[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0858285A1 - Microporation of human skin for drug delivery and monitoring applications - Google Patents

Microporation of human skin for drug delivery and monitoring applications

Info

Publication number
EP0858285A1
EP0858285A1 EP96929098A EP96929098A EP0858285A1 EP 0858285 A1 EP0858285 A1 EP 0858285A1 EP 96929098 A EP96929098 A EP 96929098A EP 96929098 A EP96929098 A EP 96929098A EP 0858285 A1 EP0858285 A1 EP 0858285A1
Authority
EP
European Patent Office
Prior art keywords
stratum comeum
selected area
skin
stratum
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96929098A
Other languages
German (de)
French (fr)
Other versions
EP0858285A4 (en
Inventor
Jonathan A. Eppstein
Michael R. Hatch
Difei Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altea Therapeutics Corp
Spectrx Inc
Original Assignee
Spectrx Inc
Altea Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spectrx Inc, Altea Technologies Inc filed Critical Spectrx Inc
Priority to EP15151012.0A priority Critical patent/EP2921111A1/en
Priority to DK05011002.2T priority patent/DK1563788T3/en
Priority to EP05011002.2A priority patent/EP1563788B8/en
Publication of EP0858285A1 publication Critical patent/EP0858285A1/en
Publication of EP0858285A4 publication Critical patent/EP0858285A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/1451Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
    • A61B5/14514Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid using means for aiding extraction of interstitial fluid, e.g. microneedles or suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0047Sonopheresis, i.e. ultrasonically-enhanced transdermal delivery, electroporation of a pharmacologically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3203Fluid jet cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • A61B2017/00154Details of operation mode pulsed
    • A61B2017/00172Pulse trains, bursts, intermittent continuous operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00747Dermatology
    • A61B2017/00761Removing layer of skin tissue, e.g. wrinkles, scars or cancerous tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00747Dermatology
    • A61B2017/00765Decreasing the barrier function of skin tissue by radiated energy, e.g. using ultrasound, using laser for skin perforation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/0047Upper parts of the skin, e.g. skin peeling or treatment of wrinkles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M2037/0007Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0092Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin using ultrasonic, sonic or infrasonic vibrations, e.g. phonophoresis

Definitions

  • This invention relates generally to the field of monitoring of analytes in the body and the transdermal delivery of drugs to the body. More particularly, this invention relates to a minimally invasive to non-invasive method of increasing the permeability of the skin through microporation of the stratum comeum, which can be combined with sonic energy, chemical permeation enhancers, pressure, and the like for selectively enhancing outward flux of analytes
  • the stratum comeum is chiefly responsible for the well known barrier properties of skin. Thus, it is this layer that presents the greatest barrier to transdermal flux of drugs or other molecules into the body and of analytes out of the body.
  • the stratum co eum the outer homy layer of the skin, is a complex structure of compact keratinized cell remnants separated 25 by lipid domains. Compared to the oral or gastric mucosa, the stratum comeum is much less permeable to molecules either extemal or intemal to the body.
  • the stratum comeum is formed from keratinocytes, which comprise the majority of epidermal cells, that lose their nuclei and become comeocytes. These dead cells comprise the stratum comeum, which has a thickness of only about 10-30 ⁇ m and, as noted above, is a very resistant waterproof membrane that
  • the stratum comeum is continuously renewed by shedding of comeum cells during desquamination and the formation of new comeum cells by the keratinization process.
  • the flux of a drug or analyte across the skin can be increased by changing either the resistance (the diffusion coefficient) or the driving force (the gradient for diffusion). Flux may be enhanced by the use of so-called penetration or chemical enhancers. Chemical enhancers are well known in the art and a more detailed description will follow.
  • Iontophoresis Another method of increasing the permeability of skin to drugs is iontophoresis.
  • Iontophoresis involves the application of an exte al electric field and topical delivery of an ionized form of dmg or an un-ionized drug carried with the water flux associated with ion transport (electro-osmosis). While permeation enhancement with iontophoresis has been effective, control of drug delivery and irreversible skin damage are problems associated with the technique.
  • Sonic energy has also been used to enhance permeability of the skin and synthetic membranes to d gs and other molecules.
  • Ultrasound has been defined as mechanical pressure waves with frequencies above 20 kHz, H. Lutz et al., Manual of Ultrasound 3-12 (1984).
  • Sonic energy is generated by vibrating a piezoelectric crystal or other electromechanical element by passing an alternating current through the material, R. Brucks et al., 6 Pharm. Res. 697 (1989).
