[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0802559B1 - Flat panel display with hydrogen source - Google Patents

Flat panel display with hydrogen source Download PDF

Info

Publication number
EP0802559B1
EP0802559B1 EP97410044A EP97410044A EP0802559B1 EP 0802559 B1 EP0802559 B1 EP 0802559B1 EP 97410044 A EP97410044 A EP 97410044A EP 97410044 A EP97410044 A EP 97410044A EP 0802559 B1 EP0802559 B1 EP 0802559B1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
cathode
anode
source
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP97410044A
Other languages
German (de)
French (fr)
Other versions
EP0802559A1 (en
Inventor
Stéphane Mougin
Philippe Catania
Olivier Hamon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pixtech SA
Original Assignee
Pixtech SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9491513&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0802559(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pixtech SA filed Critical Pixtech SA
Publication of EP0802559A1 publication Critical patent/EP0802559A1/en
Application granted granted Critical
Publication of EP0802559B1 publication Critical patent/EP0802559B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/88Vessels; Containers; Vacuum locks provided with coatings on the walls thereof; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/94Selection of substances for gas fillings; Means for obtaining or maintaining the desired pressure within the tube, e.g. by gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels

Definitions

  • the present invention relates to flat screens of visualization, and more particularly of cathodoluminescence screens, with anode carrying separate luminescent elements from each other by insulating zones, and susceptible to be excited by an electronic bombardment from microtips.
  • the attached figure shows an example of a flat screen microtip color of the type to which this relates invention.
  • Such a microtip screen essentially consists a cathode 1 with microtips 2 and a grid 3 provided with holes 4 corresponding to the locations of the microtips 2.
  • the cathode 1 is placed opposite a cathodoluminescent anode 5 including a glass substrate 6 constitutes the screen surface.
  • Cathode 1 is organized in columns and is made up, on a glass substrate 10, cathode conductors organized in mesh from a conductive layer.
  • the microtips 2 are made on a resistive layer 11 deposited on the cathode conductors and are arranged inside meshes defined by the cathode conductors. The figure partially represents the interior of a mesh and the conductors cathode do not appear in this figure.
  • Cathode 1 is associated with grid 3 organized in lines. The intersection a row of grid 3 and a column of cathode 1 defines a pixel.
  • This device uses the electric field which is created between the cathode 1 and the grid 3 so that electrons are extracted from the microtips 2. These electrons are then attracted by phosphor elements 7 from the anode 5 if these are suitably polarized.
  • the anode 5 is provided with alternating bands of phosphor elements 7r, 7g, 7b each corresponding to a color (Red, Green, Blue). The strips are parallel to the columns of the cathode and are separated from each other by an insulator 8, generally silicon oxide (SiO 2 ).
  • the phosphors 7 are deposited on electrodes 9, made up of corresponding strips of a transparent conductive layer such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the sets of red, green and blue bands are alternately polarized with respect to the cathode 1, so that electrons extracted from the microtips 2 of a pixel of the cathode / grid are alternately directed towards the phosphors 7 opposite each of the colors.
  • the phosphor 7 selection command (the phosphor 7g in the figure) which must be bombarded by electrons from the microtips of cathode 1 requires ordering, selectively, the polarization of the phosphor elements 7 of anode 5, color by color.
  • the rows of grid 3 are sequentially polarized at a potential of the order of 80 volts, while the strips of phosphor elements (for example 7g) to be excited are polarized under a voltage of the order 400 volts via the ITO band on which these phosphor elements are deposited.
  • ITO bands, carrying the other bands of phosphor elements (for example 7r and 7b), are at low or no potential.
  • the columns of cathode 1 are brought to respective potentials between a maximum emission potential and absence potential emission (for example, 0 and 30 volts respectively). We fix thus the brightness of a color component of each of the pixels of a line.
  • the choice of the values of the polarization potentials is linked to the characteristics of phosphors 7 and microtips 2. Conventionally, below a potential difference of 50 volts between the cathode and the grid, there is no emission electronic, and the maximum emission used corresponds to a potential difference of 80 volts.
  • a disadvantage of conventional screens is that microtips gradually lose their emissivity. We can see this phenomenon by measuring the current in the cathode conductors. This results in a gradual decrease screen brightness, which affects the lifespan of classic screens.
  • a flat screen corresponding to the preamble of claim 1 is described in document WO 96/01492.
  • the present invention aims to overcome this drawback by making the emissive power of the microtips substantially constant.
  • the present invention also aims to provide a screen with automatic regulation of the emitting power of the microtips.
  • the present invention further aims to provide a process for producing a screen whose microtips have a substantially constant emissivity without modifying or screen structure, nor the screen control means.
  • the present invention provides a flat display screen comprising a cathode with electron bombardment microtips of an anode provided phosphor elements, the anode and the cathode being separated by a vacuum space, and containing a release source progressive hydrogen, characterized in that the progressive release source of hydrogen consists of a thin layer deposit of a hydrogenated material.
  • the hydrogen source consists of a resistive layer of the cathode on which the microtips are arranged.
  • the hydrogen source consists of isolation bands separating strips of phosphor elements from the anode.
  • the hydrogen source is produced at the periphery of the area active anode carrying the phosphors, a source excitation of said hydrogen source being carried out, side cathode, facing said source of hydrogen.
  • the present invention also provides a method of manufacture of a flat display screen comprising a microtip cathode of electron bombardment of an anode provided with phosphor elements, the anode and the cathode being separated by a vacuum space, characterized in that the method comprises the step consisting in hydrogenating at the time of its deposition, at least one of the constituent thin layers formed inside this screen.
  • the hydrogenated layer is obtained by chemical phase deposition plasma-assisted vapor from at least one precursor enriched in hydrogen.
  • the present invention originates from an interpretation phenomena that cause the above problems in classic screens.
  • the inventors consider that these problems are due, in particular to an oxidation of the microtips of the cathode.
  • the surface layers of the anode are, from a chemical point of view, oxides, that this either the phosphors 7 or the insulator 8.
  • the microtips are generally metallic, for example in molybdenum (Mo).
  • Oxide layers tend to shrink under the effect electronic bombardment, that is to say to release oxygen which oxidizes the surface of the microtips which then lose their emissive power.
