[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0886195B1 - Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie et procédé de fabrication de ce spiral - Google Patents

Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie et procédé de fabrication de ce spiral Download PDF

Info

Publication number
EP0886195B1
EP0886195B1 EP97810393A EP97810393A EP0886195B1 EP 0886195 B1 EP0886195 B1 EP 0886195B1 EP 97810393 A EP97810393 A EP 97810393A EP 97810393 A EP97810393 A EP 97810393A EP 0886195 B1 EP0886195 B1 EP 0886195B1
Authority
EP
European Patent Office
Prior art keywords
weight
spring
balance
oxygen
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810393A
Other languages
German (de)
English (en)
Other versions
EP0886195A1 (fr
Inventor
Jacques Baur
Pierre-Alain Walder
Patrick Sol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manufacture des Montres Rolex SA
Rolex SA
Original Assignee
Montres Rolex SA
Manufacture des Montres Rolex SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8230269&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0886195(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Montres Rolex SA, Manufacture des Montres Rolex SA filed Critical Montres Rolex SA
Priority to DE69710445T priority Critical patent/DE69710445T2/de
Priority to EP97810393A priority patent/EP0886195B1/fr
Priority to ES97810393T priority patent/ES2171872T3/es
Priority to SG1998001147A priority patent/SG65072A1/en
Priority to TW087109578A priority patent/TW354393B/zh
Priority to KR1019980022712A priority patent/KR100725400B1/ko
Priority to US09/098,754 priority patent/US5881026A/en
Priority to CN 98114991 priority patent/CN1129822C/zh
Priority to EA199800463A priority patent/EA001063B1/ru
Priority to JP17311198A priority patent/JP3281602B2/ja
Publication of EP0886195A1 publication Critical patent/EP0886195A1/fr
Priority to HK99101623A priority patent/HK1016703A1/xx
Publication of EP0886195B1 publication Critical patent/EP0886195B1/fr
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used

Definitions

  • the present invention relates to a self-compensating hairspring for mechanical balance-spring oscillator watch movement or other precision instrument, in paramagnetic alloy Nb-Zr containing between 5% and 25% in weight of Zr, obtained by cold rolling or drawing and having a Young's modulus thermal coefficient (CTE) adjustable by precipitation of the Zr-rich phases in the solid solution Nb-Zr, as well as a manufacturing process of a self-compensating hairspring for mechanical oscillator of timepiece.
  • CTE Young's modulus thermal coefficient
  • the coefficients of thermal expansion ⁇ b of the most widely used balance wheel materials are in the range of 10 to 20 ppm / ° C.
  • the spiral alloys must therefore have a corresponding self-compensation term A.
  • the precision desired for watches requires the ability to adjust the self-compensation term in manufacturing, in a controlled manner, with a tolerance of a few ppm / ° C around the value sought.
  • Ferromagnetic alloys based on iron, nickel or cobalt currently used for the production of hairsprings have an abnormally positive CTE in a range of approximately 30 ° C around room temperature, due to proximity of their Curie temperature. In the vicinity of this temperature, the magnetostrictive effects which decrease the Young's modulus of these alloys disappear, causing an increase in the module. Besides the fact that this range of temperature is relatively narrow, these alloys are sensitive to the effects of magnetic fields. These modify the elastic properties of hairsprings irreversibly and thereby change the natural frequency of the oscillator mechanical. In addition, the elastic properties of ferromagnetic alloys vary with the rate of work hardening cold, which requires controlling this parameter exactly during the production of the hairspring.
  • the CTE values sought for the balance springs produced with this family of alloys are adjusted by treatment thermal precipitation which also fixes the shape final of the hairspring by creep.
  • Document D3 cites in particular the alloys of Nb-Zr, Nb-Ti and Nb-Hf as being suitable for the manufacture of balance springs for movement oscillators watchmaking.
  • Document D2 gives an example of an Nb-Zr25% alloy.
  • the springs with abnormally CTE positive are made from the annealed alloy high temperature and then quickly cooled so that obtain a supersaturated solid solution. In this state, the alloy is then more than 85% cold deformed. This strong deformation induces a texture favorable to a CTE positive.
  • the alloy is finally heat treated in an interval of temperature which allows the precipitation of the solid solution supersaturated.
  • the phases that precipitate from the solid solution have lower CTE, which results a decrease in the overall CTE and allows its adjustment.
  • DE-B-1 291 906 has also proposed binary alloys Nb-Zr containing between 15 and 35% by weight, more particularly 25% by weight of Zr, for manufacturing balance springs for watch movement oscillators.
  • the hairsprings produced using these binary alloys are manufactured by taking all necessary measures to minimize any oxygen pollution. To this end, thermal precipitation treatments used to adjust the CTE are run under vacuum conditions pushed, the alloys subjected to these treatments being more wrapped in titanium sheets that serve as a trap for oxygen.
  • Nb-Zr alloys have a very great affinity for the oxygen which weakens them. This is how that the oxygen pollution of these alloys causes breaks during the work hardening operations necessary to the production of hairsprings or other precision springs.
  • a precipitation heat treatment must be performed in the two-phase field of Binary phase diagram Nb-Zr.
  • Various heat treatments were carried out at temperatures between 650 ° and 800 ° C in order to lower the CTE of the alloys containing 10% to 30% Zr.
  • the object of the present invention is to at least partially remedy the disadvantages of hairsprings self-compensators for mechanical oscillators, in particular for watch movements. More specifically, this invention aims to remedy the aforementioned drawbacks linked to self-compensating hairsprings in paramagnetic alloys and more specifically to Nb-Zr alloys.
  • this invention firstly relates to a self-compensating hairspring for mechanical oscillator watch movement or other precision instrument, in paramagnetic alloy Nb-Zr containing between 5% and 25% in weight of Zr, of the aforementioned type, as defined in claim 1.
  • This invention also relates to a manufacturing process of such a self-compensating balance spring for an oscillator mechanical clockwork according to claim 7.
  • the ferromagnetic alloys currently used are only self-compensating in a low temperature range and their Young's modulus undergoes variations irreversible, for example in the presence of fields magnetic, so that the natural frequency of the oscillator mechanical associated with such a hairspring is likely to change over time.
  • the solution proposed by the present invention provides therefore a decisive improvement compared to self-compensating hairsprings state of the art, since such hairsprings allow precise adjustment of their term autocompensation, Young's modulus of paramagnetic alloy being, moreover, insensitive to magnetic fields and at the rate of cold work hardening and finally, the range in which the CTE is abnormally positive and therefore allows self-compensation to manifest, goes from about 30 ° C around room temperature at around 100 ° C.
  • Figure 3 shows the case of 10% -23% Zr alloys containing approximately 1000 ppm by weight of oxygen, subjected to a 3 hour tempering treatment at 750 ° C.
  • this income makes it possible to adjust the CTE to the desired values for self-compensating hairsprings (0 to 20 ppm / ° C), with alloys containing 10% -13% and 18% -22% of Zr.
  • the recommended tempering temperatures are between 700 ° and 850 ° C.
  • the mechanical properties of the hairspring completed decrease. It is possible to improve these mechanical properties by adding at least one element likely to harden, chosen from among the elements following in proportions of between 0.01% and 5% in weight: Be, Al, Si, Ge, Sc, Y, La, Ti, Hf, V, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au.
  • at least one element likely to harden chosen from among the elements following in proportions of between 0.01% and 5% in weight: Be, Al, Si, Ge, Sc, Y, La, Ti, Hf, V, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au.
  • doping elements than oxygen such as nitrogen, carbon, boron or phosphorus can be added, either at the same time or after the doping treatment by the oxygen used to allow the adjustment of the CTE by precipitation of Zr-rich phases. As will be seen thereafter, we almost always find some proportion of nitrogen in addition to oxygen in the alloy.
  • the Nb-Zr alloy is poured under high vacuum in an oven with electronic bombardment.
  • the bars obtained are then sheathed, for example by a sheath of copper alloy, nickel or stainless steel, according to usual procedure for this type of Nb-Zr alloy, to keep it safe from oxygen.
  • These bars are then rolled or drawn to cold to a diameter between 0.05 and 1.5mm, in intercalating, if necessary, intermediate anneals.
  • the wire obtained is then taken out of its protective sheath to be subjected to an oxygen doping operation according to a known technique, either by anodic oxidation, either by thermal oxidation.
  • anodic oxidation either by thermal oxidation.
  • the oxygen concentration introduced is controlled by the choice of wire diameter, anodizing voltage, duration of voltage application, temperature and the composition of the electrolyte.
  • the oxygen concentration introduced is controlled by the choice of wire diameter, the temperature, pressure and type of oxidizing gas, as well only by the duration of the treatment.
  • the wire After the oxygen doping operation, the wire is cold deformed until a corresponding section is obtained to that of the hairspring. This wire is then wound into shape spiral, then it is heat treated to fix its form by creep and adjust the CTE to the value sought in depending on the type of alloy, as indicated above.
  • the quantities of oxygen, of nitrogen, depending on the case may be significantly greater than the quantities appearing in this table I.
  • the quantities indicated in this table are those which serve to allow the CTE of the hairspring to be adjusted, generally between 0 and 20 ppm / ° C, by controlled precipitation of the Zr-rich phases.
  • the higher proportion of interstitial doping agent is not critical provided that it is at least above a lower limit situated around 600-800 ppm by weight. Zr (%) weight ⁇ (mm) Temp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Springs (AREA)
  • Adornments (AREA)
  • Slot Machines And Peripheral Devices (AREA)

