EP0886631A1 - Verfahren und anlage zur verwertung von organischen abfällen und neue biogasanlage - Google Patents
Verfahren und anlage zur verwertung von organischen abfällen und neue biogasanlageInfo
- Publication number
- EP0886631A1 EP0886631A1 EP97914198A EP97914198A EP0886631A1 EP 0886631 A1 EP0886631 A1 EP 0886631A1 EP 97914198 A EP97914198 A EP 97914198A EP 97914198 A EP97914198 A EP 97914198A EP 0886631 A1 EP0886631 A1 EP 0886631A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waste
- plant
- composting
- feed
- fed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F9/00—Fertilisers from household or town refuse
- C05F9/02—Apparatus for the manufacture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/04—Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F17/00—Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
- C05F17/50—Treatments combining two or more different biological or biochemical treatments, e.g. anaerobic and aerobic treatment or vermicomposting and aerobic treatment
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F17/00—Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
- C05F17/90—Apparatus therefor
- C05F17/989—Flow sheets for biological or biochemical treatment
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/58—Reaction vessels connected in series or in parallel
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M43/00—Combinations of bioreactors or fermenters with other apparatus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M43/00—Combinations of bioreactors or fermenters with other apparatus
- C12M43/08—Bioreactors or fermenters combined with devices or plants for production of electricity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M45/00—Means for pre-treatment of biological substances
- C12M45/02—Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/40—Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse
Definitions
- the invention relates to a plant for the simultaneous recycling of structurally poor and structurally rich organic waste, with which the most varied batches of waste can be processed and which can be flexibly adapted to the quantities and types of waste accumulating.
- the invention also relates to a corresponding recycling process and a new biogas plant for the two-stage fermentation of organic waste materials, which is either part of the above plant or can also be used independently of the above-mentioned plant.
- Organic waste occurs in different forms and compositions in municipalities and industry, which can be easily collected separately: organic components from the household waste bin, green waste and other tree waste (branches from horticulture, parks and street plants) - clean wood waste such as B. formwork from construction and pallets from the trade, wood waste from construction demolition contaminated by impregnating agents (e.g. tar oils and formaldehyde) and paints, but also from old track systems, Soils, food residues, food waste and vegetable waste from industrial kitchens, slaughterhouses, dairies, wholesale markets as well as other food manufacturing and processing companies or agriculture, sewage sludge contaminated by tar oils, mineral oil hydrocarbons or other organic substances
- the biological processes have the advantage that they come very close to the natural decomposition processes and thus cause the slightest changes in the material balance of nature. Lignins and humus substances are preserved.
- the products of the biological processes can be returned to the food cycle in various forms. Since biological processes have a lower degradation rate than thermal processes, a larger storage or reactor volume is required to implement them. However, the technical effort is generally much lower, which means that the treatment costs are significantly lower than those of thermal processes.
- Two basic biotechnological operations are used for biological waste recycling, which have their specific effect and their preferred area of application: - Composting
- Composting is particularly suitable for converting solid organic waste materials into soil improvers containing humus. It can mainly be used to break down structurally rich, difficult-to-decompose materials such as grass, wood or pruning.
- the rotting process is very slow. If there is insufficient ventilation or too high humidity, the process tips and the desired humus formation does not occur. There is an odor nuisance. For this reason, composting requires considerable mixing or compression energy for ventilation.
- the self-heating of the compost in the first rotting phase leads to a hygienization of the waste. There is a large, hardly usable amount of waste heat.
- the aeration of the compost leads to mass losses, which are caused in particular by the evaporation of the water, but also by the conversion of organic matter into C0 2 and water.
- Composts are used for soil improvement in agriculture, horticulture, for soil remediation, soil recultivation and landfill cover.
- the anaerobic biogas process (fermentation) is particularly suitable for structurally poor, easily degradable, moist waste. With it, the best possible overall utilization of organic matter is achieved. This is predominantly in methane and only to a lesser extent in Converted carbon dioxide.
- DE-Al-44 46 661 describes a method and a plant for the anaerobic processing of food waste.
- the biogas is a valuable, renewable energy source that is adequate for natural gas and is used to generate electrical energy in one
- Combined heat and power plant (CHP) is suitable.
- the first stage consists of an anaerobic
- Biomethanization the difficult to break down, structurally rich components pass this stage without a significant degradation effect; for them will be additional Reactor space required, which increases the treatment costs.
- they cause additional difficulties in the process control: formation of a floating blanket or sediment, hinders complete mixing and homogeneous conditions with regard to temperature and concentrations in the anaerobic reactor. This means that more complex reactor designs, increased energy consumption and increasing operating costs for complex cleaning cycles are necessary.
- the object of the invention was therefore to provide a plant for the recycling of organic waste, with which it is possible to treat different batches of waste, such as food waste, food waste and vegetable waste, e.g.
- the plant should be flexibly adaptable to waste quantities and waste batches and, if required, transportable.
- the high-performance bioreactors used should have the simplest possible reactor designs.
- the object of the invention is achieved with a system according to claims 1-7, in which the waste stream for composting and biogas production is carried out in parallel, so that biogas production and composting can be combined and also used independently of one another, thereby making effective use and utilization of energy the waste is guaranteed.
- a prerequisite for the functioning of the plant according to the invention and the associated method is that the waste which is easily perishable and almost 100% degradable is used in the biogas plant 1. This results in water containing minerals that contains almost no solids. This fermentation substrate is collected in tank 3.
- the waste which contains structurally rich and therefore difficult to decompose components, is fed to the composting plants 5 and 6, which are supplied with additional nutrients to accelerate the compost through the drain of the biogas plant from the tank 3.
- Structurally rich organic waste e.g. Cardboard, wood and green waste, which do not pose any problems during composting, can be easily processed into quality compost in an ordinary rental composting plant 5 after appropriate processing, such as shredding and extrusion.
- suitable processing such as shredding and extrusion.
- nitrogen content of the material to be composted e.g. can vary depending on the green waste, more or less digestate from the tank 3 is fed as a nutrient source and compost accelerator via the pipes 4 and 4a.
- Problematic substances such as contaminated wood waste and soils, odor-contaminated waste or waste that is difficult to decompose and structurally rich waste from the organic waste bin are, after appropriate pretreatment such as shredding, extrusion in a closed, ventilated compost reactor 6, optionally with the addition of specially grown pollutant-degrading microorganisms and digestate from the Tank 3 cleaned and composted in one process step.
- the more complex compost reactor 6 is required here in order to generate the conditions necessary for the safe degradation of the pollutants, such as moisture, ventilation, and optimal temperature in the entire material, and to ensure targeted biotechnological process control at high degradation speeds.
- compost reactor 6 for the composting of "clean" structurally rich waste, for example if the system may take up little space due to a lack of space or must be housed due to noise pollution supplied unpolluted wood, via the supply line 27 with cardboard and via the supply line 28 with green waste.
- the biogas plant can be constructed in one or more stages, ie in addition to fermentation also include an upstream hydrolysis.
- the biogas plant preferably contains at least one conventional hydrolysis reactor and one or two biogas reactors. Also one or more sanitation reactors or bioreactors or thermal or chemical reactors in which special substances, e.g. Bones, hair or feathers can be removed beforehand, can be connected upstream of the hydrolysis reactor.
