EP0887515A1 - Blading with a helical ramp having a serial impingement cooling through a system of ribs in a double shell wall - Google Patents
Blading with a helical ramp having a serial impingement cooling through a system of ribs in a double shell wall Download PDFInfo
- Publication number
- EP0887515A1 EP0887515A1 EP98401558A EP98401558A EP0887515A1 EP 0887515 A1 EP0887515 A1 EP 0887515A1 EP 98401558 A EP98401558 A EP 98401558A EP 98401558 A EP98401558 A EP 98401558A EP 0887515 A1 EP0887515 A1 EP 0887515A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- blade
- cavity
- air
- upstream
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
- F01D5/188—Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
- F01D5/188—Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
- F01D5/189—Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/10—Two-dimensional
- F05D2250/15—Two-dimensional spiral
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/20—Three-dimensional
- F05D2250/25—Three-dimensional helical
Definitions
- the invention relates to the blades of high pressure turbines turbomachinery.
- the fixed and moving blades of high pressure turbines are subject to the high temperatures of the combustion gases of the combustion chamber. Also the blades of these blades are equipped with cooling devices supplied with air from cooling taken from the high pressure compressor. This cooling air passes through circuits provided inside from dawn, then is discharged into the vein of hot gases flowing between the blades.
- the cooling air enters the blades by the blade root, but in the fixed blades, the air of cooling can be introduced by a fixed vane base, either at the foot of the blade or at the head of the blade, the blade root being the end of the blade closest to the axis of rotation of the turbine.
- the object of the invention is to propose a turbine blade in which the cooling device makes the best use of the capacities cooling air, to reduce the ventilation rate and therefore increase the efficiency of the engine.
- the invention therefore relates to a turbine blade comprising a hollow aerodynamic wall which extends radially between a foot blade and a blade head and which has a leading edge and an edge leakage, separated from each other and connected by a concave side wall (lower surface) and a convex side wall (upper surface) and comprising in addition to a cooling device provided inside said blade, supplied with cooling air from the blade root and intended for directing the cooling air against the interior surfaces of said side walls.
- the internal wall of the upstream cavity comprises disruptors.
- These disruptors can consist of ribs, spikes or bridges connecting the inner wall of the blade to the soul of the helical ramp.
- the jacket of the middle cavity advantageously comprises a plurality of juxtaposed compartments which are powered successively by the same air flow.
- the first compartment is supplied with air by the blade root, and the following compartments are supplied by the air flow coming from the previous compartment and having impacted the side walls of the dawn, by slots provided in the jacket walls under the protruding elements, the latter being made up of transverse ribs.
- the helical ramp allows a very significant increase the internal exchange coefficient for cooling the blade in the leading edge area.
- the cascade impact system placed in the cavity middle, allows to use the full potential of the cooling air before it is reintroduced into the vein.
- the combination of these cooling technologies allows optimize the ventilation of the turbine blades by using at maximum the potential of the cooling air and having a thermal design leading to a mechanical service life optimal.
- the design of the blade according to the invention makes it possible to reduce the ventilation flow and therefore increase the efficiency of the motor.
- the drawing shows a moving blade 1 of a high turbine pressure which has a hollow aerodynamic wall 2, also referred to as a blade which extends radially between a blade root 3 and a blade head 4.
- the aerodynamic wall 2 has four zones distinct: a rounded leading edge 5 intended to be placed opposite the flow of hot gases from the combustion chamber, an edge of tapered leak 6, distant from the leading edge and connected to the latter by a concave side wall 7, called intrados, and a side wall convex 8, called upper surface.
- the side walls 7 and 8 are connected by two radial partitions 9 and 10 which separate the interior of blade 1 into three cavities: a cavity upstream 11 located in the immediate vicinity of the leading edge 5, a cavity median 12 located between the two radial partitions 9 and 10 and a downstream cavity 13 located on the trailing edge side 6.
- the downstream cavity 13 is the widest and occupies about two-thirds of the extent of dawn 1.
- a third radial partition 14 further separates the downstream cavity 13 in an upstream part 15 and a downstream part 16 near the trailing edge 6.
- a transverse partition 17 closes the lower end of the downstream cavity 13.
- the upstream part 15 and the downstream part 16 communicate between them by an opening 18 formed at the foot of the third partition 14.
- a plurality of slots 19 which communicate the downstream part 16 of the downstream cavity 13 with the combustion gas stream which flows along the side walls 7 and 8 of the blade 1.
- an orifice 20 is formed in the wall of the blade head 4 in line with the upstream cavity 11, and a second orifice 21, of oblong shape, is formed in the blade head 4, above the middle cavity 12.
- two separate conduits 22 are formed. and 23 for supplying cooling air.
- the first conduit 22 directly supplies cooling air to the ends lower of the upstream cavity 11 and the middle cavity 13, as well as this is shown in Figures 2 and 11, while the second leads 23 supplies cooling air to the upstream part 15 of the cavity downstream 13 in the vicinity of the blade head 4, this air having passed through the interior of the two side walls 6 and 7 consisting of double skins connected by at least straight bridges 24 of the upstream part 15, as shown in Figures 12 to 14.
- the blade 1 is produced at its aerodynamic wall hollow 2 into two half-blades subsequently joined by brazing, the cut between the two half-blades at the skeleton, or the dawn can be made in a foundry.
- the upstream cavity 11 located near the leading edge 5 is cooled by convection by through a helical ramp 30.
- This ramp 30 can be obtained by foundry and be in one piece with a half-blade, or else brought into the upstream cavity 11 and brazed.
- the helical ramp 30 shown in Figure 3 includes two nets 31a, 31b, however this ramp 30 may have only one single net or more than two, as needed.
- the central body 32, or core, of the ramp 30 is not necessarily cylindrical, it can have an evolving section on the height in order to modulate the section as desired the section of cooling air passage in order to regulate the levels of exchange coefficient.
- the cooling air circulates in a "worm" type cooling system that starts from the bottom 3 of dawn and ends at the head of dawn 5, from where the air is evacuated by orifice 20.
- This system makes it possible to significantly increase the distance of the air flow and increase, at a fixed cooling rate, flow velocity relative to that obtained in a cavity purely radial.
- disturbers 33 in the form inclined ribs are arranged either on the inner wall of the upstream cavity 11, ie on the helical ramp.
- the disruptors can be made up of bridges 34 which connect the internal wall of the upstream cavity 11 to the core 32 of the helical ramp 30. These bridges 34 can be staggered.
- the disturbers can be constituted by pins 35 arranged staggered or not on the wall internal of the upstream cavity 11.
- the cooling device described above is implemented place in the upstream cavity 11 located in the immediate vicinity of the edge 5. This device could also be placed in other cavities.
- the cooling air in this upstream cavity 11 circulates from centrifugal way, from the blade root 3 to the blade head 5. But the circuit can be reversed, especially in the fixed blades of turbine distributors, for example. Several helical ramps can also equip a cavity with reversal of the circuit cooling at the foot or at the head of the blade.
- the central cavity 12 is cooled by convection using the cascade impact technology with cooling air introduced into the lower part of the cavity 12 from the conduit 22 formed in the blade root 3.
