EP0880732B1 - Method and device for examining and/or adjusting valves - Google Patents
Method and device for examining and/or adjusting valves Download PDFInfo
- Publication number
- EP0880732B1 EP0880732B1 EP97909134A EP97909134A EP0880732B1 EP 0880732 B1 EP0880732 B1 EP 0880732B1 EP 97909134 A EP97909134 A EP 97909134A EP 97909134 A EP97909134 A EP 97909134A EP 0880732 B1 EP0880732 B1 EP 0880732B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve
- flow
- throughflow
- ian
- iab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 19
- 239000000446 fuel Substances 0.000 claims description 21
- 238000012360 testing method Methods 0.000 claims description 6
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims 2
- 238000005259 measurement Methods 0.000 description 15
- 239000002699 waste material Substances 0.000 description 12
- 230000003068 static effect Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M65/00—Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
Definitions
- the invention relates to a method and a device for setting and / or testing valves according to General term of the independent claim.
- White spirit has a constant density and viscosity as well as high purity. For these reasons, this is White spirit very expensive. In addition, the Evaporation of the white spirit is a considerable burden for the environment and workshop personnel. The use of others Media for testing is problematic, as compared to the Fuel a different hydraulic behavior exhibit.
- the invention is based, with one Procedure for testing and adjusting valves Reduce costs and environmental impact. This task is characterized by those in the independent claim Features resolved.
- the valve is also a gaseous medium.
- This is a first Size the flow of the gaseous medium characterized and / or at least a second variable detected.
- FIG. 1 shows a rough schematic representation of the invention Device and Figures 2 and 3 flow diagrams for explanation of the method according to the invention.
- FIG. 1 the device according to the invention is rough shown schematically.
- a solenoid valve 100 is shown.
- This solenoid valve has a valve seat 105 and a valve chamber 110 Inlet 115 enters fuel in normal operation Valve chamber 110.
- a spring is with 120 and a valve needle designated 125.
- To move the valve needle is one Coil 130 provided.
- means 135 for Adjustment of the spring force and a means 140 for Adjustment of the stroke of the solenoid valve needle 125 is provided.
- the outlet of the valve is through a flow meter 140 with a pressure generator 145 in connection.
- the coil 130 is connected to a Supply voltage U applied.
- the second connection of the Coil 130 is connected to ground via a current measuring means 155 Connection.
- a control unit 160 is also provided. This Control unit 160 acts on switching means 150 Signals and processes the output signals of the Flow meter 140 and the current measuring means 155 and also applied in a preferred embodiment the setting means 140 and 135 with corresponding sizes.
- valve seat 105 In the de-energized state, the spring 120 presses the Valve needle 125 in the valve seat 105. In this when de-energized, the valve interrupts the connection between inlet 115 and outlet. By energizing the Coil 130 is applied a magnetic force against the Spring force or the mechanical force acts. This force causes the valve needle 125 from Valve seat 105 lifts off. The distance between valve seat 105 and valve needle 125 is referred to as stroke H.
- valves The procedure according to the invention is not in this way limited by valves. It can also be used by others controlled valves are used, in which by means of of a control signal released a certain volume becomes. This also applies to valves be used by a spring in its open State are kept and in their de-energized State of flow released.
- the solenoid valve with a defined voltage acted upon, that is, with a control signal one fixed length, the solenoid valve must have a certain length Hub H release the flow.
- the volume that during the Control flows through the valve depends on several Factors. For one thing, this is the speed at which the solenoid valve opens, i.e. with which one Speed of the stroke from zero to the maximum value increases. This size determines the dynamic flow of the Solenoid valve. This essentially depends on the Spring 120 off. With the setting means 135 this can Speed can be set. By means of the Adjustment means 135 is an adjustment of the dynamic Flow possible.
- the stroke is after a certain time at a certain control current, at different injectors different. thats why an adjusting device 140 is provided with which the stroke in static state set to a predeterminable value can be.
- the solenoid valve is constantly energized, the static flow is measured and the adjustment device 140 set so that a certain, desired static flow.
- the dynamic flow can also be carried out using compressed air.
- valves with dynamic control is essentially determined by the length of the drive pulse (Control pulse duration) compared to the pulse period, the static flow and the time course of the Difference between the mechanical and the magnetic Forces determined.
- the drive pulse duration corresponds to the time in which the Valve coil is energized.
- the pulse period corresponds to the sum of the time in which the valve is energized and is not energized.
- the static flow is Quantity that the valve is fully open during a flows through for a certain period of time.
- the dynamic flow is the amount that the valve during a given Period of time when it flows through with a certain Duty cycle is controlled. As a duty cycle, will the ratio between drive pulse duration and Pulse period called.
- the values of the dynamic and static flow are for fuel and gaseous substances usually differ.
- the pneumatic dynamic flow QPN is understood one the amount of gas given at a given Duty cycle flows through the valve.
- the differences between the individual solenoid valves that based in particular on the differences in the magnetic circuit, are inventively measured by measuring the static suit and waste flow detected.
- the three parameters of pneumatic, dynamic flow QPN, Starting current IAN and waste current IAB can be more easily Measure wisely. Starting from these sizes with a gaseous medium is measured on the dynamic Flow of fuel QK to be closed. To do this with few valves, especially in the pre-series of Flow of fuel measured. Then the three parameters pneumatic, dynamic flow QPN, Pickup current IAN and waste current IAB recorded and corresponding Conversion factors determined.
- the elimination of the hydraulic medium is advantageous the determination of the dynamic flow of fuel, because for measuring the flow the easily available and extremely environmentally friendly atmospheric air as gaseous Medium is used.
- the slow and expensive hydraulic Volume measurement is faster and cheaper pneumatic flow measurement replaced.
- the measurement of the static pull-in and waste flows are indicated by a simple measurement and display procedure determined.
- the parameters starting current IAN, waste current IAB and the pneumatic-dynamic flow QPN have a strong Dependence on fuel flow and are very simple and to determine quickly in series production.
- the device shown in FIG. 1 is suitable for this.
- the pressure generator 145 generates a specifiable pressure, with which is the outlet of the solenoid valve. Between that is the pressure generator and the outlet of the valve Flow measuring means 140 arranged.
- a pressure measuring device 140 an orifice plate is preferably used as a pressure measuring device 140. The measurement is done by acting on the valve, counter to normal flow direction, with a pneumatic pressure that preferably assumes values of approximately 600 millibars.
- the pneumatic-dynamic Flow indicates and the flow of the characterized gaseous medium, the coil 130 with a predetermined duty cycle.
- the coil is energized for 3 milliseconds, where the period, that is the distance between the The start of two energizations is 6 milliseconds.
- the Control frequency in this example is 166.7 Hz.
- a second variable is recorded, which is called Starting current IAN and / or referred to as waste current IAB becomes.