- a plant known in the prior art can be used as the biogas plant.
- the biogas plant according to the present invention which is described below, is particularly preferably used.
- the resulting biogas can be converted into electrical energy and thermal energy in a combined heat and power plant (CHP). However, it can also be used directly for combustion in heating systems or for driving machines or vehicles with a gas engine, even after a corresponding gas cleaning stage.
- CHP combined heat and power plant
- the mineral-containing water from the tank 3 becomes corresponding partially supplied to composting plants 5 and / or 6 or used as liquid fertilizer in agriculture or horticulture.
- Figure 1 shows a plant according to the invention for recycling organic waste.
- the individual parts of the system e.g. Homogenizer, shredder and extruder are known from the prior art and are commercially available.
- the invention also relates to a process for recycling organic waste with the system described above in accordance with process claims 8 to 16. It is clear that not only biogas, liquid fertilizer and quality compost are produced according to the invention, but also a plant substrate in a process step connected to the composting can be manufactured.
- the compost obtained in the composting plants 5 and / or 6 is mixed in the mixer 24 with swellable organic polymers and, if appropriate, clay or clay-containing materials to form a finished plant substrate. If necessary, shredded and extruded wood can be added from the extruder 19.
- Crosslinked acrylamide / acrylic acid polymers are preferably added as polymers.
- the planting substrate is mixed in such a way that it consists of 30 to 85% by volume of porous fiber containing cellulose and / or lignin, 3.5 to 30% by volume of polymers in the pre-swollen state, and 12 up to 40 vol.% from compost and 3 to 20 vol.% from clay. If necessary, fertilizer can also be added.
- This substrate is then used in agriculture or horticulture as a water-storing substrate, in particular for plantings in arid soils.
- the invention further relates to a new biogas plant according to claim 17, with which the wet fermentation of food waste can be carried out efficiently and stably. With this system, not only food waste but also any low-structure waste material with an organic dry matter content of up to 25% can be fermented, which can also include carcasses.
- the hydrolysis reactor (1.7) is continuously aerated by compressed air over the surface of the homogenized material or via devices inside the reactor, the first stage fermentation is therefore not semi-anaerobic, but semi-anaerobic.
- the aeration rate depends on the fatty acid spectra, which in turn depend on the proportion of different substances in the feed such as fats, sugar, starch, proteins.
- the fatty acid spectra can be determined in preliminary tests for the particular material to be fed using methods which are conventional per se.
- the system is therefore designed such that the hydrolysis reactor 1.7 is connected to a compressor 1.8.
- the targeted introduction of air promotes the expulsion of the hydrogen sulfide formed, so that the biogas generated in the plant has a hydrogen sulfide content below the detection limit of 10 ppm.
- the targeted air intake promotes bacterial degradation in the hydrolysis reactor.
- the efficiency of the hydrolysis stage can be increased further if the hydrolysis does not occur at ambient temperature (the plant is generally outdoors in summer and winter), but at at least 20 ° C. and at most 40 ° C., that is to say under mesophilic conditions ⁇ is performed.
- the hydrolysis reactor 1.7 is equipped in a preferred embodiment with a conventional temperature controller which regulates the temperature to at least 20 ° C. and at most 40 ° C. This leads to greater operational safety, since a larger number of microorganisms have their optimum in this temperature range.
- process water containing biomass in relation to the amount of waste supplied, preferably from 2: 1 to 1: 2 for seeding in the hydrolysis reactor 1.7 and, if necessary, in the methanization reactor III (see piping system 1.15).
- the process water containing biomass can be recycled into the methanation reactor 1.11 in a ratio of 1: 5 to 1:10 to the amount of hydrolyzed material leaving the hydrolysis reactor 1.7. This eliminates the agile separation of the biomass, the process water concentrated with biomass is in each case returned, which has accumulated in the respective settling tank after at least 6 hours in the lower part.
- the hydrolysis reactor 1.7 can be preceded by a hygienization tank 1.3, into which the shredded material is introduced from the homogenizer 16 by means of a pump 1.2 and then e.g. is heated at 70 to 90 ° C for half an hour.
- a pump 1.2 e.g. a pump
- Others e.g. Hygiene units that work with ozone are conceivable.
- the units can be fermented.
- Hygienization tank 1.3 and storage 1.5 may or may not be stirred, depending on the optimal process design in accordance with the starting material.
- the solids must first be separated in the settling tank 1.13 and if necessary transferred into a solid tank to be connected, only then can the process water concentrated with the biomass be returned to the hydrolysis and methanation stage.
- the continuously operating system it is possible to fully automatically, reliably and effectively ferment any waste with an oTS content of maximum 25%. It is a hygienically closed system. 90% of the organic matter is broken down.
- the biogas produced is of high quality and contains 65-75%, preferably 70-75%, methane.
- the quality of the biogas enables the operator of the plant to make sensible use.
- the following are possible direct thermal utilization, electricity and heat generation via cogeneration or feeding into the regional natural gas network.
- Each functional unit of the plant (storage, hydrolysis reactor, bioreactor) has its own control system a microcontroller module which controls the process parameters according to a dynamically adaptable program.
- FIG. 2 A preferred embodiment of the biogas plant 1 according to the invention is shown in FIG. 2 below. All parts of the technical system as well as the automatic control and the piping system can be designed as modules, so that the processing capacity can be further increased by additional modules. It is preferred according to the invention that all units are of the same type and size. The system according to the invention can also be accommodated in a portable container.
- Feeder a unpacking plant for food waste 26
- Feeder 0 feeder 27
- Feeder 1 feeder 28
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Sustainable Development (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Clinical Laboratory Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Die Erfindung betrifft eine Anlage zur Verwertung von organischen Abfällen durch Kombination von Vergärung und Kompostierung, die dadurch gekennzeichnet ist, daß sie eine Biogasanlage (1) zur Vergärung von strukturarmen organischen Abfällen beinhaltet, die über eine Rohrleitung (2) mit einem Tank für das Gärsubstrat (3) verbunden ist, und dieser Tank (3) mittels einer Rohrleitung (4) mit einer Mietenkompostierungsanlage zur Kompostierung von strukturreichen organischen Abfällen (5) und/oder einer geschlossenen Kompostierungsanlage zur Kompostierung von gegebenenfalls verunreinigten strukturreichen organischen Abfällen und Abfällen aus der Biotonne (6) verbunden ist. Gegenstand der Erfindung ist auch ein entsprechendes Verwertungsverfahren und eine neue Biogasanlage (1).
Description
Verfahren und Anlage zur Verwertung von organischen Abfällen und neue Biogasanlage
Beschreibung
Die Erfindung betrifft eine Anlage zur gleichzeitigen Verwertung von strukturarmen und strukturreichen organischen Abfällen, mit der die verschiedensten Abfallchargen verarbeitet werden können und die flexibel an die anfallenden Abfallmengen und -arten anpaßbar ist.
Gegenstand der Erfindung ist auch ein entsprechendes Verwertungsverfahren sowie eine neue Biogasanlage zur zweistufigen Vergärung von organischen Abfallstoffen, die entweder Bestandteil der obigen Anlage ist oder auch unabhängig von der oben genannten Anlage eingesetzt werden kann.