Description

La présente invention se rapporte à un spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Zr contenant entre 5% et 25% en poids de Zr, obtenu par laminage ou tréfilage à froid et possédant un coefficient thermique du module de Young (CTE) réglable par précipitation des phases riches en Zr dans la solution solide Nb-Zr, ainsi qu'à un procédé de fabrication d'un spiral auto-compensateur pour oscillateur mécanique de pièce d'horlogerie.
On sait que la précision des montres mécaniques dépend de la stabilité de la fréquence propre de l'oscillateur formé du balancier-spiral. Lorsque la température varie, les dilatations thermiques du spiral et du balancier, ainsi que la variation du module de Young du spiral modifient la fréquence propre de cet ensemble oscillant, perturbant la précision de la montre.
Toutes les méthodes proposées pour compenser ces variations de fréquence sont basées sur la considération que cette fréquence propre dépend exclusivement du rapport entre la constante du couple de rappel exercé par le spiral sur le balancier et le moment d'inertie de ce dernier, comme indiqué dans la relation suivante: F= 1     C I    F = fréquence propre de l'oscillateur
avec C = constante du couple de rappel exercé par le spiral de l'oscillateur
   I = moment d'inertie du balancier de l'oscillateur
Depuis la découverte des alliages à base de Fe-Ni possédant un coefficient thermique du module de Young (ci-après CTE) positif, la compensation thermique de l'oscillateur mécanique est obtenue en ajustant le CTE du spiral en fonction des coefficients de dilatation thermique du spiral et du balancier. En effet, en exprimant le couple et l'inertie à partir des caractéristiques du spiral et du balancier, puis en dérivant l'équation (1) par rapport à la température, on obtient la variation thermique de la fréquence propre:
Figure 00020001
   avec:
  • E: module de Young du spiral de l'oscillateur
  • 1 / E dE / dT= CTE = coefficient thermique du module de Young du spiral de l'oscillateur
  • αs : coefficient de dilatation thermique du spiral de l'oscillateur
  • αb ; coefficient de dilatation thermique du balancier de l'oscillateur
  • En ajustant le terme d'autocompensation A = ½(CTE+3α s ) à la valeur du coefficient de dilatation thermique du balancier, il est possible d'annuler l'équation (2). Ainsi, la variation thermique de la fréquence propre de l'oscillateur mécanique peut être éliminée.
    Les coefficients de dilatation thermique αb des matériaux pour balanciers les plus utilisés, comme les alliages de cuivre, d'argent, d'or, de platine ou d'acier se situent dans un domaine de l'ordre de 10 à 20 ppm/°C. Pour compenser les effets des variations de température sur la fréquence propre des oscillateurs, les alliages pour spiraux doivent donc avoir un terme d'autocompensation A correspondant. La précision désirée pour les montres exige de pouvoir ajuster en fabrication, de manière contrôlée, le terme d'autocompensation avec une tolérance de quelques ppm/°C autour de la valeur recherchée.
    Les alliages ferromagnétiques à base de fer, nickel ou cobalt utilisés actuellement pour la fabrication des spiraux possèdent un CTE anormalement positif dans une plage d'environ 30°C autour de la température ambiante, dû à la proximité de leur température de Curie. Au voisinage de cette température, les effets magnétostrictifs qui diminuent le module de Young de ces alliages disparaissent, entraínant une augmentation du module. Outre le fait que cette plage de température est relativement étroite, ces alliages sont sensibles aux effets des champs magnétiques. Ceux-ci modifient les propriétés élastiques des spiraux de manière irréversible et changent de ce fait la fréquence propre de l'oscillateur mécanique. En outre, les propriétés élastiques des alliages ferromagnétiques varient avec le taux d'écrouissage à froid, ce qui nécessite de contrôler exactement ce paramètre lors de la fabrication du spiral.
    Les valeurs de CTE recherchées pour les spiraux réalisés avec cette famille d'alliages sont ajustées par un traitement thermique de précipitation qui fixe également la forme définitive du spiral par fluage.
    On a déjà proposé dans le CH-551 032 (D1), dans le CH-557 557 (D2) et dans le DE-C3-15 58 816 (D3) des alliages paramagnétiques à forte susceptibilité magnétique et coefficient thermique de la susceptibilité négatif, comme alternative aux alliages ferromagnétiques pour la fabrication de spiraux autocompensateurs et de ressorts de précision. Ces alliages possèdent un CTE anormalement positif et ont l'avantage d'avoir des propriétés élastiques insensibles aux champs magnétiques. Leurs propriétés élastiques dépendent de la texture créée lors du tréfilage du spiral, mais peu du taux d'écrouissage, au contraire des alliages ferromagnétiques. De plus, comme mentionné dans le document D3, ces alliages offrent un domaine de compensation thermique des oscillateurs mécaniques qui s'étend sur plus de 100°C autour de la température ambiante.
    Les causes physiques qui créent le CTE anormalement positif de ces alliages paramagnétiques sont expliquées dans les documents susmentionnés. Selon eux, ces alliages possèdent une forte densité d'états électronique au niveau de Fermi, ainsi qu'un fort couplage électron-phonon, ce qui engendre ce comportement anormal du CTE.
    Le document D3 cite en particulier les alliages de Nb-Zr, Nb-Ti et Nb-Hf comme étant susceptibles de convenir à la fabrication de spiraux pour oscillateurs de mouvements d'horlogerie. Le document D2 donne un exemple d'alliage Nb-Zr25%. Selon ces documents, les ressorts avec CTE anormalement positif sont fabriqués à partir de l'alliage recuit à haute température puis refroidi rapidement de manière à obtenir une solution solide sursaturée. Dans cet état, l'alliage est ensuite déformé à froid à plus de 85%. Cette forte déformation induit une texture favorable à un CTE positif. Pour ajuster le CTE à la valeur désirée, l'alliage est finalement traité thermiquement dans un intervalle de température qui permet la précipitation de la solution solide sursaturée. Les phases qui précipitent à partir de la solution solide ont des CTE plus faibles, ce qui entraíne une diminution du CTE global et permet son ajustement.
    On a également proposé dans le DE-B-1 291 906 (D4) des alliages binaires Nb-Zr contenant entre 15 et 35% en poids, plus particulièrement 25% en poids de Zr, pour fabriquer des spiraux pour oscillateurs de mouvements d'horlogerie.
    Les spiraux réalisés à l'aide de ces alliages binaires sont fabriqués en prenant toutes les mesures nécessaires pour minimiser toute pollution par l'oxygène. A cet effet, les traitements thermiques de précipitation utilisés pour ajuster le CTE sont exécutés dans des conditions de vide poussé, les alliages soumis à ces traitements étant de plus enveloppés dans des feuilles de titane qui servent de piège pour l'oxygène.