- the voltage U across the coil 130 is applied, continuously increased.
- the Coil current detected with the current measuring means 155 The opening of the injector is detected when the flow suddenly increases. This is a pressure drop in the Area of pressure generator 145 or of the flow measuring means 140 recognized. The pressure drop is around 25 mbar.
- the Current value at which the solenoid valve opens is called Starting current IAN and at which the solenoid valve closes when Waste current IAB designated.
- This measurement can be carried out automatically by the control unit 160, can be carried out manually or semi-automatically. So can for example, the measurement and the Adjustment of the valve automatically from the control unit 160 is executed. But it is also possible that the Control unit 160 performs the measurements and the Setting is carried out manually. It’s even possible that you work without a control unit. This means that the valve with a suitable signal generator Control signals is applied and the measurement and Settings are made manually.
- Sizes A, B, C and D are constants, that with a few copies of injectors same design must be determined.
- the sizes A, B and C are of a similar order of magnitude much smaller.
- FIG Setting The procedure according to the invention is shown in FIG Setting the valve using a flow chart shown.
- a first step 200 the valve in the measuring device installed and with a defined Control signal applied. It can go in or out normal flow direction of the valve.
- the Step 210 becomes the pull-in current IAN and in step 220 the Waste current IAB measured.
- the measurement of these first two Sizes are shown in more detail in FIG. 3.
- Step 230 the solenoid valve is also a fixed duty cycle.
- Step 240 takes the measurement of a first quantity, which is called of the pneumatic-dynamic flow QPN by means of the flow meter 140.
- step 245 based on these three Parameters with the above formula of these sizes corresponding dynamic flow for fuel QK certainly.
- the query 250 checks whether this value QK of deviates from an expected setpoint QKS. To do this for example, checks whether the difference between the dynamic flow for fuel QK and the expected Setpoint QKS is less than a threshold value S. Is this the If so, the injector is set correctly and the The checking and setting process ends in step 270.
- the Target values for the sizes QPN, IAN and IAB in advance for some Valves determined. In this case the calculation can be done in Step 245 is omitted. Then in step 250 the values QPN, IAN and / or IAB with the corresponding expected Compared values.
- a Adjustment of the valve if there is a discrepancy between the first size and a predefinable setpoint for the first Size and / or if there is a discrepancy between the second Size and a predefinable setpoint for the second size
- the hydraulic properties of the valve becomes one pneumatic and two electrical quantities used. These sizes are easy and quick to measure. Based on these measured quantities, a hydraulic size determined and the balancing means so set the hydraulic size to an expected Corresponds to the setpoint. Before the measurement, the Factors, A, B, C and D by measurement with fuel and with Air can be determined with a small number of valves.
- a voltage value U0 given. This voltage value is chosen so that none or only a very small current flows at which the The solenoid valve certainly does not open yet.
- Step 305 detects the pneumatic flow QPN0.
- step 310 the voltage value U um increases a predetermined value ⁇ U.
- Step 350 is the measurement of the new value QPN1 for the pneumatic flow.
- step 320 the difference ⁇ QPN between the old and the new value for the pneumatic flow determined.
- the subsequent query 325 checks whether this value is greater than a threshold. Is not this the case, that is, the pressure has not dropped and the Solenoid valve needle has not yet lifted off, so in Step 330 the old value QPN0 with the new value QPN1 is replaced and the voltage value is repeated in step 310 elevated.
- Query 325 recognizes that the pressure has dropped or the flow has increased, the Valve needle 125 is lifted and the starting current is IAN reached. In step 35, therefore Current measuring means 155 the current I measured and as Tightening current IAN saved. To capture the Starting current, the current value is ramped with a constant slope of, for example, 0.001 milliamps per Millisecond increased. Reaching the pull-in current will through continuous monitoring of the pneumatic Flow rate QPN determined. Accordingly, the Waste stream IAB proceeded. In step 340, the Voltage U is reduced by a predeterminable value ⁇ U. In Step 345 becomes the new flow rate value QPN1 measured and in step 350 with the old value QPN zero compared.
- step 360 Detects query 355 based on the difference ⁇ QPN Comparison with a threshold SW that the flow rate has not decreased, that is, the valve needle is still has not moved, step 360 is performed by the old one Value overwritten with the new value and then in Step 340 further reduces the voltage. Recognize that Query 355 a drop in the flow, so in Step 365 the current current value I recorded and as Waste stream IAB saved.
- the values for the control duration of 5 milliseconds and for the period duration of 10 milliseconds is only an example chosen. These values are chosen to be as small as possible because in in this case a better correlation between the hydraulic and pneumatic flows.
- the conversion of the parameters IAN, IAB and QPN via the Correlation in hydraulic flow is automatic in the control unit 160, so that to be set Target values directly fuel values can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Flow Control (AREA)
- Magnetically Actuated Valves (AREA)
- Measuring Volume Flow (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Einstellung und/oder Prüfung von Ventilen gemäß dem Oberbegriff des unabhängigen Anspruchs.The invention relates to a method and a device for setting and / or testing valves according to General term of the independent claim.
Es sind Verfahren zur Einstellung und/oder Prüfung von Ventilen, insbesondere von Einspritzventilen für Brennkraftmaschinen bekannt. Zur Einstellung des dynamischen Durchflusses von Einspritzventilen wird die hydraulische Durchflußmenge in der Fertigung gemessen und eingestellt.There are procedures for hiring and / or testing Valves, in particular of injection valves for Internal combustion engines known. For setting the dynamic The flow of injectors becomes hydraulic Flow rate measured and adjusted in production.
Bei der Einstellung des dynamischen Durchflusses von Ventilen wird das Ventil mit einem hochgenauen hydraulischen Medium, das im folgenden als Testbenzin bezeichnet wird, beaufschlagt. Durch definiertes Ansteuern und Messen des Durchflusses wird der tatsächliche Durchfluß erfaßt und das Ventil derart eingestellt, daß sich bei einer definierten Ansteuerung ein definierter Durchfluß einstellt. When setting the dynamic flow of Valves the valve with a highly accurate hydraulic Medium, which is referred to as white spirit below acted upon. By defined control and measurement of the The actual flow and the Valve set so that at a defined Control sets a defined flow.
Das Testbenzin weist eine konstante Dichte und Viskosität sowie eine hohe Reinheit auf. Aus diesen Gründen ist dieses Testbenzin sehr teuer. Darüber hinaus entsteht durch die Verdunstung des Testbenzins eine beträchtliche Belastung für die Umwelt und das Werkstattpersonal. Die Verwendung anderer Medien zur Prüfung ist problematisch, da diese gegenüber der Kraftstoff ein unterschiedliches hydraulisches Verhalten aufweisen.White spirit has a constant density and viscosity as well as high purity. For these reasons, this is White spirit very expensive. In addition, the Evaporation of the white spirit is a considerable burden for the environment and workshop personnel. The use of others Media for testing is problematic, as compared to the Fuel a different hydraulic behavior exhibit.