Organische Abfälle treten in unterschiedlicher Form und Zusammensetzung in Kommunen und der Industrie auf, die problemlos getrennt gesammelt werden können: organische Bestandteile aus der Hausmülltonne, Grünschnitt und andere Baumabfälle (Zweige aus Gartenbau, Parks und Straßenbepflanzung) - saubere Holzabfälle wie z. B. Schalhölzer vom Bau und Paletten aus dem Handel, durch Imprägniermittel (z. B. Teeröle und Formaldehyd) und Farben verunreinigte Holzabfälle aus dem Bauabriß, aber auch von alten Gleisanlagen,
durch Teeröle, Mineralölkohlenwasserstoffe oder andere organische Stoffe verunreinigte Böden, Speisereste, Lebensmittelabfälle und Gemüseabfälle aus Großküchen, Schlächtereien, Molkereien, Großmärkten sowie anderen lebensmittelherstellenden und -verarbeitenden Unternehmen oder der Landwirtschaft, Klärschlamm
Fette, organische Lösungsmittel und andere organische Reststoffe aus der Chemie, Pharmazie und Kosmetik, Tierkörper, die verwertet werden müssen.
Die Ablagerung von biologisch abbaubaren Abfällen auf Deponien führt zu Gefährdungen und Umweltbeeinträchtigungen und wird deshalb zunehmend durch Gesetze und Bestimmungen eingeschränkt bzw. unterbunden; deshalb werden sie zunehmend biologisch verwertet.
Die biologischen Verfahren weisen den Vorzug auf, daß sie den in der Natur ablaufenden Abbauprozessen sehr nahe kommen und damit auch die geringsten Veränderungen in der Stoffbilanz der Natur bewirken. Lignine und Humusstoffe bleiben erhalten. Die Produkte der biologischen Verfahren können in unterschiedlicher Form wieder dem Nahrungskreislauf zugeführt werden. Da biologische Verfahren eine geringere Abbaugeschwindigkeit als thermische Verfahren aufweisen, ist für ihre Realisierung ein größeres Lager- oder Reaktorvolumen erforderlich. Der technische Aufwand ist jedoch im allgemeinen wesentlich geringer, wodurch die Behandlungskosten deutlich unter denen thermischer Verfahren liegen.
Zur biologischen Abfallverwertung werden zwei biotechnologische Grundoperationen angewendet, die ihre spezifische Wirkung und ihr bevorzugtes Anwendungsgebiet haben: - Kompostierung
- anaerobe Biomethanisierung (Gärung) . Die Kompostierung bietet sich vor allem zur Umwandlung fester organischer Abfallstoffe in humushaltige Boden¬ verbesserer an. Mit ihr können vorwiegend strukturreiche, schwer abbaubare Stoffe wie Gras, Holz oder Baumschnitt abgebaut werden. Der Rotteprozeß verläuft sehr langsam. Bei ungenügender Belüftung oder zu hoher Feuchtigkeit kippt der Prozeß und die erwünschte Humusbildung unterbleibt. Es kommt zu Geruchsbelästigungen. Deshalb ist zur Kompostierung ein erheblicher Aufwand an Misch- bzw. Kompressionsenergie zur Belüftung erforderlich. Andererseits führt die Selbsterwärmung des Kompostes in der ersten Rottephase zu einer Hygienisierung der Abfälle. Es fällt eine große, kaum nutzbare Abwärmemenge an. Die Belüftung des Kompostes führt zu Masseverlusten, die insbesondere durch die Verdunstung des Wassers, aber auch durch die Umwandlung von organischer Substanz in C02 und Wasser verursacht werden.
Komposte werden zur Bodenverbesserung in der Landwirtschaft, im Gartenbau, zur Bodensanierung, Rekultivierung von Böden und Deponieabdeckung eingesetzt.
Der anaerobe Biogasprozeß (Gärung) ist besonders für strukturarme, leicht abbaubare, feuchte Abfälle geeignet. Mit ihm wird die insgesamt bestmögliche Verwertung organischer Substanz erreicht. Diese wird vorwiegend in Methan und nur zum geringeren Teil in
Kohlendioxid umgewandelt. So wird z.B. in DE-Al-44 46 661 ein Verfahren und eine Anlage zur anaeroben Aufbereitung von Lebensmittelabfällen beschrieben.
Mit dem Biogas steht ein dem Erdgas adäquater, wertvoller regenerativer Energieträger zur Verfügung, der sich zur Gewinnung von Elektroenergie in einem
Blockheizkraftwerk (BHKW) eignet.
Es sind auch Verfahren zur biologischen Abfallverwer¬ tung bekannt, die Kompostierung und Gärung kombinieren. In diesen Verfahren schließt sich die Kompostierung der Feststoffe an die Biogasgewinnung an (z. B. HGG-Verfah- ren, LINDE-KCA-Verfahren) oder die Kompostierung er- folgt als erste und dritte Stufe vor und nach der Bio¬ gasgewinnung (3A-Verfahren) (vgl. „Arbeitskreis für die Nutzbarmachung von Siedlungsabfällen e.V.", Heft 29, Oktober 1994, S. 61-77) . Diese Verfahren und Anlagen haben allerdings den Nach- teil, daß sie nicht an verschieden anfallende Abfall- mengen und unterschiedliche Abfallchargen anpaßbar sind, da Kompostierung und Biogasgewinnung nicht unab¬ hängig voneinander betrieben werden können und Reststoffe anfallen, die weiter zu behandeln oder zu entsorgen sind.
Ein weiterer Nachteil der bekannten zwei- oder dreistufigen Verfahren, die sowohl die Kompostierung als auch die anaerobe Behandlung beinhalten, besteht darin, daß bei ihnen jeweils ein Teil der Stoffe in der ersten Stufe eine nicht optimale Behandlung erfährt:
1. Besteht die erste Stufe aus einer anaeroben
Biomethanisierung, passieren die schwer abbaubaren, strukturreichen Bestandteile diese Stufe ohne einen wesentlichen Abbaueffekt; für sie wird zusätzlicher
Reaktorraum benötigt, wodurch die Behandlungskosten steigen. Andererseits verursachen sie zusätzlich Schwierigkeiten bei der Prozeßführung: Schwimmdecken- oder Sinkstoffbildung, Behinderung der vollständigen Durchmischung und homogener Verhältnisse hinsichtlich Temperatur und Konzentrationen im Anaerobreaktor. Damit werden aufwendigere Reaktorkonstruktionen, ein erhöhter Energieeinsatz und steigende Betriebskosten für aufwendige Reinigungszyklen notwendig.
2. Ist die erste Stufe eine Kompostierung (aerob) , werden wesentliche Teile der leichtabbaubaren, strukturarmen organischen Substanz in Kohlendioxid und Wasser abgebaut und gehen der anaeroben Bildung von Biogas verloren, wodurch die Effektivität der energetischen Nutzung verringert wird. Weiter besteht in einer streng aeroben ersten Stufe die Gefahr, daß die hier gegen Ende des Aerobprozesses bei zunehmendem Sauerstoffmangel gebildeten Fettsäuren eine ungünstige Zusammensetzung für die- Methanisierung aufweisen, z.B. einen zu hohen Anteil an Milchsäure oder Propionsäure, die die nachfolgende Methanisierung behindern und teilweise zu schwerwiegenden Störungen des Anaerobprozesses bis hin zu seinem völligen Erliegen führen. Die Folge sind erhebliche Geruchsprobleme und eine verminderte Biogasmenge und -qualität.
