersatzes
18. Allgemein läßt sich sagen, daß, je höher
die Menge des Anzünd-/Zerlegersatzes 18 und je kleiner der
Gesamtquerschnitt der Ausblasöffnungen 17 ist, um so größer
die Ausblasgeschwindigkeit ist. In dem Ausführungsbeispiel ist
das Verhältnis vorzugsweise so gewählt, daß eine Ausblaszeit
von 0,1 Sekunden erreicht wird. Das Ausblasrohr 16 muß so gefertigt
werden, daß möglichst keine plastische Verformung während
des Ausblasvorgangs eintritt. Bei dem Ausführungsbeispiel
wurde das Ausblaßrohr 16 aus Stahl gefertigt. Die Ausblasöffnungen
17 müssen derart angebracht werden, daß eine gleichmäßige
Verteilung der RF- und IR-Wirkmassen 19 und 21 erreicht
wird. Dies wird vorzugsweise derart erreicht, daß jeweils eine
Ausblasöffnung 17 auf eine Lage der RF-Wirkmasse 21 trifft.
Der Anzünd-/Zerlegersatz 18 umfaßt einen pyrotechnischen Satz,
der als Abbrandprodukt eine vergleichbar große Menge an Gas
liefert. Vorzugsweise werden hierzu Magnesium-Bariumnitrat
oder Aliminium-Perchlorat verwendet. Die Menge des Anzünd/Zerlegersatzes
18 ist abhängig vom Ausblasrohr 16. Die IR-Wirkmasse
19 enthält die aus dem deutschen Patent DE-PS 43 27
976 bekannte IR-Wirkmasse mit MWIR-Flares. Grundsätzlich sind
jedoch alle IR-Wirkmassen verwendbar, die sich durch eine Anzündladung
aktivieren lassen. Bei dem Ausführungsbeispiel werden
scheibenförmige MWIR-Flares mit 1/3-Teilung verwendet.
Eine Trennscheibe 20 schützt die RF-Wirkmasse 21 vor den brennenden
MWIR-Flares der IR-Wirkmasse 19. Die Trennscheibe 20
kann aus Metall oder vorzugsweise aus feuerresistenter Folie
gefertigt sein. Die Ausführung der RF-Wirkmasse 21 ist ausführlicher
in Fig. 3 dargestellt. Als RF-Wirkmasse 21 werden
aus Hitzeschutzgründen zusammengerollte Radar-Düppel mit Dipolen
aus Aluminium- oder Silber-beschichteten Glasfaserfäden
mit einer Dicke im Bereich von etwa 10 bis 100 µm verwendet.
Die Dipollänge beträgt 17,9 mm. Es sind aber auch Dipollängen
ab ca. 1 mm bis ca. 25 mm möglich und vorgesehen. Die Anzahl
der Umwicklungen der einzelnen Dipol-Pakete (Chaff-Pakete) ist
variabel von 1 aufwärts. Vorzugsweise werden für die Pakete
1,5 Wicklungen verwendet. Der Ausstoß der Wirkmassen vor der
Aktivierung und Verteilung sowie die geeignete "Verpackung"
der Dipole dient dazu, ein Verklumpen und Verschmelzen zu vermeiden
und einen Abstand von Dipol zu Dipol von etwa 7 bis 10
λ und somit einen hohen Radarrückstreuquerschnitt zu erzeugen.
Die Verpackung muß grundsätzlich flexibel genug sein, die Dipole
ohne äußere Einwirkung selbständig freizugeben und sie
vor der Hitzeeinwirkung durch die Anzünd- und Ausblasladung zu
schützen. Zudem ist die Verpackung der Dipole auf das Verteilungsprinzip
abgestimmt, d.h. die verpackten Dipole sind so
angeordnet, daß sie sich beim Ausblasen unmittelbar öffnen.
Als Material für die Wicklungen und die durch die ganze RF-Wirkmasse
durchgehenden Schutzfolien 31 und Schutzfolien 32
gegen das Ineinanderrutschen der Dipole wird vorzugsweise Capton®
oder Milinex® verwendet. Als Zwischenfolien 32 können
auch Aluminiumfolien verschiedener Stärke verwendet werden.