Der Erfindung liegt die Aufgabe zugrunde, bei einem Verfahren zur Prüfung und Einstellung von Ventilen die Kosten und die Umweltbelastungen zu senken. Diese Aufgabe wird durch die im unabhängigen Anspruch gekennzeichneten Merkmale gelöst.The invention is based, with one Procedure for testing and adjusting valves Reduce costs and environmental impact. This task is characterized by those in the independent claim Features resolved.
Bei der erfindungsgemäßen Vorgehensweise wird das Ventil mit einem gasförmigen Medium beaufschlagt. Dabei wird eine erste Größe die den Durchfluß des gasförmigen Mediums charakterisiert und/oder wenigstens eine zweite Größe erfaßt. Durch diese Vorgehensweise kann eine erhebliche Kostenreduzierung sowie eine Verringerung der Belastung der Umwelt und des Werkstattpersonals erzielt werden.In the procedure according to the invention, the valve is also a gaseous medium. This is a first Size the flow of the gaseous medium characterized and / or at least a second variable detected. By doing this, a significant Reducing costs and reducing the burden on the Environment and the workshop staff can be achieved.
Besonders vorteilhaft ist es, wenn als zweite Größe der Stromwert erfaßt wird, bei dem das Ventil öffnet und/oder der Stromwert erfaßt wird, bei dem das Ventil schließt.It is particularly advantageous if the Current value is detected at which the valve opens and / or the current value is recorded at which the valve closes.
Vorteilhafte und zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet. Advantageous and expedient configurations and Further developments of the invention are in the subclaims featured.
Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert. Es zeigen Figur 1 eine grob schematische Darstellung der erfindungsgemäßen Vorrichtung und Figur 2 und 3 Flußdiagramme zur Erläuterung des erfindungsgemäßen Verfahrens.The invention is described below with reference to the drawing illustrated embodiments explained. 1 shows a rough schematic representation of the invention Device and Figures 2 and 3 flow diagrams for explanation of the method according to the invention.
In Figur 1 ist die erfindungsgemäße Vorrichtung grob
schematisch dargestellt. In vereinfachter Darstellung ist
ein Magnetventil 100 gezeigt. Dieses Magnetventil besitzt
einen Ventilsitz 105 und einen Ventilraum 110. Über einen
Einlaß 115 gelangt im normalen Betrieb Kraftstoff in den
Ventilraum 110. Eine Feder ist mit 120 und eine Ventilnadel
mit 125 bezeichnet. Zur Bewegung der Ventilnadel ist eine
Spule 130 vorgesehen. Des weiteren sind Mittel 135 zur
Verstellung der Federkraft und ein Mittel 140 zur
Einstellung des Hubes der Magnetventilnadel 125 vorgesehen.
Der Auslaß des Ventils steht über ein Durchflußmeßgerät 140
mit einem Druckerzeuger 145 in Verbindung.In Figure 1, the device according to the invention is rough
shown schematically. In a simplified representation
a
Die Spule 130 wird über ein Schaltmittel 150 mit einer
Versorgungsspannung U beaufschlagt. Der zweite Anschluß der
Spule 130 steht über ein Strommeßmittel 155 mit Masse in
Verbindung.The
Ferner ist eine Steuereinheit 160 vorgesehen. Diese
Steuereinheit 160 beaufschlagt das Schaltmittel 150 mit
Signalen und verarbeitet die Ausgangssignale des
Durchflußmessers 140 und des Strommeßmittels 155 und
beaufschlagt in einem bevorzugten Ausführungsbeispiel auch
die Einstellmittel 140 und 135 mit entsprechenden Größen.A
Im unbestromten Zustand drückt die Feder 120 die
Ventilnadel 125 in den Ventilsitz 105. In diesem
unbestromten Zustand unterbricht das Ventil die Verbindung
zwischen dem Einlaß 115 und dem Auslaß. Durch Bestromen der
Spule 130 wird eine Magnetkraft aufgebracht, die gegen die
Federkraft beziehungsweise die mechanische Kraft wirkt.
Diese Kraft führt dazu, daß die Ventilnadel 125 vom
Ventilsitz 105 abhebt. Der Abstand zwischen Ventilsitz 105
und Ventilnadel 125 wird als Hub H bezeichnet.In the de-energized state, the
Die erfindungsgemäße Vorgehensweise ist nicht auf diese Art von Ventilen beschränkt. Sie kann auch bei anderen gesteuerten Ventilen eingesetzt werden, bei denen mittels eines Ansteuersignals eine bestimmtes Volumen freigegeben wird. So kann die Vorgehensweise auch bei Ventilen eingesetzt werden, die von einer Feder in ihrem geöffneten Zustand gehalten werden und die in ihrem unbestromten Zustand der Durchfluß freigegeben.The procedure according to the invention is not in this way limited by valves. It can also be used by others controlled valves are used, in which by means of of a control signal released a certain volume becomes. This also applies to valves be used by a spring in its open State are kept and in their de-energized State of flow released.
Wird das Magnetventil mit einer definierten Spannung beaufschlagt, das heißt mit einem Ansteuersignal einer festen Länge, so muß das Magnetventil mit einen bestimmten Hub H den Durchfluß freigeben. Das Volumen, das während der Ansteuerung durch das Ventil strömt, hängt von mehreren Faktoren ab. Zum einen ist dies die Schnelligkeit, mit der das Magnetventil öffnet, das heißt mit welcher Geschwindigkeit der Hub von Null auf den maximalen Wert ansteigt. Diese Größe bestimmt den dynamischen Durchfluß des Magnetventils. Dieser hängt im wesentlichen von der Feder 120 ab. Mit dem Einstellmittel 135 kann diese Geschwindigkeit eingestellt werden. Mittels des Einstellmittels 135 ist eine Einstellung des dynamischen Durchflusses möglich.If the solenoid valve with a defined voltage acted upon, that is, with a control signal one fixed length, the solenoid valve must have a certain length Hub H release the flow. The volume that during the Control flows through the valve depends on several Factors. For one thing, this is the speed at which the solenoid valve opens, i.e. with which one Speed of the stroke from zero to the maximum value increases. This size determines the dynamic flow of the Solenoid valve. This essentially depends on the Spring 120 off. With the setting means 135 this can Speed can be set. By means of the Adjustment means 135 is an adjustment of the dynamic Flow possible.