Weiterhin stellt in der ersten Stufe die Beimischung von für das jeweilige biologische Verfahren ungeeigneten Stoffen gewissermaßen eine „Verdünnung" bzw. „Verunreinigung" dar. Damit ist der Einsatz von intensiv arbeitenden Hochleistungs-Bioreaktoren in dieser Konfiguration in der ersten Stufe nicht möglich.
Aufgabe der Erfindung war es deshalb, eine Anlage zur Verwertung von organischen Abfällen bereitzustellen, mit der es möglich ist, unterschiedlich zu behandelnde Abfallchargen wie Speisereste, Lebensmittelabfälle und Gemüseabfälle, z.B. aus Großküchen, Schlächtereien, Molkereien, Landwirtschaftsbetrieben und lebensmittelerzeugenden Unternehmen, Fette, organische Lösungsmittel und andere organische Reststoffe aus der Chemie, Pharmazie und Kosmetik, zu verwertende Tierkörper, organische Bestandteile der Biotonne aus Haushalten, Grünschnitt und Baumabfälle, saubere und verunreinigte Holzabfälle sowie verunreinigte Böden zu Biogas, Kompost und Flüssigdünger optimal und effektiv in biologischen Hochleistungsreaktoren zu verarbeiten. Die Anlage soll flexibel an die Abfallmengen und AbfallChargen anpaßbar sein und gewünschtenfalls transportabel. Die eingesetzten Hochleistungs- Bioreaktoren sollen möglichst einfache Reaktorkonstruktionen aufweisen.
Die Aufgabe der Erfindung wird mit einer Anlage gemäß der Ansprüche 1 - 7 gelöst, bei der der Abfallstrom für die Kompostierung und Biogasgewinnung parallel geführt wird, so daß Biogasgewinnung und Kompostierung kombiniert und auch unabhängig voneinander eingesetzt werden können, wodurch eine effektive energetische Nutzung und Verwertung der Abfälle gewährleistet ist. Voraussetzung für das Funktionieren der erfindungsgemäßen Anlage und des dazugehörigen Verfahrens ist es, daß in der Biogasanlage 1 die Abfälle verwertet werden, die leicht verderblich und fast hundertprozentig abbaubar sind. Dadurch entsteht im Ergebnis mineralstoffhaltiges Wasser, das fast keine Feststoffe mehr enthält. Dieses Gärsubstrat wird im Tank 3 gesammelt.
Die Abfälle, die strukturreiche und damit schwer abbaubare Bestandteile enthalten, werden den Kompostierungsanlagen 5 und 6 zugeführt, die durch den Ablauf der Biogasanlage aus dem Tank 3 mit zusätzlichen Nährstoffen zur Kompostbeschleunigung versorgt werden.
Strukturreiche organische Abfälle, z.B. Pappe, Holz und Grünschnitt, die bei der Kompostierung keine Probleme bereiten, können nach einer entsprechenden Aufbereitung, wie gegebenenfalls Shreddern und Extrudieren, in einer gewöhnlichen Mietenkompostierungsanlage 5 problemlos zu Qualitätskompost verarbeitet werden. Je nach Stickstoffgehalt des zu kompostierenden Materials, der z.B. in Abhängigkeit vom Grünschnitt variieren kann, wird mehr oder weniger Gärreststoff aus dem Tank 3 als Nährstoffquelle und Kompostbeschleuniger über die Rohrleitungen 4 und 4a zugeführt.
Problematische Stoffe, wie verunreinigte Holzabfälle und Böden, geruchsbelastete Abfälle oder sehr schwer abbaubere Abfälle und strukturreiche Abfälle aus der Biotonne werden nach entsprechender Vorbehandlung wie gegebenenfalls Shreddern, Extrudieren in einem geschlossenen, belüfteten Kompostreaktor 6 gegebenenfalls unter Zusatz speziell gezüchteter schadstoffabbauender Mikroorganismen und von Gärreststoff aus dem Tank 3 in einem Verfahrensschritt gereinigt und kompostiert. Der aufwendigere Kompostreaktor 6 ist hier erforderlich, um die für den sicheren Abbau der Schadstoffe notwendigen Bedingungen wie Feuchtigkeit, Belüftung, optimale Temperatur im gesamten Material gleichmäßig zu erzeugen und eine gezielte biotechnologische Prozeßführung bei hohen Abbaugeschwindigkeiten zu sichern.
Es ist jedoch alternativ auch möglich, den Kompostreaktor 6 zur Kompostierung von „sauberen" strukturreichen Abfällen zu nutzen, wenn z.B. die Anlage wegen Platzmangel wenig Fläche beanspruchen darf oder wegen Lärmbelästigung eingehaust werden muß. In diesem Fall wird der Kompostreaktor 6 über die Zuleitung 14 mit nichtverunreinigtem Holz versorgt, über die Zuleitung 27 mit Pappe und über die Zuleitung 28 mit Grünschnitt.
Leicht abbaubare Abfälle und Klärschlamm werden gegebenenfalls nach Homogenisierung in einem Homogenisator 16 in der Biogasanlage 1 vergoren. Die Biogasanlage kann ein- oder mehrstufig ausgebildet sein, also neben der Vergärung auch eine vorgeschaltete Hydrolyse beinhalten. Vorzugsweise beinhaltet die Biogasanlage mindestens einen üblichen Hydrolysereaktor und einen oder zwei Biogasreaktoren. Auch ein oder mehrere Hygienisierungsreaktoren oder Bioreaktoren oder thermische oder chemische Reaktoren, in denen spezielle Stoffe, wie z.B. Knochen, Haare oder Federn vorabgebaut werden, können dem Hydrolysereaktor vorgeschaltet sein. Als Biogasanlage kann eine im Stand der Technik bekannte Anlage eingesetzt werden. Besonders bevorzugt wird jedoch die Biogasanlage gemäß der vorliegenden Erfindung eingesetzt, die weiter unten beschrieben wird.
Das entstehende Biogas kann in einem Blockheizkraftwerk (BHKW) in Elektroenergie und thermische Energie umge¬ wandelt werden. Es kann aber auch direkt zur Verbren¬ nung in Heizungsanlagen oder zum Antrieb von Maschinen oder Fahrzeugen mit Gasmotor, auch nach einer entspre¬ chenden Gasreinigungsstufe, verwendet werden. Das mine- ralstoffhaltige Wasser aus dem Tank 3 wird entsprechend
dem Bedarf zum Teil den Kompostierungsanlagen 5 und/oder 6 zugeführt oder als Flüssigdünger in der Landwirtschaft oder im Gartenbau verwendet.
In Abbildung 1 ist eine erfindungsgemäß bevorzugte An¬ lage zur Verwertung von organischen Abfällen darge¬ stellt. Die einzelnen Anlagenteile, wie z.B. Homogeni¬ sator, Shredder und Extruder sind aus dem Stand der Technik bekannt und kommerziell erhältlich.