  • the present invention proposes to control this oxidation phenomenon of the microtips of the cathode by introducing into the inter-electrode space the screen, partial pressure of hydrogen.
  • the most negative potential consists of the metallic cathode material and the H + or H 2 + ions are therefore attracted by the microtips to reduce them if they are oxidized.
  • these H + or H 2 + ions are repelled by the anode and do not risk damaging the phosphor elements.
  • the water vapor (H 2 O) formed by the recombination of the H + or H 2 + ions is then trapped by an element for trapping impurities, generally called a "getter", communicating with the inter-electrode space.
  • a microtip screen is generally provided with an element for trapping impurities whose role is to absorb various pollutions resulting from the degassing of the layers of the screen in contact with the vacuum.
  • this getter does not succeed in effectively trapping the oxygen degassed by the phosphors 7 and the insulating layers 8 insofar as these degassings are carried out essentially in a positive ionic form (O 2 + ) which then finds itself attracted to the microtips before it can be trapped by the getter.
  • the water vapor obtained by the reduction oxygen through hydrogen ions is a molecule neutral which is then no longer attracted to microtips and can be trapped by the getter.
  • the partial pressure of hydrogen must not, however be too high not to interfere with the operation of the screen.
  • the partial pressure of hydrogen is according to the invention chosen according to the inter-electrode distance and the quality of the vacuum in the screen, in particular of the pressure partial of all oxidizing species combined.
  • a partial hydrogen pressure of 5.10 -4 millibars (5 10 -2 Pa) constitutes a limit pressure for an inter-electrode distance of approximately 0.2 mm.
  • a characteristic of the present invention is to provide, inside the inter-electrode space, a source of hydrogen which gradually releases H + ions as the screen operates, ie progressively degassing of oxidizing species from the anode.
  • this source is placed near spikes so that the released hydrogen is not trapped by the getter before reaching the microtips.
  • the source material must be able to give off hydrogen only under excitation.
  • This excitation can be thermal. In that case, the temperature rise inside the screen during its operation produces hydrogen. This excitement can also result from electronic bombardment or ionic.
  • the hydrogen source is integrated in the bands insulators 8 which separate the strips of phosphor elements from the anode.
  • activation of the hydrogen source is essentially carried out by electronic bombardment. In Indeed, some electrons emitted by the microtips touch the edges of insulating tracks.
  • the source of hydrogen is produced on the cathode side and is for example integrated to the resistive layer which supports the microtips. Activation of the source is then thermal, the cathode not being bombed.
  • An advantage common to both embodiments described above is that they distribute the source of hydrogen across the entire surface of the screen and thus guarantee an effect homogeneous antioxidant in the screen.
  • Another advantage is that they allow regulation automatic partial pressure of hydrogen in space inter-electrodes, therefore of the antioxidant means of the microtips of the cathode. Indeed, activation (thermal or by bombardment of the hydrogen source is located in the region microdots which emit and which are therefore susceptible to be oxidized.
  • Another advantage is that they do not require any modification of the screen structure, but only deposition conditions of the insulating tracks 8 or of the layer resistive 11, as will be seen below.
  • the deposition parameters are adjusted at least one layer chosen to cause incorporation of hydrogen in the material of this layer.
  • Incorporation diffusion of hydrogen is adjusted according to the quantity of hydrogen that we want to see released by the material during screen operation, i.e. depending on the quality of the vacuum in the inter-electrode space, in particular the partial pressure of the oxidizing species, and of the means excitation chosen for the hydrogen source.
  • the source of hydrogen is made up of dedicated zones, arranged outside the active area of the screen, for example, on the periphery of the anode. An excitation source is then produced on the cathode side opposite of these dedicated areas.
  • the excitation source can be constituted of a microtip zone next to the hydrogen source outside the active area of the screen.
  • the dedicated excitation source is ordered at regular intervals to cause regeneration microtips.
  • this dedicated source be controlled from a current measurement flowing through the cathode conductors to cause a microtip regeneration phase according to a threshold of current from which it is considered desirable to regenerate the microtips.
  • the deposition of the various layers used in manufacturing of a screen is generally carried out by a chemical deposit plasma assisted vapor phase (PECVD).
  • PECVD chemical deposit plasma assisted vapor phase
  • Such a deposit method uses mixtures of precursor compounds of the material to deposit. It is easy to control the content of added hydrogen to the precursors. This technique allows obtaining deposits highly hydrogenated and easily control the amount of hydrogen by varying the deposition parameters (temperature of deposition, self-bias voltage, deposition pressure, temperature annealing, etc.).
  • silicon-based materials hydrogenated, hydrogenated silicon carbide, nitride hydrogenated silicon, hydrogenated silicon oxide, carbon hydrogenated, hydrogenated germanium and hydrogenated oxynitride.
  • the choice of material used depends, in particular, on the source of hydrogen.
  • the hydrogen source is produced on the cathode side, we will be able to hydrogenate the silicon usually constituting the resistive layer 11 which dispenses hydrogen.
  • the hydrogen source consists of the bands insulators 8 between the strips of phosphor elements of the anode
  • a material that is both dielectric and easily hydrogenated for example, silicon carbide or silicon oxide.
  • nitride of silicon which also has the advantage of minimizing oxygen contained in the insulating strips so that the hydrogen released has the task of reducing the degassed oxidizing species essentially by the phosphor elements.
  • amorphous compound insofar as it can generate a significant amount of hydrogen because its concentration is not limited by a crystal structure.
  • the invention has been described above in conjunction with a microtip color screen, it applies also on a monochrome screen. If the anode of such a monochrome screen consists of two sets of alternating bands phosphor elements, all embodiments described above can be implemented. On the other hand, if the anode of the monochrome screen consists of a phosphor plan, the hydrogen source will be constituted either by a dedicated source external to the active area of the screen, either by the resistive layer cathode side.

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

La présente invention concerne les écrans plats de visualisation, et plus particulièrement des écrans dit à cathodoluminescence, dont l'anode porte des éléments luminescents, séparés les uns des autres par des zones isolantes, et susceptibles d'être excités par un bombardement électronique provenant de micropointes.The present invention relates to flat screens of visualization, and more particularly of cathodoluminescence screens, with anode carrying separate luminescent elements from each other by insulating zones, and susceptible to be excited by an electronic bombardment from microtips.