  • the use of sonic energy to increase the permeability of the skin to dmg molecules has been termed sonophoresis or phonophoresis.
  • U.S. Patent No. 5,139,023 to Stanley et al. discloses an apparatus and method for noninvasive blood glucose monitoring.
  • chemical permeation enhancers are used to increase the permeability of mucosal tissue or skin to glucose.
  • Glucose then passively diffuses through the mucosal tissue or skin and is captured in a receiving medium. The amount of glucose in the receiving medium is measured and correlated to determine the blood glucose level.
  • sonic energy optionally with modulations of frequency, intensity, and/or phase, to controllably push and/or pump molecules through the stratum comeum via perforations introduced by needle puncture, hydraulic jet, laser, electroporation, or other methods.
  • micropores i.e. microporation
  • Jacques et al. 88 J. Invest. Dermatol. 88-93 (1987)
  • Jacques et al. 88 J. Invest. Dermatol. 88-93 (1987)
  • pulsed laser light of wavelength, pulse length, pulse energy, pulse number, and pulse repetition rate sufficient to ablate the stratum comeum without significantly damaging the underlying epidermis and then applying the dmg to the region of ablation.
  • Tankovich U.S. Patent No. 5,165,418 (hereinafter, "Tankovich '418"), discloses a method of obtaining a blood sample by irradiating human or animal skin with one or more laser pulses of sufficient energy to cause the vaporization of skin tissue so as to produce a hole in the skin extending through the epidermis and to sever at least one blood vessel, causing a quantity of blood to be expelled through the hole such that it can be collected.
  • Tankovich '418 thus is inadequate for noninvasive or minimally invasive permeabilization of the stratum co eum such that a drug can be delivered to the body or an analyte from the body can be analyzed.
  • Tankovich et al. U.S. Patent No. 5,423,803 (hereinafter, "Tankovich '803”) discloses a method of laser removal of superficial epidermal skin cells in human skin for cosmetic applications.
  • the method comprises applying a light-absorbing "contaminant" to the outer layers of the epidermis and forcing some of this contaminant into the intercellular spaces in the stratum comeum, and illuminating the infiltrated skin with pulses of laser light of sufficient intensity that the amount of energy absorbed by the contaminant will cause the contaminant to explode with sufficient energy to tear off some of the epidermal skin cells.
  • Tankovich '803 further teaches that there should be high abso ⁇ tion of energy by the contaminant at the wavelength of the laser beam, that the laser beam must be a pulsed beam of less than 1 ⁇ s duration, that the contaminant must be forced into the upper layers of the epidermis, and that the contaminant must explode with sufficient energy to tear off epidermal cells upon abso ⁇ tion of the laser energy.
  • This invention also fails to disclose or suggest a method of dmg delivery or analyte collection.
  • Raven et al., WO 92/00106 describes a method of selectively removing unhealthy tissue from a body by administering to a selected tissue a compound that is highly absorbent of infrared radiation of wavelength 750-860 nm and irradiating the region with corresponding infrared radiation at a power sufficient to cause thermal vaporization of the tissue to which the compound was administered but insufficient to cause vaporization of tissue to which the compound had not been administered.
  • the absorbent compound should be soluble in water or serum, such as indocyanine green, chlorophyll, po ⁇ hyrins, heme-containing compounds, or compounds containing a polyene structure, and power levels are in the range of 50-1000 W/cm 2 or even higher.
  • Konig et al., DD 259351 teaches a process for thermal treatment of tumor tissue that comprises depositing a medium in the tumor tissue that absorbs radiation in the red and/or near red infrared spectral region, and irradiating the infiltrated tissue with an appropriate wavelength of laser light.
  • Absorbing media can include methylene blue, reduced po ⁇ hyrin or its aggregates, and phthalocyanine blue. Methylene blue, which strongly absorbs at 600-700 nm, and a krypton laser emitting at 647 and 676 nm are exemplified.
  • the power level should be at least 200 mW/cm 2 .
  • pulsed lasers such as the excimer laser operating at 193 nm, the erbium laser operating near 2.9 ⁇ m or the C0 2 laser operating at 10.2 ⁇ m, can be used to effectively ablate small holes in the human stratum comeum.
  • These laser ablation techniques offer the potential for a selectiv'e and potentially non-traumatic method for opening a delivery and/or sampling hole through the stratum comeum.
  • due to the prohibitively high costs associated with these light sources there have been no commercial products developed based on this concept.
  • the presently disclosed invention by defining a method for directly conducting thermal energy into the stratum comeum with very tightly defined spatial and temporal resolution, makes it possible to produce the desired micro-ablation of the stratum comeum using very low cost energy sources.