Gegenstand der Erfindung ist auch ein Verfahren zur Verwertung von organischen Abfällen mit der vorstehend beschriebenen Anlage gemäß den Verfahrensansprüchen 8 bis 16. Es wird deutlich, daß erfindungsgemäß nicht nur Biogas, Flüssigdünger und Qualitätskompost entstehen, sondern in einem an die Kompostierung angeschlossenen Verfahrensschritt auch ein Pflanzsubtrat hergestellt werden kann. Dazu wird der in den Kompostierungsanlagen 5 und/oder 6 erhaltene Kompost im Mischer 24 mit quell- fähigen organischen Polymeren und gegebenenfalls lehm- oder tonhaltigen Materialien zu einem fertigen Pflanz- substrat vermischt. Gegebenenfalls kann noch geshreddertes und extrudiertes Holz aus dem Extruder 19 zugefügt werden. Als Polymere werden vorzugsweise ver- netzte Acrylamid/ Acrylsäurpolymerisate zugefügt. In einer besonders bevorzugten Ausführungsform wird das Pflanzsubstrat so gemischt, daß es zu 30 bis 85 Vol.% aus cellulose- und/oder ligninhaltigen porösen Faser besteht, zu 3,5 bis 30 Vol.% aus Polymeren im vorge- quollenen Zustand, zu 12 bis 40 Vol.% aus Kompost und zu 3 bis 20 Vol.% aus Ton. Gegebenenfalls kann auch be¬ reits Dünger zugemischt werden. Dieses Substrat wird anschließend in der Landwirtschaft oder dem Gartenbau als wasserspeicherndes Substrat, insbesondere für Pflanzungen in wasserarmen Böden, verwendet.
Gegenstand der Erfindung ist weiterhin eine neue Bio¬ gasanlage gemäß Anspruch 17, mit der die Naßvergärung von Lebensmittelabfällen effizient und stabil durch¬ geführt werden kann. Mit dieser Anlage können außerdem nicht nur Lebensmittelabfälle, sondern jegliche struk¬ turarme Abfallstoffe mit einem Gehalt an organischer Trockensubstanz bis zu 25% vergoren werden, wozu auch Tierkörper gehören können.
Es wurde überraschenderweise festgestellt, daß beim Vergärungsverfahren eine wesentliche Prozeßstabilität in der Hydrolyse- und Vorversäuerungsstufe erreicht wird, wenn der Hydrolysereaktor (1.7) kontinuierlich durch Druckluft über die Oberfläche des homogenisierten Materials oder über Vorrichtungen im Innern des Reak¬ tors belüftet wird, die erste Stufe der Vergärung also nicht anaerob, sondern semianaerob geführt wird. Die Belüftungsrate ist abhängig von den Fettsäurespektren, die wiederum vom Anteil der unterschiedlichen Substanzen in der Zuführung wie Fette, Zucker, Stärke, Proteine abhängig sind. Die Fettsäurespektren können in Vorversuchen für das jeweilige zuzuführende Material mit an sich üblichen Methoden bestimmt werden. In einer bevorzugten Ausführungsform ist die Anlage deshalb so gestaltet, daß der Hydrolysereaktor 1.7 mit einem Kompressor 1.8 verbunden ist.
Daneben wird durch den gezielten Lufteintrag die Austreibung des entstehenden Schwefelwasserstoffes gefördert, so daß das in der Anlage erzeugte Biogas einen Schwefelwasserstoff-Gehalt unter der Nachweisgrenze von 10 ppm aufweist. Gleichzeitig wird durch den gezielten Lufteintrag der bakterielle Abbau im Hydrolysereaktor befördert.
Die Effizienz der Hydrolysestufe kann daneben weiter erhöht werden, wenn die Hydrolyse nicht bei Umge¬ bungstemperatur (die Anlage steht in der Regel Sommers wie Winters im Freien), sondern bei mindestens 20°C und maximal 40°C, also unter mesophilen Bedingungen, durch¬ geführt wird. Zu diesem Zweck wird der Hydrolysereaktor 1.7 in einer bevorzugten Ausführungsform mit einem üb¬ lichen Temperaturregler ausgestattet, der die Tempera¬ tur auf mindestens 20°C und maximal 40°C reguliert. Hierdurch kommt es zu einer größeren Betriebssicher¬ heit, da eine größere Anzahl von Mikroorganismen in diesem Temperaturbereich ihr Optimum hat.
Zur weiteren Verbesserung des beschriebenen Verfahrens im Hinblick auf schnelleren Durchsatz und Betrieb¬ sicherheit hat es sich als äußerst wirkungsvoll erwie¬ sen, sowohl bei einem als auch bei zwei Methanisie- rungsreaktoren mindestens zwei Absetzbehälter anzu¬ schließen, die alternierend arbeiten und eine minimale Ruhepause von mindestens 6 Stunden, besser 12 Stunden, gewährleisten. Dadurch wird die Aufkonzentrierung der' Biomasse im Prozeßwasser wesentlich beschleunigt.
Weiterhin hat sich gezeigt, daß es bezüglich Verfah- rensstabilität und -effektivität wesentlich ist, nicht die Biomasse, wie in DE 44 46 661 beschrieben, sondern Biomasse enthaltendes Prozeßwasser im Verhältnis zu der zugeführten Abfallmenge von vorzugsweise 2:1 bis 1:2 zum Animpfen in den Hydrolysereaktor 1.7 und gegebenen- falls in den Methanisierungsreaktor l.ll zurückzuführen (siehe Rohrleitungssystem 1.15). In den Methanisie¬ rungsreaktor 1.11 kann das Biomasse enthaltende Proze߬ wasser im Verhältnis von 1:5 bis 1:10 zu der Menge an hydrolysiertem Material, das den Hydrolysereaktor 1.7 verläßt, zurückgeführt werden. Damit entfällt die auf-
wendige Abtrennung der Biomasse, es wird jeweils ein¬ fach das mit Biomasse aufkonzentrierte Prozeßwasser zu¬ rückgeführt, das sich im jeweiligen Absetzbehälter nach mindestens 6 Stunden im unteren Teil angesammelt hat.
Erfindungsgemäß werden ca. 40 - 60% des Prozeßwassers zurückgeführt, wodurch einerseits das Animpfen und andererseits gleichzeitig eine Verdünnung des Materials im Hydrolysereaktor von ca. 2:1 bis 1:2 gewährleistet ist. Diese Verdünnung, die bei dem beschriebenen Verfahren ausgeschlossen wird, bringt einen wesentlichen Vorteil hinsichtlich Verfahrensstabilität.
Desweiteren wird eine vollständige Durchmischung der Reaktoren 1.7, 1.11.1 und 1.11.2 gewährleistet, wozu diese z.B. mit Rührwerken ausgerüstet sein können. Auch Umpumpen des Reaktorinhaltes oder Einblasen von Biogas sind möglich.
Zur Hygienisierung kann gewünschtenfalls, wenn es die gesetzlichen oder sonstige Vorschriften erfordern, dem Hydrolysereaktor 1.7 ein Hygienisierungstank 1.3 vorgeschaltet sein, in den aus dem Homogenisator 16 das zerkleinerte Material mittels Pumpe 1.2 eingeleitet und dann z.B. bei 70 bis 90°C eine halbe bis eine Stunde erhitzt wird. Auch andere, z.B. mit Ozon arbeitende Hygieniserungseinheiten, sind denkbar. Desweiteren kann ein aerob oder semianerob arbeitender Bioreaktor oder thermischer oder chemischer Reaktor zum Aufschluß schwer abbaubarer Bestandteile wie z.B. Knochen oder Federn vorgeschaltet sein.