    On sait en effet que les alliages Nb-Zr ont une très grande affinité pour l'oxygène qui les fragilise. C'est ainsi que la pollution par l'oxygène de ces alliages entraíne des ruptures lors des opérations d'écrouissage nécessaires à la production des spiraux ou autres ressorts de précision.
    Ces alliages ayant un coefficient de dilatation thermique d'environ 7 ppm/°C, l'équation (2) montre que leur CTE doit être compris dans l'intervalle d'environ 0 à 20 ppm/°C pour permettre la compensation des balanciers utilisés couramment dans les montres. Cependant, comme le montre le document "Anomalien der Temperaturabhängigkeit des Elastizizätsmoduls von Niob-Zirkonium-Legierung und reinem Niob" de H. Albert, I. Pfeiffer, Z. Metallkde. 58, 311 (1967) (D5), les alliages binaires en solution solide contenant environ 10% à 30% de Zr ont des CTE, à température ambiante, supérieurs aux valeurs recherchées, comme on peut également le voir sur nos mesures représentées par le diagramme de la figure 1 annexée.
    Pour abaisser le CTE, un traitement thermique de précipitation doit être effectué dans le domaine biphasé du diagramme de phase binaire Nb-Zr. Divers traitements thermiques ont été effectués à des températures comprises entre 650° et 800°C dans le but d'abaisser le CTE des alliages contenant 10% à 30% de Zr.
    Les valeurs obtenues après traitements à 650° et 750°C sont données dans le diagramme de la figure 2. Ces traitements thermiques abaissent fortement le CTE des alliages contenant plus de 23% en poids de Zr. Par contre, on constate que pour les concentrations de Zr inférieures à 23%, le CTE ne peut être abaissé aux valeurs désirées pour les spiraux, malgré des temps de traitement très longs.
    Ceci est confirmé par le document D5 dont l'un des auteurs est l'inventeur du document D4, où des traitements de 64h à 600°C ont été réalisés pour des alliages comportant de 19% à 33% en poids de Zr. En effet, pour des concentrations supérieures ou égales à 25% en poids de Zr, le CTE à température ambiante chute durant le traitement thermique à des valeurs très négatives, alors que, toujours selon ce même document D4, pour les concentrations de 19% et 22%, des valeurs proches de 0 ppm/°C sont obtenues. Ces valeurs, après traitement thermique, sont inférieures à celles mesurées au cours de nos essais et dont les résultats font l'objet du diagramme de la figure 2. Cette différence s'explique par la température plus basse choisie dans le document D5 pour le traitement thermique.
    Les CTE mesurés pour les alliages avec 19% et 22% en poids de Zr et traités pendant 64h à 600°C conviendraient à la fabrication de spiraux. Par contre, les essais que nous avons réalisés montrent que ces conditions de traitement ne permettent malheureusement pas d'obtenir une fixation de la forme du spiral par fluage lorsque la concentration de Zr est inférieure à 20% en poids. Pour le reste, la durée de traitement thermique nécessaire pour obtenir un CTE apte à l'obtention de spiraux autocompensateurs est beaucoup trop longue dans le cas d'une production industrielle.
    Ainsi, les essais que nous avons faits, qui se trouvent confirmés par le document D5, montrent que les alliages binaires Nb-Zr contenant moins de 23% en poids de Zr (voir fig. 2) ne conviennent pas à la fabrication de spiraux autocompensateurs pour oscillateurs mécaniques de mouvements d'horlogerie, contrairement à ce qui est affirmé, sur la base d'aucun essai pratique, par D4 (dont l'inventeur est co-auteur de D5).
    Alors que tout l'état de l'art dans le domaine de la fabrication d'alliages Nb-Zr préconise de minimiser par tous les moyens la pollution par l'oxygène afin d'éviter les ruptures fragiles lors des opérations de déformation, comme ceci ressort en particulier du document D4 qui recommande expressément d'effectuer le traitement thermique des alliages binaires Nb-Zr de manière à maintenir la concentration d'oxygène aussi faible que le permettent les procédés de fabrication, nous avons choisi de doper les alliages Nb-Zr avec de l'oxygène pour faciliter la précipitation des phases riches en Zr. Il est en effet connu de "Natur, Grösse und Verteilung von Gitterstörungen und ihr Einfluss auf Hochfeldeigenschaften des Typ-III-Supraleiters Nb-Zr25" de H. Hillmann, I. Pfeiffer, Z. Metallkde. 58, 129 (1967) (D6), que l'oxygène, même en concentration faible d'environ 1000 ppm en poids, modifie le diagramme de phase des alliages binaires de Nb-Zr contenant 25% en poids de Zr et accélère la précipitation des phases riches en Zr.
    Contrairement à ce qui est admis depuis plus de 25 ans dans l'état de la technique relatif à la fabrication de spiraux autocompensateurs pour oscillateurs mécaniques de pièces d'horlogerie en alliage Nb-Zr, les inventeurs de la présente invention ont découvert que le dopage de ces alliages contenant entre 5% et 25% en poids de Zr se révèle extrêmement bénéfique dans la mesure où il permet de précipiter les phases riches en Zr dans ces alliages, par des traitements thermiques effectués à des températures et à des durées compatibles avec la fabrication de tels spiraux.
    Par conséquent, le but de la présente invention consiste à remédier au moins en partie aux inconvénients des spiraux autocompensateurs pour oscillateurs mécaniques, notamment pour mouvements d'horlogerie. Plus particulièrement, cette invention a pour but de remédier aux inconvénients susmentionnés liés aux spiraux autocompensateurs en alliages paramagnétiques et plus spécifiquement aux alliages Nb-Zr.
    A cet effet, cette invention a tout d'abord pour objet un spiral autocompensateur pour oscillateur mécanique de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Zr contenant entre 5% et 25% en poids de Zr, du type susmentionné, tel que défini par la revendication 1.
    Cette invention a également pour objet un procédé de fabrication d'un tel spiral autocompensateur pour oscillateur mécanique de mouvement d'horlogerie, selon la revendication 7.
    D'autres particularités de cette invention font l'objet de revendications dépendantes respectivement des deux revendications principales susmentionnées relatives à un spiral autocompensateur et à son procédé de fabrication.
    Les avantages de la présente invention sont considérables, dans la mesure elle permet en fait, pour la première fois, d'apporter une solution véritablement industrielle par laquelle il devient possible d'ajuster avec précision et en toute connaissance de cause, le CTE d'un alliage paramagnétique et donc le terme d'autocompensation d'un spiral auto-compensateur pour oscillateur mécanique de mouvement d'horlogerie réalisé en un tel alliage. En effet, jusqu'ici et en l'absence de dopage par un agent interstitiel contenant de l'oxygène, il était impossible de fabriquer de tels spiraux en alliage binaire Nb-Zr en dessous de 20% en poids de Zr, pour les raisons invoquées précédemment. De plus, comme on l'expliquera par la suite, il s'avère que dans la gamme de ces alliages comprenant entre 20 et 25% en poids de Zr, l'ajustement du CTE par traitement thermique est très dépendant de la concentration d'oxygène. Or, étant donné qu'avec les solutions proposées dans l'état de l'art, en particulier avec celle du document D4, on ne contrôlait pas la concentration d'oxygène qui fluctuait suivant les conditions opératoires entre deux séries de spiraux, il était impossible, en l'absence de la connaissance de la teneur en oxygène et de son rôle dans l'ajustement du CTE, de contrôler avec précision ce CTE et donc le terme d'autocompensation du spiral fabriqué.