  • An object of the invention is to minimize the barrier properties of the stratum co eum using poration to controllably collect analytes from within the body through perforations in the stratum co eum to enable the monitoring of these analytes. It is also an object of the invention to provide a method of monitoring selected analytes in the body through micropores in the stratum comeum in combination with sonic energy, permeation enhancers, pressure gradients, and the like.
  • Another object of the invention is to provide a method for controlling transdermal flux rates of dmgs or other molecules into the body and, if desired, into the bloodstream through minute perforations in the stratum comeum.
  • the method further comprises applying sonic energy to the porated selected area at a frequency in the range of about 5 kHz to 100 MHz, wherein the sonic energy is modulated by means of a member selected from the group consisting of frequency modulation, amplitude modulation, phase modulation, and combinations thereof.
  • the method further comprises contacting the selected area of the individual's body with a chemical enhancer with the application of the sonic energy to further enhance analyte withdrawal.
  • Porating of the stratum comeum is accomplished by means selected from the group consisting of (a) ablating the stratum comeum by contacting a selected area, up to about 1000 ⁇ m across, of the stratum corneum with a heat source such that the temperatureu of tissue-bound water and other vaporizable substances in the selected area is elevated above the vaporization point of the water and other vaporizable substances thereby removing the stratum comeum in the selected area; (b) puncturing the stratum comeum with a micro-lancet calibrated to form a micropore of up to about 1000 ⁇ m in diameter; (d) ablating the stratum comeum by focusing a tightly focused beam of sonic energy onto the stratum comeum; (d) hydraulically puncturing the stratum comeum with a high pressure jet of fluid to form a micropore of up to about 1000 ⁇ m in diameter and (e) puncturing the stratum comeum with short pulses of electricity to form a micropore of up to about 1000 ⁇ m in diameter.
  • thermally ablating the stratum comeum comprises treating at least the selected area with an effective amount of a dye that exhibits strong abso ⁇ tion over the emission range of a pulsed light source and focusing the output of a series of pulses from the pulsed light source onto the dye such that the dye is heated sufficiently to conductively transfer heat to the stratum comeum to elevate the temperature of tissue-bound water and other vaporizable substances in the selected area above the vaporization point of the water and other vaporizable substances.
  • the pulsed light source emits at a wavelength that is not significantly absorbed by skin.
  • the pulsed light source can be a laser diode emitting in the range of about 630 to 1550 nm, a laser diode pumped optical parametric oscillator emitting in the range of about 700 and 3000 nm, or a member selected from the group consisting of arc lamps, incandescent lamps, and light emitting diodes.
  • a sensing system for determining when the barrier properties of the stratum comeum have been surmounted can also be provided.
  • One preferred sensing system comprises light collection means for receiving light reflected from the selected area and focusing the reflected light on a photodiode, a photodiode for receiving the focused light and sending a signal to a controller wherein the signal indicates a quality of the reflected light, and a controller coupled to the photodiode and to the pulsed light source for receiving the signal and for shutting off the pulsed light source when a preselected signal is received.
  • the method further comprises cooling the selected area of stratum comeum and adjacent skin tissues with cooling means such that said selected area and adjacent skin tissues are in a selected precooled, steady state, condition prior to porafion.
  • the method comprises ablating the stratum comeum such that interstitial fluid exudes from the micropores, collecting the interstitial fluid, and analyzing the analyte in the collected interstitial fluid.
  • the micropore can be sealed by applying an effective amount of energy from the laser diode or other light source such that interstitial fluid remaining in the micropore is caused to coagulate.
  • vacuum is applied to the porated selected area to enhance collection of interstitial fluid.
  • the method comprises, prior to porating the stratum comeum, illuminating at least the selected area with unfocused light from the pulsed light source such that the selected area illuminated with the light is sterilized.
  • Another preferred method of porating the stratum comeum comprises contacting the selected area with a metallic wire such that the temperature of the selected area is raised from ambient skin temperature to greater than 100°C within about 10 to 50 ms and then retuming the temperature of the selected area to approximately ambient skin temperature within about 30 to 50 ms, wherein this cycle of raising the temperature and retuming to approximately ambient skin temperature is repeated a number of time effective for reducing the barrier properties of the stratum comeum.
  • the step of retuming to approximately ambient skin temperature is carried out by withdrawing the wire from contact with the stratum comeum.