Je nach zu vergärendem Material können die Einheiten
16, 1.3 und 1.5 vorhanden oder nicht vorhanden bzw. in anderer Reihenfolge angeordnet sein. Wenn z.B. Schleif-
schlämme vergoren werden sollen, kann sich eine Homoge¬ nisierung erübrigen, so daß die Homogeniserungseinheit 16 entfallen kann. Auch Speicher 1.5 und Hygienisator 1.3 sind nicht in jedem Fall notwendig. Für den Fall, daß sie notwendig sind, wird in einer bevozugten Vari¬ ante der Erfindung ein Speicher mit integriertem Homo¬ genisator verwendet. Hygienisierungstank 1.3 und Spei¬ cher 1.5 können gerührt sein oder nicht, je nach opti¬ maler Verfahrensgestaltung entsprechend dem Ausgangsma- terial.
Werden Materialien mit hohem mineralischen Gehalt vergoren, so müssen im Absetzbehälter 1.13 zunächst als erstes die Feststoffe abgetrennt und gegebenenfalls in einen anzuschließenden Feststoffbehälter überführt werden, erst danach kann das mit der Biomasse aufkonzentrierte Prozeßwasser in die Hydrolyse und Methanisierungεstufe zurückgeführt werden.
Mit der erfindungsgemäßen kontinuierlich arbeitenden Anlage ist es möglich, vollautomatisch, betriebssicher und effektiv jegliche Abfälle mit einem oTS-Gehalt von maximal 25% zu vergären. Es handelt sich um ein hygienisch geschlossenes System. Die organische Substanz wird zu 90% abgebaut. Das erzeugte Biogas ist von hoher Qualität und enthält 65 - 75%, vorzugsweise 70 - 75%, Methan.
Die Qualität des Biogases ermöglicht dem Betreiber der Anlage eine sinnvolle Nutzung. Möglich sind z.B. eine direkte thermische Verwertung, Strom- und Wärmeerzeugung über eine Kraft-Wärme-Kopplung oder die Einspeisung in das regionale Erdgasnetz.
Jede Funktionseinheit der Anlage (Speicher, Hydrolyse- reaktor, Bioreaktor) verfügt zu ihrer Steuerung über
ein Mikrocontrollermodul, das nach einem dynamisch an¬ paßbaren Programm die Prozeßparameter regelt.
Nachfolgend wird in Fig. 2 eine bevorzugte Ausführungsform der erfindungsgemäßen Biogasanlage l dargestellt. Alle Teile der technischen Anlage sowie die automatische Steuerung und das Rohrleitungssystem können als Modul ausgeführt sein, so daß die Verarbeitungskapazität durch weitere Module weiter gesteigert werden kann. Es ist erfindungsgemäß bevorzugt, daß alle Einheiten von gleicher Bauart und Baugröße sind. Auch die erfindungsgemäße Anlage läßt sich in einem transportablen Container unterbringen.
Bezugszeichenliste
Fig. 1
Biogasanlage 12 Zuführung
Zuführung Gärsubstrat 13 Zuführung
3 Tank für das 13a Trennungsanläge für Gärsubstrat Abfälle aus der Biotonne Zuführung
14 Zuführung a Zuführung
15 Zuführung b Zuführung
16 Homogenisator Mietenkompostierungsanlage zur Kompostierung von 17 Shredder strukturreichen organischen Abfällen 18 Shredder geschlossene Kompostie¬ 19 Extruder rungsanlage zur Kompo- stierung von gegebenenfalls 20 Extruder verunreinigten strukturreichen organischen 21 Sieb Abfällen
22 Zuführung Zuführung
23 Zuführung Zuführung
24 Mischanlage Zuführung
25 Zuführung a Entpackungsanlage für Lebensmittelabfälle 26 Zuführung 0 Zuführung 27 Zuführung 1 Zuführung 28 Zuführung
Fortsetzung der Bezugszeichenliste
Fiα. 2
16 Homogenisator
1.2 Pumpe
1.3 Hygienisierungsvorrichtung
1.4 Pumpe
1.5 Speicher oder Vorbehandlungsreaktor
1.6 Pumpe
1.7 Hydrolysereaktor
1.8 Kompressor
1.9 Abluftfilter
1.10 Pumpe
1.11.1 Methanisierungsreaktor
1.11.2 Methanisierungsreaktor l.12 Pumpe
1.13.1 Absetzbehälter
1.13.2 Absetzbehälter
1.14 Pumpe
1.15 Prozeßwasserrückführung
1.16 Gasspeicher
1.17 Gasfackel
1.18 Blockheizkraftwerk
2 Zuführung Gärsubstrat
Claims
1. Anlage zur Verwertung von organischen Abfällen durch Kombination von Vergärung und Kompostierung, dadurch gekennzeichnet, daß sie eine Biogasanlage (1) zur Vergärung von strukturarmen organischen Abfällen beinhaltet, die über eine Rohrleitung (2) mit einem Tank für das Gärsubstrat (3) verbunden ist, und dieser Tank (3) mittels einer
Rohrleitung (4) mit einer Mietenkompostierungsanlage zur Kompostierung von strukturreichen organischen Abfällen (5) und/oder einer geschlossenen Kompostie- rungsanlage zur Kompostierung von gegebenenfalls verunreinigten strukturreichen organischen Abfällen und Abfällen aus der Biotonne (6) verbunden ist.
2. Anlage gemäß Anspruch 1, dadurch gekennzeichnet, daß der Biogasanlage (1) ein Homogenisator
(16) vorgeschaltet ist, der eingangsseitig mit den Zuführungen (8) und/oder (9) verbunden ist.
3. Anlage gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Mietenkompostierungsanlage (5) ein Shredder (17) und/oder ein Extruder (19) vorgeschaltet ist, wobei der Shredder (17) eingangsseitig mit der Zuführung (10) verbunden ist und der Extruder (19) eingangsseitig mit den Zuführungen (10) und (11) verbunden ist.
4. Anlage gemäß einem der Ansprüche l bis 3, dadurch gekennzeichnet, daß der geschlossenen Kompostierungsanlage (6) ein Shredder (18) und/oder ein Extruder (20) und/oder ein Sieb (21) vorgeschaltet ist, wobei der Shredder (18) eingangsseitig mit den Zuführungen (13) und/oder (14) verbunden ist, der Extruder (20) eingangsseitig mit den Zuführungen (25) und/oder (27) verbunden ist und das Sieb (21) eingangsseitig mit der Zuführung (15) verbunden ist.
5. Anlage gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Mietenkompostierungsanlage (5) mittels einer Abführung (22) und/oder die geschlossene Kompostierungsanlage (6) mittels einer Abführung (23) mit einer Mischanlage (24) verbunden sind.
6. Anlage gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Zuführung (26) den Extruder (19) und die Mischanlage (24) verbindet.