La figure annexée représente un exemple d'écran plat couleur à micropointes du type auquel se rapporte la présente invention.The attached figure shows an example of a flat screen microtip color of the type to which this relates invention.

Un tel écran à micropointes est essentiellement constitué d'une cathode 1 à micropointes 2 et d'une grille 3 pourvue de trous 4 correspondant aux emplacements des micropointes 2. La cathode 1 est placée en regard d'une anode cathodoluminescente 5 dont un substrat de verre 6 constitue la surface d'écran.Such a microtip screen essentially consists a cathode 1 with microtips 2 and a grid 3 provided with holes 4 corresponding to the locations of the microtips 2. The cathode 1 is placed opposite a cathodoluminescent anode 5 including a glass substrate 6 constitutes the screen surface.

Le principe de fonctionnement et un mode de réalisation particulier d'un écran à micropointes sont décrits, en particulier, dans le brevet américain n° 4 940 916 du Commissariat à l'Énergie Atomique.The operating principle and an embodiment particular of a microtip screen are described, in particular, in U.S. Patent No. 4,940,916 to the Commissariat for Atomic Energy.

La cathode 1 est organisée en colonnes et est constituée, sur un substrat de verre 10, de conducteurs de cathode organisés en mailles à partir d'une couche conductrice. Les micropointes 2 sont réalisées sur une couche résistive 11 déposée sur les conducteurs de cathode et sont disposées à l'intérieur des mailles définies par les conducteurs de cathode. La figure représente partiellement l'intérieur d'une maille et les conducteurs de cathode n'apparaissent pas sur cette figure. La cathode 1 est associée à la grille 3 organisée en lignes. L'intersection d'une ligne de la grille 3 et d'une colonne de la cathode 1 définit un pixel.Cathode 1 is organized in columns and is made up, on a glass substrate 10, cathode conductors organized in mesh from a conductive layer. The microtips 2 are made on a resistive layer 11 deposited on the cathode conductors and are arranged inside meshes defined by the cathode conductors. The figure partially represents the interior of a mesh and the conductors cathode do not appear in this figure. Cathode 1 is associated with grid 3 organized in lines. The intersection a row of grid 3 and a column of cathode 1 defines a pixel.

Ce dispositif utilise le champ électrique qui est créé entre la cathode 1 et la grille 3 pour que des électrons soient extraits des micropointes 2. Ces électrons sont ensuite attirés par des éléments luminophores 7 de l'anode 5 si ceux-ci sont convenablement polarisés. Dans le cas d'un écran couleur, l'anode 5 est pourvue de bandes alternées d'éléments luminophores 7r, 7g, 7b correspondant chacune à une couleur (Rouge, Vert, Bleu). Les bandes sont parallèles aux colonnes de la cathode et sont séparées les unes des autres par un isolant 8, généralement de l'oxyde de silicium (SiO2). Les luminophores 7 sont déposés sur des électrodes 9, constituées de bandes correspondantes d'une couche conductrice transparente telle que de l'oxyde d'indium et d'étain (ITO). Les ensembles de bandes rouges, vertes, bleues sont alternativement polarisés par rapport à la cathode 1, pour que des électrons extraits des micropointes 2 d'un pixel de la cathode/grille soient alternativement dirigés vers les luminophores 7 en vis-à-vis de chacune des couleurs.This device uses the electric field which is created between the cathode 1 and the grid 3 so that electrons are extracted from the microtips 2. These electrons are then attracted by phosphor elements 7 from the anode 5 if these are suitably polarized. In the case of a color screen, the anode 5 is provided with alternating bands of phosphor elements 7r, 7g, 7b each corresponding to a color (Red, Green, Blue). The strips are parallel to the columns of the cathode and are separated from each other by an insulator 8, generally silicon oxide (SiO 2 ). The phosphors 7 are deposited on electrodes 9, made up of corresponding strips of a transparent conductive layer such as indium tin oxide (ITO). The sets of red, green and blue bands are alternately polarized with respect to the cathode 1, so that electrons extracted from the microtips 2 of a pixel of the cathode / grid are alternately directed towards the phosphors 7 opposite each of the colors.

La commande de sélection du luminophore 7 (le luminophore 7g à la figure) qui doit être bombardé par les électrons issus des micropointes de la cathode 1 impose de commander, sélectivement, la polarisation des éléments luminophores 7 de l'anode 5, couleur par couleur.The phosphor 7 selection command (the phosphor 7g in the figure) which must be bombarded by electrons from the microtips of cathode 1 requires ordering, selectively, the polarization of the phosphor elements 7 of anode 5, color by color.

Généralement, les rangées de la grille 3 sont séquentiellement polarisées à un potentiel de l'ordre de 80 volts, tandis que les bandes d'éléments luminophores (par exemple 7g) devant être excités sont polarisées sous une tension de l'ordre de 400 volts par l'intermédiaire de la bande d'ITO sur laquelle ces éléments luminophores sont déposés. Les bandes d'ITO, portant les autres bandes d'éléments luminophores (par exemple 7r et 7b), sont à un potentiel faible ou nul. Les colonnes de la cathode 1 sont portées à des potentiels respectifs compris entre un potentiel d'émission maximale et un potentiel d'absence d'émission (par exemple, respectivement 0 et 30 volts). On fixe ainsi la brillance d'une composante couleur de chacun des pixels d'une ligne.Generally, the rows of grid 3 are sequentially polarized at a potential of the order of 80 volts, while the strips of phosphor elements (for example 7g) to be excited are polarized under a voltage of the order 400 volts via the ITO band on which these phosphor elements are deposited. ITO bands, carrying the other bands of phosphor elements (for example 7r and 7b), are at low or no potential. The columns of cathode 1 are brought to respective potentials between a maximum emission potential and absence potential emission (for example, 0 and 30 volts respectively). We fix thus the brightness of a color component of each of the pixels of a line.