- FIGS 2 and 8 to 11 show that a jacket 40 is introduced into the middle cavity 12.
- This jacket 40 is produced by a mechanically welded assembly of a set of sheets beforehand drilled to make impact holes 41, and slots 42 or can be carried out directly in the foundry.
- the shirt 40 is in the form of a chimney, of which two opposite side walls 43 and 44 bear on the walls internal of the radial partitions 9 and 10 and of which the two other walls opposite 45 and 46, which include the impact holes 41 and the slots 42 are kept at a certain distance from the side walls 7 and 8 of dawn 1 by projecting elements 47, in the form of transverse ribs, formed on the walls 45 and 46 and regularly distributed between the blade root 3 and the blade head 4.
- the internal cavity of the shirt 40 is divided into a certain number of compartments, referenced C1 to C7 in Figure 11, at by means of transverse partitions 48 arranged respectively, in starting from the blade root 3, under a couple of projecting elements 47 and separated from these projecting elements 47 by two facing slots 42 walls 7 and 8 of the blade 1.
- the upper partition 48a is separated from the wall forming the blade head 4, so that the cooling air evacuated from the cavity C7 can be evacuated through the orifice 21.
- the cooling circuit in the middle cavity 12 is carried out as follows:
- the air is brought through line 22 into compartment C1 of the jacket 40, then is evacuated from compartment C1 through the orifices impact 41, in order to strike the internal walls of the lower surface 7 and the upper surface 8 of the blade 1 in the vicinity of the blade root 3.
- air is introduced into the second compartment C2 through the first slots 42, then discharged through the impact orifices 21 of the compartment C2 to be then reintroduced into the third compartment C3.
- the air flows in this way to the upper compartment C7, from where it impacts the internal walls of the lower surface 7 and the upper surface 8 neighborhood of the blade head 4, then is evacuated out of the blade 1, by orifice 21.
- the number of compartments can be different from 7, and the number of impact orifices 41 may be different from compartment to the other.
- the shirt 40 described above could also be mounted in a cavity near the leading edge or the trailing edge. She can be adapted to both fixed and mobile blades. For fixed blades, the feed can be done by the blade head 4, and compartments C1 to C7 can be arranged radially, as in the example described above, or be arranged axially from the leading edge 5 to the trailing edge 6 or vice versa. This device can be applied as well for distributed impact (several rows of orifices) only for concentrated impact (a single row of holes 41).
- the lower surface 7 and the upper surface 8 comprise at the level of the upstream part 15 of the cavity downstream 13 of the double skins 7a, 7b and 8a, 8b, connected by bridges 24.
- the internal skins 7b, 8b are connected in the vicinity of the blade root 3 by the transverse partition 17. These two internal skins 7b, 8b extend to the vicinity of the partition forming the blade head 4, while reserving passages 50a, 50b near the blade head 4 by which, the air introduced through the orifice 23 of the blade root 3, and having circulated centrifugally between the skins 7a, 7b of the lower surface 7 and the skins 8a, 8b of the upper surface 8, is evacuated in the upstream part 15 of the downstream cavity.
- This cooling air circulates centripetally in this upstream part 15, then enters the downstream part 16 by the opening 18. The air finally rises centrifugally in the downstream part 16 and is discharged into the stream of hot gases through the slots 19 formed in the trailing edge 6.
- the cooling air introduced by orifice 23 is divided into two flow rates B1 and B2 by the partition transverse 17. These two flows B1 and B2 circulate so centrifugal through the multitude of bridges 24.
- These bridges 24 are obtained in foundry during casting. These bridges 24 can be staggered (see Figure 13) or arranged in a row (see figure 14).
- the shape of the bridges can be any, of section cylindrical, square, oblong .... This device can also be used for cooling areas extending to the edge of attack.
- the constitution of the internal cooling circuits is realizes by assembling the added parts, helical ramp 30 and mechanically welded shirt 40, in one of the half-blades, then in bringing the other half-dawn over the previous one and then brazing all the parts.
- the cooling circuits can also be carried out entirely or partially directly in foundry.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
L'invention concerne les aubages des turbines à haute pression des turbomachines.The invention relates to the blades of high pressure turbines turbomachinery.
Les aubes fixes et mobiles des turbines à haute pression sont soumises aux températures élevées des gaz de combustion de la chambre de combustion. Aussi les pales de ces aubes sont équipées de dispositifs de refroidissement alimentés avec un air de refroidissement prélevé au niveau du compresseur à haute pression. Cet air de refroidissement transite par des circuits prévus à l'intérieur de l'aube, puis est évacué dans la veine de gaz chauds circulant entre les aubes.The fixed and moving blades of high pressure turbines are subject to the high temperatures of the combustion gases of the combustion chamber. Also the blades of these blades are equipped with cooling devices supplied with air from cooling taken from the high pressure compressor. This cooling air passes through circuits provided inside from dawn, then is discharged into the vein of hot gases flowing between the blades.
Dans les aubes mobiles, l'air de refroidissement pénètre dans les pales par le pied d'aube, mais dans les aubes fixes, l'air de refroidissement peut être introduit par une embase de l'aube fixe, soit en pied d'aube soit en tête d'aube, le pied d'aube étant l'extrémité de l'aube la plus proche de l'axe de rotation de la turbine.In the moving blades, the cooling air enters the blades by the blade root, but in the fixed blades, the air of cooling can be introduced by a fixed vane base, either at the foot of the blade or at the head of the blade, the blade root being the end of the blade closest to the axis of rotation of the turbine.
Le but de l'invention est de proposer une aube de turbine dans laquelle le dispositif de refroidissement utilise au mieux les capacités de l'air de refroidissement, afin de réduire le débit de ventilation et donc d'augmenter le rendement du moteur.The object of the invention is to propose a turbine blade in which the cooling device makes the best use of the capacities cooling air, to reduce the ventilation rate and therefore increase the efficiency of the engine.
L'invention concerne donc une aube de turbine comportant une paroi aérodynamique creuse qui s'étend radialement entre un pied d'aube et une tête d'aube et qui présente un bord d'attaque et un bord de fuite, séparés l'un de l'autre et reliés par une paroi latérale concave (intrados) et une paroi latérale convexe (extrados) et comportant en outre un dispositif de refroidissement prévu à l'intérieur de ladite aube, alimenté en air de refroidissement par le pied d'aube et destiné à diriger l'air de refroidissement contre les surfaces intérieures desdites parois latérales.The invention therefore relates to a turbine blade comprising a hollow aerodynamic wall which extends radially between a foot blade and a blade head and which has a leading edge and an edge leakage, separated from each other and connected by a concave side wall (lower surface) and a convex side wall (upper surface) and comprising in addition to a cooling device provided inside said blade, supplied with cooling air from the blade root and intended for directing the cooling air against the interior surfaces of said side walls.
