EP0863694A1 - Gehäuse mit Wärmeabfuhr - Google Patents
Gehäuse mit Wärmeabfuhr Download PDFInfo
- Publication number
- EP0863694A1 EP0863694A1 EP97850035A EP97850035A EP0863694A1 EP 0863694 A1 EP0863694 A1 EP 0863694A1 EP 97850035 A EP97850035 A EP 97850035A EP 97850035 A EP97850035 A EP 97850035A EP 0863694 A1 EP0863694 A1 EP 0863694A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat dissipating
- pba
- cavity
- box according
- rows
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/20436—Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/06—Hermetically-sealed casings
- H05K5/061—Hermetically-sealed casings sealed by a gasket held between a removable cover and a body, e.g. O-ring, packing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1461—Slidable card holders; Card stiffeners; Control or display means therefor
Definitions
- the present invention relates to a heat dissipating box for a printed board assembly (PBA) using natural convection for cooling.
- PBA printed board assembly
- Electronic equipment generally uses one or more fans to cool it down to a reasonable level.
- the cooling can be achieved by utilising natural convection.
- a normal way of mounting printed circuit boards in an electronic equipment, using natural convection, is to avoid encapsulation for maximum exposure of the heat dissipating components mounted on a heat sink.
- the printed circuit boards are then mounted vertically and parallel to each other to increase the flow of cooling air between them.
- the US Patent Number 5,243,493 by Jeng et al describes this for cooling of a personal computer using natural convection.
- the enclosure for cooling electronic components is described in the US Patent Number 4,535,386 by Frey, Jr et al., where the cooling is performed utilising natural convection.
- the enclosure comprises an inner chimney where the heat dissipating components are mounted at the lower part of said chimney. The heated air rises from the components and is led to a heat exchanger and a natural turbulence is thereby created.
- the object of the present invention is to provide an improved heat dissipating box for one or more PBA's mounted inside an enclosure and cooled utilising natural convection.
- An other object of the present invention is to provide a heat dissipating box that is cheap, easy to manufacture and easy to use.
- the present invention solves the problems by introducing an improved box for heat dissipation with a high cooling efficiency, including means for conducting heat from the PBA to the inside of the box.
- a good thermally contact can be obtained by means of filling the distance between the heat dissipating components on the PBA and the box with for example gap-fillers, which are thermally good conductors.
- An alternative way of creating means for a good thermal contact is to place bumps, for example supports or ridges, on the inside of the box, which are in close contact with the PBA.
- the PBA is placed in the box, which is divided into three parts, a first part, a second part and a back plane.
- the PBA is fastened between the first part and the second part and the joint is sealed with an elastic material.
- the back plane has an opening for a connector of the PBA and the back plane is mounted and sealed to the other two parts to prevent undesirable substances to get inside the box.
- the box can have apertures for electrical connectors and indicators on the front side and the surface area of the box may be enlarged with cooling fins or equal.
- the gap-fillers can be omitted if the PBA is in good thermal contact, through bumps of any form, with the first and second part of the box.
- the present invention has a major advantage in a high cooling efficiency when exposed to cooling by natural convection even though the box is sealed.
- Another advantage is that the same type of box may be used for many different types of PBA's with only minor adjustments, which means lower costs and increased flexibility.
- Figure 1 is a perspective view of an assembly with an enclosure including several boxes according to the present invention with an open door.
- the assembly is cooled by using natural convection.
- Figures 2a-2c are different views of a heat dissipating box according to the present invention.
- Figure 3 is a cross-sectional view of the heat dissipating box in figure 2b, section A-A.
- Figure 4 is a top view of a first part of the same heat dissipating box as shown in figure 3.
- Figure 5 is a cross-sectional view of an alternative heat dissipating box according to the invention.
- Figure 6 is a top view of a first part of the same heat dissipating box as shown in figure 5.
- Figure 7 is a cross-sectional view of a combined heat dissipating box, according to the invention.
- Figure 8 is a top view of a first part of the same heat dissipating box as shown in figure 7.
- Figure 1 shows a complete assembly 1 comprising an enclosure 2 with an enclosure door 3.