Eine dünne Aluminiumhülle 33, die aber auch eine Papier- oder
Papphülle sein kann, daß sich die RF-Wirkmasse 21 nach dem
Ausstoß aus der Geschoßhülse nicht sofort verteilt, sondern
solange zusammenbleibt, bis die Anzünd-/Zerlegerladung 18 abbrennt.
Dadurch wird gewährleistet, daß die Gesamtenergie der
Ladung auf die RF-Wirkmasse 21 einwirken kann. Ein Deckel 23
dient zum Abschluß einer Geschoßhülse 22 und fixiert von oben
das Ausblasrohr 16. Der Deckel 23 kann aus schweren Metallen,
wie z.B. Gußeisen oder Messing, gefertigt werden, um den
Schwerpunkt des Täuschkörpers möglichst weit nach vorne zu
verschieben. Dadurch kann zusätzlich zur Rotation eine Stabilisierung
des Fluges erreicht werden. Der Deckel 23 wird durch
einen Dichtring 24 zu der Geschoßhülse 22 abgedichtet, die
vorzugsweise aus Aluminium mit einem Reinheitsgrad von über
99% gezogen ist. 25 stellt ein Verschlußstück des Ausblasrohres
16 dar und gewährleistet, daß die relativ gefährliche Zerlegerladung
als letzter Arbeitsgang in den Täuschkörper eingeführt
werden kann.Fig. 2 shows a longitudinal section through a decoy, the
according to the particular embodiment of the
inventive method works. With 1 is a complete
Secondary part for inductive ignition energy absorption by one
Primary part marked. The secondary part 1 consists of magnetic
Material, preferably iron. In a
In Fig. 4 ist eine weitere Ausführungsform eines Täuschkörpers
gezeigt, der gemäß einer besonderen Ausführungsform des Verfahrens
funktioniert. In Fig. 4 sind dieselben Bezugszeichen
wie in Fig. 2 benutzt. Im folgenden soll i.w. nur auf die Unterschiede
zu dem Täuschkörper gemäß Fig. 2 eingegangen werden.
Ein wesentlicher Unterschied besteht darin, daß das Geschoß
keine Geschoßhülse (in Fig. 2 mit Bezugszeichen 22 gekennzeichnet)
aufweist. Somit müssen die IR-Wirkmasse 19 und
RF-Wirkmasse 21 vor ihrer Aktivierung und Verteilung nicht aus
einer Geschoßhülse ausgestoßen werden und sind somit die Ausstoßtreibladung
(mit Bezugszeichen 13 in Fig. 2 gekennzeichnet)
für das Ausbringteil 14 sowie der Anzündverzögerer (mit
Bezugszeichen 15 in Fig. 2 gekennzeichnet) nicht mehr notwendig
und daher nicht vorhanden. Das Ausbringteil 14 dient auch
nicht mehr zum Ausstoßen der Wirkmassen 19, 21 aus einer Geschoßhülse.
Die RF-Wirkmasse 21 ist von einer Papier- bzw.
Papphülle 33a anstelle einer Aluminiumhülle (Bezugszeichen 33
in Fig. 3) umgeben. Diese Papier- bzw. Papphülle 33a reicht
zusammen mit dem zentralen Ausblasrohr 16 aus, die RF-Wirkmasse
21 trotz der Luftanströmung in der Flugphase vor der
eigentlichen Aktivierung und Verteilung zusammenzuhalten. Ein
Sicherungselement 15,
sorgt für Vorrohrsicherheit. Ferner sind die
Rotationsladung (Bezugszeichen 9 in Fig. 2) und Rotationsdüse
(Bezugszeichen 10 in Fig. 2) durch einen Rotationsmotor 9a
ersetzt. Der in Fig. 4 gezeigte Täuschkörper weist aufgrund
der fehlenden Geschoßhülse den Vorteil auf, daß er im Verhältnis
zu einem Täuschkörper mit Geschoßhülse einfacher herzustellen
und wesentlich billiger ist. 4 is another embodiment of a decoy
shown that according to a particular embodiment of the method
works. 4 are the same reference numerals
as used in Fig. 2. In the following, i.w. only on the differences
to be entered into the decoy according to FIG. 2.