Selon l'invention, cette aube est caractérisée par le fait qu'elle
comporte deux cloisons radiales qui relient lesdites parois latérales
concave et convexe et qui séparent l'intérieur de ladite aube en une
cavité amont située près du bord d'attaque, une cavité médiane située
entre lesdites cloisons radiales et une cavité aval située du côté du
bord de fuite,
par le fait que la cavité amont et la cavité médiane sont alimentées en
air par une entrée prévue en pied d'aube, cet air s'évacuant ensuite
desdites cavités par des orifices ménagés en tête d'aube, tandis que la
cavité aval est alimentée en air par une entrée séparée prévue en pied
d'aube, cet air s'évacuant ensuite par une pluralité de fentes ménagées
dans le bord de fuite, et
par le fait que le dispositif de refroidissement comporte :
- dans la cavité amont, une rampe hélicoïdale qui s'étend entre le pied d'aube et la tête d'aube,
- dans la cavité médiane, une chemise prenant appui sur les parois internes des cloisons radiales et maintenue à distance des parois latérales de l'aube par des éléments en saillie, cette chemise présentant en face des parois latérales de l'aube une pluralité d'orifices pour refroidir ces parois latérales par impact, et
- dans la cavité aval, une cloison transversale obturant l'extrémité inférieure de ladite cavité et une troisième cloison radiale séparant ladite cavité en une partie amont et une partie aval près du bord de fuite, ces deux parties communiquant entre elles par une ouverture prévue en pied de ladite troisième cloison, et les cloisons latérales de l'aube au droit de la partie amont étant constituées de doubles peaux reliées par des pontets, et entre lesquelles circule un débit d'air de refroidissement introduit en pied d'aube, ce débit pénétrant ensuite dans la partie amont en tête d'aube, puis entrant dans la partie aval par ladite ouverture d'où elle s'évacue par la pluralité de fentes.
by the fact that the upstream cavity and the middle cavity are supplied with air by an inlet provided at the foot of the blade, this air then being evacuated from said cavities by orifices formed at the head of the blade, while the downstream cavity is supplied in air by a separate inlet provided at the foot of the blade, this air then being evacuated by a plurality of slots formed in the trailing edge, and
by the fact that the cooling device comprises:
- in the upstream cavity, a helical ramp which extends between the blade root and the blade head,
- in the central cavity, a jacket bearing on the internal walls of the radial partitions and kept at a distance from the side walls of the blade by projecting elements, this jacket having a plurality of orifices opposite the side walls of the blade to cool these side walls by impact, and
- in the downstream cavity, a transverse partition closing the lower end of said cavity and a third radial partition separating said cavity into an upstream part and a downstream part near the trailing edge, these two parts communicating with each other by an opening provided at the bottom of said third partition, and the side partitions of the blade in line with the upstream part being made up of double skins connected by bridges, and between which circulates a flow of cooling air introduced at the foot of the blade, this penetrating flow then in the upstream part at the blade tip, then entering the downstream part through said opening from where it is evacuated by the plurality of slots.
Avantageusement la paroi interne de la cavité amont comporte des perturbateurs. Ces perturbateurs peuvent être constitués de nervures, de picots ou de pontets reliant la paroi interne de l'aube à l'âme de la rampe hélicoïdale.Advantageously, the internal wall of the upstream cavity comprises disruptors. These disruptors can consist of ribs, spikes or bridges connecting the inner wall of the blade to the soul of the helical ramp.
La chemise de la cavité médiane comporte avantageusement une pluralité de compartiments juxtaposés qui sont alimentés successivement par un même débit d'air. Le premier compartiment est alimenté en air par le pied d'aube, et les compartiments suivants sont alimentés par le débit d'air issu du compartiment précédent et ayant impacté les parois latérales de l'aube, par des fentes prévues dans les parois de la chemise sous les éléments en saillie, ces derniers étant constitués de nervures transversales. The jacket of the middle cavity advantageously comprises a plurality of juxtaposed compartments which are powered successively by the same air flow. The first compartment is supplied with air by the blade root, and the following compartments are supplied by the air flow coming from the previous compartment and having impacted the side walls of the dawn, by slots provided in the jacket walls under the protruding elements, the latter being made up of transverse ribs.
La rampe hélicoïdale permet d'augmenter très significativement le coefficient d'échange interne pour le refroidissement de l'aube dans la zone du bord d'attaque.The helical ramp allows a very significant increase the internal exchange coefficient for cooling the blade in the leading edge area.
Le système d'impact en cascade, disposé dans la cavité médiane, permet d'utiliser tout le potentiel de l'air de refroidissement avant qu'il ne soit réintroduit dans la veine.The cascade impact system, placed in the cavity middle, allows to use the full potential of the cooling air before it is reintroduced into the vein.
Avec le système à pontets prévu dans la cavité aval, on dispose d'un système de refroidissement efficace, proche des zones chaudes, et très facilement modulable.With the bridge system provided in the downstream cavity, we have an efficient cooling system, close to hot areas, and very easily modular.
La combinaison de ces technologies de refroidissement permet d'optimiser la ventilation des aubages de turbine en utilisant au maximum le potentiel de l'air de refroidissement et en ayant un dimensionnement thermique conduisant à une durée de vie mécanique optimale.The combination of these cooling technologies allows optimize the ventilation of the turbine blades by using at maximum the potential of the cooling air and having a thermal design leading to a mechanical service life optimal.
La conception de l'aube selon l'invention permet de réduire le débit de ventilation et donc d'augmenter le rendement du moteur.The design of the blade according to the invention makes it possible to reduce the ventilation flow and therefore increase the efficiency of the motor.