Le choix des valeurs des potentiels de polarisation est lié aux caractéristiques des luminophores 7 et des micropointes 2. Classiquement, en dessous d'une différence de potentiel de 50 volts entre la cathode et la grille, il n'y a pas d'émission électronique, et l'émission maximale utilisée correspond à une différence de potentiel de 80 volts.The choice of the values of the polarization potentials is linked to the characteristics of phosphors 7 and microtips 2. Conventionally, below a potential difference of 50 volts between the cathode and the grid, there is no emission electronic, and the maximum emission used corresponds to a potential difference of 80 volts.

Un inconvénient des écrans classiques est que les micropointes perdent progressivement leur pouvoir émissif. On peut constater ce phénomène en mesurant le courant dans les conducteurs de cathode. Il en résulte une diminution progressive de la brillance de l'écran, ce qui nuit à la durée de vie des écrans classiques.A disadvantage of conventional screens is that microtips gradually lose their emissivity. We can see this phenomenon by measuring the current in the cathode conductors. This results in a gradual decrease screen brightness, which affects the lifespan of classic screens.

Un écran plat correspondant au préambule de la revendication 1 est décrit dans le document WO 96/01492.A flat screen corresponding to the preamble of claim 1 is described in document WO 96/01492.

La présente invention vise à pallier cet inconvénient en rendant sensiblement constant le pouvoir émissif des micropointes.The present invention aims to overcome this drawback by making the emissive power of the microtips substantially constant.

La présente invention vise également à proposer un écran à régulation automatique du pouvoir émissif des micropointes.The present invention also aims to provide a screen with automatic regulation of the emitting power of the microtips.

La présente invention vise en outre à proposer un procédé de réalisation d'un écran dont les micropointes ont un pouvoir émissif sensiblement constant sans modifier, ni la structure de l'écran, ni les moyens de commande de l'écran.The present invention further aims to provide a process for producing a screen whose microtips have a substantially constant emissivity without modifying or screen structure, nor the screen control means.

Pour atteindre ces objets, la présente invention prévoit un écran plat de visualisation comportant une cathode à micropointes de bombardement électronique d'une anode pourvue d'éléments luminophores, l'anode et la cathode étant séparées par un espace sous vide, et contenant une source à libération progressive d'hydrogène, caractérisé en ce que la source à libération progressive d'hydrogène est constituée d'un dépôt en couche mince d'un matériau hydrogéné. To achieve these objects, the present invention provides a flat display screen comprising a cathode with electron bombardment microtips of an anode provided phosphor elements, the anode and the cathode being separated by a vacuum space, and containing a release source progressive hydrogen, characterized in that the progressive release source of hydrogen consists of a thin layer deposit of a hydrogenated material.

Selon un mode de réalisation de la présente invention, la source d'hydrogène est constituée par une couche résistive de la cathode sur laquelle sont disposées les micropointes.According to an embodiment of the present invention, the hydrogen source consists of a resistive layer of the cathode on which the microtips are arranged.

Selon un mode de réalisation de la présente invention, la source d'hydrogène est constituée par des bandes d'isolement séparant des bandes d'éléments luminophores de l'anode.According to an embodiment of the present invention, the hydrogen source consists of isolation bands separating strips of phosphor elements from the anode.

Selon un mode de réalisation de la présente invention, la source d'hydrogène est réalisée en périphérie de la zone active de l'anode portant les luminophores, une source d'excitation de ladite source d'hydrogène étant réalisée, côté cathode, en regard de ladite source d'hydrogène.According to an embodiment of the present invention, the hydrogen source is produced at the periphery of the area active anode carrying the phosphors, a source excitation of said hydrogen source being carried out, side cathode, facing said source of hydrogen.

La présente invention prévoit aussi un procédé de fabrication d'un écran plat de visualisation comportant une cathode à micropointes de bombardement électronique d'une anode pourvue d'éléments luminophores, l'anode et la cathode étant séparées par un espace sous vide, caractérisé en ce que le procédé comprend l'étape consistant à hydrogéner lors de son dépôt, l'une au moins des couches minces constitutives formées à l'intérieur de cet écran.The present invention also provides a method of manufacture of a flat display screen comprising a microtip cathode of electron bombardment of an anode provided with phosphor elements, the anode and the cathode being separated by a vacuum space, characterized in that the method comprises the step consisting in hydrogenating at the time of its deposition, at least one of the constituent thin layers formed inside this screen.

Selon un mode de réalisation de la présente invention, la couche hydrogénée est obtenue par un dépôt chimique en phase vapeur assisté par plasma à partir d'au moins un précurseur enrichi en hydrogène.According to an embodiment of the present invention, the hydrogenated layer is obtained by chemical phase deposition plasma-assisted vapor from at least one precursor enriched in hydrogen.

La présente invention a pour origine une interprétation des phénomènes qui engendrent les problèmes susmentionnés dans les écrans classiques.The present invention originates from an interpretation phenomena that cause the above problems in classic screens.

Les inventeurs considèrent que ces problèmes sont dus, en particulier à une oxydation des micropointes de la cathode.The inventors consider that these problems are due, in particular to an oxidation of the microtips of the cathode.

Dans un écran à micropointes, les couches de surface de l'anode sont, d'un point de vue chimique, des oxydes, que ce soient les luminophores 7 ou l'isolant 8. Par contre, côté cathode, les micropointes sont généralement métalliques, par exemple en molybdène (Mo).In a microtip screen, the surface layers of the anode are, from a chemical point of view, oxides, that this either the phosphors 7 or the insulator 8. By cons, side cathode, the microtips are generally metallic, for example in molybdenum (Mo).

Les couches d'oxyde tendent à se réduire sous l'effet du bombardement électronique, c'est-à-dire à libérer de l'oxygène qui vient oxyder la surface des micropointes qui perdent alors leur pouvoir émissif.Oxide layers tend to shrink under the effect electronic bombardment, that is to say to release oxygen which oxidizes the surface of the microtips which then lose their emissive power.

A partir de cette analyse, la présente invention propose de contrôler ce phénomène d'oxydation des micropointes de la cathode en introduisant dans l'espace inter-électrodes de l'écran, une pression partielle d'hydrogène.From this analysis, the present invention proposes to control this oxidation phenomenon of the microtips of the cathode by introducing into the inter-electrode space the screen, partial pressure of hydrogen.