An essential difference is that the projectile
no projectile sleeve (identified by
- 11
- Sekundärteil zur induktiven ZündenergieaufnahmeSecondary part for inductive ignition energy consumption
- 22nd
- SekundärspuleSecondary coil
- 33rd
- BodendeckelBottom cover
- 44th
- GehäusehülseHousing sleeve
- 55
- BodenringBottom ring
- 66
- DruckkammerPressure chamber
- 77
- ZündpilleSquib
- 88th
- TreibladungPropellant charge
- 99
- RotationsladungRotational charge
- 9a9a
- RotationsmotorRotary motor
- 1010th
- RotationsdüseRotary nozzle
- 1111
- AnzündverzögererIgnition retarders
- 1212th
- VerbindungsteilConnecting part
- 1313
- AusstoßtreibladungEjection propellant
- 1414
- Ausbringteil für WirkmassenSpreading part for active masses
- 1515
- AnzündverzögererIgnition retarders
- 1616
- AusblasrohrExhaust pipe
- 1717th
- AusblasöffnungDischarge opening
- 1818th
- Anzünd-/ZerlegersatzIgnition / disassembly kit
- 1919th
- IR-WirkmasseIR active mass
- 2020th
- TrennscheibeCutting disc
- 2121
- RF-WirkmasseRF active mass
- 2222
- GeschoßhülseProjectile sleeve
- 2323
- Deckelcover
- 2424th
- DichtringSealing ring
- 2525th
- VerschlußstückClosure piece
- 3030th
- Dipoldipole
- 3131
- SchutzfolieProtective film
- 3232
- SchutzfolieProtective film
- 3333
- AluminiumhülleAluminum cover
- 33a33a
- PapierhüllePaper sleeve
- 3434
- SicherungselementSecuring element
Claims (14)
- A method of preparing a decoy target for protection of land, air or water vehicles or the like from missiles comprising a target search head operating simultaneously or serially in the infrared (IR) or radar (RF) range or in both wavelength ranges, wherein a substance transmitting radiation in the IR range (IR active substance) and a substance reflecting RF radiation (RF active substance) are brought into operation in the correct position as a decoy target, wherein the IR active substance and the RF active substance are brought into operation simultaneously and at the same place, characterised in thatafter ignition and launching from a projectile cup, the active substances are positioned by a spin-stabilised decoy member projectile set in rotation andthe IR active substance is then activated and distributed and the RF active substance is swirled and distributed by an activating and distributing device in the form of an ignition and blow-out unit disposed centrally in the decoy member projectile and around which the active substances are disposed one behind the other in the longitudinal direction of the decoy member projectile.
- A method according to claim 1, characterised in that ignition and blow-out are effected by a pyrotechnic charge which is ignited by an ignition retarder which is ignited by combustion of a propellant charge for the decoy member projectile.
- A method according to claim 2, characterised in that the pyrotechnic charge for the ignition and blow-out unit is burnt inside a tube disposed centrally in the projectile and with defined blow-out openings.
- A method according to any of the preceding claims, characterised by use of an RF active substance, the surface of which is surrounded by a paper, cardboard or plastic sheet casing.
- A method according to any of the preceding claims, characterised in that, in a spin-stabilised flight phase with defined oncoming flow against the active substances, the active substances including the activating and distributing device are simultaneously ejected from a projectile casing by means of a production part.
- A method according to claim 5, characterised in that the production part is ejected by a propellant charge ignited by the ignition retarder, which is preferably pyrotechnic.
- A method according to any of the preceding claims, characterised in that the ignition member projectile is set in rotation by a pyrotechnic rotation rotor.
- A method according to any of claims 1 to 7, characterised in that the ignition member projectile is set in rotation by suitably designed pulling means in the projectile cup.
- A method according to any of claims 1 to 7, characterised in that the decoy member projectile is set in rotation by suitably designed spoiler surfaces on the decoy member projectile.
- A method according to any of the preceding claims, characterised in that the RF active substance comprises rolled-together radar dipoles (chaff) of aluminium-coated or silver-coated glass fibre threads having a thickness in the range from about 10 to 100 µm.
- A method according to any of the preceding claims, characterised by use of dipole packets so disposed that they open immediately on blow-out.
- A method according to any of the preceding claims, characterised by use of dipole packets protected by at least one heat shield from the blow-out heat.
- A method according to claim 12, characterised in that the or each heat shell is at least one elastic foil or sheet which extends through the entire RF active substance.