Des weiteren ist der Hub, der sich nach einer gewissen Zeit
bei einem bestimmten Ansteuerstrom einstellt, bei
verschiedenen Einspritzventilen unterschiedlich. Daher ist
eine Einstellvorrichtung 140 vorgesehen, mit der der Hub im
statischen Zustand auf einen vorgebbaren Wert eingestellt
werden kann. Hierzu wird das Magnetventil ständig bestromt,
der statische Durchfluß gemessen und die Einstelleinrichtung
140 so eingestellt, daß sich ein bestimmter, gewünschter
statischer Durchfluß einstellt.Furthermore, the stroke is after a certain time
at a certain control current, at
different injectors different. thats why
an adjusting
Diese Einstellarbeiten werden üblicherweise mit Kraftstoff, insbesondere mit einem hochgenauen hydraulischen Medium durchgeführt. Hierzu wird vorzugsweise Heptan verwendet. Die Verwendung dieses Kohlenwasserstoffs ist aus verschiedenen Gründen problematisch.These adjustments are usually done with fuel, especially with a high-precision hydraulic medium carried out. Heptane is preferably used for this. The Use of this hydrocarbon is different Problematic reasons.
Erfindungsgemäß wurde erkannt, daß der dynamische Durchfluß auch mittels Druckluft durchgeführt werden kann.According to the invention it was recognized that the dynamic flow can also be carried out using compressed air.
Das Verhalten von Ventilen bei einer dynamischer Ansteuerung wird im wesentlichen durch die Länge des Ansteuerimpulses (Ansteuerimpulsdauer) im Vergleich zur Impulsperiodendauer, dem statischen Durchfluß und dem zeitlichen Verlauf der Differenz zwischen den mechanischen und den magnetischen Kräfte bestimmt.The behavior of valves with dynamic control is essentially determined by the length of the drive pulse (Control pulse duration) compared to the pulse period, the static flow and the time course of the Difference between the mechanical and the magnetic Forces determined.
Die Ansteuerimpulsdauer entspricht der Zeit, in der die Ventilspule bestromt wird. Die Impulsperiodendauer entspricht der Summe der Zeit, in der das Ventil bestromt und nicht bestromt wird. Der statische Durchfluß ist die Menge, die das vollständig geöffnete Ventil während einer bestimmten Zeitdauer durchfließt. Der dynamische Durchfluß ist die Menge, die das Ventil während einer bestimmten Zeitdauer durchfließt, wenn es mit einem bestimmten Tastverhältnis angesteuert wird. Als Tastverhältnis, wird das Verhältnis zwischen Ansteuerimpulsdauer und Impulsperiodendauer bezeichnet. Die Werte des dynamischen und des statischen Durchflusses sind für Kraftstoff und gasförmige Stoffe in der Regel unterschiedlich.The drive pulse duration corresponds to the time in which the Valve coil is energized. The pulse period corresponds to the sum of the time in which the valve is energized and is not energized. The static flow is Quantity that the valve is fully open during a flows through for a certain period of time. The dynamic flow is the amount that the valve during a given Period of time when it flows through with a certain Duty cycle is controlled. As a duty cycle, will the ratio between drive pulse duration and Pulse period called. The values of the dynamic and static flow are for fuel and gaseous substances usually differ.
Erfindungsgemäß wurde erkannt, daß die zeitliche Variation der Kräftedifferenz zwischen der Magnetkraft und der mechanischen Kraft zusammen mit dem dynamischen Durchfluß von Kraftstoff durch eine Messung des pneumatischen, dynamischen Durchflusses QPN erfaßt werden kann.According to the invention it was recognized that the temporal variation the difference in force between the magnetic force and the mechanical force together with the dynamic flow of fuel by measuring the pneumatic, dynamic flow QPN can be detected.
Unter dem pneumatischen dynamischen Durchfluß QPN versteht man die Menge an Gas, die bei einem vorgegebenen Tastverhältnis durch das Ventil strömt.The pneumatic dynamic flow QPN is understood one the amount of gas given at a given Duty cycle flows through the valve.
Die Unterschiede zwischen den einzelnen Magnetventilen, die insbesondere auf den Unterschieden im Magnetkreis beruhen, werden erfindungsgemäß durch Messen des statischen Anzugs- und Abfallstroms erfaßt.The differences between the individual solenoid valves that based in particular on the differences in the magnetic circuit, are inventively measured by measuring the static suit and waste flow detected.
Die drei Parameter pneumatischer, dynamischer Durchfluß QPN, Anzugsstrom IAN und Abfallstrom IAB lassen sich in einfacher Weise messen. Ausgehend von diesen Größen, die mit einem gasförmigen Medium gemessen werden, wird auf den dynamischen Durchfluß an Kraftstoff QK geschlossen werden. Hierzu wird bei wenigen Ventilen, insbesondere in der Vorserie der Durchfluß an Kraftstoff gemessen. Anschließend werden die drei Parameter pneumatischer, dynamischer Durchfluß QPN, Anzugsstrom IAN und Abfallstrom IAB erfaßt und entsprechende Umrechungsfaktoren bestimmt.The three parameters of pneumatic, dynamic flow QPN, Starting current IAN and waste current IAB can be more easily Measure wisely. Starting from these sizes with a gaseous medium is measured on the dynamic Flow of fuel QK to be closed. To do this with few valves, especially in the pre-series of Flow of fuel measured. Then the three parameters pneumatic, dynamic flow QPN, Pickup current IAN and waste current IAB recorded and corresponding Conversion factors determined.
Vorteilhaft ist der Wegfall des hydraulischen Mediums bei der Ermittlung des dynamischen Durchflusses an Kraftstoff, da zur Messung des Durchflusses die leicht verfügbare und äußerst umweltfreundliche Atmosphärenluft als gasförmiges Medium verwendet wird. Die langsame und teure hydraulische Mengenmessung wird durch die schnellere und billigere pneumatische Durchflußmessung ersetzt. Die Messung des statischen Anzugs- und Abfallstroms werden durch ein einfaches Meß- und Anzeigeverfahren ermittelt.The elimination of the hydraulic medium is advantageous the determination of the dynamic flow of fuel, because for measuring the flow the easily available and extremely environmentally friendly atmospheric air as gaseous Medium is used. The slow and expensive hydraulic Volume measurement is faster and cheaper pneumatic flow measurement replaced. The measurement of the static pull-in and waste flows are indicated by a simple measurement and display procedure determined.
Die Parameter Anzugsstrom IAN, Abfallstrom IAB und der pneumatisch-dynamische Durchfluß QPN besitzen eine starke Abhängigkeit vom Kraftstoffdurchfluß und sind sehr einfach und schnell in der Serienfertigung zu bestimmen.The parameters starting current IAN, waste current IAB and the pneumatic-dynamic flow QPN have a strong Dependence on fuel flow and are very simple and to determine quickly in series production.
Hierzu ist die in Figur 1 dargestellte Einrichtung geeignet.