D'autres avantages et caractéristiques de l'invention ressortiront
à la lecture de la description suivante faite à titre d'exemple non-limitatif
et en référence aux dessins annexés dans lesquels :
Le dessin montre une aube mobile 1 d'une turbine à haute
pression qui comporte une paroi aérodynamique creuse 2, également
dénommée pale qui s'étend radialement entre un pied d'aube 3 et une
tête d'aube 4. La paroi aérodynamique 2 présente quatre zones
distinctes: un bord d'attaque 5 arrondi destiné à être disposé en regard
du flux de gaz chauds issus de la chambre de combustion, un bord de
fuite effilé 6, éloigné du bord d'attaque et relié à ce dernier par une
paroi latérale concave 7, dénommée intrados, et une paroi latérale
convexe 8, dénommée extrados.The drawing shows a moving
Les parois latérales 7 et 8 sont reliées par deux cloisons radiales
9 et 10 qui séparent l'intérieur de l'aube 1 en trois cavités : une cavité
amont 11 située au voisinage immédiat du bord d'attaque 5, une cavité
médiane 12 située entre les deux cloisons radiales 9 et 10 et une
cavité aval 13 située du côté du bord de fuite 6. La cavité aval 13 est
la plus large et occupe environ les deux tiers de l'étendue de l'aube 1.The
Une troisième cloison radiale 14 sépare en outre la cavité aval
13 en une partie amont 15 et une partie aval 16 près du bord de fuite
6. Une cloison transversale 17 obture l'extrémité inférieure de la
cavité aval 13. La partie amont 15 et la partie aval 16 communiquent
entre elles par une ouverture 18 ménagée en pied de la troisième
cloison 14. Dans la partie effilée du bord de fuite 6 sont ménagées
une pluralité de fentes 19 qui mettent en communication la partie aval
16 de la cavité aval 13 avec la veine de gaz de combustion qui
s'écoule le long des parois latérales 7 et 8 de l'aube 1.A third
Ainsi qu'on le voit sur les figures 1 et 2, un orifice 20 est
ménagé dans la paroi de la tête d'aube 4 au droit de la cavité amont
11, et un deuxième orifice 21, de forme oblongue, est ménagé dans la
tête d'aube 4, au dessus de la cavité médiane 12. As seen in Figures 1 and 2, an
Dans le pied d'aube 3, sont ménagés deux conduits séparés 22
et 23 destinés à fournir de l'air de refroidissement. Le premier conduit
22 alimente directement en air de refroidissement les extrémités
inférieures de la cavité amont 11 et de la cavité médiane 13, ainsi que
cela est montré sur les figures 2 et 11, tandis que le deuxième conduit
23 alimente en air de refroidissement la partie amont 15 de la cavité
aval 13 au voisinage de la tête d'aube 4, cet air ayant transité à
l'intérieur des deux parois latérales 6 et 7 constituées de doubles
peaux reliées par des pontets 24 au moins droit de la partie amont 15,
ainsi que cela est représenté sur les figures 12 à 14.In the blade root 3, two
L'aube 1 est réalisée au niveau de sa paroi aérodynamique
creuse 2 en deux demi-aubes réunies ultérieurement par brasage, la
coupure entre les deux demi-aubes se faisant au niveau du squelette,
ou l'aube peut être réalisée en fonderie.The
Ainsi qu'on le voit sur les figures 2 à 7, la cavité amont 11
située près du bord d'attaque 5 est refroidie par convection par
l'intermédiaire d'une rampe hélicoïdale 30.As seen in Figures 2 to 7, the
Cette rampe 30 peut être obtenue par fonderie et être monobloc
avec une demi-aube, ou bien rapportée dans la cavité amont 11 et
brasée.This
Dans ce dernier cas, on a intérêt à utiliser un matériau avec une forte conductivité pour augmenter l'efficacité du refroidissement de ce circuit de ventilation.In the latter case, it is advantageous to use a material with a high conductivity to increase the cooling efficiency of this ventilation circuit.
La rampe hélicoïdale 30 représentée sur la figure 3 comporte
deux filets 31a, 31b, cependant cette rampe 30 peut ne posséder qu'un
seul filet ou plus de deux, suivant les besoins.The
Le corps central 32, ou âme, de la rampe 30 n'est pas
nécessairement cylindrique, il peut avoir une section évolutive sur la
hauteur dans le but de moduler à souhait la section la section de
passage de l'air de refroidissement afin de réguler le niveaux de
coefficient d'échange.The
Dans la cavité amont 11, l'air de refroidissement circule dans
un système de refroidissement du type "vis-sans-fin" qui part du pied
3 de l'aube et se termine à la tête de l'aube 5, d'où l'air s'évacue par
l'orifice 20. Ce système permet d'augmenter sensiblement le parcours
de l'écoulement d'air et d'augmenter, à débit de refroidissement fixé,
la vitesse de l'écoulement par rapport à celle obtenue dans une cavité
purement radiale.In the
Le niveau de coefficient d'échange se trouve ainsi renforcé. De
plus, cet écoulement tournant aura tendance à accentuer l'échange sur
la paroi de l'aube au voisinage du bord d'attaque 5, l'air étant projeté
sur l'extérieur de la rampe hélicoïdale 30 par effet centrifuge.The level of exchange coefficient is thus reinforced. Of
more, this rotating flow will tend to accentuate the exchange on
the wall of the blade in the vicinity of the
Comme on le voit sur les figures 4 à 7, plusieurs aménagements
sont proposés en association avec la rampe hélicoïdale 30.As seen in Figures 4 to 7, several arrangements
are offered in combination with the
Sur la figure 4, la rampe hélicoïdale est placée dans la cavité amont 11 dont la paroi interne est lisse.In Figure 4, the helical ramp is placed in the cavity upstream 11 whose internal wall is smooth.
Sur la figure 5, on voit que des perturbateurs 33 sous la forme
de nervures inclinées sont disposées soit sur la paroi interne de la
cavité amont 11, soit sur la rampe hélicoïdale.In FIG. 5, it can be seen that
Ainsi qu'on le voit sur la figure 6, les perturbateurs peuvent être
constitués de pontets 34 qui relient la paroi interne de la cavité amont
11 à l'âme 32 de la rampe hélicoïdale 30. Ces pontets 34 peuvent être
disposés en quinconce.As seen in Figure 6, the disruptors can be
made up of
Sur la figure 7, on voit que les perturbateurs peuvent être
constitués par des picots 35 disposés en quinconce ou non sur la paroi
interne de la cavité amont 11.In FIG. 7, it can be seen that the disturbers can be
constituted by
Le dispositif de refroidissement décrit ci-dessus est mis en
place dans la cavité amont 11 situé au voisinage immédiat du bord
d'attaque 5. Ce dispositif pourrait également être placé dans d'autres
cavités.The cooling device described above is implemented
place in the
L'air de refroidissement dans cette cavité amont 11 circule de
manière centrifuge, du pied d'aube 3 vers la tête d'aube 5. Mais le
circuit peut être inversé, notamment dans les aubes fixes des
distributeurs de turbine, par exemple. Plusieurs rampes hélicoïdales
peuvent également équiper une cavité avec retournement du circuit de
refroidissement en pied ou en tête d'aube.The cooling air in this
La cavité médiane 12 est refroidie par convexion en utilisant la
technologie d'impact en cascade par un air de refroidissement
introduit dans la partie inférieure de la cavité 12 à partir du conduit 22
ménagé dans le pied d'aube 3.The
Les figures 2 et 8 à 11 montrent qu'une chemise 40 est
introduite dans la cavité médiane 12. Cette chemise 40 est réalisée par
un assemblage mécano-soudé d'un ensemble de tôles préalablement
percées pour réaliser des orifices d'impact 41, et des fentes 42 ou peut
être réalisée directement en fonderie.Figures 2 and 8 to 11 show that a
La chemise 40 se présente sous la forme d'une cheminée, dont
deux parois latérales opposées 43 et 44 prennent appui sur les parois
internes des cloisons radiales 9 et 10 et dont les deux autres parois
opposées 45 et 46, qui comportent les orifices d'impact 41 et les
fentes 42, sont maintenues à une certaine distance des parois latérales
7 et 8 de l'aube 1 par des éléments en saillie 47, sous forme de
nervures transversales, formées sur les parois 45 et 46 et
régulièrement répartis entre le pied d'aube 3 et la tête d'aube 4.The
La cavité interne de la chemise 40 est partagée en un certain
nombre de compartiments, référencés C1 à C7 sur la figure 11, au
moyen de cloisons transversales 48 disposées respectivement, en
partant du pied d'aube 3, sous un couple d'éléments en saillie 47 et
séparées de ces éléments en saillie 47 par deux fentes 42 en regard
des parois 7 et 8 de l'aube 1. La cloison supérieure 48a est écartée de
la paroi formant la tête d'aube 4, afin que l'air de refroidissement
évacué de la cavité C7 puisse s'évacuer par l'orifice 21.The internal cavity of the
Le circuit de refroidissement dans la cavité médiane 12
s'effectue de la manière suivante :The cooling circuit in the
L'air est amené par le conduit 22 dans le compartiment C1 de la
chemise 40, puis est évacué du compartiment C1 par les orifices
d'impact 41, afin de frapper les parois internes de l'intrados 7 et de
l'extrados 8 de l'aube 1 au voisinage du pied d'aube 3. Après impact,
l'air est introduit dans le deuxième compartiment C2 par les premières
fentes 42, puis évacué par les orifices d'impact 21 du compartiment
C2 pour être ensuite réintroduit dans le troisième compartiment C3.