- A method according to any of the preceding claims, characterised by use of dipole packets which are protected from slipping into one another by at least one heat-resistant foil or sheet between respective packets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00108677A EP1026473B1 (en) | 1996-05-03 | 1997-04-01 | Method for creating a decoy target |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19617701A DE19617701C2 (en) | 1996-05-03 | 1996-05-03 | Method of providing a dummy target |
DE19617701 | 1996-05-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00108677A Division EP1026473B1 (en) | 1996-05-03 | 1997-04-01 | Method for creating a decoy target |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0805333A2 EP0805333A2 (en) | 1997-11-05 |
EP0805333A3 EP0805333A3 (en) | 1998-01-14 |
EP0805333B1 true EP0805333B1 (en) | 2000-11-08 |
Family
ID=7793179
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97105393A Expired - Lifetime EP0805333B1 (en) | 1996-05-03 | 1997-04-01 | Method for creating a decoy target |
EP00108677A Expired - Lifetime EP1026473B1 (en) | 1996-05-03 | 1997-04-01 | Method for creating a decoy target |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00108677A Expired - Lifetime EP1026473B1 (en) | 1996-05-03 | 1997-04-01 | Method for creating a decoy target |
Country Status (7)
Country | Link |
---|---|
US (1) | US5835051A (en) |
EP (2) | EP0805333B1 (en) |
JP (1) | JP3181240B2 (en) |
DE (3) | DE19617701C2 (en) |
DK (2) | DK0805333T3 (en) |
SG (1) | SG55308A1 (en) |
TW (1) | TW355204B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019206485A2 (en) | 2018-04-27 | 2019-10-31 | Rheinmetall Waffe Munition Gmbh | Method and device for protecting a vehicle against a threat |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19943396B3 (en) | 1999-09-10 | 2018-03-08 | Rheinmetall Waffe Munition Gmbh | Method for protecting moving objects by means of a deployable decoy and decoys |
FR2798927B1 (en) * | 1999-09-24 | 2001-12-14 | Poudres & Explosifs Ste Nale | BI-MODE ACTIVE LURE LOAD AND AMMUNITION CONTAINING SUCH LOADS |
DE19951767C2 (en) * | 1999-10-27 | 2002-06-27 | Buck Neue Technologien Gmbh | Dual mode decoy |
DE10117007A1 (en) * | 2001-04-04 | 2002-10-17 | Buck Neue Technologien Gmbh | Method and device for protecting mobile military equipment |
FR2840977B1 (en) | 2002-06-12 | 2004-09-03 | Giat Ind Sa | DEVICE AND MUNITION FOR PROTECTING A VEHICLE OR A FIXED PLATFORM AGAINST A THREAT |
FR2840978B1 (en) * | 2002-06-12 | 2004-09-03 | Giat Ind Sa | MASKING AMMUNITION |
US20050150371A1 (en) * | 2003-01-29 | 2005-07-14 | Rickard John T. | System and method for the defense of aircraft against missile attack |
DE10346001B4 (en) * | 2003-10-02 | 2006-01-26 | Buck Neue Technologien Gmbh | Device for protecting ships from end-phase guided missiles |
DE102005020159B4 (en) * | 2005-04-29 | 2007-10-04 | Rheinmetall Waffe Munition Gmbh | Camouflage and deception ammunition for the protection of objects against missiles |
DE102005035251A1 (en) | 2005-07-25 | 2007-02-01 | Rheinmetall Waffe Munition Gmbh | Method and device for deception of infrared, radar and dual mode guided missile |
RU2403531C2 (en) * | 2005-10-24 | 2010-11-10 | Анатолий Яковлевич Скударнов | Shell for laying of low-temperature false thermal target |
DE102006004912A1 (en) | 2006-01-20 | 2007-07-26 | Rheinmetall Waffe Munition Gmbh | System for protection, especially of large flying platforms against infrared or radar guided missiles or other threats, has user unit with system operating elements |
DE102006017107A1 (en) | 2006-04-10 | 2007-10-11 | Oerlikon Contraves Ag | Protective device for a stationary and/or mobile radar to protect from anti-radiation missile attack comprises a decoy body or emitter formed as passive bodies radiated by a radar and reflecting the beams from the body |
DE102008019752A1 (en) | 2008-04-18 | 2009-10-22 | Rheinmetall Waffe Munition Gmbh | Active body for a submunition with active agents |