Dans un écran à micropointes, en fonctionnement, le potentiel le plus négatif est constitué par le matériau métallique de cathode et les ions H+ ou H2 + sont donc attirés par les micropointes pour venir les réduire si elles sont oxydées. Par contre, ces ions H+ ou H2 + sont repoussés par l'anode et ne risquent pas d'endommager les éléments luminophores.In a microtip screen, in operation, the most negative potential consists of the metallic cathode material and the H + or H 2 + ions are therefore attracted by the microtips to reduce them if they are oxidized. On the other hand, these H + or H 2 + ions are repelled by the anode and do not risk damaging the phosphor elements.

La vapeur d'eau (H2O) formée par la recombinaison des ions H+ ou H2 + est alors piégée par un élément de piégeage d'impuretés, généralement appelé "getter", communiquant avec l'espace inter-électrodes.The water vapor (H 2 O) formed by the recombination of the H + or H 2 + ions is then trapped by an element for trapping impurities, generally called a "getter", communicating with the inter-electrode space.

En effet, un écran à micropointes est généralement pourvu d'un élément de piégeage d'impuretés dont le rôle est d'absorber les pollutions diverses issues du dégazage des couches de l'écran en contact avec le vide. Cependant, dans les écrans classiques, ce getter ne parvient pas à piéger efficacement l'oxygène dégazé par les luminophores 7 et les couches isolantes 8 dans la mesure où ces dégazages s'effectuent essentiellement sous une forme ionique positive (O2 +) qui se trouve alors attirée par les micropointes avant d'avoir pu être piégée par le getter.In fact, a microtip screen is generally provided with an element for trapping impurities whose role is to absorb various pollutions resulting from the degassing of the layers of the screen in contact with the vacuum. However, in conventional screens, this getter does not succeed in effectively trapping the oxygen degassed by the phosphors 7 and the insulating layers 8 insofar as these degassings are carried out essentially in a positive ionic form (O 2 + ) which then finds itself attracted to the microtips before it can be trapped by the getter.

A l'inverse, la vapeur d'eau obtenue par la réduction de l'oxygène par les ions d'hydrogène constitue une molécule neutre qui n'est alors plus attirée par les micropointes et peut être piégée par le getter.Conversely, the water vapor obtained by the reduction oxygen through hydrogen ions is a molecule neutral which is then no longer attracted to microtips and can be trapped by the getter.

La pression partielle d'hydrogène ne doit cependant pas être trop élevée pour ne pas nuire au fonctionnement de l'écran.The partial pressure of hydrogen must not, however be too high not to interfere with the operation of the screen.

En effet, la présence d'hydrogène au voisinage des micropointes engendre la formation d'un microplasma d'hydrogène au voisinage des micropointes. Ce plasma doit rester à une pression suffisamment faible et être localisé autour des pointes pour ne pas perturber le fonctionnement de l'écran. En particulier, si ce plasma se développe, on risque de voir apparaítre un arc entre l'anode et la cathode de l'écran.Indeed, the presence of hydrogen in the vicinity of microtips creates a microplasma of hydrogen in the vicinity of the microtips. This plasma must remain at a sufficiently low pressure and be located around the tips to do not disturb the operation of the screen. In particular, if this plasma develops, we risk seeing an arc appear between the anode and the cathode of the screen.

La pression partielle d'hydrogène est selon l'invention choisie en fonction de la distance inter-électrodes et de la qualité du vide dans l'écran, en particulier, de la pression partielle des espèces oxydantes toutes confondues.The partial pressure of hydrogen is according to the invention chosen according to the inter-electrode distance and the quality of the vacuum in the screen, in particular of the pressure partial of all oxidizing species combined.

A titre d'exemple particulier, une pression partielle d'hydrogène de 5.10-4 millibars (5 10-2 Pa) constitue une pression limite pour une distance inter-électrodes d'environ 0,2 mm.As a particular example, a partial hydrogen pressure of 5.10 -4 millibars (5 10 -2 Pa) constitutes a limit pressure for an inter-electrode distance of approximately 0.2 mm.

Cependant, la pression partielle d'hydrogène doit être maintenue au niveau choisi alors même que l'hydrogène est consommé et piégé par le getter.However, the partial pressure of hydrogen must be maintained at the chosen level even though hydrogen is consumed and trapped by the getter.

Une caractéristique de la présente invention est de prévoir, à l'intérieur de l'espace inter-électrodes, une source d'hydrogène qui libère progressivement des ions H+ au fur et à mesure du fonctionnement de l'écran, c'est-à-dire au fur et à mesure des dégazages d'espèces oxydantes depuis l'anode.A characteristic of the present invention is to provide, inside the inter-electrode space, a source of hydrogen which gradually releases H + ions as the screen operates, ie progressively degassing of oxidizing species from the anode.

De préférence, cette source est disposée à proximité des pointes, de manière que l'hydrogène libéré ne soit pas piégé par le getter avant d'atteindre les micropointes.Preferably, this source is placed near spikes so that the released hydrogen is not trapped by the getter before reaching the microtips.

Pour permettre une libération progressive de l'hydrogène, le matériau de la source doit être capable de dégager de l'hydrogène uniquement sous excitation.To allow a gradual release of hydrogen, the source material must be able to give off hydrogen only under excitation.

Cette excitation peut être thermique. Dans ce cas, l'élévation de température à l'intérieur de l'écran lors de son fonctionnement provoque un dégagement d'hydrogène. Cette excitation peut aussi résulter d'un bombardement électronique ou ionique.This excitation can be thermal. In that case, the temperature rise inside the screen during its operation produces hydrogen. This excitement can also result from electronic bombardment or ionic.

Selon un premier mode de réalisation de la présente invention, la source d'hydrogène est intégrée dans les bandes isolantes 8 qui séparent les bandes d'éléments luminophores de l'anode. Dans ce cas, l'activation de la source d'hydrogène s'effectue essentiellement par bombardement électronique. En effet, certains électrons émis par les micropointes touchent les bords des pistes isolantes.According to a first embodiment of the present invention, the hydrogen source is integrated in the bands insulators 8 which separate the strips of phosphor elements from the anode. In this case, activation of the hydrogen source is essentially carried out by electronic bombardment. In Indeed, some electrons emitted by the microtips touch the edges of insulating tracks.