L'air circule de cette manière jusqu'au compartiment supérieur C7,
d'où il impacte les parois internes de l'intrados 7 et de l'extrados 8 au
voisinage de la tête d'aube 4, puis est évacué hors de l'aube 1, par
l'orifice 21.The air is brought through
Le nombre de compartiments peut être différent de 7, et le
nombre d'orifices d'impact 41 peut être différent d'un compartiment à
l'autre. The number of compartments can be different from 7, and the
number of
La chemise 40 décrite ci-dessus pourrait également être montée
dans une cavité voisine du bord d'attaque ou du bord de fuite. Elle
peut s'adapter aussi bien aux aubages fixes qu'aux aubages mobiles.
Pour les aubages fixes, l'alimentation peut se faire par la tête d'aube 4,
et les compartiments C1 à C7 peuvent être disposés radialement,
comme dans l'exemple décrit ci-dessus, ou être disposés axialement
du bord d'attaque 5 vers le bord de fuite 6 ou inversement. Ce
dispositif peut s'appliquer aussi bien pour de l'impact réparti
(plusieurs rangées d'orifices) que pour de l'impact concentré (une
seule rangée d'orifices 41).The
Ainsi que cela a été mentionné plus haut, l'intrados 7 et
l'extrados 8 comportent au niveau de la partie amont 15 de la cavité
aval 13 des double peaux 7a, 7b et 8a, 8b, reliées par des pontets 24.
Les peaux internes 7b, 8b sont reliées au voisinage du pied d'aube 3
par la cloison transversale 17. Ces deux peaux internes 7b, 8b
s'étendent jusqu'au voisinage de la cloison formant la tête d'aube 4,
tout en réservant des passages 50a, 50b près de la tête d'aube 4 par
lesquels, l'air introduit par l'orifice 23 du pied d'aube 3, et ayant
circulé de manière centrifuge entre les peaux 7a, 7b de l'intrados 7 et
les peaux 8a, 8b de l'extrados 8, s'évacue dans la partie amont 15 de la
cavité aval. Cet air de refroidissement circule de manière centripète
dans cette partie amont 15, puis entre dans la partie aval 16 par
l'ouverture 18. L'air remonte enfin de manière centrifuge dans la
partie aval 16 et s'évacue dans la veine de gaz chauds par les fentes 19
ménagées dans le bord de fuite 6. L'air de refroidissement introduit
par l'orifice 23 est divisé en deux débits B1 et B2 par la cloison
transversale 17. Ces deux débits B1 et B2 circulent de manière
centrifuge au travers de la multitude de pontets 24. Ces pontets 24
sont obtenus en fonderie lors de la coulée. Ces pontets 24 peuvent
être disposés en quinconce (voir figure 13) ou disposés en ligne (voir
figure 14). La forme des pontets peut être quelconque, de section
cylindrique, carrée, oblongue ... . Ce dispositif peut également être
utilisé pour le refroidissement des zones s'étendant jusqu'au bord
d'attaque.As mentioned above, the
La constitution des circuits internes de refroidissement se
réalise en assemblant les pièces rapportées, rampe hélicoïdale 30 et
chemise 40 mécano-soudée, dans une des demi-aubes, puis en
rapportant l'autre demi-aube sur la précédente et en brasant ensuite
l'ensemble des pièces. Les circuits de refroidissement peuvent
également être réalisés entièrement ou partiellement directement en
fonderie.The constitution of the internal cooling circuits is
realizes by assembling the added parts,
Claims (7)
caractérisée par le fait qu'elle comporte deux cloisons radiales (9, 10) qui relient lesdites parois latérales concave (7) et convexe (8) et qui séparent l'intérieur de ladite aube (1) en une cavité amont (11) située près du bord d'attaque (5), une cavité médiane (12) située entre lesdites cloisons radiales (9, 10) et une cavité aval (13) située du côté du bord de fuite (6),
par le fait que la cavité amont (11) et la cavité médiane (12) sont alimentées en air par une entrée (22) prévue en pied d'aube (3), cet air s'évacuant ensuite desdites cavités (11, 12) par des orifices (20, 21) ménagés en tête d'aube (4), tandis que la cavité aval (13) est alimentée en air par une entrée séparée (23) prévue en pied d'aube (3), cet air s'évacuant ensuite par une pluralité de fentes (19) ménagées dans le bord de fuite (6), et
par le fait que le dispositif de refroidissement comporte :
characterized by the fact that it comprises two radial partitions (9, 10) which connect said concave (7) and convex (8) side walls and which separate the interior of said blade (1) into an upstream cavity (11) located near the leading edge (5), a middle cavity (12) located between said radial partitions (9, 10) and a downstream cavity (13) located on the side of the trailing edge (6),
by the fact that the upstream cavity (11) and the central cavity (12) are supplied with air by an inlet (22) provided at the root of the blade (3), this air then being evacuated from said cavities (11, 12) by orifices (20, 21) formed at the head of the blade (4), while the downstream cavity (13) is supplied with air by a separate inlet (23) provided at the foot of the blade (3), this air s 'then discharging through a plurality of slots (19) formed in the trailing edge (6), and
by the fact that the cooling device comprises:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9707988 | 1997-06-26 | ||
FR9707988A FR2765265B1 (en) | 1997-06-26 | 1997-06-26 | BLADED COOLING BY HELICAL RAMP, CASCADE IMPACT AND BY BRIDGE SYSTEM IN A DOUBLE SKIN |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0887515A1 true EP0887515A1 (en) | 1998-12-30 |
EP0887515B1 EP0887515B1 (en) | 2003-08-13 |
Family
ID=9508460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98401558A Expired - Lifetime EP0887515B1 (en) | 1997-06-26 | 1998-06-25 | Blading with a helical ramp having a serial impingement cooling through a system of ribs in a double shell wall |
Country Status (6)
Country | Link |
---|---|
US (1) | US5993156A (en) |
EP (1) | EP0887515B1 (en) |
JP (1) | JP3735201B2 (en) |
DE (1) | DE69817094T2 (en) |
FR (1) | FR2765265B1 (en) |
RU (1) | RU2146766C1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6955525B2 (en) | 2003-08-08 | 2005-10-18 | Siemens Westinghouse Power Corporation | Cooling system for an outer wall of a turbine blade |
FR2924156A1 (en) * | 2007-11-26 | 2009-05-29 | Snecma Sa | Blade for use in high pressure turbine of e.g. turboprop engine, has ribs with ends formed closer to trailing edge in zone, and small ribs arranged closer to platform, where surfaces are connected at level of trailing and leading edges |