Der Druckerzeuger 145 erzeugt einen vorgebbaren Druck, mit
dem der Auslaß des Magnetventils beaufschlagt wird. Zwischen
dem Druckerzeuger und dem Auslaß des Ventils ist das
Durchflußmeßmittel 140 angeordnet. Als Druckmeßmittel 140
wird vorzugsweise eine Meßblende verwendet. Die Messung
erfolgt also durch Beaufschlagung des Ventils, entgegen zur
normalen Flußrichtung, mit einem pneumatischen Druck, der
vorzugsweise Werte von ca. 600 Millibar annimmt.The device shown in FIG. 1 is suitable for this.
The
Zur Messung einer ersten Größe, die den pneumatisch-dynamischen
Durchfluß angibt und die den Durchfluß des
gasförmigen Mediums charakterisiert, wird die Spule 130 mit
einem vorgegebenen Tastverhältnis beaufschlagt.
Beispielsweise wird die Spule für 3 Millisekunden bestromt,
wobei die Periodendauer, das heißt der Abstand zwischen dem
Beginn zweier Bestromungen 6 Millisekunden beträgt. Die
Ansteuerfrequenz beträgt in diesem Beispiel 166,7 Hz.To measure a first variable, the pneumatic-dynamic
Flow indicates and the flow of the
characterized gaseous medium, the
Bei dieser Art der Ansteuerung öffnet und schließt das Magnetventil mit dieser Frequenz. Mit dieser dynamischen Ansteuerung hat die Magnetkraft einen erheblichen Einfluß auf den pneumatischen, dynamischen Durchfluß. Bei einem schnellen Öffnen ergibt sich eine große, bei einem langsamen Öffnen, bedingt durch eine große Federkraft, eine kleine Durchflußmenge. With this type of control, this opens and closes Solenoid valve with this frequency. With this dynamic Control has a significant influence on the magnetic force on the pneumatic, dynamic flow. At a quick opening results in a large one, with a slow one Opening, due to a large spring force, a small one Flow rate.
Des weiteren wird eine zweite Größe erfaßt, die als
Anzugsstrom IAN und/oder als Abfallstrom IAB bezeichnet
wird. Hierzu wird die Spannung U, die an der Spule 130
anliegt, kontinuierlich erhöht. Gleichzeitig wird der
Spulenstrom mit dem Strommeßmittel 155 erfaßt. Das Öffnen
des Einspritzventils wird erkannt, wenn der Durchfluß
plötzlich ansteigt. Dieser wird über einen Druckabfall im
Bereich Druckerzeugers 145 bzw. Des Durchflußmeßmittels 140
erkannt. Der Druckabfall bewegt sich im Rahmen von ca. 25
mbar.Furthermore, a second variable is recorded, which is called
Starting current IAN and / or referred to as waste current IAB
becomes. For this purpose, the voltage U across the
Anschließend wird die Spannung abgesenkt und der Zeitpunkt ermittelt, bei dem das Ventil wieder schließt. Der Stromwert, bei dem das Magnetventil öffnet, wird als Anzugsstrom IAN und bei dem das Magnetventil schließt, als Abfallstrom IAB bezeichnet.Then the voltage is lowered and the time determined at which the valve closes again. The Current value at which the solenoid valve opens is called Starting current IAN and at which the solenoid valve closes when Waste current IAB designated.
Diese Messung kann automatisch von der Steuereinheit 160,
manuell oder halbautomatisch durchgeführt werden. So kann
beispielsweise vorgesehen sein, das die Messung und die
Einstellung des Ventils automatisch von der Steuereinheit
160 ausgeführt wird. Es ist aber auch möglich, daß die
Steuereinheit 160 die Messungen durchführt und die
Einstellung manuell durchgeführt wird. Es ist sogar möglich,
daß ohne Steuereinheit gearbeitet wird. Dies bedeutet, daß
das Ventil mit einem geeigneten Signalgenerator mit
Ansteuersignalen beaufschlagt wird und die Messung und die
Einstellungen manuell durchgeführt werden.This measurement can be carried out automatically by the
Erfindungsgemäß wurde erkannt, daß zwischen der dynamischen
Durchfluß für Kraftstoff QK und dem pneumatischen,
dynamischen Durchfluß QPN, dem Anzugsstrom IAN und dem
Abfallstrom IAB eine feste Beziehung besteht. Für diese
Beziehung gilt die folgende Formel:
Bei den Größen A, B, C und D handelt es sich um Konstanten, die bei einigen wenigen Exemplaren von Einspritzventilen gleicher Bauart ermittelt werden müssen. Hierzu wird der dynamische Durchfluß QK für Kraftstoff und die Größen Anzugsstrom IAN, Abfallstrom und der pneumatisch, dynamische Durchfluß QPN mit Druckluft bei gleichen Ansteuersignalen bei einigen wenigen Ventilen gleicher Bauart gemessen. Ausgehend von diesen Meßwerten lassen sich die Umrechnungsfaktoren A, B, C und D bestimmen. Die Größen A, B und C sind von ähnlicher Größenordnung die Größe D ist wesentlich kleiner.Sizes A, B, C and D are constants, that with a few copies of injectors same design must be determined. For this, the dynamic flow QK for fuel and sizes Starting current IAN, waste current and the pneumatic, dynamic Flow QPN with compressed air with the same control signals measured for a few valves of the same type. Based on these measured values, the Determine conversion factors A, B, C and D. The sizes A, B and C are of a similar order of magnitude much smaller.
In Figur 2 ist die erfindungsgemäße Vorgehensweise zur
Einstellung des Ventils anhand eines Flußdiagrammes
dargestellt. In einem ersten Schritt 200 wird das Ventil in
die Meßeinrichtung eingebaut und mit einem definierten
Ansteuersignal beaufschlagt. Dabei kann es entgegen oder in
normaler Flußrichtung des Ventils eingebaut werden. Im
Schritt 210 wird der Anzugsstrom IAN und im Schritt 220 der
Abfallstrom IAB gemessen. Die Messung dieser beiden ersten
Größen ist in Figur 3 detaillierter dargestellt.The procedure according to the invention is shown in FIG
Setting the valve using a flow chart
shown. In a
Im anschließenden Schritt 230 wird das Magnetventil mit
einem festen Tastverhältnis beaufschlagt. Anschließend in
Schritt 240 erfolgt die Messung einer ersten Größe, die als
des pneumatisch-dynamischen Durchflusses QPN bezeichnet
wird, mittels des Durchflußmessers 140.In the
Anschließend in Schritt 245 wird, ausgehend von diesen drei
Parametern mit der oben angegebenen Formel der diesen Größen
entsprechende dynamische Durchfluß für Kraftstoff QK
bestimmt. Die Abfrage 250 überprüft, ob dieser Wert QK von
einem erwarteten Sollwert QKS abweicht. Hierzu wird
beispielsweise überprüft, ob die Differenz zwischen dem
dynamischen Durchfluß für Kraftstoff QK und dem erwarteten
Sollwert QKS kleiner als ein Schwellwert S ist. Ist dies der
Fall, so ist das Einspritzventil richtig eingestellt und der
Prüf- und Einstellvorgang endet in Schritt 270.Then in
Weicht der so berechnete Wert QK für den Kraftstoffdurchfluß
von dem erwarteten Wert QKS ab, so erfolgt ein Abgleich des
Magnetventils in Schritt 260. Hierzu wird in geeigneter
Weise das Einstellmittel 135 und/oder 140 beeinflußt.