DE102008036408A1 (en) * | 2008-08-06 | 2010-02-11 | Diehl Bgt Defence Gmbh & Co. Kg | Hybrid decoy |
DE102009030869A1 (en) * | 2009-06-26 | 2011-02-10 | Rheinmetall Waffe Munition Gmbh | submunitions |
DE102009043483A1 (en) | 2009-09-30 | 2011-03-31 | Rheinmetall Waffe Munition Gmbh | Magazine-integrated ammunition |
DE102010026641A1 (en) | 2010-07-09 | 2012-01-12 | Diehl Bgt Defence Gmbh & Co. Kg | A smoke |
DE102010036026A1 (en) | 2010-08-31 | 2012-03-01 | Rheinmetall Waffe Munition Gmbh | Smoke screen effectiveness determining device for protecting e.g. military platform, has measuring sensor system connected with data processing unit, and data processing algorithms provided for analysis of effectiveness of smoke screen |
WO2012028257A1 (en) | 2010-08-31 | 2012-03-08 | Rheinmetall Waffe Munition Gmbh | Device and method for producing an effective fog wall or fog cloud |
DE102011120454A1 (en) * | 2011-12-07 | 2013-06-13 | Diehl Bgt Defence Gmbh & Co. Kg | Active mass for a substantially spectrally radiating infrared light target during combustion with room effect |
DE102011120929A1 (en) | 2011-12-14 | 2013-06-20 | Rheinmetall Waffe Munition Gmbh | Protection system, in particular for ships, against radar-directed threats |
DE102012010378A1 (en) | 2012-05-29 | 2013-12-05 | Rheinmetall Waffe Munition Gmbh | Ammunition with active agents |
DE102012010377A1 (en) | 2012-05-29 | 2013-12-05 | Rheinmetall Waffe Munition Gmbh | Ammunition with active agents |
RU2542688C1 (en) * | 2013-07-01 | 2015-02-20 | Денис Борисович Дубинин | Grenade launching plant |
US20150323296A1 (en) * | 2013-10-01 | 2015-11-12 | Omnitek Partners Llc | Countermeasure Flares |
DE102015002737B4 (en) | 2015-03-05 | 2023-05-25 | Rheinmetall Waffe Munition Gmbh | Method and device for providing a decoy to protect a vehicle and/or object from radar-guided seekers |
DE102015110061A1 (en) * | 2015-06-23 | 2016-12-29 | Rheinmetall Waffe Munition Gmbh | FOG EXPLOSIVE GRENADE |
SE541612C2 (en) * | 2016-09-15 | 2019-11-12 | Bae Systems Bofors Ab | Modifiable divisible projectile and method for modifying a projectile |
RU175624U1 (en) * | 2016-09-19 | 2017-12-12 | Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Академия Вооруженных Сил Российской Федерации" | A set of ammunition cartridges for controlled sudden sharp contrast crucifixion or aerosol formation in the area of the masked object |
RU2651319C1 (en) * | 2017-01-27 | 2018-04-19 | Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" | Method for armored vehicles protection and device for its implementation |
CN108310765B (en) * | 2017-12-14 | 2021-07-27 | 腾讯科技(深圳)有限公司 | Image display method and device, storage medium and electronic device |
SG11202007355TA (en) | 2018-02-05 | 2020-08-28 | Advanced Mat Engineering Pte Ltd | System for countering an unmanned aerial vehicle (uav) |
CN108830023B (en) * | 2018-07-26 | 2022-07-15 | 北京理工大学 | A prediction method for the ignition process of the speed-increasing engine of a gun-launched missile |
RU191978U1 (en) * | 2019-05-23 | 2019-08-29 | Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский испытательный институт инженерных войск" Министерства обороны Российской Федерации | HEAT GOAL SIMULATOR |
DE102019117801A1 (en) | 2019-07-02 | 2021-01-07 | Rheinmetall Waffe Munition Gmbh | Decoy, system and method for protecting an object |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3841219A (en) | 1964-08-12 | 1974-10-15 | Gen Dynamics Corp | Decoy rounds for counter measures system |
GB1598423A (en) * | 1967-11-03 | 1981-09-23 | Gen Dynamics Corp | Decoy round |
US4183302A (en) * | 1967-11-06 | 1980-01-15 | General Dynamics Pomona Division | Sequential burst system |
GB1434034A (en) * | 1972-07-11 | 1976-04-28 | Bender Ltd F | Method and equipment for forming a single cloud of radar reflecting chaff within the atmosphere |
FR2343990A1 (en) * | 1976-03-09 | 1977-10-07 | Lacroix E | Launcher and disperser for radar-jamming electromagnetic filaments - holds filament packets together for delayed radial dispersion |