EP2434096A3 (en) * | 2010-09-28 | 2015-04-29 | United Technologies Corporation | Gas turbine engine airfoil comprising a conduction pedestal |
WO2016120561A1 (en) * | 2015-01-29 | 2016-08-04 | Snecma | Turboprop |
EP3105436A4 (en) * | 2014-02-13 | 2017-03-08 | United Technologies Corporation | Gas turbine engine component with separation rib for cooling passages |
EP3141699A1 (en) * | 2015-09-08 | 2017-03-15 | General Electric Company | Impingement insert |
CN106703899A (en) * | 2017-01-23 | 2017-05-24 | 中国航发沈阳发动机研究所 | High-pressure turbine rotor blade front edge impingement cooling structure and engine with same |
US9849510B2 (en) | 2015-04-16 | 2017-12-26 | General Electric Company | Article and method of forming an article |
US9976441B2 (en) | 2015-05-29 | 2018-05-22 | General Electric Company | Article, component, and method of forming an article |
US10087776B2 (en) | 2015-09-08 | 2018-10-02 | General Electric Company | Article and method of forming an article |
US10253986B2 (en) | 2015-09-08 | 2019-04-09 | General Electric Company | Article and method of forming an article |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2345942B (en) * | 1998-12-24 | 2002-08-07 | Rolls Royce Plc | Gas turbine engine internal air system |
US6206638B1 (en) * | 1999-02-12 | 2001-03-27 | General Electric Company | Low cost airfoil cooling circuit with sidewall impingement cooling chambers |
US6402470B1 (en) * | 1999-10-05 | 2002-06-11 | United Technologies Corporation | Method and apparatus for cooling a wall within a gas turbine engine |
US6435814B1 (en) * | 2000-05-16 | 2002-08-20 | General Electric Company | Film cooling air pocket in a closed loop cooled airfoil |
US6508627B2 (en) | 2001-05-30 | 2003-01-21 | Lau Industries, Inc. | Airfoil blade and method for its manufacture |
US6609891B2 (en) * | 2001-08-30 | 2003-08-26 | General Electric Company | Turbine airfoil for gas turbine engine |
US6981846B2 (en) | 2003-03-12 | 2006-01-03 | Florida Turbine Technologies, Inc. | Vortex cooling of turbine blades |
US6932573B2 (en) | 2003-04-30 | 2005-08-23 | Siemens Westinghouse Power Corporation | Turbine blade having a vortex forming cooling system for a trailing edge |
US7343232B2 (en) | 2003-06-20 | 2008-03-11 | Geneva Aerospace | Vehicle control system including related methods and components |
FR2858352B1 (en) * | 2003-08-01 | 2006-01-20 | Snecma Moteurs | COOLING CIRCUIT FOR TURBINE BLADE |
US7818127B1 (en) | 2004-06-18 | 2010-10-19 | Geneva Aerospace, Inc. | Collision avoidance for vehicle control systems |
ES2312890T3 (en) * | 2004-07-26 | 2009-03-01 | Siemens Aktiengesellschaft | COOLED ELEMENT OF A TURBOMACHINE AND MOLDING PROCEDURE OF THIS COOLED ELEMENT. |
GB0418914D0 (en) * | 2004-08-25 | 2004-09-29 | Rolls Royce Plc | Turbine component |
EP1655451B1 (en) * | 2004-11-09 | 2010-06-30 | Rolls-Royce Plc | A cooling arrangement |
US7163373B2 (en) * | 2005-02-02 | 2007-01-16 | Siemens Power Generation, Inc. | Vortex dissipation device for a cooling system within a turbine blade of a turbine engine |
RU2425982C2 (en) * | 2005-04-14 | 2011-08-10 | Альстом Текнолоджи Лтд | Gas turbine vane |
US7563072B1 (en) * | 2006-09-25 | 2009-07-21 | Florida Turbine Technologies, Inc. | Turbine airfoil with near-wall spiral flow cooling circuit |
US7641445B1 (en) | 2006-12-01 | 2010-01-05 | Florida Turbine Technologies, Inc. | Large tapered rotor blade with near wall cooling |
US7753650B1 (en) | 2006-12-20 | 2010-07-13 | Florida Turbine Technologies, Inc. | Thin turbine rotor blade with sinusoidal flow cooling channels |
US7665965B1 (en) * | 2007-01-17 | 2010-02-23 | Florida Turbine Technologies, Inc. | Turbine rotor disk with dirt particle separator |
US7901182B2 (en) * | 2007-05-18 | 2011-03-08 | Siemens Energy, Inc. | Near wall cooling for a highly tapered turbine blade |
US20090060714A1 (en) * | 2007-08-30 | 2009-03-05 | General Electric Company | Multi-part cast turbine engine component having an internal cooling channel and method of forming a multi-part cast turbine engine component |
US9322285B2 (en) * | 2008-02-20 | 2016-04-26 | United Technologies Corporation | Large fillet airfoil with fanned cooling hole array |
US8297927B1 (en) * | 2008-03-04 | 2012-10-30 | Florida Turbine Technologies, Inc. | Near wall multiple impingement serpentine flow cooled airfoil |
GB2462087A (en) * | 2008-07-22 | 2010-01-27 | Rolls Royce Plc | An aerofoil comprising a partition web with a chordwise or spanwise variation |
US8303252B2 (en) * | 2008-10-16 | 2012-11-06 | United Technologies Corporation | Airfoil with cooling passage providing variable heat transfer rate |
US8096766B1 (en) | 2009-01-09 | 2012-01-17 | Florida Turbine Technologies, Inc. | Air cooled turbine airfoil with sequential cooling |
US8342797B2 (en) * | 2009-08-31 | 2013-01-01 | Rolls-Royce North American Technologies Inc. | Cooled gas turbine engine airflow member |
US9528382B2 (en) * | 2009-11-10 | 2016-12-27 | General Electric Company | Airfoil heat shield |
US8511994B2 (en) * | 2009-11-23 | 2013-08-20 | United Technologies Corporation | Serpentine cored airfoil with body microcircuits |
US9011077B2 (en) | 2011-04-20 | 2015-04-21 | Siemens Energy, Inc. | Cooled airfoil in a turbine engine |
GB2498551B (en) * | 2012-01-20 | 2015-07-08 | Rolls Royce Plc | Aerofoil cooling |
DE102012017491A1 (en) * | 2012-09-04 | 2014-03-06 | Rolls-Royce Deutschland Ltd & Co Kg | Turbine blade of a gas turbine with swirl-generating element |
KR101317443B1 (en) * | 2012-10-10 | 2013-10-10 | 한국항공대학교산학협력단 | A cooled blade of gas turbine |
WO2014175951A2 (en) * | 2013-03-15 | 2014-10-30 | United Technologies Corporation | Gas turbine engine component with twisted internal channel |
WO2015030926A1 (en) | 2013-08-30 | 2015-03-05 | United Technologies Corporation | Baffle for gas turbine engine vane |
US10487668B2 (en) * | 2013-09-06 | 2019-11-26 | United Technologies Corporation | Gas turbine engine airfoil with wishbone baffle cooling scheme |
US20160222793A1 (en) * | 2013-09-09 | 2016-08-04 | United Technologies Corporation | Cooling configuration for engine component |