  • the wire can be heated by an ohmic heating element, can have a current loop having a high resistance point wherein the temperature of the high resistance point is modulated by passing a modulated electrical current through said current loop to effect the heating, or can be positioned in a modulatable alternating magnetic field of an excitation coil such that energizing the excitation coil with alternating current produces eddy currents suffient to heat the wire by intemal ohmic losses.
  • a method for enhancing the transdermal flux rate of an active permeant into a selected area of an individual's body comprising the steps of enhancing the permeability of the stratum comeum layer of the selected area of the individual's body surface to the active permeant by means of (a) porating the stratum comeum of the selected area by means that form a micro-pore in the stratum comeum without causing serious damage to the underlying tissues and thereby reduce the barrier properties of the stratum co eum to the flux of the active permeant; and (b) contacting the porated selected area with a composition comprising an effective amount of the permeant such that the flux of the permeant into the body is enhanced.
  • the method further comprises applying sonic energy to the porated selected area for a time and at an intensity and a frequency effective to create a fluid streaming effect and thereby enhance the transdermal flux rate of the permeant into the body.
  • a method for appyling a tatoo to a selected area of skin on an individual's body surface comprising the steps of: (a) porating the stratum comeum of the selected area by means that form a micro-pore in the stratum comeum without causing serious damage to the underlying tissues and thereby reduce the barrier properties of the stratum co eum to the flux of a permeant; and
  • a method is still further provided for reducing a temporal delay in diffusion of an analyte from blood of an individual to said individual's interstitial fluid in a selected area of skin comprising applying means for cooling to said selected area of skin.
  • a method is yet further provided for reducing evaporation of interstitial fluid and the vapor pressure thereof, wherein said interstitial fluid is being collected from a micropore in a selected area of stratum comeum of an individual's skin, comprising applying means for cooling to said selected area of skin.
  • FIG. 1 shows a schematic representation of a system for delivering laser diode light and monitoring the progress of poration.
  • FIG. 2 shows a schematic representation of a closed-loop feedback system for monitoring poration.
  • FIG. 3 A shows a schematic representation of an optical poration system comprising a cooling device.
  • FIG. 3B shows a top view of a schematic representation of an illustrative cooling device according to FIG. 3A.
  • FIG. 4 shows a schematic representation of an ohmic heating device with a mechanical actuator.
  • FIG. 5 shows a schematic representation of a high resistance current loop heating device.
  • FIG. 6 shows a schematic representation of a device for modulating heating using inductive heating.
  • FIG. 7 shows a schematic representation of a closed loop impedance monitor using changes in inpedance to determine the extent of poration.
  • FIGS. 8A-D show cross sections of human skin treated with copper phthalocyanine and then subjected, respectively, to 0, 1, 5, and 50 pulses of 810 nm light with an energy density of 4000 J/cm 2 for a pulse period of 20 ms.
  • FIGS. 9-11 show graphic representations of temperature distribution during simulated thermal poration events using optical poration.
  • FIGS. 12 and 13 show graphic representations of temperature as a function of time in the stratum comeum and viable epidermis, respectively, during simulated thermal poration events using optical poration.
  • FIGS. 14-16 show graphic representations of temperature distribution, temperature as a function of time in the stratum comeum, and temperature as a function of time in the viable epidermis, respectively, during simulated thermal poration events using optical poration wherein the tissue was cooled prior to poration.
  • FIGS. 17-19 show graphic representations of temperature distribution, temperature as a function of time in the stratum comeum, and temperature as a function of time in the viable epidermis, respectively, during simulated thermal poration events wherein the tissue was heated with a hot wire.
  • FIGS. 20-22 show graphic representations of temperature distribution, temperature as a function of time in the stratum comeum, and temperature as a function of time in the viable epidermis, respectively, during simulated thermal poration events wherein the tissue was heated with a hot wire and the tissue was cooled prior to poration.
  • FIGS. 23 and 24 show graphic representations of temperature distribution and temperature as a function of time in the stratum comeum, respectively, during simulated thermal poration events wherein the tissue is heated optically according to the operating parameters of Tankovich '803.
  • FIG. 25 shows a graphic representation of interstitial fluid (ISF; o) and blood (*) glucose levels as a function of time.
  • FIG. 26 shows a scatter plot representation of the difference term between the ISF glucose and the blood glucose data of FIG. 25.
  • FIG. 27 shows a histogram of the relative deviation of the ISF to the blood glucose levels from FIG. 25.
  • FIG. 28 shows a cross section of an illustrative delivery apparatus for delivering a drug to a selected area on an individual's skin.