Selon un deuxième mode de réalisation, la source d'hydrogène est réalisée côté cathode et est par exemple intégrée à la couche résistive qui supporte les micropointes. L'activation de la source est alors thermique, la cathode n'étant pas bombardée.According to a second embodiment, the source of hydrogen is produced on the cathode side and is for example integrated to the resistive layer which supports the microtips. Activation of the source is then thermal, the cathode not being bombed.

Un avantage commun aux deux modes de réalisation décrits ci-dessus est qu'ils répartissent la source d'hydrogène sur toute la surface de l'écran et garantissent ainsi un effet antioxydant homogène dans l'écran.An advantage common to both embodiments described above is that they distribute the source of hydrogen across the entire surface of the screen and thus guarantee an effect homogeneous antioxidant in the screen.

Un autre avantage est qu'ils permettent une régulation automatique de la pression partielle d'hydrogène dans l'espace inter-électrodes, donc du moyen antioxydant des micropointes de la cathode. En effet, l'activation (thermique ou par bombardement électronique) de la source d'hydrogène est localisée dans la région des micropointes qui émettent et qui sont donc susceptibles d'être oxydées.Another advantage is that they allow regulation automatic partial pressure of hydrogen in space inter-electrodes, therefore of the antioxidant means of the microtips of the cathode. Indeed, activation (thermal or by bombardment of the hydrogen source is located in the region microdots which emit and which are therefore susceptible to be oxidized.

Un autre avantage est qu'ils ne nécessitent aucune modification de la structure de l'écran, mais uniquement des conditions de dépôts des pistes isolantes 8 ou de la couche résistive 11, comme on le verra ci-après.Another advantage is that they do not require any modification of the screen structure, but only deposition conditions of the insulating tracks 8 or of the layer resistive 11, as will be seen below.

Selon l'invention, on ajuste les paramètres de dépôt d'au moins une couche choisie pour provoquer l'incorporation d'hydrogène dans le matériau de cette couche. L'incorporation diffusion d'hydrogène est ajustée en fonction de la quantité d'hydrogène que l'on souhaite voir libérer par le matériau lors du fonctionnement de l'écran, c'est-à-dire en fonction de la qualité du vide dans l'espace inter-électrodes, en particulier de la pression partielle des espèces oxydantes, et du moyen d'excitation choisi pour la source d'hydrogène.According to the invention, the deposition parameters are adjusted at least one layer chosen to cause incorporation of hydrogen in the material of this layer. Incorporation diffusion of hydrogen is adjusted according to the quantity of hydrogen that we want to see released by the material during screen operation, i.e. depending on the quality of the vacuum in the inter-electrode space, in particular the partial pressure of the oxidizing species, and of the means excitation chosen for the hydrogen source.

Selon un troisième mode de réalisation, la source d'hydrogène est constituée de zones dédiées, disposées hors de la zone active de l'écran, par exemple, en périphérie de l'anode. Une source d'excitation est alors réalisée côté cathode en regard de ces zones dédiées. La source d'excitation peut être constituée d'une zone de micropointes en regard de la source d'hydrogène hors de la zone active de l'écran.According to a third embodiment, the source of hydrogen is made up of dedicated zones, arranged outside the active area of the screen, for example, on the periphery of the anode. An excitation source is then produced on the cathode side opposite of these dedicated areas. The excitation source can be constituted of a microtip zone next to the hydrogen source outside the active area of the screen.

Si un tel mode de réalisation requiert de modifier la structure de l'écran, il présente l'avantage de fournir un moyen antioxydant commandable indépendamment du fonctionnement de l'écran. Ainsi, on peut prévoir que la source d'excitation dédiée soit commandée à intervalles réguliers pour provoquer une régénération des micropointes. On peut également prévoir que cette source dédiée soit commandée à partir d'une mesure du courant circulant dans les conducteurs de cathode pour provoquer une phase de régénération des micropointes en fonction d'un seuil de courant à partir duquel on considère qu'il est souhaitable de régénérer les micropointes.If such an embodiment requires modifying the structure of the screen, it has the advantage of providing a means antioxidant controllable independently of the functioning of the screen. Thus, it can be expected that the dedicated excitation source is ordered at regular intervals to cause regeneration microtips. We can also foresee that this dedicated source be controlled from a current measurement flowing through the cathode conductors to cause a microtip regeneration phase according to a threshold of current from which it is considered desirable to regenerate the microtips.

On indiquera par la suite plusieurs exemples de matériaux qui peuvent être choisis pour constituer la source d'hydrogène.Several examples of materials will be indicated below. which can be chosen to constitute the source hydrogen.

Le dépôt des diverses couches utilisées dans la fabrication d'un écran s'effectue généralement par un dépôt chimique en phase vapeur assisté par plasma (PECVD). Un tel mode de dépôt utilise des mélanges de composés précurseurs du matériau à déposer. Il est aisé de contrôler la teneur en hydrogène ajouté aux précurseurs. Cette technique permet l'obtention de dépôts fortement hydrogénés et de contrôler aisément la quantité d'hydrogène en jouant sur les paramètres de dépôt (température de dépôt, tension d'auto-polarisation, pression de dépôt, température de recuit, etc.).The deposition of the various layers used in manufacturing of a screen is generally carried out by a chemical deposit plasma assisted vapor phase (PECVD). Such a deposit method uses mixtures of precursor compounds of the material to deposit. It is easy to control the content of added hydrogen to the precursors. This technique allows obtaining deposits highly hydrogenated and easily control the amount of hydrogen by varying the deposition parameters (temperature of deposition, self-bias voltage, deposition pressure, temperature annealing, etc.).

Parmi les matériaux qui sont susceptibles d'être déposés avec un fort pourcentage d'hydrogène et de perdre cet hydrogène sous une activation thermique, ionique ou électronique, on trouve en particulier les matériaux à base de silicium hydrogéné, de carbure de silicium hydrogéné, de nitrure de silicium hydrogéné, d'oxyde de silicium hydrogéné, de carbone hydrogéné, de germanium hydrogéné et d'oxynitrure hydrogéné. Among the materials that are likely to be deposited with a high percentage of hydrogen and lose this hydrogen under thermal, ionic or electronic activation, we find in particular silicon-based materials hydrogenated, hydrogenated silicon carbide, nitride hydrogenated silicon, hydrogenated silicon oxide, carbon hydrogenated, hydrogenated germanium and hydrogenated oxynitride.