7. Anlage gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Biogasanlage (1) direkt mit der Zuführung (7) verbunden ist, die Mietenkompostierungsanlage (5) direkt mit der
Zuführung (12) und die geschlossene Kompostierungsanlage (6) direkt mit der Zuführung (28) .
8. Verfahren zur Verwertung von organischen Abfällen mittels eines kombinierten Kompostierungs- und Vergärungsverfahrens, dadurch gekennzeichnet, daß mittels einer Anlage gemäß der Ansprüche 1 bis 6 strukturarme und flüssige organische Abfälle in einer Biogasanlage (1) vergoren werden, das verbleibende Gärsubstrat als Nährstoffquelle aus dem Tank (3) über die Rohrleitung (4a) einer Mietenkompostierungs¬ anlage (5) zugeführt wird, die zur Kompostierung von strukturreichen organischen Abfällen dient, und/oder über die Rohrleitung (4b) einer geschlossenen Kompostierungsanlage (6) zugeführt wird, die zur Kompostierung von gegebenenfalls verunreinigten strukturreichen organischen Abfällen und von Abfällen aus der Biotonne dient, und so ein vollständiger Abbau der organischen Abfälle zu Biogas, Flüssigdünger und Kompost erfolgt, wobei der
Kompost anschließend gegebenenfalls über die
Zuführungen (22) und (23) in eine Mischanlage
(24) befördert und dort mit Zuschlagstoffen und gegebenenfalls über die Zuführung (26) mit geshreddertem und extrudiertem Holz aus dem Extruder (19) versetzt wird, so daß ein Pflanzsubstrat erhalten wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die strukturarmen und flüssigen organischen Abfälle, die in der Biogasanlage (l) vergoren werden, Speisereste,
Lebensmittelabfälle, Obst- und Gemüseabfälle, Tierkörper, Fette, Abwässer, Klärschlämme und Abfälle aus Chemie, Pharmazie und Kosmetik sind.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die strukturreichen organischen Abfälle, die in der Mietenkompostierungsanlage (5) oder in der geschlossenen Mietenkompostierungs¬ anlage (6) kompostiert werden, nichtverunreinigte Abfälle wie Holz, HolzSchnitzel, Pappe und Grünschnitt sind.
11. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die verunreinigten strukturreichen organischen Abfälle, die in der geschlossenen
Kompostierungsanlage (6) kompostiert werden, Problemabfälle sind, wie verunreinigte Böden, verunreinigte Holzabfälle und geruchsbelastete Abfälle.
12. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß als Zuschlagstoffe in die Mischanlage (24) quellfähige organische Polymere und gegebenenfalls lehm- oder tonhaltige Materialien gegeben werden.
13. Verfahren nach Anspruch 8 und 9, dadurch gekennzeichnet, daß der Biogasanlage (1) über die Zuführung
(7) die strukturarmen und flüssigen organischen Abfälle aus Chemie, Pharmazie und
Kosmetik sowie die Abwässer zugeführt werden sowie über die Zuführung (8) die Speisereste, Obst- und Gemüseabfälle und Tierkörper und über die Zuführung (9) die, gegebenenfalls in der Anlage 9a entpackten, Lebensmittelabfälle eingespeist werden, wobei die Speisereste, Lebensmittelabfälle, Obst- und Gemüseabfälle und Tierkörper vor dem Eintrag in die
Biogasanlage (l) gegebenenfalls im Homogenisator (16) homogenisiert werden.
14. Verfahren nach Anspruch 8 und 10, dadurch gekennzeichnet, daß der Mietenkompostierungsanlage (5) über die Zuführung (10) Holz, über die Zuführung (11) Pappe und über die Zuführung (12) Grünschnitt zugeführt werden, wobei das Holz vor dem Eintrag in die Mietenkompostierungsanlage (5) gegebenenfalls im Shredder (17) geshreddert und/oder im Extruder (19) extrudiert wird und auch die Pappe vor dem Eintrag in die Mietenkompostierungsanlage (5) gegebenenfalls im Extruder (19) extrudiert wird.
15. Verfahren nach Anspruch 8 und 11, dadurch gekennzeichnet, daß der geschlossenen Kompostierungsanlage (6) die strukturreichen Abfälle aus der Biotonne über die Zuführung (13), gegebenenfalls nach Sichtung, Sortierung und Trennung in der An¬ lage 13a, zugeführt werden, über die Zuführung (14) verunreinigtes Holz und über die Zufüh- rung (15) die Problemabfälle einschließlich, der verunreinigten Böden eingespeist werden, wobei das verunreinigte Holz vor dem Eintrag in die geschlossene Kompostierungsanlage (6) gegebenenfalls im Shredder (18) geshreddert und/oder im Extruder (20) extrudiert wird und die Problemabfälle vor dem Eintrag in die ge¬ schlossene Kompostierung (6) durch ein Sieb (21) geleitet werden.
16. Verfahren nach Anspruch 8 und 10, dadurch gekennzeichnet, daß der geschlossenen Kompostierungsanlage (6) nichtverunreinigte Abfälle zugeführt werden, wobei über die Zuführung (14) Holz, über die Zuführung (27) Pappe und über die Zuführung (28) Grünschnitt eingespeist wird, wobei das Holz vor dem Eintrag in die Anlage (6) gegebe- nenfalls im Shredder (18) geshreddert und/oder im Extruder (20) extrudiert wird und auch die Pappe vor dem Eintrag in die Anlage (6) gege¬ benenfalls im Extruder (20) extrudiert wird.