EP2863010A1 (en) * | 2013-10-21 | 2015-04-22 | Siemens Aktiengesellschaft | Turbine blade |
US8864438B1 (en) * | 2013-12-05 | 2014-10-21 | Siemens Energy, Inc. | Flow control insert in cooling passage for turbine vane |
US10465530B2 (en) * | 2013-12-20 | 2019-11-05 | United Technologies Corporation | Gas turbine engine component cooling cavity with vortex promoting features |
KR101509385B1 (en) * | 2014-01-16 | 2015-04-07 | 두산중공업 주식회사 | Turbine blade having swirling cooling channel and method for cooling the same |
US20150204197A1 (en) * | 2014-01-23 | 2015-07-23 | Siemens Aktiengesellschaft | Airfoil leading edge chamber cooling with angled impingement |
RU2568763C2 (en) * | 2014-01-30 | 2015-11-20 | Альстом Текнолоджи Лтд | Gas turbine component |
US10012090B2 (en) * | 2014-07-25 | 2018-07-03 | United Technologies Corporation | Airfoil cooling apparatus |
US10190420B2 (en) * | 2015-02-10 | 2019-01-29 | United Technologies Corporation | Flared crossovers for airfoils |
US9915151B2 (en) * | 2015-05-26 | 2018-03-13 | Rolls-Royce Corporation | CMC airfoil with cooling channels |
RU2706211C2 (en) | 2016-01-25 | 2019-11-14 | Ансалдо Энерджиа Свитзерлэнд Аг | Cooled wall of turbine component and cooling method of this wall |
EP3228819B1 (en) * | 2016-04-08 | 2021-06-09 | Ansaldo Energia Switzerland AG | Blade comprising cmc layers |
US10156146B2 (en) * | 2016-04-25 | 2018-12-18 | General Electric Company | Airfoil with variable slot decoupling |
FR3052183B1 (en) * | 2016-06-02 | 2020-03-06 | Safran Aircraft Engines | TURBINE BLADE COMPRISING A COOLING AIR INTAKE PORTION INCLUDING A HELICOIDAL ELEMENT FOR SWIRLING THE COOLING AIR |
RU171631U1 (en) * | 2016-09-14 | 2017-06-07 | Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" | Cooled turbine blade |
DE102016221009A1 (en) | 2016-10-26 | 2018-04-26 | Continental Reifen Deutschland Gmbh | Pressure control device |
US20180149028A1 (en) * | 2016-11-30 | 2018-05-31 | General Electric Company | Impingement insert for a gas turbine engine |
US10494948B2 (en) * | 2017-05-09 | 2019-12-03 | General Electric Company | Impingement insert |
US10570751B2 (en) | 2017-11-22 | 2020-02-25 | General Electric Company | Turbine engine airfoil assembly |
US10787912B2 (en) * | 2018-04-25 | 2020-09-29 | Raytheon Technologies Corporation | Spiral cavities for gas turbine engine components |
US10787913B2 (en) * | 2018-11-01 | 2020-09-29 | United Technologies Corporation | Airfoil cooling circuit |
US11149550B2 (en) * | 2019-02-07 | 2021-10-19 | Raytheon Technologies Corporation | Blade neck transition |
US10871074B2 (en) | 2019-02-28 | 2020-12-22 | Raytheon Technologies Corporation | Blade/vane cooling passages |
FR3107919B1 (en) | 2020-03-03 | 2022-12-02 | Safran Aircraft Engines | Hollow turbomachine blade and inter-blade platform fitted with projections that disrupt cooling flow |
FR3108145B1 (en) * | 2020-03-13 | 2022-02-18 | Safran Helicopter Engines | HOLLOW DAWN OF TURBOMACHINE |
CN112610284A (en) * | 2020-12-17 | 2021-04-06 | 东北电力大学 | Gas turbine blade with spiral band |
CN113374536B (en) * | 2021-06-09 | 2022-08-09 | 中国航发湖南动力机械研究所 | Gas turbine guide vane |
US20230417146A1 (en) * | 2022-06-23 | 2023-12-28 | Solar Turbines Incorporated | Pneumatically variable turbine nozzle |
CN116950723B (en) * | 2023-09-19 | 2024-01-09 | 中国航发四川燃气涡轮研究院 | Low-stress double-wall turbine guide vane cooling structure and design method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE853534C (en) * | 1943-02-27 | 1952-10-27 | Maschf Augsburg Nuernberg Ag | Air-cooled gas turbine blade |
US2843354A (en) * | 1949-07-06 | 1958-07-15 | Power Jets Res & Dev Ltd | Turbine and like blades |
FR2311176A1 (en) * | 1975-05-16 | 1976-12-10 | Bbc Brown Boveri & Cie | COOLED TURBINE FIN |
US4173120A (en) * | 1977-09-09 | 1979-11-06 | International Harvester Company | Turbine nozzle and rotor cooling systems |
DE3306894A1 (en) * | 1983-02-26 | 1984-08-30 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Turbine stator or rotor blade with cooling channel |
US4992026A (en) * | 1986-03-31 | 1991-02-12 | Kabushiki Kaisha Toshiba | Gas turbine blade |
FR2678318A1 (en) * | 1991-06-25 | 1992-12-31 | Snecma | COOLED VANE OF TURBINE DISTRIBUTOR. |
US5464322A (en) * | 1994-08-23 | 1995-11-07 | General Electric Company | Cooling circuit for turbine stator vane trailing edge |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL142752B (en) * | 1947-10-28 | Tone Boring Co | EXCAVATOR. | |
DE2514208A1 (en) * | 1975-04-01 | 1976-10-14 | Kraftwerk Union Ag | DISC DESIGN GAS TURBINE |
US4407632A (en) * | 1981-06-26 | 1983-10-04 | United Technologies Corporation | Airfoil pedestaled trailing edge region cooling configuration |
US5002460A (en) * | 1989-10-02 | 1991-03-26 | General Electric Company | Internally cooled airfoil blade |
JP3006174B2 (en) * | 1991-07-04 | 2000-02-07 | 株式会社日立製作所 | Member having a cooling passage inside |
US5259730A (en) * | 1991-11-04 | 1993-11-09 | General Electric Company | Impingement cooled airfoil with bonding foil insert |
US5695322A (en) * | 1991-12-17 | 1997-12-09 | General Electric Company | Turbine blade having restart turbulators |
US5472316A (en) * | 1994-09-19 | 1995-12-05 | General Electric Company | Enhanced cooling apparatus for gas turbine engine airfoils |
-
1997
- 1997-06-26 FR FR9707988A patent/FR2765265B1/en not_active Expired - Fee Related
-
1998
- 1998-06-25 US US09/104,200 patent/US5993156A/en not_active Expired - Lifetime
- 1998-06-25 EP EP98401558A patent/EP0887515B1/en not_active Expired - Lifetime
- 1998-06-25 RU RU98112330A patent/RU2146766C1/en active
- 1998-06-25 DE DE69817094T patent/DE69817094T2/en not_active Expired - Lifetime
- 1998-06-26 JP JP18123098A patent/JP3735201B2/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE853534C (en) * | 1943-02-27 | 1952-10-27 | Maschf Augsburg Nuernberg Ag | Air-cooled gas turbine blade |
US2843354A (en) * | 1949-07-06 | 1958-07-15 | Power Jets Res & Dev Ltd | Turbine and like blades |
FR2311176A1 (en) * | 1975-05-16 | 1976-12-10 | Bbc Brown Boveri & Cie | COOLED TURBINE FIN |