DE2638920A1 (en) * | 1976-08-28 | 1978-03-02 | Dynamit Nobel Ag | Spreader for radiation reflecting or emitting material - has central tube with holes, connected to compressed gas which disperses material |
FR2383419A1 (en) * | 1977-03-07 | 1978-10-06 | Lacroix E | LURE LAUNCHER CASE FOR WEAPON GUIDANCE SYSTEMS ACCEPTANCE |
DE2811016C1 (en) * | 1978-03-14 | 1986-07-17 | Buck Chemisch-Technische Werke Gmbh & Co, 8230 Bad Reichenhall | Throwing body |
US4860657A (en) * | 1978-05-05 | 1989-08-29 | Buck Chemisch-Technische Werke Gmbh & Co. | Projectile |
EP0029078A1 (en) * | 1979-11-13 | 1981-05-27 | Societe E. Lacroix - Tous Artifices | Pistol-fired cartridge for disseminating electromagnetic chaff |
FR2474699B1 (en) * | 1980-01-30 | 1985-11-15 | Ruggieri Ets | SIGNALING DEVICE WITH ELECTROMAGNETIC DIPOLES |
EP0055139A1 (en) * | 1980-12-23 | 1982-06-30 | Wallop Industries Ltd | Chaff rocket |
DE3048595A1 (en) * | 1980-12-23 | 1982-07-22 | Dynamit Nobel Ag, 5210 Troisdorf | Warhead for screening or radar deception - has internal bursting tube, surrounded by smoke sections with outer strip packing |
GB2091855B (en) * | 1980-12-23 | 1985-12-18 | Wallop Ind Ltd | Chaff rocket |
FR2521716B1 (en) * | 1982-02-17 | 1987-01-02 | Lacroix E Tous Artifices | MULTI-LOAD ELECTROMAGNETIC LURE LAUNCHER CARTRIDGE |
DE3327043A1 (en) * | 1983-07-27 | 1985-02-07 | Technisch-Mathematische Studiengesellschaft mbH, 5300 Bonn | Device for scattering electromagnetic decoy material, particularly from a rocket |
DE3403936A1 (en) * | 1984-02-04 | 1985-08-08 | Diehl GmbH & Co, 8500 Nürnberg | SPIRAL BULLET |
DE3835887C2 (en) * | 1988-10-21 | 1997-10-02 | Rheinmetall Ind Ag | Cartridge for creating false targets |
DE4327976C1 (en) * | 1993-08-19 | 1995-01-05 | Buck Chem Tech Werke | Flare charge for producing decoys |
-
1996
- 1996-05-03 DE DE19617701A patent/DE19617701C2/en not_active Revoked
-
1997
- 1997-04-01 DE DE59702585T patent/DE59702585D1/en not_active Expired - Lifetime
- 1997-04-01 DK DK97105393T patent/DK0805333T3/en active
- 1997-04-01 DE DE59707940T patent/DE59707940D1/en not_active Expired - Lifetime
- 1997-04-01 EP EP97105393A patent/EP0805333B1/en not_active Expired - Lifetime
- 1997-04-01 EP EP00108677A patent/EP1026473B1/en not_active Expired - Lifetime
- 1997-04-21 US US08/839,919 patent/US5835051A/en not_active Expired - Lifetime
- 1997-05-02 SG SG1997001358A patent/SG55308A1/en unknown
- 1997-05-06 JP JP11586697A patent/JP3181240B2/en not_active Expired - Fee Related
- 1997-05-15 TW TW086105901A patent/TW355204B/en active
-
1999
- 1999-12-30 DK DK199900457U patent/DK199900457U1/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019206485A2 (en) | 2018-04-27 | 2019-10-31 | Rheinmetall Waffe Munition Gmbh | Method and device for protecting a vehicle against a threat |
Also Published As
Publication number | Publication date |
---|---|
DE19617701C2 (en) | 2000-01-13 |
DK199900457U1 (en) | 1999-12-30 |
EP1026473B1 (en) | 2002-08-07 |
TW355204B (en) | 1999-04-01 |
DE19617701A1 (en) | 1997-11-20 |
DE59702585D1 (en) | 2000-12-14 |
EP1026473A1 (en) | 2000-08-09 |
JPH112499A (en) | 1999-01-06 |
SG55308A1 (en) | 1998-12-21 |
JP3181240B2 (en) | 2001-07-03 |
EP0805333A2 (en) | 1997-11-05 |
US5835051A (en) | 1998-11-10 |
DK0805333T3 (en) | 2001-02-05 |
DE59707940D1 (en) | 2002-09-12 |
EP0805333A3 (en) | 1998-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0805333B1 (en) | Method for creating a decoy target | |
DE19951767C2 (en) | Dual mode decoy | |
EP0164732B1 (en) | Apparatus for generating decoy clouds, in particular those emitting ir radiation | |
DE69605539T2 (en) | DOUBLE ACTING EXPLOSION HEAD AND METHOD FOR OPERATING SUCH A HEAD OF HEAVEN | |
EP1516153B1 (en) | Projectile or warhead | |
DE19655109C2 (en) | Mortar ammunition | |
DE69619300T2 (en) | Projectile with means for the radial scattering of elements according to a certain distribution | |