Anschließend werden die Schritte 210 bis 250 erneut
abgearbeitet.The value QK calculated in this way for the fuel flow gives way
from the expected QKS value, the
Solenoid valve in
Bei einer besonders vorteilhaften Ausführungsform werden die
Zielwerte für die Größen QPN, IAN und IAB vorab bei einigen
Ventilen bestimmt. In diesem Fall kann die Berechnung in
Schritt 245 entfallen. In Schritt 250 werden dann die Werte
QPN, IAN und/oder IAB mit den entsprechenden erwarteten
Werten verglichen. Bei dieser Ausführungsform erfolgt ein
Abgleich des Ventils, bei einer Abweichung zwischen der
ersten Größe und einem vorgebbaren Sollwert für die erste
Größe und/oder bei einer Abweichung zwischen der zweiten
Größe und einem vorgebbaren Sollwert für die zweite GrößeIn a particularly advantageous embodiment, the
Target values for the sizes QPN, IAN and IAB in advance for some
Valves determined. In this case the calculation can be done in
Zur Einstellung der hydraulischen Eigenschaften des Ventils wird eine pneumatische und zwei elektrische Größen verwendet. Diese Größen sind leicht und schnell zu messen. Ausgehend von diesen gemessenen Größen wird eine hydraulische Größe bestimmt und die Abgleichmittel so eingestellt, daß die hydraulische Größe einem erwarteten Sollwert entspricht. Im Vorfeld der Messung müssen die Faktoren, A, B, C und D durch Messung mit Kraftstoff und mit Luft bei einer geringen Zahl von Ventilen bestimmt werden. For setting the hydraulic properties of the valve becomes one pneumatic and two electrical quantities used. These sizes are easy and quick to measure. Based on these measured quantities, a hydraulic size determined and the balancing means so set the hydraulic size to an expected Corresponds to the setpoint. Before the measurement, the Factors, A, B, C and D by measurement with fuel and with Air can be determined with a small number of valves.
Die Mehrheit der Ventile wird dann lediglich mit Luft geprüft und eingestellt.The majority of the valves are then only air checked and adjusted.
Zur Messung der elektrischen Größen wird beispielsweise, wie
in Figur 3 als Flußdiagramm dargestellt, vorgegangen. In
einem ersten Schritt 300 wird ein Spannungswert U0
vorgegeben. Dieser Spannungswert ist so gewählt, daß kein
oder nur ein sehr geringer Strom fließt, bei dem das
Magnetventil sicher noch nicht öffnet. Anschließend wird in
Schritt 305 der pneumatische Durchfluß QPN0 erfaßt.
Anschließend in Schritt 310 wird der Spannungswert U um
einen vorgegebenen Wert ΔU erhöht. Anschließend in
Schritt 350 erfolgt die Messung des neuen Wertes QPN1 für
den pneumatischen Durchfluß.For example, how to measure the electrical quantities
shown in Figure 3 as a flow chart. In
In a
Anschließend in Schritt 320 wird die Differenz ΔQPN zwischen
dem alten und dem neuen Wert für den pneumatischen Durchfluß
ermittelt. Die sich anschließende Abfrage 325 überprüft, ob
dieser Wert größer als ein Schwellwert ist. Ist dies nicht
der Fall, das heißt der Druck ist nicht abgefallen und die
Magnetventilnadel hat noch nicht abgehoben, so wird in
Schritt 330 der alte Wert QPN0 durch den neuen Wert QPN1
ersetzt und der Spannungswert wird in Schritt 310 erneut
erhöht.Then in
Erkennt die Abfrage 325, daß der Druck abgefallen
beziehungsweise der Durchfluß angestiegen ist, so hat die
Ventilnadel 125 abgehoben und der Anzugsstrom IAN ist
erreicht. In Schritt 35 wird daher von dem
Strommeßmittel 155 der aktuelle Strom I gemessen und als
Anzugsstrom IAN abgespeichert. Zur Erfassung des
Anzugsstroms wird der Stromwert rampenförmig mit einer
konstanten Steigung von beispielsweise 0,001 Milliampere pro
Millisekunde erhöht. Das Erreichen des Anzugsstroms wird
durch laufende Überwachung des pneumatischen
Durchflusses QPN festgestellt. Entsprechend wird bei dem
Abfallstrom IAB vorgegangen. In Schritt 340 wird die
Spannung U um einen vorgebbaren Wert ΔU verringert. In
Schritt 345 wird der neue Wert QPN1 für den Durchfluß
gemessen und in Schritt 350 mit dem alten Wert QPN Null
verglichen.
Erkennt die Abfrage 355 anhand der Differenz ΔQPN durch
Vergleich mit einem Schwellwert SW, daß sich der Durchfluß
nicht verringert hat, das heißt die Ventilnadel sich noch
nicht bewegt hat, so erfolgt Schritt 360, indem der alte
Wert dem neuen Wert überschrieben und anschließend in
Schritt 340 die Spannung weiter verringert wird. Erkennt die
Abfrage 355 einen Abfall des Durchflusses, so wird in
Schritt 365 der aktuelle Stromwert I erfaßt und als
Abfallstrom IAB abgespeichert.Detects
Die Werte für die Ansteuerdauer von 5 Millisekunden und für
die Periodendauer von 10 Millisekunden sind nur beispielhaft
gewählt. Diese Werte werden möglichst klein gewählt, da in
diesem Falle eine bessere Korrelation zwischen den
hydraulischen und den pneumatischen Durchflüssen besteht.
Die Umrechnung der Parameter IAN, IAB und QPN über die
Korrelation in hydraulischen Durchfluß erfolgt automatisch
in der Steuereinheit 160, so daß als einzustellende
Zielwerte direkt Kraftstoffwerte verwendet werden können.The values for the control duration of 5 milliseconds and for
the period duration of 10 milliseconds is only an example
chosen. These values are chosen to be as small as possible because in
in this case a better correlation between the
hydraulic and pneumatic flows.
The conversion of the parameters IAN, IAB and QPN via the
Correlation in hydraulic flow is automatic
in the
Anstelle von Luft können auch andere gasförmige Stoffe verwendet werden.Instead of air, other gaseous substances can also be used be used.