- the enclosure has several ventilation louvers 4 in the lower part of the enclosure and at least one ventilation slit 5 on the top of the enclosure.
- the angled top 6 of the enclosure is designed to prevent snow or falling leaves to block the ventilation slit and interrupt the natural convection cooling.
- the enclosure is divided into two parts by means of a partition wall 9 on which main frame connectors 10 are mounted. Apertures for mounting of cables 7 are provided in the base 8 on the back side of the partition wall.
- the back of the partition wall is a sealed compartment and contains interconnections between the main frame connectors and incoming cables. Boxes 11 containing electronic devices, such as PBA's, are fastened to the main frame connectors 10 on the front side of the partition wall 9 and sealed to the partition wall by means of an elastic material, such as an O-ring.
- the boxes 11 are cooled, when they dissipate heat, by a flow of air in through the ventilation louvers 4, upwards between the boxes 11 and out through the top slit 5.
- This assembly is designed to be placed outdoors which means exposure to solar rays, rain and other types of weather conditions. This requires that the connections and the electronic devices in the boxes must be protected from the outside environment.
- FIGS 2a-2c show views of a first preferred embodiment.
- This box 11 is designed for high cooling performance and the surface area of the box is enlarged with cooling fins 12.
- the box comprises at least two main parts 13 and 14 and a separate back plane 19.
- a PBA is squeezed between the two main parts that are fastened together with some type of fastening devices, preferable screws 15 but other fastening means can be used, for example glue or rivets.
- the front plane 16 of the box can be equipped with apertures for connectors 17, for example test ports and indicators 18 if so is desired.
- the back plane 19 of the box is equipped with at least one opening for a connector 20 from the PBA, called PBA-connector.
- the PBA-connector is plugged in to the main frame connector 10 during normal operation of the assembly and the back plane is sealed to the partition wall using an elastic material, for example an O-ring.
- the design of the heat dissipating box 11 can be adjusted for low heat dissipating PBA's, where the need to enlarge the surface area is less.
- This type of box comprises at least two plain main parts, without the cooling fins, that are fastened together in a similar way as described in figures 2a-2c and the same type of back plane for the PBA-connectors.
- the box can also be equipped with the same apertures for test ports and indicators on the front plane.
- Figure 3 shows a cross-sectional view of a heat dissipating box 11, section A-A figure 2b.
- a first part 14 and a second part 13 forms a cavity 21, where a PBA 22 is mounted.
- the edge of the PBA is placed in a niche 33, see figure 4, created by the main parts 13 and 14 and the height h1 of the niche must be greater than the thickness h2 of the PBA's printed circuit board.
- the joint between the main parts are sealed with an elastic material 23, which protects the cavity 21 and the PBA 22 from the outside environment.
- the first and second parts are fastened together by screws 15, where each screw is placed through a drilled hole 24 in the second part 13, through an aperture in the PBA and fastened in a threaded hole 25 in the first part 14.
- the holes 24 and 25 are drilled through second supports 30 and into first supports 31, where the hole is threaded.
- the first and second supports prevents the PBA from deforming when the screws are tightened. A close contact between the supports 30 and 31 and the PBA enhances the possibility to conduct heat from the PBA's circuit board. This can be difficult to obtain due to variations in manufacture of the main parts 13 and 14.
- the PBA 22 comprises heat dissipating electronic components 26 mounted on at least one side of the board, the primary side, and to get a good thermal contact between the components 26 and the inside of the cavity 27 a gap-filler 28 can be used. Large gap-fillers 29 may also be used to dissipate heat from the secondary side of the PBA.
- One type of gap-filler is a silicon gap-filler and an other type is a copper gap-filler.
- Figure 4 shows a top view of the first part 14 together with a cross-sectional view of a mounted back plane 19 of the heat dissipating box in figure 3.
- the first supports 31 are placed inside the cavity 21 to uniformly squeeze the first and second parts together.
- An elastic material 23 is placed around three sides of the cavity in a groove and is adjusted to seal apertures for eventual test ports 17 and indicators 18 using for example elastic o-rings 36.