US4173120A (en) * | 1977-09-09 | 1979-11-06 | International Harvester Company | Turbine nozzle and rotor cooling systems |
DE3306894A1 (en) * | 1983-02-26 | 1984-08-30 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Turbine stator or rotor blade with cooling channel |
US4992026A (en) * | 1986-03-31 | 1991-02-12 | Kabushiki Kaisha Toshiba | Gas turbine blade |
FR2678318A1 (en) * | 1991-06-25 | 1992-12-31 | Snecma | COOLED VANE OF TURBINE DISTRIBUTOR. |
US5464322A (en) * | 1994-08-23 | 1995-11-07 | General Electric Company | Cooling circuit for turbine stator vane trailing edge |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6955525B2 (en) | 2003-08-08 | 2005-10-18 | Siemens Westinghouse Power Corporation | Cooling system for an outer wall of a turbine blade |
FR2924156A1 (en) * | 2007-11-26 | 2009-05-29 | Snecma Sa | Blade for use in high pressure turbine of e.g. turboprop engine, has ribs with ends formed closer to trailing edge in zone, and small ribs arranged closer to platform, where surfaces are connected at level of trailing and leading edges |
EP2434096A3 (en) * | 2010-09-28 | 2015-04-29 | United Technologies Corporation | Gas turbine engine airfoil comprising a conduction pedestal |
EP3105436A4 (en) * | 2014-02-13 | 2017-03-08 | United Technologies Corporation | Gas turbine engine component with separation rib for cooling passages |
GB2549235A (en) * | 2015-01-29 | 2017-10-11 | Safran Aircraft Engines | Turboprop |
FR3032173A1 (en) * | 2015-01-29 | 2016-08-05 | Snecma | Blower blade of a blowing machine |
WO2016120561A1 (en) * | 2015-01-29 | 2016-08-04 | Snecma | Turboprop |
US10518869B2 (en) | 2015-01-29 | 2019-12-31 | Safran Aircraft Engines | Turboprop |
GB2549235B (en) * | 2015-01-29 | 2020-07-08 | Safran Aircraft Engines | Turboprop |
US9849510B2 (en) | 2015-04-16 | 2017-12-26 | General Electric Company | Article and method of forming an article |
US9976441B2 (en) | 2015-05-29 | 2018-05-22 | General Electric Company | Article, component, and method of forming an article |
EP3141699A1 (en) * | 2015-09-08 | 2017-03-15 | General Electric Company | Impingement insert |
US10087776B2 (en) | 2015-09-08 | 2018-10-02 | General Electric Company | Article and method of forming an article |
US10253986B2 (en) | 2015-09-08 | 2019-04-09 | General Electric Company | Article and method of forming an article |
US10739087B2 (en) | 2015-09-08 | 2020-08-11 | General Electric Company | Article, component, and method of forming an article |
CN106703899A (en) * | 2017-01-23 | 2017-05-24 | 中国航发沈阳发动机研究所 | High-pressure turbine rotor blade front edge impingement cooling structure and engine with same |
CN106703899B (en) * | 2017-01-23 | 2019-08-23 | 中国航发沈阳发动机研究所 | High Pressure Turbine Rotor blade inlet edge impinging cooling structure and the engine with it |
Also Published As
Publication number | Publication date |
---|---|
US5993156A (en) | 1999-11-30 |
JPH1172003A (en) | 1999-03-16 |
JP3735201B2 (en) | 2006-01-18 |
RU2146766C1 (en) | 2000-03-20 |
DE69817094D1 (en) | 2003-09-18 |
EP0887515B1 (en) | 2003-08-13 |
DE69817094T2 (en) | 2004-06-17 |
FR2765265A1 (en) | 1998-12-31 |
FR2765265B1 (en) | 1999-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0887515B1 (en) | Blading with a helical ramp having a serial impingement cooling through a system of ribs in a double shell wall | |
CA2193165C (en) | Cooled turbine vane | |
CA2475083C (en) | Cooling circuits for gas turbine blades | |
EP0666406B1 (en) | Cooled turbine blade | |
CA2211424C (en) | Combined bowl-deflector for combustion chamber of turbine engine | |
CA2550442C (en) | Cooling circuits for turbine moving blade | |
CA2946708C (en) | Turbomachine turbine blade comprising a cooling circuit with improved homogeneity | |
FR2502242A1 (en) | ROTOR BOLT FOR ROTOR BLADE | |
FR2695162A1 (en) | Fin with advanced end cooling system. | |
FR2966868A1 (en) | SYSTEM AND METHOD FOR COOLING ROTARY BLADE PLATFORM AREAS OF TURBINE | |
FR2672338A1 (en) | Turbine vane equipped with a cooling system | |
FR2678318A1 (en) | COOLED VANE OF TURBINE DISTRIBUTOR. | |
EP0250323A1 (en) | Control device for the flux of cooling air for the rotor of a turbine engine | |
EP1790819A1 (en) | Cooling circuit for a turbine blade | |
FR2966869A1 (en) | SYSTEM FOR COOLING TURBINE ROTARY BLADE PLATFORM ZONES | |
FR3021699A1 (en) | OPTIMIZED COOLING TURBINE BLADE AT ITS LEFT EDGE | |
FR2981979A1 (en) | TURBINE WHEEL FOR A TURBOMACHINE | |
FR2969210A1 (en) | SYSTEM FOR COOLING ZONES OF ROTORIC TURBINE BLADE PLATFORMS | |
CA2503066C (en) | Turbine ring | |
EP3149281B1 (en) | Turbine blade having a central cooling conduit and two lateral cavities merged downstream of the central conduit | |
FR2851286A1 (en) | Turbine blade for turbo machine, has annular space between free end of liner and internal edge of vane to define leak zone for cool air where internal edge has cavity to create load loss in zone to reduce flow of cool air | |
FR3028575A1 (en) | STATOR AUBING SECTOR OF A TURBOMACHINE | |
EP1630351B1 (en) | Blade for a compressor or a gas turbine | |
RU2268370C2 (en) | Turbine nozzle, method of its manufacture and blade of nozzle | |
CA3059400A1 (en) | Blade comprising an improved cooling circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980714 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AKX | Designation fees paid |
Free format text: DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20020711 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SNECMA MOTEURS |
|
AK | Designated contracting states |
Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69817094 Country of ref document: DE Date of ref document: 20030918 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040514 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170522 Year of fee payment: 20 Ref country code: GB Payment date: 20170526 Year of fee payment: 20 Ref country code: FR Payment date: 20170427 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: SAFRAN AIRCRAFT ENGINES Effective date: 20170713 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69817094 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20180624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20180624 |