    Par ailleurs, les alliages ferromagnétiques utilisés actuellement ne sont autocompensateurs que dans une faible plage de température et leur module de Young subit des variations irréversibles, par exemple en présence des champs magnétiques, de sorte que la fréquence propre de l'oscillateur mécanique associé à un tel spiral est susceptible de se modifier avec le temps.
    La solution proposée par la présente invention apporte donc une amélioration décisive par rapport aux spiraux autocompensateurs de l'état de la technique, puisque de tels spiraux permettent un ajustement précis de leur terme d'autocompensation, le module de Young de l'alliage paramagnétique étant, par ailleurs, insensible aux champs magnétiques et au taux d'écrouissage à froid et enfin, la plage dans laquelle le CTE est anormalement positif et permet donc l'autocompensation de se manifester, passe d'environ 30°C autour de la température ambiante à environ 100°C.
    Il n'est donc pas exagéré de penser qu'il s'agit d'un progrès très important apporté dans le domaine des spiraux autocompensateurs en alliages paramagnétiques pour oscillateurs mécaniques de mouvements d'horlogerie, étant donné que cette invention permet, pour la première fois, de fabriquer de tels spiraux avec des taux de Zr compris entre 5% et 20%, domaine dans lequel la précipitation des phases riches en Zr est aisée à contrôler et est peu sensible à la concentration d'un agent interstitiel contenant de l'oxygène. C'est aussi la première fois que l'on propose de tels alliages avec une concentration de Zr comprise entre 20 et 25% en poids avec la possibilité de contrôler l'ajustement du CTE par un contrôle de la teneur en agent interstitiel contenant de l'oxygène dans l'alliage.
    D'autres particularités et avantages apparaítront dans la suite de la description, ainsi que dans le dessin qui l'accompagne qui illustre une série de diagrammes explicatifs relatifs aux alliages Nb-Zr.
  • La figure 1 est un diagramme du CTE à température ambiante des alliages binaires Nb-Zr en solution solide à l'état écroui;
  • La figure 2 est un diagramme du CTE à température ambiante des alliages binaires Nb-Zr après revenu;
  • La figure 3 est un diagramme du CTE à température ambiante des alliages Nb-Zr-O dopés d'environ 1000 ppm en poids d'oxygène;
  • La figure 4 est un diagramme illustrant le domaine de l'espace Nb-Zr-O utilisable pour les spiraux;
  • La figure 5 est un diagramme illustrant le CTE à température ambiante de l'alliage Nb-Zr23%, revenu 3h à 750°C, en fonction du taux d'oxygène.
  • La figure 3 montre le cas d'alliages 10%-23% de Zr contenant environ 1000 ppm en poids d'oxygène, soumis à un traitement de revenu de 3h à 750°C. On constate sur ce diagramme que ce revenu permet d'ajuster le CTE aux valeurs désirées pour les spiraux autocompensateurs (0 à 20 ppm/°C), avec des alliages contenant 10%-13% et 18%-22% de Zr. De manière générale, en dopant avec plus de 600 ppm en poids d'oxygène, il est possible d'ajuster le CTE entre 0 et 20 ppm/°C pour tous les alliages de Nb contenant 5% à 23% en poids de Zr. Les températures de revenu préconisées sont comprises entre 700° et 850°C. Ces températures et les durées de traitement permettent d'effectuer simultanément le fixage par fluage de la forme du spiral. Grâce au dopage à l'oxygène, les concentrations de Zr nécessaires à la fabrication des spiraux peuvent donc être diminuées et comme on le verra, le contrôle du CTE est plus facile à effectuer si la concentration de Zr est inférieure à 20% en poids. Par ailleurs, la température de traitement qui peut être utilisée pour effectuer ce contrôle du CTE, est suffisamment élevée pour permettre la fixation par fluage de la forme du spiral, ce qui n'était pas possible auparavant avec des concentrations inférieures à 23% en poids de Zr, qui nécessitaient des températures de traitement de l'ordre de 600°C, c'est-à-dire inférieures à la température de fixation de la forme du spiral par fluage.
    La concentration optimale d'oxygène à introduire dans l'alliage dépend de la concentration de Zr. On peut distinguer trois domaines de concentration de Zr qui sont schématiquement illustrés dans le diagramme de la figure 4.
  • a) Dans le premier domaine que l'on peut situer entre 25% et 35% en poids de Zr, la concentration d'oxygène doit être maintenue la plus faible possible, soit moins de 500 ppm en poids environ. Des concentrations plus élevées entraínent des ruptures de fil au tréfilage et des précipitations des phases riches en Zr beaucoup trop rapides pour permettre de bien contrôler la valeur du CTE désiré pour le spiral autocompensateur.
  • b) entre 25% et 20% en poids de Zr, la concentration d'oxygène doit être maintenue dans une bande étroite augmentant d'environ 500-800 ppm en poids pour l'alliage 25% à environ 600-2000 ppm en poids pour l'alliage 20% de Zr. En dessous de ces valeurs en agent de dopage, la précipitation des phases riches en Zr est trop lente. Au-dessus, elle est trop rapide pour permettre la fabrication de spiraux autocompensateurs avec un CTE contrôlable. Dans ce domaine de concentration de Zr, nous avons observé une grande dépendance du CTE vis-à-vis de la concentration d'oxygène. Pour exemple, le diagramme de la figure 5 illustre les CTE obtenus avec des alliages Nb-Zr23% en poids, après 3h à 750°C, pour différentes concentrations d'oxygène. On voit que le CTE passe de valeurs trop positives à des valeurs trop négatives sur quelques dizaines de ppm en poids d'oxygène. Cette sensibilité oblige de contrôler précisément la concentration d'oxygène pour garantir la reproductibilité des valeurs de CTE des spiraux autocompensateurs fabriqués avec ces alliages, ce qui est difficile à obtenir et à reproduire.
  • c) Dans le domaine compris entre 5% et 20% en poids de Zr, il faut introduire au moins 600 ppm en poids d'oxygène pour permettre une précipitation des phases riches en Zr et donc un ajustement contrôlable de la valeur du CTE. Pour ces concentrations en Zr, on observe une très faible sensibilité de la valeur du CTE par rapport à la concentration de l'alliage en oxygène. Aucune concentration supérieure d'oxygène n'a été mise en évidence dans les alliages réalisés au cours de nos essais. Cette limite doit certainement exister, ne serait-ce que pour des raisons de fragilité des alliages lorsque la concentration d'oxygène augmente trop, mais elle n'a pas affecté nos expériences. Compte tenu de ces constatations nous n'avons pas jugé utile de définir une limite supérieure qui ne présente en pratique aucun intérêt pour le résultat recherché, puisque ce résultat peut être obtenu de manière parfaitement reproductible sans connaítre cette limite supérieure et compte tenu du fait que c'est de toute façon dans ce domaine de l'alliage Nb-Zr que la concentration d'oxygène est le moins critique pour autant que l'on prenne soin d'atteindre au moins la limite inférieure susmentionnée. Typiquement nous pouvons dire qu'il est possible, dans tous les cas, d'atteindre l'objet de la présente invention en dopant l'alliage Nb-Zr de ce domaine (5%-20% de Zr) entre 600 et 1500 ppm en poids d'oxygène.