- the fourth side is sealed with an elastic material 35 when the back plane 19 is mounted.
- Small gaps 34 will appear between the elastic material around the cavity 23 and the elastic material in the back plane 35. These gaps are used to lead humidity created inside the cavity out to the ambient area.
- the PBA 22 is outlined in the figure, with the dashed line, including apertures 32, which are smaller than the size of the top of the first supports 31.
- Figure 5 shows a cross-sectional view of a second preferred embodiment of a heat dissipating box 40.
- a first part 42 and a second part 41 forms a cavity 43, where a PBA is mounted, not shown in the figure.
- the edge of the PBA is placed in a niche 44 created by the main parts 41 and 42 and the height h1 of the niche must be greater than the thickness of the PBA's printed circuit board.
- the joint between the main parts is sealed with an elastic material 45, which protects the cavity 43 and the PBA from the outside environment.
- the parts are fastened together by using at least four screws, not shown in the figure.
- the PBA is squeezed between rows of bumps, where each of said rows consists of at least one ridge 46 and 47.
- the rows are parallel and are placed on the first 43a and second 43b surface of the cavity and are extending in a first direction perpendicular to the back plane 19.
- the height h3 and h4 of each ridge extends from the first and second surface of the cavity towards the centre of the cavity in a second direction which is perpendicular to the first direction and the direction of the back plane.
- first ridges 46 placed on the first surface 43a of the cavity 43 with an intermediate distance d1 in a third direction parallel to the direction of the back plane.
- the second surface 43b of the cavity has at least two rows of second ridges 47 with an intermediate distance d2 in the third direction.
- the first and second ridges must be dislocated a distance d3 in the third direction when the first and second parts are positioned on top of each other.
- the distance d3 d2/2.
- the height of the ridges is adjusted so that the intermediate distance h5 in the second direction, between the tops of the first and second ridge is less than the minimum thickness of the PBA's printed circuit board and greater than: h5 > minimum thickness - d3/200.
- a lesser distance can cause the PBA to be damaged from the pressure of the ridges.
- Figure 6 shows a top view of the first part 42 together with a cross-sectional view of a mounted back plane 19 of the heat dissipating box in figure 5.
- the ridges 46 are placed in parallel rows on the first surface 43a of the cavity in the first direction perpendicular to the back plane 19 of the box.
- the total length (L1+L2) of the ridges in a row must be equal to or exceed 50% of the inside distance L3 of the cavity in the same direction.
- the first part also include at least four threaded holes 50 to fasten the first and second part of the box with screws or a similar fastening device.
- An elastic material 45 is placed around three sides of the cavity in a groove and is adjusted to seal apertures for eventual test ports 17 and indicators 18 using for example elastic o-rings 37.
- the fourth side is sealed with an elastic material 35 when the back plane 19 is mounted.
- Small gaps 38 will appear between the elastic material 45 around the cavity and the elastic material in the back plane 35. These gaps are used to lead humidity created inside the cavity out to the ambient area.
- the PBA 39 with the PBA-connector 20 is outlined in the figure, with the dashed lines.
- Figure 7 shows a cross-sectional view of a third preferred embodiment of a heat dissipating box 60.
- a first part 62 and a second part 61 forms a cavity 63, where a PBA 64 is mounted.
- This embodiment is a combination of the two previous described embodiments.
- the first part 62 has at least three rows of a first type of bumps 65 and at least two rows of a second type of bumps 66.
- the first type of bumps, described in the second embodiment comprises at least one ridge 65.
- the second type of bumps, described in the first embodiment comprises at least three first supports 66, which contains a threaded hole 67. The rows are all parallel and the rows with the first supports 66 are placed between the rows of the ridges 65 extending in a first direction perpendicular to the direction of the back plane and on the cavity's first surface 63a.
- the second part 61 has at least two rows comprising at least three second supports 68 containing a drilled hole 69, described in the first embodiment.
- a difference from the previously described first embodiment is that the second supports have a larger top area compared to the first supports top area, and the tops of the supports coincide when the second part 61 and first part 62 are fastened together. Screws 70 are mounted through the hole 69 in the second part and fastened in the threaded part 67 in the first part.