17. Biogasanlage zur zweistufigen Vergärung von organischen Abfallstoffen mit einem Gehalt an organischer Trockensubstanz von maximal 25%, umfassend einen Hydrolysereaktor (1.7) zur Hy¬ drolyse und Vorversauerung des organischen Materials, an den sich nachfolgend mindestens ein, vorzugsweise zwei, Methanisierungsreak- toren (1.11) zur thermophilen Vergärung des hydrolysierten und vorversäuerten Materials anschließt(en) , dadurch gekennzeichnet, daß der Hydrolysereaktor (1.7) mittels Druck¬ luft belüftbar ist, daß sich an den Methanisierungsreaktor (l.ll) mindestens zwei parallel geschaltete Absetzbe- hälter (1.13.1, 1.13.2) zur Aufkonzentrierung der entstehenden Biomasse im Prozeßwasser an¬ schließen, die alternierend betrieben werden und daß die Absetzbehälter (1.13.1, 1.13.2) über die Pumpe (1.14) und über die Rohrleitung
(1.15) zur Prozeßwasserrückführung mit dem
Hydrolysereaktor (1.7) und gegebenenfalls mit dem Methanisierungsreaktor (l.ll) verbunden sind.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE29605625U DE29605625U1 (de) | 1996-03-15 | 1996-03-15 | Anlage zur Vergärung von organischen Abfallstoffen |
DE29605625U | 1996-03-15 | ||
DE1996149963 DE19649963A1 (de) | 1996-11-20 | 1996-11-20 | Verfahren und Anlage zur Verwertung von organischen Abfällen |
DE19649963 | 1996-11-20 | ||
PCT/EP1997/001149 WO1997034851A1 (de) | 1996-03-15 | 1997-03-06 | Verfahren und anlage zur verwertung von organischen abfällen und neue biogasanlage |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0886631A1 true EP0886631A1 (de) | 1998-12-30 |
Family
ID=26031816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97914198A Withdrawn EP0886631A1 (de) | 1996-03-15 | 1997-03-06 | Verfahren und anlage zur verwertung von organischen abfällen und neue biogasanlage |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0886631A1 (de) |
JP (1) | JP2000506828A (de) |
KR (1) | KR20000064595A (de) |
CA (1) | CA2248588A1 (de) |
ID (1) | ID17696A (de) |
IL (1) | IL126005A0 (de) |
WO (1) | WO1997034851A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109382394A (zh) * | 2018-12-10 | 2019-02-26 | 安徽天健环保股份有限公司 | 一种餐厨垃圾快速降解就地处理工艺 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE20104047U1 (de) * | 2000-07-14 | 2001-10-25 | BEKON Energy Technologies GmbH, 84032 Landshut | Bioreaktor zur Methanisierung von Biomasse und eine Biogasanlage zur Erzeugung von thermischer, elektrischer oder mechanischer Energie aus Biomasse mit einem solchen Bioreaktor |
KR100370244B1 (ko) * | 2001-01-22 | 2003-02-05 | 효성에바라환경엔지니어링 주식회사 | 음식물 쓰레기의 처리와 재활용 방법 및 장치 |
CA2416690C (en) | 2003-01-20 | 2008-08-12 | Alberta Research Council Inc. | Process for removal and recovery of nutrients from digested manure or other organic wastes |
US7927491B2 (en) | 2007-12-21 | 2011-04-19 | Highmark Renewables Research Limited Partnership | Integrated bio-digestion facility |
DE102009009416A1 (de) * | 2009-02-18 | 2010-08-19 | Envirochemie Gmbh | Biogasgewinnung aus molkehaltigem Abwasser |
NL1037223C2 (en) * | 2009-08-24 | 2011-02-28 | Elsinga Beleidsplanning En Innovatie B V | Method for treating vegetable, fruit and garden waste. |
US8329455B2 (en) | 2011-07-08 | 2012-12-11 | Aikan North America, Inc. | Systems and methods for digestion of solid waste |
CN114291990B (zh) * | 2021-12-30 | 2022-12-09 | 南京大学 | 高效低耗提高剩余污泥水解酸化效果的装置及其运行方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH688193A5 (fr) * | 1992-01-06 | 1997-06-13 | Francois-Regis Mahrer | Procédé et installation de biométhanisation et compostage intégrés. |
NL9301341A (nl) * | 1993-07-30 | 1995-02-16 | Pacques Bv | Werkwijze en inrichting voor de biologische behandeling van afvalstoffen. |
CH686042A5 (de) * | 1994-03-02 | 1995-12-15 | Walter Schmid | Entsorgung von Presswasser einer Vergorungsanlage. |
DE4417248A1 (de) * | 1994-05-17 | 1995-11-23 | Gutehoffnungshuette Man | Verfahren und Vorrichtung zum biologischen Abbau von organischen Abfällen |
-
1997
- 1997-03-06 WO PCT/EP1997/001149 patent/WO1997034851A1/de not_active Application Discontinuation
- 1997-03-06 IL IL12600597A patent/IL126005A0/xx unknown
- 1997-03-06 CA CA002248588A patent/CA2248588A1/en not_active Abandoned
- 1997-03-06 KR KR1019980707268A patent/KR20000064595A/ko not_active Application Discontinuation
- 1997-03-06 EP EP97914198A patent/EP0886631A1/de not_active Withdrawn
- 1997-03-06 JP JP53308897A patent/JP2000506828A/ja active Pending
- 1997-03-14 ID ID970819A patent/ID17696A/id unknown
Non-Patent Citations (1)
Title |
---|
See references of WO9734851A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109382394A (zh) * | 2018-12-10 | 2019-02-26 | 安徽天健环保股份有限公司 | 一种餐厨垃圾快速降解就地处理工艺 |
Also Published As
Publication number | Publication date |
---|---|
KR20000064595A (ko) | 2000-11-06 |
ID17696A (id) | 1998-01-22 |
CA2248588A1 (en) | 1997-09-25 |
JP2000506828A (ja) | 2000-06-06 |
WO1997034851A1 (de) | 1997-09-25 |
IL126005A0 (en) | 1999-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pognani et al. | Substituting energy crops with organic fraction of municipal solid waste for biogas production at farm level: A full-scale plant study | |
DE102007004892A1 (de) | Verfahren und Vorrichtung zur Aufbereitung organischer Reststoffe aus Biogasanlagen | |
CN104370582B (zh) | 一种有机垃圾无臭好氧堆肥方法 | |
Garg et al. | Vermicomposting of agro-industrial processing waste | |
WO2009000309A1 (de) | Biogasanlage mit feststoffvergärung und methanerzeugung im perkolatumlauftank | |
CN1858025A (zh) | 污泥转化成肥料的处理工艺 | |
CN113042503A (zh) | 一种餐厨垃圾分解发酵实现完全资源化的方法 | |
WO1997034851A1 (de) | Verfahren und anlage zur verwertung von organischen abfällen und neue biogasanlage | |
DE102015015776A1 (de) | Verfahren und Vorrichtung zur Verwertung von Feucht- und Trockenhalmgut | |
EP0589155B1 (de) | Anaerobe Behandlung stark fetthaltiger Substanzen | |
DE4111204A1 (de) | Verfahren und technik zur entsorgung von kot/harngemischen, klaerschlamm, muell und dergleichen, sowie zur konditionierung von schnellwachsenden rohstoffen und futterverpilzung | |
DE102006035794A1 (de) | Verfahren und Anlage zur anaeroben Behandlung von zellstoffhaltigen Abfällen | |
DE19649963A1 (de) | Verfahren und Anlage zur Verwertung von organischen Abfällen | |
DE29605625U1 (de) | Anlage zur Vergärung von organischen Abfallstoffen | |
EP1769064B1 (de) | Biogasanlage zur bereitstellung von methanhaltigen gasen | |
DE102013102642A1 (de) | Verfahren und Vorrichtung zur Erzeugung von Biogas | |
KR102163126B1 (ko) | 유기성폐기물의 액비화 및 지중 유공관을 이용한 지중 시비 방법 | |
KR101042624B1 (ko) | 무폐수 음식물 쓰레기 퇴비화 장치 및 방법 | |
CH697136A5 (de) | Vergärungsverfahren und Anlage zum Vergären. | |
DE69131877T2 (de) | Verfahren zur Abtrennung von unerwünschten Fremdkörpern aus Haushaltsabfällen verschiedener Herkunft und anderen organischen Materialien | |
DE19602023C1 (de) | Verfahren zur Aufbereitung von biogenen Abfallstoffen | |
DE102011012285B4 (de) | Hybrid Fermentation | |
AT520801B1 (de) | Verfahren zur Verwertung von Biomasse | |
EP1676819B1 (de) | Verfahren zur umweltverträglichen Behandlung von Klärschlamm sowie Anordnung umfassend eine Kläranlage | |
DE19900071A1 (de) | Verfahren zum Herstellen eines Düngemittels aus den Endprodukten biochemischer Gärungsprozesse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980831 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19981217 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20001003 |