  • Au-dessus de 25% en poids de Zr, d'une part, l'alliage est difficile à travailler et, d'autre part, compte tenu des vitesses de précipitation plus rapides, il est très difficile de contrôler le CTE de manière reproductible. Au contraire, on a pu constater combien il est plus aisé de travailler avec des alliages Nb-Zr comprenant moins de 25%, de préférence, moins de 20% en poids de Zr.
    On a en effet constaté que la résistance à la déformation diminue et la ductilité augmente lorsque la concentration en Zr baisse. Par contre, les propriétés mécaniques du spiral terminé diminuent. Il est possible d'améliorer ces propriétés mécaniques en ajoutant dans l'alliage au moins un élément susceptible de le durcir, choisi parmi les éléments suivants dans des proportions comprises entre 0,01% et 5% en poids: Be, Al, Si, Ge, Sc, Y, La, Ti, Hf, V, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au.
    D'autres éléments dopants que l'oxygène, tels que l'azote, le carbone, le bore ou le phosphore peuvent être ajoutés, soit en même temps, soit après le traitement de dopage par l'oxygène utilisé pour permettre le réglage du CTE par la précipitation des phases riches en Zr. Comme on le verra par la suite, on trouve pratiquement toujours une certaine proportion d'azote en plus de l'oxygène dans l'alliage.
    Une fois la mise en forme du spiral complètement terminée, il est possible d'effectuer une opération de dopage supplémentaire avec un gaz contenant au moins un des éléments dopants susmentionnés utilisé pour durcir le spiral. Ce traitement rendra évidemment le spiral plus cassant, ce qui ne présente plus la même importance une fois que sa mise en forme est terminée. Il peut par conséquent être intéressant d'augmenter la dureté et les propriétés mécaniques du spiral terminé, bien que le dopage à l'oxygène pour régler le CTE contribue déjà au durcissement du spiral. Bien entendu, ce traitement doit être réalisé à une température qui n'atteint pas la température de réglage du CTE, c'est-à-dire à une température qui ne dépasse pas 650°C.
    Exemples
    Nous allons décrire maintenant une série d'exemples relatifs au procédé de fabrication de spiraux autocompensateurs selon la présente invention. Nous donnerons tout d'abord les conditions opératoires générales applicables à l'ensemble des exemples et nous donnerons ensuite un tableau relatif à différents alliages réalisés à partir de ces conditions opératoires.
    L'alliage de Nb-Zr est coulé sous haut vide dans un four à bombardement électronique. Les barres obtenues sont alors gainées, par exemple par une gaine d'alliage de cuivre, de nickel ou d'acier inoxydable, selon une procédure habituelle pour ce type d'alliage Nb-Zr, pour le maintenir à l'abri de l'oxygène. Ces barres sont ensuite laminées ou tréfilées à froid jusqu'à un diamètre compris entre 0,05 et 1,5mm, en intercalant, si besoin, des recuits intermédiaires.
    Le fil obtenu est alors sorti de sa gaine protectrice pour être soumis à une opération de dopage par l'oxygène selon une technique connue, soit par oxydation anodique, soit par oxydation thermique. Dans le cas de l'oxydation anodique, la concentration d'oxygène introduite est contrôlée par le choix du diamètre du fil, la tension d'anodisation, la durée d'application de la tension, la température et la composition de l'électrolyte.
    Pour l'oxydation thermique, la concentration d'oxygène introduite est contrôlée par le choix du diamètre du fil, la température, la pression et le type de gaz oxydant, ainsi que par la durée du traitement.
    Après l'opération de dopage à l'oxygène, le fil est déformé à froid jusqu'à l'obtention d'une section correspondant à celle du spiral. Ce fil est alors enroulé en forme de spirale, puis il est traité thermiquement pour fixer sa forme par fluage et ajuster le CTE à la valeur recherchée en fonction du type d'alliage, selon les indications susmentionnées.
    Nous donnons dans le tableau I qui suit, quelques exemples relatifs au dopage thermique par de l'oxygène pour différents alliages et différents diamètres de fil.
    Il est bien évident que lorsque l'on effectue un second traitement de dopage sur le spiral autocompensateur terminé, comme la possibilité en a été mentionnée précédemment, les quantités d'oxygène, d'azote, suivant les cas, pourront être sensiblement supérieures aux quantités apparaissant dans ce tableau I. Toutefois, les quantités indiquées dans ce tableau sont celles qui servent à permettre d'ajuster le CTE du spiral, généralement entre 0 et 20 ppm/°C, par une précipitation contrôlée des phases riches en Zr. Comme on l'a indiqué précédemment, dans la gamme d'alliage entre 5% et 20%, la proportion supérieure d'agent dopant interstitiel n'est pas critique pour autant quelle se situe au moins au-dessus d'une limite inférieure située vers 600-800 ppm en poids.
    Zr(%) poids ⊘(mm) Temp. (°C) Durée (min.) Gaz Pression (Pa) Oxygène (ppm) Azote (ppm)
    23 1 1080 120 N2/H2 105 1100 1200
    20 0,9 1100 60 - 10-4 1200 150
    20 0,15 450 2 air 105 900 70
    15 0,25 450 3 air 105 800 50
    10 0,25 450 3 air 105 950 50
    Par contre, une fois le CTE ajusté et quel que soit l'alliage, il est possible d'ajouter au moins l'un des agents interstitiels susmentionnés dans une seconde opération de dopage destinée à améliorer les propriétés mécaniques du spiral terminé. Au cours de cette seconde opération, d'autres éléments susceptibles de diffuser dans le spiral, comme le carbone, le bore ou le phosphore, pourraient également être ajoutés pour durcir.
    D'autres moyens d'améliorer les propriétés mécaniques du spiral pourraient consister, comme déjà mentionné, à incorporer dans l'alliage une certaine quantité de l'un des éléments énumérés dans le tableau II, dans des proportions pouvant varier entre 0,01% et 5% en poids.
    Elément N°colonne Durcit le Nb selon la littérature
    Be IIa
    Al IIIa *
    Si IVa
    Ge IVa *
    Sc IIIb
    Y IIIb
    La IIIb
    Ti IVb *
    Hf IVb *
    V Vb *
    Ta Vb *
    Cr VIb *
    Mo VIb *
    W VIb *
    Mn VIIb
    Re VIIb
    Fe VIIIb *
    Ru VIIIb
    Os VIIIb
    Co VIIIb
    Rh VIIIb
    Ir VIIIb
    Ni VIIIb *
    Pd VIIIb
    Pt VIIIb
    Cu Ib *
    Ag Ib
    Au Ib
    Certains des éléments du tableau II sont mentionnés dans la littérature comme permettant le durcissement, d'autres de ces éléments ont été sélectionnés en fonction de leur diagramme de phase avec le Nb.