- the PBA 64 is placed between the rows of bumps 65 and 66 and in a niche 49.
- the PBA's printed circuit board is squeezed in the same way as described in the second preferred embodiment, where the ridges on the second surface are replaced with the first and second supports with an intermediate distance h6 calculated the same way as for the intermediate distance h5 in the second preferred embodiment.
- Figure 8 shows a top view of the first part 62 together with a cross-sectional view of a mounted back plane 19 of the heat dissipating box in figure 7.
- the ridges 65 are placed in parallel rows inside the cavity 63 in the first direction perpendicular to the back plane 19 of the box.
- the total length of the ridges in a row must be equal to or exceed 50% of the inside distance of the cavity in the same direction as previously described in figure 6.
- the first part also comprises two rows of first supports 66 with the threaded hole 67 to fasten the first and second part of the box with screws 70 or a similar fastening device.
- An elastic material 71 is placed around three sides of the cavity in a groove and is adjusted to seal apertures for eventual test ports 17 and indicators 18 using for example elastic o-rings 72.
- the fourth side is sealed with an elastic material 35 when the back plane 19 is mounted.
- Small gaps 73 will appear between the elastic material 71 around the cavity and the elastic material in the back plane 35. These gaps are used to lead humidity created inside the cavity out to the ambient area.
- the PBA 64 is outlined in the figure, with the dashed line, including apertures 74, which are larger than the size of the top of the first supports 66. It is essential that the second supports does not pass through the PBA to establish the squeezing effect that will create the thermal contact between the PBA and the main part via the bumps.
- This design has a big advantage compared to the other described embodiments.
- the demanded space for the supports on the primary side of the PBA is less, which means that there is a larger area where the components of the PBA can be mounted.
- a PBA that is encapsulated in a heat dissipating box according to the invention can obtain a heat dissipation up to 5 times greater compared with a PBA without any enclosure or cooling fins. If the box is plain, which means no cooling fins, this effect is reduced 2-3 times.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Casings For Electric Apparatus (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97850035A EP0863694A1 (de) | 1997-03-07 | 1997-03-07 | Gehäuse mit Wärmeabfuhr |
CA002231214A CA2231214A1 (en) | 1997-03-07 | 1998-03-03 | Heat dissipating box |
JP10054765A JPH10256763A (ja) | 1997-03-07 | 1998-03-06 | 放熱箱 |
US09/035,939 US5912803A (en) | 1987-03-07 | 1998-03-06 | Heat dissipating box |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97850035A EP0863694A1 (de) | 1997-03-07 | 1997-03-07 | Gehäuse mit Wärmeabfuhr |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0863694A1 true EP0863694A1 (de) | 1998-09-09 |
Family
ID=8230953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97850035A Withdrawn EP0863694A1 (de) | 1987-03-07 | 1997-03-07 | Gehäuse mit Wärmeabfuhr |
Country Status (4)
Country | Link |
---|---|
US (1) | US5912803A (de) |
EP (1) | EP0863694A1 (de) |
JP (1) | JPH10256763A (de) |
CA (1) | CA2231214A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1026931A2 (de) * | 1999-02-04 | 2000-08-09 | Lucent Technologies Inc. | Wärmesenke mit Abstandhalter und sein Herstellungsverfahren |
WO2005051056A1 (en) * | 2003-11-13 | 2005-06-02 | Honeywell International Inc. | Environmentally tuned circuit card assembly and method for manufacturing the same |