Claims (9)
- Method for the testing and/or setting of valves, in particular of injection valves of an internal combustion engine, a defined activating signal acting on a valve for the purpose of determining a signal (QK) characterizing the throughflow of fuel, characterized in that a gaseous medium acts on the valve, and a first quantity (QPN), which characterizes the throughflow of the gaseous medium, and/or at least one second quantity (IAN, IAB) are detected.
- Method according to one of the preceding claims, characterized in that the second quantity (IAN, IAB) indicates the current value (IAN) at which the valve opens, and/or in that the second quantity indicates the current value (IAB) at which the valve closes.
- Method according to one of the preceding claims, characterized in that the first quantity (QPN) indicates a pneumatically dynamic throughflow.
- Method according to one of the preceding claims, characterized in that the signal (QK) which characterizes the throughflow of fuel is determined on the basis of the first and the second quantity (IAN, IAB).
- Method according to one of the preceding claims, characterized in that, in the event of a deviation between the signal (QK) which characterizes the throughflow of fuel and a predeterminable desired value (QKS), balancing of the valve is carried out.
- Method according to one of the preceding claims, characterized in that, in the event of a deviation between the first quantity (QPN) and a predeterminable desired value and/or in the event of a deviation between the second quantity (IAN, IAB) and a predeterminable desired value, balancing of the valve is carried out.
- Method according to one of the preceding claims, characterized in that the throughflow of fuel is the dynamic throughflow.
- Method according to one of the preceding claims, characterized in that compressed air is used as the gaseous medium.
- Device for the testing and/or setting of valves, in particular of injection valves of an internal combustion engine, with a first means (160) which act on a valve with a defined activating signal for the purpose of determining a signal (QK) characterizing the throughflow of fuel, characterized in that second means (145) are provided, which act on the valve with a gaseous medium and detect a first quantity (QPN), which characterizes the throughflow of the gaseous medium, and/or at least one second quantity (IAN, IAB).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19648689A DE19648689A1 (en) | 1996-11-25 | 1996-11-25 | Method and device for testing and / or adjusting valves |
DE19648689 | 1996-11-25 | ||
PCT/DE1997/002081 WO1998024014A1 (en) | 1996-11-25 | 1997-09-17 | Method and device for examining and/or adjusting valves |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0880732A1 EP0880732A1 (en) | 1998-12-02 |
EP0880732B1 true EP0880732B1 (en) | 2000-02-16 |
Family
ID=7812660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97909134A Expired - Lifetime EP0880732B1 (en) | 1996-11-25 | 1997-09-17 | Method and device for examining and/or adjusting valves |
Country Status (9)
Country | Link |
---|---|
US (1) | US6311553B1 (en) |
EP (1) | EP0880732B1 (en) |
JP (1) | JP4083230B2 (en) |
KR (1) | KR100504414B1 (en) |
CN (1) | CN1147766C (en) |
DE (2) | DE19648689A1 (en) |
ES (1) | ES2143853T3 (en) |
RU (1) | RU2189488C2 (en) |
WO (1) | WO1998024014A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9930120D0 (en) * | 1999-12-21 | 2000-02-09 | Assembly Technology & Test Lim | Monitoring equipment for monitoring the performance of an engine fuel injector valve |
GB0009165D0 (en) * | 2000-04-14 | 2000-05-31 | Assembly Technology & Test Lim | Monitoring equipment |
DE10031203C2 (en) * | 2000-06-27 | 2002-06-27 | Siemens Ag | Method and device for leak testing of injection valves |
JP4305805B2 (en) * | 2001-04-27 | 2009-07-29 | 株式会社デンソー | Injection quantity measuring device |
DE10150786C2 (en) * | 2001-10-15 | 2003-08-07 | Siemens Ag | Method and device for automatically adjusting injectors |
DE10224258B4 (en) * | 2002-05-31 | 2007-02-01 | Robert Bosch Gmbh | Method for limiting the maximum injection pressure at solenoid-controlled, cam-driven injection components |
DE10240880B4 (en) * | 2002-09-04 | 2016-12-01 | Robert Bosch Gmbh | Actuator connection to fuel injectors of internal combustion engines |
DE10312087A1 (en) * | 2003-03-19 | 2004-10-07 | Daimlerchrysler Ag | Method for functional testing of a hydraulic valve and test stand for carrying out the method |
GB0325184D0 (en) * | 2003-10-28 | 2003-12-03 | Dt Assembly & Test Europ Ltd | An automotive fuel injector leakage tester |
DK177454B1 (en) * | 2011-11-09 | 2013-06-17 | Iop Marine As | A method for testing a gas injection valve and a plant for carrying out the method |
DK177530B1 (en) | 2012-02-22 | 2013-09-08 | Iop Marine As | A method for testing a gas shut-down valve and a plant for carrying out the method |
CN105257448B (en) * | 2015-10-06 | 2017-07-14 | 北京工业大学 | A kind of diesel engine high-pressure fuel system cone valve dynamic and visual realizes device and implementation method |
US11022041B2 (en) | 2015-10-13 | 2021-06-01 | Raytheon Technologies Corporation | Sensor snubber block for a gas turbine engine |
US10920729B2 (en) * | 2017-02-08 | 2021-02-16 | Pratt & Whitney Canada Corp. | Method and system for testing operation of solenoid valves |
CN111795816B (en) * | 2020-07-14 | 2021-05-18 | 浙江大学 | Flow characteristic measuring device and method for control valve sleeve |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2001626A1 (en) | 1970-01-15 | 1971-09-02 | Volkswagenwerk Ag | Internal combustion engine with an air inlet valve and a fuel injection valve |
US4254653A (en) * | 1980-01-11 | 1981-03-10 | The Bendix Corporation | Electromagnetic fuel injector calibration |
JPS5887415A (en) * | 1981-11-20 | 1983-05-25 | Nissan Motor Co Ltd | Fuel injection measuring apparatus for diesel engine |
US4402294A (en) * | 1982-01-28 | 1983-09-06 | General Motors Corporation | Fuel injection system having fuel injector calibration |
NL8403943A (en) | 1984-12-24 | 1986-07-16 | Bronkhorst Hightech B V | DEVICE FOR CONTROLLING THE FLUID FLOW AMOUNT THROUGH A PIPE. |
JPS61258951A (en) * | 1985-05-10 | 1986-11-17 | Nippon Denso Co Ltd | Fuel injection controller for internal-combustion engine |
DE3681711D1 (en) * | 1985-12-02 | 1991-10-31 | Marco Alfredo Ganser | FUEL INJECTION SYSTEM FOR INTERNAL COMBUSTION ENGINES. |
US4798084A (en) * | 1985-12-09 | 1989-01-17 | Toyota Jidosha Kabushiki Kaisha | Measuring device for measuring a fuel injection quantity |
GB8610671D0 (en) * | 1986-05-01 | 1986-06-04 | Atomic Energy Authority Uk | Flow monitoring |