    Claims (12)

    1. Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Zr contenant entre 5% et 25% en poids de Zr et possédant un coefficient thermique du module de Young (CTE) tel, qu'il permet d'annuler substantiellement l'expression: 1 E dE dT +3α s - 2α b    avec:
      E: module de Young du spiral de l'oscillateur
      1 / E dE / dT= CTE = coefficient thermique du module de Young du spiral de l'oscillateur
      αs : coefficient de dilatation thermique du spiral de l'oscillateur
      αb : coefficient de dilatation thermique du balancier de l'oscillateur,
         caractérisé par le fait qu'il comporte au moins 500 ppm en poids d'un agent dopant interstitiel formé au moins en partie d'oxygène.
    2. Spiral selon la revendication 1, caractérisé par le fait qu'il comprend entre 5% et 20% en poids de Zr et au moins 600 ppm en poids dudit agent dopant interstitiel.
    3. Spiral selon la revendication 1, caractérisé par le fait que, en vue de contrôler la précipitation des phases riches en Zr dans la solution solide Nb-Zr, lorsque ledit alliage de Nb-Zr comprend entre 20% et 25% en poids de Zr, ledit agent dopant interstitiel varie d'une proportion de 600 à 2000 ppm en poids pour une concentration de 20% en poids de Zr, à une proportion de 500 à 800 ppm en poids pour une concentration de 25% en poids de Zr.
    4. Spiral selon l'une des revendications précédentes, caractérisé par le fait que la proportion en oxygène dudit agent dopant interstitiel est comprise entre 20% et 100% en poids.
    5. Spiral selon l'une des revendications précédentes, caractérisé par le fait que, en plus dudit agent dopant destiné à contrôler la précipitation des phases riches en Zr dans la solution solide de Nb-Zr, il comprend au moins une proportion d'au moins un agent dopant durcisseur choisi parmi des éléments suivants: oxygène, azote, carbone, bore, phosphore.
    6. Spiral selon l'une des revendications précédentes, caractérisé par le fait qu'il comporte de plus entre 0,01% et 5% en poids d'au moins un élément choisi parmi les éléments suivants: Be, Al, Si, Ge, Sc, Y, La, Ti, Hf, V, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au.
    7. Procédé de fabrication d'un spiral autocompensateur en alliage Nb-Zr contenant 5% à 25% de Zr pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, selon lequel on forme une barre dudit alliage, on transforme cette barre en fil jusqu'à un diamètre compris entre 0,05 et 1,5mm par laminage ou tréfilage à l'abri de l'oxygène, on réduit par laminage ou tréfilage à froid le diamètre de ce fil en lui donnant une forme de ruban désirée pour le spiral, on enroule ce ruban en forme de spirale, on le soumet à au moins un traitement thermique à pression et/ou atmosphère contrôlée pour réduire le coefficient thermique du module de Young (CTE) par précipitation contrôlée de phases riches en Zr, d'une part et pour fixer la forme dudit spiral d'autre part, caractérisé en ce qu'on ajuste la proportion d'un agent interstitiel, formé au moins en partie d'oxygène, dans ledit fil, jusqu'à la proportion nécessaire à la précipitation contrôlée des phases riches en Zr et on chauffe le fil ainsi obtenu entre 650° et 880°C pendant 1h à 24h, pour ajuster le CTE à la valeur désirée.
    8. Procédé selon la revendication 7, caractérisé en ce qu'on forme un alliage de Nb-Zr comprenant entre 5% et 20% en poids de Zr et on ajuste ladite proportion dudit agent interstitiel dans ledit fil, par dopage d'au moins 600 ppm en poids dans une atmosphère contenant de l'oxygène.
    9. Procédé selon la revendication 7, caractérisé en ce qu'on forme un alliage de Nb-Zr comprenant entre 20% et 25% en poids de Zr et on ajuste ladite proportion dudit agent interstitiel dans ledit fil, par dopage variant d'une proportion de 600 à 2000 ppm en poids pour une concentration de 20% en poids de Zr, à une proportion de 500 à 800 ppm en poids pour une concentration de 25% en poids de Zr, dans une atmosphère contenant de l'oxygène.
    10. Procédé selon l'une des revendications 7 à 9, caractérisé en ce que l'on met sous vide ledit ruban enroulé en forme de spirale, pour effectuer ledit traitement thermique.
    11. Procédé selon l'une des revendications 7 à 9, caractérisé en ce que, après traitement thermique d'ajustement du CTE et de fixage de la forme du spiral autocompensateur, on soumet ledit spiral à un traitement thermique de durcissement à une température inférieure à 650°C dans une atmosphère contenant une pression partielle d'un gaz contenant au moins un élément susceptible de diffuser dans le spiral.
    12. Procédé selon la revendication 11, caractérisé par le fait que lesdits éléments sont choisis parmi les éléments suivants: oxygène, azote, carbone, bore, phosphore.
    EP97810393A 1997-06-20 1997-06-20 Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie et procédé de fabrication de ce spiral Expired - Lifetime EP0886195B1 (fr)

    Priority Applications (11)

    Application Number Priority Date Filing Date Title
    DE69710445T DE69710445T2 (de) 1997-06-20 1997-06-20 Selbstkompensierende Spiralfeder für mechanische Uhrwerkunruhspiralfederoszillator und Verfahren zu deren Herstellung
    EP97810393A EP0886195B1 (fr) 1997-06-20 1997-06-20 Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie et procédé de fabrication de ce spiral
    ES97810393T ES2171872T3 (es) 1997-06-20 1997-06-20 Espiral autocompensadora para oscilador mecanico de balancin-espiral para dispositivo de movimiento de relojeria y procedimiento de fabricacion de la espiral.
    SG1998001147A SG65072A1 (en) 1997-06-20 1998-05-27 Self compensating balance spring for a mechanical oscillator of a balance-spring/balance assembly of a watch movement and process for manufacturing this balance-spring
    TW087109578A TW354393B (en) 1997-06-20 1998-06-16 Self-compensating balance spring for a mechanical oscillator of a balance-spring balance assembly of a watch movement, and process for manufacturing this balance-spring
    US09/098,754 US5881026A (en) 1997-06-20 1998-06-17 Self-compensating balance spring for a mechanical oscillator of a balance-spring/balance assembly of a watch movement and process for manufacturing this balance-spring
    KR1019980022712A KR100725400B1 (ko) 1997-06-20 1998-06-17 시계용 무브먼트의 밸런스 스프링/밸런스 조립체의 기계 오실레이터용 자기보정 밸런스 스프링과, 이 밸런스 스프링의 제조방법
    CN 98114991 CN1129822C (zh) 1997-06-20 1998-06-19 钟表机芯游丝/摆轮的振子的自动补偿游丝及其制造方法
    EA199800463A EA001063B1 (ru) 1997-06-20 1998-06-19 Самокомпенсирующаяся балансовая пружина для механического осциллятора системы балансовая пружина/баланс хода часового механизма и способ ее изготовления
    JP17311198A JP3281602B2 (ja) 1997-06-20 1998-06-19 自己補償型ヒゲゼンマイおよびその製造方法
    HK99101623A HK1016703A1 (en) 1997-06-20 1999-04-15 Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP97810393A EP0886195B1 (fr) 1997-06-20 1997-06-20 Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie et procédé de fabrication de ce spiral