WO2006059925A1 (en) * | 2004-11-30 | 2006-06-08 | Telefonaktiebolaget Lm Ericsson (Publ) | A printed board assembly with improved heat dissipation |
WO2016004951A1 (en) * | 2014-07-11 | 2016-01-14 | Vestas Wind Systems A/S | A casing for electronics equipment with an integrated heat sink |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6212071B1 (en) * | 1999-08-20 | 2001-04-03 | Lucent Technologies, Inc. | Electrical circuit board heat dissipation system |
JP4366863B2 (ja) | 2000-02-02 | 2009-11-18 | 株式会社デンソー | 電子制御装置 |
US6459577B1 (en) * | 2001-07-06 | 2002-10-01 | Apple Computer, Inc. | Thermal chimney for a computer |
US6749498B2 (en) | 2001-09-12 | 2004-06-15 | Arris International, Inc. | Ventilated outdoor electronics enclosure |
US8125781B2 (en) * | 2004-11-11 | 2012-02-28 | Denso Corporation | Semiconductor device |
US20070227696A1 (en) * | 2006-03-30 | 2007-10-04 | Inventec Corporation | Heat dissipating structure |
KR101456975B1 (ko) * | 2007-09-27 | 2014-10-31 | 삼성전자 주식회사 | 냉각유닛 및 이를 갖는 디스플레이장치 |
US8253076B2 (en) * | 2007-10-29 | 2012-08-28 | Smiths Medical Asd, Inc. | Respiratory system heater unit |
GB0922077D0 (en) * | 2009-12-17 | 2010-02-03 | Quixant Ltd | Electronic assembly and casing thereof |
US8427828B2 (en) * | 2010-07-20 | 2013-04-23 | Themis Computer | Printed circuit board module enclosure and apparatus using same |
JP2013223231A (ja) * | 2012-04-19 | 2013-10-28 | Fujitsu Mobile Communications Ltd | 電子機器 |
US9226426B2 (en) | 2012-07-18 | 2015-12-29 | International Business Machines Corporation | Electronic device console with natural draft cooling |
CN113194651B (zh) * | 2019-12-11 | 2023-07-07 | 法雷奥新能源汽车(深圳)有限公司 | 电气装置、制造电气装置的方法及机动车辆 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4371757A (en) * | 1981-08-21 | 1983-02-01 | Northern Telecom Limited | Enclosure for outdoor cross-connect system for telecommunications |
US4535386A (en) * | 1983-05-23 | 1985-08-13 | Allen-Bradley Company | Natural convection cooling system for electronic components |
US4661888A (en) * | 1984-07-03 | 1987-04-28 | Hewlett-Packard Company | Removable modular housing for RF circuits |
US4794487A (en) * | 1986-09-29 | 1988-12-27 | Bbc Brown Boveri Ag | Heat protection casing |
DE3829649A1 (de) * | 1988-09-01 | 1990-03-15 | Standard Elektrik Lorenz Ag | Elektrische baueinheit |
US5243493A (en) * | 1992-04-29 | 1993-09-07 | Industrial Technology Research Institute | Fanless convection cooling design for personal computers |
EP0681422A2 (de) * | 1994-05-05 | 1995-11-08 | Ford Motor Company | Leiterplattenanordnung |
US5552961A (en) * | 1995-05-18 | 1996-09-03 | Northern Telecom Limited | Electronic unit |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2167906B (en) * | 1984-11-23 | 1988-08-10 | Gec Avionics | Rack mounted circuit module |
US4771365A (en) * | 1987-10-30 | 1988-09-13 | Honeywell Inc. | Passive cooled electronic chassis |
-
1997
- 1997-03-07 EP EP97850035A patent/EP0863694A1/de not_active Withdrawn
-
1998
- 1998-03-03 CA CA002231214A patent/CA2231214A1/en not_active Abandoned
- 1998-03-06 US US09/035,939 patent/US5912803A/en not_active Expired - Lifetime
- 1998-03-06 JP JP10054765A patent/JPH10256763A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4371757A (en) * | 1981-08-21 | 1983-02-01 | Northern Telecom Limited | Enclosure for outdoor cross-connect system for telecommunications |
US4535386A (en) * | 1983-05-23 | 1985-08-13 | Allen-Bradley Company | Natural convection cooling system for electronic components |
US4661888A (en) * | 1984-07-03 | 1987-04-28 | Hewlett-Packard Company | Removable modular housing for RF circuits |