GB8823693D0 (en) * | 1988-10-08 | 1988-11-16 | Hartopp R | Injector cleaning apparatus |
US5157967A (en) * | 1991-07-31 | 1992-10-27 | Siemens Automotive L.P. | Dynamic flow calibration of a fuel injector by selective positioning of its solenoid coil |
GB9121988D0 (en) * | 1991-10-16 | 1991-11-27 | Lucas Hartridge Limited | Volumetric metering equipment |
DE4433543C1 (en) * | 1994-09-20 | 1995-12-21 | Sonplas Gmbh Planung Montage U | Adjusting and checking flow through valves |
DE4443137A1 (en) * | 1994-12-03 | 1996-06-05 | Bosch Gmbh Robert | Method for determining the spring force of a closing spring when opening a valve, in particular a fuel injector, and device for carrying out the method |
US5492099A (en) * | 1995-01-06 | 1996-02-20 | Caterpillar Inc. | Cylinder fault detection using rail pressure signal |
GB9525370D0 (en) * | 1995-12-12 | 1996-02-14 | Lucas Ind Plc | Flow sensor and fuel control system |
US5708201A (en) * | 1996-05-24 | 1998-01-13 | Pierburg Instruments, Inc. | Fuel delivery measurement system with automatic pump matching |
IT1284681B1 (en) * | 1996-07-17 | 1998-05-21 | Fiat Ricerche | CALIBRATION PROCEDURE FOR AN INJECTION SYSTEM FITTED WITH INJECTORS. |
US6021754A (en) * | 1997-12-19 | 2000-02-08 | Caterpillar Inc. | Method and apparatus for dynamically calibrating a fuel injector |
-
1996
- 1996-11-25 DE DE19648689A patent/DE19648689A1/en not_active Withdrawn
-
1997
- 1997-09-17 CN CNB971917213A patent/CN1147766C/en not_active Expired - Fee Related
- 1997-09-17 KR KR10-1998-0705642A patent/KR100504414B1/en not_active IP Right Cessation
- 1997-09-17 DE DE59701133T patent/DE59701133D1/en not_active Expired - Fee Related
- 1997-09-17 EP EP97909134A patent/EP0880732B1/en not_active Expired - Lifetime
- 1997-09-17 WO PCT/DE1997/002081 patent/WO1998024014A1/en active IP Right Grant
- 1997-09-17 JP JP52411398A patent/JP4083230B2/en not_active Expired - Fee Related
- 1997-09-17 RU RU98115843/06A patent/RU2189488C2/en not_active IP Right Cessation
- 1997-09-17 ES ES97909134T patent/ES2143853T3/en not_active Expired - Lifetime
- 1997-09-17 US US09/117,152 patent/US6311553B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
ES2143853T3 (en) | 2000-05-16 |
KR19990081928A (en) | 1999-11-15 |
RU2189488C2 (en) | 2002-09-20 |
CN1147766C (en) | 2004-04-28 |
WO1998024014A1 (en) | 1998-06-04 |
KR100504414B1 (en) | 2005-10-31 |
DE59701133D1 (en) | 2000-03-23 |
JP2000504389A (en) | 2000-04-11 |
DE19648689A1 (en) | 1998-05-28 |
JP4083230B2 (en) | 2008-04-30 |
US6311553B1 (en) | 2001-11-06 |
EP0880732A1 (en) | 1998-12-02 |
CN1208476A (en) | 1999-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0880732B1 (en) | Method and device for examining and/or adjusting valves | |
EP2707587B1 (en) | Method and apparatus for detecting a closing time point of a valve having a coil drive | |
DE4308811B4 (en) | Method and device for controlling a solenoid-controlled fuel metering device | |
DE102009029549A1 (en) | Method for determining a time | |
DE19536109A1 (en) | Method and device for monitoring a fuel metering system | |
WO2012139854A1 (en) | Method for detecting a nozzle chamber pressure in an injector, and injection system | |
DE60016612T2 (en) | METHOD FOR FUEL PRESSURE MEASUREMENT IN THE FUEL DISTRIBUTOR OF AN INTERNAL COMBUSTION ENGINE | |
EP3033513A1 (en) | Method for the injector-specific diagnosis of a fuel injection device and internal combustion engine having a fuel injection device | |
DE3517646C2 (en) | ||
DE19833086B4 (en) | Maximum value method and device for detecting a leak in a fuel supply system of an internal combustion engine | |
EP0764777B1 (en) | Method and apparatus for controlling an internal combustion engine | |
DE10356858B4 (en) | Operating method for an actuator of an injection valve and associated device | |
DE4009901A1 (en) | METHOD AND DEVICE FOR MONITORING THE CONVERSION LEVEL OF A CATALYST IN THE EXHAUST SYSTEM OF AN INTERNAL COMBUSTION ENGINE | |
EP1278949B1 (en) | Method for operating a fuel supply system for an internal combustion engine, especially of an automobile | |
DE10254844A1 (en) | Method and device for operating an injection system of an internal combustion engine | |
DE102016206476B3 (en) | A method of operating a diesel common rail piezobetriebenen Servoinjektors and motor vehicle | |
EP3234328B1 (en) | Method and apparatus for diagnosing a fuel supply system | |
DE2846804A1 (en) | IC engine correction system - uses switch to pass correction signal to control unit when measured parameters remain constant | |
DE102021205381A1 (en) | Process for characterizing fuel | |
EP1472454A1 (en) | Method and device for detecting operating states of a pump-nozzle unit | |
DE102015217776A1 (en) | A method of detecting damage to a nozzle needle of a fuel injector or the nozzle needle seat | |
DE102006015968B3 (en) | Adaptation method and adaptation device of an injection system of an internal combustion engine | |
DE102005012946A1 (en) | Method for operating internal combustion (IC) engine e.g. gasoline or diesel engine, for vehicle, involves producing model for engine parameters e.g. load pressure, air mass flow rate, based on compressor speed | |
EP1618296A1 (en) | Method for determining the actuator energy required for the different injection types of an actuator of an internal combustion engine | |
DE102013207162B4 (en) | Method and data processing device for reducing an inrush current for a valve of a high-pressure pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT |
|
17P | Request for examination filed |
Effective date: 19981204 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19990525 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SEIDEL, JOSEF Inventor name: SCHOEFFEL, EBERHARD |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
REF | Corresponds to: |
Ref document number: 59701133 Country of ref document: DE Date of ref document: 20000323 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2143853 Country of ref document: ES Kind code of ref document: T3 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000502 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080922 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080925 Year of fee payment: 12 Ref country code: FR Payment date: 20080917 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080922 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20081124 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090917 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090930 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090917 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090918 |