    Publications (2)

    Publication Number Publication Date
    EP0886195A1 EP0886195A1 (fr) 1998-12-23
    EP0886195B1 true EP0886195B1 (fr) 2002-02-13

    Family

    ID=8230269

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97810393A Expired - Lifetime EP0886195B1 (fr) 1997-06-20 1997-06-20 Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie et procédé de fabrication de ce spiral

    Country Status (11)

    Country Link
    US (1) US5881026A (fr)
    EP (1) EP0886195B1 (fr)
    JP (1) JP3281602B2 (fr)
    KR (1) KR100725400B1 (fr)
    CN (1) CN1129822C (fr)
    DE (1) DE69710445T2 (fr)
    EA (1) EA001063B1 (fr)
    ES (1) ES2171872T3 (fr)
    HK (1) HK1016703A1 (fr)
    SG (1) SG65072A1 (fr)
    TW (1) TW354393B (fr)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN103676600A (zh) * 2012-09-04 2014-03-26 斯沃奇集团研究和开发有限公司 具有匹配的游丝和摆轮的谐振器
    EP3252542A1 (fr) 2016-06-01 2017-12-06 Rolex Sa Pièce de fixation d'un ressort-spiral horloger
    EP3252541A1 (fr) 2016-06-01 2017-12-06 Rolex Sa Pièce de fixation d'un ressort-spiral horloger
    EP3736638B1 (fr) * 2019-05-07 2021-12-01 Nivarox-FAR S.A. Procede de fabrication d'un ressort spiral pour mouvement d'horlogerie

    Families Citing this family (41)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6465532B1 (en) 1997-03-05 2002-10-15 Csp Tecnologies, Inc. Co-continuous interconnecting channel morphology polymer having controlled gas transmission rate through the polymer
    EP0886195B1 (fr) * 1997-06-20 2002-02-13 Montres Rolex Sa Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie et procédé de fabrication de ce spiral
    DE69911913T2 (de) * 1999-03-26 2004-09-09 Rolex Sa Selbstkompensierende Spiralfeder für Uhrwerkspiralfederunruh und Verfahren zur Behandlung derselben
    US6329066B1 (en) 2000-03-24 2001-12-11 Montres Rolex S.A. Self-compensating spiral for a spiral balance-wheel in watchwork and process for treating this spiral
    US6696002B1 (en) 2000-03-29 2004-02-24 Capitol Security Plastics, Inc. Co-continuous interconnecting channel morphology polymer having modified surface properties
    DE60132878T2 (de) * 2001-05-18 2009-03-26 Rolex Sa Selbstkompensierende Feder für einen mechanischen Oszillator vom Unruh-Spiralfeder-Typ
    FR2842313B1 (fr) * 2002-07-12 2004-10-22 Gideon Levingston Oscilliateur mecanique (systeme balancier et ressort spiral) en materiaux permettant d'atteindre un niveau superieur de precision, applique a un mouvement d'horlogerie ou autre instrument de precision
    GB0324439D0 (en) * 2003-10-20 2003-11-19 Levingston Gideon R Minimal thermal variation and temperature compensating non-magnetic balance wheels and methods of production of these and their associated balance springs
    DE602004027471D1 (de) * 2004-06-08 2010-07-15 Suisse Electronique Microtech Unruh-Spiralfeder-Oszillator mit Temperaturkompensation
    WO2006123095A2 (fr) * 2005-05-14 2006-11-23 Gideon Levingston Spiral, ensemble balancier regule et procedes de fabrication
    US7704335B2 (en) * 2005-07-26 2010-04-27 General Electric Company Refractory metal intermetallic composites based on niobium-silicides, and related articles
    EP1791039A1 (fr) 2005-11-25 2007-05-30 The Swatch Group Research and Development Ltd. Spiral en verre athermique pour mouvement d'horlogerie et son procédé de fabrication
    WO2008029158A2 (fr) 2006-09-08 2008-03-13 Gideon Levingston Volant d'équilibrage à compensation thermique
    ATE530956T1 (de) * 2008-04-02 2011-11-15 Montres Breguet Sa Tonfeder für ein schlagwerk oder einen alarm in einer uhr
    EP2107437B1 (fr) * 2008-04-04 2011-12-21 Montres Breguet SA Timbre pour une sonnerie ou alarme d'une montre
    EP2264553B1 (fr) * 2009-06-19 2016-10-26 Nivarox-FAR S.A. Ressort thermocompensé et son procédé de fabrication
    EP2498151B1 (fr) 2011-03-09 2014-09-24 Rolex Sa Montre bracelet avec oscillateur atomique
    CH705655B1 (fr) 2011-10-24 2016-12-15 Rolex Sa Oscillateur de mouvement horloger.
    WO2013068365A1 (fr) * 2011-11-08 2013-05-16 The Swatch Group Research And Development Ltd Pièce d'horlogerie ou de bijouterie en or
    EP2788825A1 (fr) 2011-12-09 2014-10-15 Cartier Création Studio S.A. Procédé de réglage de la chronométrie d'un mouvement d'horlogerie destiné à fonctionner dans une atmosphère à basse pression
    EP2680090A1 (fr) * 2012-06-28 2014-01-01 Nivarox-FAR S.A. Ressort-moteur pour une pièce d'horlogerie
    US10372083B2 (en) 2012-07-06 2019-08-06 Rolex Sa Method for treating a surface of a timepiece component, and timepiece component obtained from such a method
    US9395692B2 (en) 2012-08-31 2016-07-19 Citizen Holdings Co., Ltd. Hairspring material for mechanical timepiece and hairspring using the same
    CN104797989B (zh) * 2012-11-16 2017-08-08 尼瓦洛克斯-法尔股份有限公司 对气候变化的敏感度降低的谐振器
    EP3176651B1 (fr) * 2015-12-02 2018-09-12 Nivarox-FAR S.A. Procédé de fabrication d'un ressort-spiral d'horlogerie
    US10338259B2 (en) 2015-12-14 2019-07-02 Covidien Lp Surgical adapter assemblies and wireless detection of surgical loading units
    EP3327151A1 (fr) 2016-11-04 2018-05-30 Richemont International S.A. Résonateur pour piece d'horlogerie
    FR3064281B1 (fr) * 2017-03-24 2022-11-11 Univ De Lorraine Alliage de titane beta metastable, ressort d'horlogerie a base d'un tel alliage et son procede de fabrication
    EP3422116B1 (fr) * 2017-06-26 2020-11-04 Nivarox-FAR S.A. Ressort spiral d'horlogerie
    EP3422115B1 (fr) 2017-06-26 2021-08-04 Nivarox-FAR S.A. Ressort spiralé d'horlogerie
    EP3502289B1 (fr) * 2017-12-21 2022-11-09 Nivarox-FAR S.A. Procédé de fabrication d'un ressort spiral pour mouvement d'horlogerie
    EP3502288B1 (fr) 2017-12-21 2020-10-14 Nivarox-FAR S.A. Procédé de fabrication d'un ressort spiral pour mouvement d'horlogerie
    EP3502786A1 (fr) 2017-12-22 2019-06-26 The Swatch Group Research and Development Ltd Balancier pour pièce d'horlogerie et procédé de fabrication d'un tel balancier
    EP3663867A1 (fr) 2018-12-05 2020-06-10 Cartier International AG Ressort spiral compensateur pour un mouvement de montre ou d'horloge fabriqué à partir d'un alliage niobium-molybdène
    EP3736639B1 (fr) 2019-05-07 2024-07-03 Nivarox-FAR S.A. Procede de fabrication d'un ressort spiral pour mouvement d'horlogerie
    EP3796101A1 (fr) * 2019-09-20 2021-03-24 Nivarox-FAR S.A. Ressort spiral pour mouvement d'horlogerie
    EP3828642A1 (fr) * 2019-11-29 2021-06-02 Nivarox-FAR S.A. Ressort spiral pour mouvement d'horlogerie et son procédé de fabrication
    EP3845971B1 (fr) * 2019-12-31 2024-04-17 Nivarox-FAR S.A. Procede de fabrication de ressort spiral pour mouvement d'horlogerie
    EP4039843A1 (fr) 2021-02-04 2022-08-10 Richemont International S.A. Alliage antiferromagnétique, son procédé de réalisation et composant de mouvement horloger fait de l'alliage
    EP4060425B1 (fr) * 2021-03-16 2024-10-16 Nivarox-FAR S.A. Spiral pour un mouvement horloger
    EP4060424A1 (fr) * 2021-03-16 2022-09-21 Nivarox-FAR S.A. Spiral pour mouvement d'horlogerie