DE2809497A1 (en) | LOCKING CONTAINER FOR THE DUEPPELUNG OF STEERING ARMS | |
DE19524726B4 (en) | warhead | |
DE3048617A1 (en) | COMBAT HEAD WITH SECONDARY BODIES AS A PAYLOAD | |
DE10065816B4 (en) | Ammunition for generating a fog | |
CH664009A5 (en) | ARMORING BULLET. | |
DE69502041T2 (en) | Telescopic cartridge with a sleeve and no guide tube | |
EP0298494B1 (en) | Active sub-munition part, and flechette warhead and flechettes therefor | |
EP1794537B1 (en) | Active charge | |
EP1286129B1 (en) | Incendiary munition for a flight stabilised penetrating projectile | |
DE977946C (en) | Process for generating a secondary effect in connection with the known effect of a shaped charge | |
DE3421692C2 (en) | Method and projectile for creating an IR decoy | |
DE2638920A1 (en) | Spreader for radiation reflecting or emitting material - has central tube with holes, connected to compressed gas which disperses material | |
DE2629280C1 (en) | Warhead for fighting target objects, especially aircraft, which are housed in protective spaces | |
DE69422639T2 (en) | AMMUNITION UNIT FOR SELF-PROTECTION FOR A TANK | |
DE3920016C2 (en) | ||
WO2020164869A1 (en) | Method for combating aerial targets by means of guided missiles | |
DE102012021671A1 (en) | Warhead for combating arms-carrying missile in encounter situation, has annular arrangement of radially acting hollow charges, which is arranged on periphery of warhead, where hollow charges are initiated by central ignition device | |
DE10152023B4 (en) | Shock insensitive smoke projectiles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE DK ES FR GB GR IT NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE DK ES FR GB GR IT NL SE |
|
17P | Request for examination filed |
Effective date: 19980709 |
|
17Q | First examination report despatched |
Effective date: 19990325 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GBC | Gb: translation of claims filed (gb section 78(7)/1977) | ||
17Q | First examination report despatched |
Effective date: 19990325 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BUCK NEUE TECHNOLOGIEN GMBH |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE DK ES FR GB GR IT NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20001108 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20001108 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20001108 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20001108 |
|
REF | Corresponds to: |
Ref document number: 59702585 Country of ref document: DE Date of ref document: 20001214 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20010209 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
26N | No opposition filed | ||
PLAA | Information modified related to event that no opposition was filed |
Free format text: ORIGINAL CODE: 0009299DELT |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: PAINS WESSEX LIMITED Effective date: 20010808 |
|
D26N | No opposition filed (deleted) | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 20040616 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59702585 Country of ref document: DE Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE Ref country code: DE Ref legal event code: R081 Ref document number: 59702585 Country of ref document: DE Owner name: RHEINMETALL WAFFE MUNITION GMBH, DE Free format text: FORMER OWNER: BUCK NEUE TECHNOLOGIEN GMBH, 83458 SCHNEIZLREUTH, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160421 Year of fee payment: 20 Ref country code: GB Payment date: 20160421 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20160420 Year of fee payment: 20 Ref country code: DK Payment date: 20160420 Year of fee payment: 20 Ref country code: FR Payment date: 20160421 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59702585 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Effective date: 20170401 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20170331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170331 |