Le choix du matériau utilisé dépend, en particulier, du lieu de la source d'hydrogène.The choice of material used depends, in particular, on the source of hydrogen.

Si la source d'hydrogène est réalisée côté cathode, on pourra hydrogéner le silicium constituant habituellement la couche résistive 11 qui dispense de l'hydrogène.If the hydrogen source is produced on the cathode side, we will be able to hydrogenate the silicon usually constituting the resistive layer 11 which dispenses hydrogen.

Si la source d'hydrogène est constituée par les bandes isolantes 8 entre les bandes d'éléments luminophores de l'anode, on choisira un matériau qui soit à la fois diélectrique et facilement hydrogénable, par exemple, du carbure de silicium ou de l'oxyde de silicium. On pourra également choisir du nitrure de silicium qui présente en outre l'avantage de minimiser l'oxygène contenu dans les bandes isolantes de sorte que l'hydrogène libéré a pour tâche de réduire les espèces oxydantes dégazées essentiellement par les éléments luminophores.If the hydrogen source consists of the bands insulators 8 between the strips of phosphor elements of the anode, we will choose a material that is both dielectric and easily hydrogenated, for example, silicon carbide or silicon oxide. We can also choose nitride of silicon which also has the advantage of minimizing oxygen contained in the insulating strips so that the hydrogen released has the task of reducing the degassed oxidizing species essentially by the phosphor elements.

Lorsque cela est compatible avec le rôle de la couche choisie pour constituer également la source d'hydrogène, on choisira, de préférence, un composé amorphe dans la mesure où il peut engendrer une quantité d'hydrogène importante car sa concentration n'est pas limitée par une structure cristalline.When this is compatible with the role of the layer chosen to also constitute the hydrogen source, we preferably choose an amorphous compound insofar as it can generate a significant amount of hydrogen because its concentration is not limited by a crystal structure.

On peut également combiner l'effet antioxydant avec un effet de matriçage de l'anode qui améliore le contraste de l'écran. Un tel matriçage est généralement désigné par son appellation anglo-saxonne "black matrix" et crée des zones noires entre les bandes d'éléments luminophores de l'anode. Pour ce faire, on utilisera, par exemple, un composé à base de carbone hydrogéné pour réaliser les bandes 8.You can also combine the antioxidant effect with a matrix anode effect which improves the contrast of the screen. Such mastering is generally designated by its Anglo-Saxon designation "black matrix" and creates black areas between the strips of phosphor elements of the anode. For this do, we will use, for example, a carbon-based compound hydrogenated to make the strips 8.

Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaítront à l'homme de l'art. En particulier, l'adaptation du procédé de fabrication d'un écran plat pour mettre en oeuvre la présente invention est à la portée de l'homme de l'art en fonction des indications fonctionnelles données ci-dessus.Of course, the present invention is capable of various variants and modifications which will appear to the man of art. In particular, the adaptation of the manufacturing process of a flat screen to implement the present invention is to the scope of the skilled person according to the indications functional data given above.

De plus, bien que l'invention ait été décrite ci-dessus en relation avec un écran couleur à micropointes, elle s'applique également à un écran monochrome. Si l'anode d'un tel écran monochrome est constituée de deux ensembles de bandes alternées d'éléments luminophores, tous les modes de réalisation décrits ci-dessus peuvent être mis en oeuvre. Par contre, si l'anode de l'écran monochrome est constituée d'un plan de luminophores, la source d'hydrogène sera constituée soit par une source dédiée externe à la zone active de l'écran, soit par la couche résistive côté cathode.In addition, although the invention has been described above in conjunction with a microtip color screen, it applies also on a monochrome screen. If the anode of such a monochrome screen consists of two sets of alternating bands phosphor elements, all embodiments described above can be implemented. On the other hand, if the anode of the monochrome screen consists of a phosphor plan, the hydrogen source will be constituted either by a dedicated source external to the active area of the screen, either by the resistive layer cathode side.

Claims (6)

  1. A flat display screen including a cathode with microtips for the electron bombardment of an anode (5) having phosphor elements (7), the anode (5) and the cathode (1) being separated by a vacuum space (12), and containing a progressive hydrogen release source characterized in that said source is comprised of a thin layer of a hydrogenated material.
  2. A screen according to claim 1, characterized in that the hydrogen source is comprised of a resistive layer (11) of the cathode (1) on which the microtips (2) are arranged.
  3. A screen according to claim 1, characterized in that the hydrogen source is comprised of insulating bands (8) separating bands of phosphor elements (7) from the anode (5).
  4. A screen according to claim 1, characterized in that the hydrogen source is implemented at the circumference of the active area of the anode (5) carrying the phosphor (7), a source for energizing the hydrogen source being implemented, on the cathode side (11), facing the hydrogen source.
  5. A process for manufacturing a flat display screen, including a cathode with microtips for the electron bombardment of an anode (5) having phosphor elements (7), the anode (5) and the cathode (1) being separated by a vacuum space (12) characterized in that the process includes the step of hydrogenating during its deposition at least one of the thin layers formed inside the screen.
  6. A process according to claim 5, characterized in that said layer is obtained by plasma-enhanced chemical vapor deposition from at least one hydrogen-enriched precursor.
EP97410044A 1996-04-18 1997-04-15 Flat panel display with hydrogen source Revoked EP0802559B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9605121A FR2747839B1 (en) 1996-04-18 1996-04-18 FLAT VISUALIZATION SCREEN WITH HYDROGEN SOURCE
FR9605121 1996-04-18

Publications (2)

Publication Number Publication Date
EP0802559A1 EP0802559A1 (en) 1997-10-22
EP0802559B1 true EP0802559B1 (en) 2001-12-05

Family

ID=9491513

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97410044A Revoked EP0802559B1 (en) 1996-04-18 1997-04-15 Flat panel display with hydrogen source