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1291906B (de) * 1965-10-23 1969-04-03 Vacuumschmelze Gmbh Verwendung von binaeren Niob-Zirkonium-Legierungen fuer unmagnetische Federn und unmagnetische mechanische Schwingelemente und Verfahren zur Herstellung der erfindungsgemaess zu verwendenden Legierungen
    CH536362A (de) * 1966-04-22 1973-04-30 Straumann Inst Ag Metall- oder Halbleiterlegierung mit kleinen Temperaturkoeffizienten der Elastizität
    CH557557A (fr) * 1966-04-22 1974-12-31
    ES2020131A6 (es) * 1989-06-26 1991-07-16 Cabot Corp Procedimiento para la produccion de polvos de tantalo, niobio y sus aleaciones.
    EP0886195B1 (fr) * 1997-06-20 2002-02-13 Montres Rolex Sa Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie et procédé de fabrication de ce spiral

    Cited By (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN103676600A (zh) * 2012-09-04 2014-03-26 斯沃奇集团研究和开发有限公司 具有匹配的游丝和摆轮的谐振器
    CN103676600B (zh) * 2012-09-04 2016-09-07 斯沃奇集团研究和开发有限公司 具有匹配的游丝和摆轮的谐振器
    EP3252542A1 (fr) 2016-06-01 2017-12-06 Rolex Sa Pièce de fixation d'un ressort-spiral horloger
    EP3252541A1 (fr) 2016-06-01 2017-12-06 Rolex Sa Pièce de fixation d'un ressort-spiral horloger
    EP3736638B1 (fr) * 2019-05-07 2021-12-01 Nivarox-FAR S.A. Procede de fabrication d'un ressort spiral pour mouvement d'horlogerie

    Also Published As

    Publication number Publication date
    TW354393B (en) 1999-03-11
    CN1206861A (zh) 1999-02-03
    KR19990007057A (ko) 1999-01-25
    JPH1171625A (ja) 1999-03-16
    ES2171872T3 (es) 2002-09-16
    HK1016703A1 (en) 1999-11-05
    KR100725400B1 (ko) 2007-12-27
    JP3281602B2 (ja) 2002-05-13
    EA199800463A1 (ru) 1998-12-24
    DE69710445T2 (de) 2002-10-10
    EP0886195A1 (fr) 1998-12-23
    CN1129822C (zh) 2003-12-03
    EA001063B1 (ru) 2000-10-30
    DE69710445D1 (de) 2002-03-21
    SG65072A1 (en) 1999-05-25
    US5881026A (en) 1999-03-09

    Similar Documents

    Publication Publication Date Title
    EP0886195B1 (fr) Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie et procédé de fabrication de ce spiral
    EP3422116B1 (fr) Ressort spiral d'horlogerie
    EP3502785B1 (fr) Ressort spiral pour mouvement d'horlogerie et son procédé de fabrication
    EP1258786B1 (fr) Spiral auto-compensateur pour oscillateur mécanique balancier-spiral
    EP1039352B1 (fr) Spiral autocompensateur pour balancier-spiral de mouvement d'horlogerie et procédé de traitement de ce spiral
    EP3601628B1 (fr) Alliage de titane beta metastable, ressort d'horlogerie a base d'un tel alliage et son procede de fabrication
    EP3502289B1 (fr) Procédé de fabrication d'un ressort spiral pour mouvement d'horlogerie
    EP3502288B1 (fr) Procédé de fabrication d'un ressort spiral pour mouvement d'horlogerie
    FR3007853B1 (fr) Ressort d'horlogerie en acier inoxydable austenitique
    EP0864664A1 (fr) Procédé de fabrication d'une pièce superélastique en alliage de nickel et de titane
    CH706020B1 (fr) Ressort-moteur pour barillet de mouvement d'horlogerie présentant une durée de marche accrue.
    EP2447387B1 (fr) Ressort de barillet de pièce d'horlogerie
    EP3422115B1 (fr) Ressort spiralé d'horlogerie
    EP2924514B1 (fr) Ressort d'horlogerie en acier inoxydable austénitique
    EP3535425B1 (fr) Resonateur pour piece d'horlogerie
    EP4212966A1 (fr) Procede de limitation de la deformation d'une piece d horlogerie en silicium
    EP4267772A1 (fr) Pièces d'horlogerie amagnétiques et procédé de traitement thermomécanique pour l'obtention de telles pièces
    CH719498A2 (fr) Spiral, mouvement de pièce d'horlogerie et pièce d'horlogerie.
    EP4019459A1 (fr) Procédé de fabrication d'un ressort spiral thermocompensé
    CH719361A2 (fr) Procédé de limitation de la déformation d'une pièce d'horlogerie en silicium au cours d'une oxydation thermique.
    EP4121821A1 (fr) Procede de fabrication d'un composant horloger a base de silicium
    EP4111264A1 (fr) Composant horloger en silicium pour pièce d'horlogerie
    CH716974A2 (fr) Ressort spiral pour oscillateur balancier-spiral horloger et son procédé de fabrication.
    CH717018A2 (fr) Ressort spiral pour mouvement d'horlogerie et son procédé de fabrication.
    CH714903A2 (fr) Procédé de fabrication d'un ressort moteur d'horlogerie.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): CH DE ES FR GB IT LI

    17P Request for examination filed

    Effective date: 19990318

    AKX Designation fees paid

    Free format text: CH DE ES FR GB IT LI

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20010530

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): CH DE ES FR GB IT LI

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 69710445

    Country of ref document: DE

    Date of ref document: 20020321

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: MOINAS & SAVOYE SA

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020417

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2171872

    Country of ref document: ES

    Kind code of ref document: T3

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: NIVAROX-FAR SA

    Effective date: 20021112

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20030624

    Year of fee payment: 7

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040621

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050620

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20040621

    PLBD Termination of opposition procedure: decision despatched

    Free format text: ORIGINAL CODE: EPIDOSNOPC1

    PLBP Opposition withdrawn

    Free format text: ORIGINAL CODE: 0009264

    PLBM Termination of opposition procedure: date of legal effect published

    Free format text: ORIGINAL CODE: 0009276

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

    27C Opposition proceedings terminated

    Effective date: 20091201

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20160617

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20160616

    Year of fee payment: 20

    Ref country code: CH

    Payment date: 20160607

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: MONTRES ROLEX SA, CH

    Free format text: FORMER OWNER: MONTRES ROLEX SA, CH

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20160708

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 69710445

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20170619

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170619