US4794487A (en) * | 1986-09-29 | 1988-12-27 | Bbc Brown Boveri Ag | Heat protection casing |
DE3829649A1 (de) * | 1988-09-01 | 1990-03-15 | Standard Elektrik Lorenz Ag | Elektrische baueinheit |
US5243493A (en) * | 1992-04-29 | 1993-09-07 | Industrial Technology Research Institute | Fanless convection cooling design for personal computers |
EP0681422A2 (de) * | 1994-05-05 | 1995-11-08 | Ford Motor Company | Leiterplattenanordnung |
US5552961A (en) * | 1995-05-18 | 1996-09-03 | Northern Telecom Limited | Electronic unit |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1026931A2 (de) * | 1999-02-04 | 2000-08-09 | Lucent Technologies Inc. | Wärmesenke mit Abstandhalter und sein Herstellungsverfahren |
EP1026931A3 (de) * | 1999-02-04 | 2000-10-04 | Lucent Technologies Inc. | Wärmesenke mit Abstandhalter und sein Herstellungsverfahren |
US6181561B1 (en) | 1999-02-04 | 2001-01-30 | Lucent Technologies Inc. | Heat sink having standoff buttons and a method of manufacturing therefor |
WO2005051056A1 (en) * | 2003-11-13 | 2005-06-02 | Honeywell International Inc. | Environmentally tuned circuit card assembly and method for manufacturing the same |
US7095615B2 (en) | 2003-11-13 | 2006-08-22 | Honeywell International, Inc. | Environmentally tuned circuit card assembly and method for manufacturing the same |
WO2006059925A1 (en) * | 2004-11-30 | 2006-06-08 | Telefonaktiebolaget Lm Ericsson (Publ) | A printed board assembly with improved heat dissipation |
CN101066009B (zh) * | 2004-11-30 | 2012-03-21 | Lm爱立信电话有限公司 | 改进了热耗散的印刷电路板组件及其制造方法 |
WO2016004951A1 (en) * | 2014-07-11 | 2016-01-14 | Vestas Wind Systems A/S | A casing for electronics equipment with an integrated heat sink |
Also Published As
Publication number | Publication date |
---|---|
US5912803A (en) | 1999-06-15 |
CA2231214A1 (en) | 1998-09-07 |
JPH10256763A (ja) | 1998-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5912803A (en) | Heat dissipating box | |
US6065530A (en) | Weatherproof design for remote transceiver | |
EP0741958B1 (de) | Gehäuse mit wärmeabgebender einrichtung | |
CA2117271C (en) | Heat sink | |
ES2382007T3 (es) | Inversor | |
JP3852253B2 (ja) | 電子部品の冷却装置及び電子機器 | |
US6105662A (en) | Cooling system for electronic packages | |
US6816378B1 (en) | Stack up assembly | |
US6031720A (en) | Cooling system for semiconductor die carrier | |
US6152213A (en) | Cooling system for electronic packages | |
US5173839A (en) | Heat-dissipating method and device for led display | |
US7031158B2 (en) | Heat pipe cooled electronics enclosure | |
US6396691B1 (en) | Thermal cover for T1/HDSL repeater case | |
US6201699B1 (en) | Transverse mountable heat sink for use in an electronic device | |
WO2021256021A1 (ja) | 電子制御装置 | |
CA2348618A1 (en) | Apparatus for cooling a box with heat generating elements received therein and a method for cooling same | |
US11994280B2 (en) | Film and television lamp | |
JP3471673B2 (ja) | 通信機器の放熱構造 | |
US20060124167A1 (en) | Thermal-efficient power converter enclosure for solar panels | |
US7111674B2 (en) | Heat dissipating housing with interlocking chamfers and ESD resistance | |
JP2003209375A (ja) | 電子機器筐体 | |
JP4320401B2 (ja) | 電子機器およびその実装方法 | |
US20180199453A1 (en) | Electronics enclosure | |
CN111615305A (zh) | 插箱及磁共振系统 | |
CN219496997U (zh) | 服务器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR IT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;RO;SI |
|
17P | Request for examination filed |
Effective date: 19990218 |
|
AKX | Designation fees paid |
Free format text: DE FR IT SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR IT SE |
|
17Q | First examination report despatched |
Effective date: 20000315 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20000726 |