Country Status (5)

Country Link
US (1) US5907215A (en)
EP (1) EP0802559B1 (en)
JP (1) JPH1055770A (en)
DE (1) DE69708739T2 (en)
FR (1) FR2747839B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3745844B2 (en) * 1996-10-14 2006-02-15 浜松ホトニクス株式会社 Electron tube
KR100288549B1 (en) * 1997-08-13 2001-06-01 정선종 Field emission display
JP3481142B2 (en) * 1998-07-07 2003-12-22 富士通株式会社 Gas discharge display device
US6495965B1 (en) * 1998-07-21 2002-12-17 Futaba Corporation Cold cathode electronic device
US6633119B1 (en) 2000-05-17 2003-10-14 Motorola, Inc. Field emission device having metal hydride hydrogen source
CN111670484A (en) * 2018-01-31 2020-09-15 纳欧克斯影像有限责任公司 Cold cathode X-ray tube and control method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR884289A (en) * 1941-07-22 1943-08-09 Licentia Gmbh Braun tube
US3552818A (en) * 1966-11-17 1971-01-05 Sylvania Electric Prod Method for processing a cathode ray tube having improved life
US3432712A (en) * 1966-11-17 1969-03-11 Sylvania Electric Prod Cathode ray tube having a perforated electrode for releasing a selected gas sorbed therein
JPS5062766A (en) * 1973-10-05 1975-05-28
FR2623013A1 (en) * 1987-11-06 1989-05-12 Commissariat Energie Atomique ELECTRO SOURCE WITH EMISSIVE MICROPOINT CATHODES AND FIELD EMISSION-INDUCED CATHODOLUMINESCENCE VISUALIZATION DEVICE USING THE SOURCE
US5144191A (en) * 1991-06-12 1992-09-01 Mcnc Horizontal microelectronic field emission devices
JP3252545B2 (en) * 1993-07-21 2002-02-04 ソニー株式会社 Flat display using field emission cathode
KR950034365A (en) * 1994-05-24 1995-12-28 윌리엄 이. 힐러 Anode Plate of Flat Panel Display and Manufacturing Method Thereof
IT1269978B (en) * 1994-07-01 1997-04-16 Getters Spa METHOD FOR THE CREATION AND MAINTENANCE OF A CONTROLLED ATMOSPHERE IN A FIELD-EMISSION DEVICE THROUGH THE USE OF A GETTER MATERIAL
US5714837A (en) * 1994-12-09 1998-02-03 Zurn; Shayne Matthew Vertical field emission devices and methods of fabrication with applications to flat panel displays
US5684356A (en) * 1996-03-29 1997-11-04 Texas Instruments Incorporated Hydrogen-rich, low dielectric constant gate insulator for field emission device

Also Published As

Publication number Publication date
DE69708739D1 (en) 2002-01-17
JPH1055770A (en) 1998-02-24
FR2747839A1 (en) 1997-10-24
EP0802559A1 (en) 1997-10-22
DE69708739T2 (en) 2002-07-18
FR2747839B1 (en) 1998-07-03
US5907215A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
EP0558393B1 (en) Micropoint cathode electron source and display device with cathodo-luminescence excited by field emission using same source
FR2724940A1 (en) LUMINOPHORE AND FLUORESCENT DISPLAY DEVICE
US5772485A (en) Method of making a hydrogen-rich, low dielectric constant gate insulator for field emission device
EP0802559B1 (en) Flat panel display with hydrogen source
FR2760755A1 (en) Diamond-like carbon coated phosphor used as anode coating in display device
EP0893817B1 (en) Ion pumping of a microtip flat screen
FR2764435A1 (en) Field emitting cathode for image display
FR2731555A1 (en) Field emission construction esp. for display having micro-point cold cathodes
FR2803087A1 (en) Field emission cathode for flat display device has electron emission section formed from conductive, thin-plate-like fine particles consisting of combination of carbons and coated with alkaline earth metal or alkali metal or their compounds
WO1998025291A1 (en) Display screen comprising a source of electrons with microtips, capable of being observed through the microtip support, and method for making this source
EP0734042A1 (en) Anode of a flat viewing screen with resistive strips
EP0697710B1 (en) Manufacturing method for a micropoint-electron source
EP0806788A1 (en) Anode of a flat display screen with protection ring
EP1210721B1 (en) Field emission flat screen with modulating electrode
EP0806787B1 (en) Fabrication of an anode of a flat viewing screen
EP0513005A1 (en) Cathodoluminescent display device using guided electrons and method of controlling it
FR2756418A1 (en) FLAT VISUALIZATION SCREEN WITH LATERAL DEVIATION
EP1200973B1 (en) Improved oxide-coated cathode and method for making same
EP1032017B1 (en) Resistive anode of a flat viewing screen
FR2800512A1 (en) FLAT VISUALIZATION SCREEN WITH PROTECTION GRID
EP0877407A1 (en) Anode of a flat display screen
FR2797092A1 (en) METHOD FOR MANUFACTURING AN ANODE OF A FLAT VISUALIZATION SCREEN
FR2784225A1 (en) SOURCE OF ELECTRONS WITH EMISSIVE CATHODES COMPRISING AT LEAST ONE ELECTRODE FOR PROTECTION AGAINST INTERFERENCE EMISSIONS
FR2713823A1 (en) Electron collector with independently controllable conductive strips.
FR2798507A1 (en) Device for producing electric field between electrodes in field emission flat screen has series of metallic strips forming modulating electrodes, and controller applying potential difference between first and modulating electrodes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19980406

111Z Information provided on other rights and legal means of execution

Free format text: DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010205

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 69708739

Country of ref document: DE

Date of ref document: 20020117

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020314

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: CANON INC.

Effective date: 20020905

29U Proceedings interrupted after grant according to rule 142 epc

Effective date: 20020621

29U Proceedings interrupted after grant according to rule 142 epc

Effective date: 20020906

29W Proceedings resumed after grant [after interruption of proceedings according to rule 142 epc]

Effective date: 20050502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050412

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050427

Year of fee payment: 9

Ref country code: DE

Payment date: 20050427

Year of fee payment: 9

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20051202

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20051202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 10