  • FIGS. 29A-C show graphic representations of areas of skin affected by delivery of lidocaine to selected areas where the stratum co eum is porated (FIGS. 29A-B) or not porated (FIG. 29C).
  • FIG. 30 shows a plot comparing the amount of interstitial fluid harvested from micropores with suction alone (o) and with a combination of suction and ultrasound (*).
  • FIGS. 31, 32, and 33 show a perspective view of an ultrasonic transducer/vacuum apparatus for harvesting interstitial fluid, a cross section view of the same apparatus, and cross sectional schematic view of the same apparatus, respectively.
  • FIGS. 34A-B show a top view of a handheld ultrasonic transducer and a side view of the spatulate end thereof, respectively.
  • reference to a method for delivery of "a dmg” includes reference to delivery of a mixture of two or more drugs
  • reference to “an analyte” includes reference to one or more of such analytes
  • reference to “a permeation enhancer” includes reference to a mixture of two or more permeation enhancers.
  • hole or pore means the formation of a small hole or pore in the stratum comeum in a selected area of the skin of an individual to lessen the barrier properties of this layer of the skin to the passage of analytes from below the skin surface for analysis or the passage of active permeants or dmgs into the body for therapeutic pu ⁇ oses.
  • the hole or pore will be no larger than about 1 mm in diameter, and more preferably no larger than about 100 ⁇ m in diameter, and will extend into the stratum comeum sufficiently to break the barrier properties of this layer without adversely affecting the underlying tissues.
  • ablation means the controlled removal of cells caused by kinetic energy released when the vaporizable components of the cells have been heated to the point that vaporization occurs and the resulting rapid expansion of volume due to this phase change causes cells and possibly some adjacent cells to be "blown away" from the abaltion site.
  • puncture or “micro-puncture” means the use of mechanical, hydraulic, or electrical means to perforate the stratum comeum.
  • ablation and “puncture” accomplish the same pu ⁇ ose of poration, i.e. the creating a hole or pore in the stratum comeum without significant damage to the underlying tissues, these terms may be used interchangeably.
  • penetration enhancement means an increase in the permeability of skin to a dmg, analyte, dye, stain, or other chemical molecule (also called “permeant”), i.e., so as to increase the rate at which a dmg, analyte, or chemical molecule permeates the stratum comeum and facilitates the poration of the stratum comeum, the withdrawal of analytes out through the stratum comeum or the delivery of dmgs through the stratum comeum and into the underlying tissues.
  • the enhanced permeation effected through the use of such enhancers can be observed, for example, by observing diffusion of a dye, as a permeant, through animal or human skin using a diffusion apparatus.
  • chemical enhancer includes all enhancers that increase the flux of a permeant, analyte, or other molecule across the skin, and is limited only by functionality. In other words, all cell envelope disordering compounds and solvents and any other chemical enhancement agents are intended to be included.
  • die As used herein, “dye,” “stain,” and the like shall be used interchangeably and refer to a biologically suitable chromophore that exhibits strong abso ⁇ tion at the emission range of a pulsed light source used to ablate tissues of the stratum comeum to form micropores therein.
  • transdermal or “percutaneous” means passage of a permeant into and through the skin to achieve effective therapeutic blood levels or deep tissue levels of a dmg, or the passage of a molecule present in the body ("analyte”) out through the skin so that the analyte molecule may be collected on the outside of the body.
  • the term "permeant,” “drug,” or “pharmacologically active agent” or any other similar term means any chemical or biological material or compound suitable for transdermal administration by the methods previously known in the art and/or by the methods taught in the present invention, that induces a desired biological or pharmacological effect, which may include but is not limited to (1) having a prophylactic effect on the organism and preventing an undesired biological effect such as preventing an infection, (2) alleviating a condition caused by a disease, for example, alleviating pain or inflammation caused as a result of disease, and/or (3) either alleviating, reducing, or completely eliminating the disease from the organism.
  • the effect may be local, such as providing for a local anaesthetic effect, or it may be systemic.
  • This invention is not drawn to novel permeants or to new classes of active agents. Rather it is limited to the mode of delivery of agents or permeants that exist in the state of the art or that may later be established as active agents and that are suitable for delivery by the present invention.
  • agents or permeants that exist in the state of the art or that may later be established as active agents and that are suitable for delivery by the present invention.
  • Such substances include broad classes of compounds normally delivered into the body, including through body surfaces and membranes, including skin.
  • antiinfectives such as antibiotics and antiviral agents; analgesics and analgesic combinations; anorexics; antihelminthics; antiarthritics; antiasthmatic agents; anticonvulsants; antidepressants; antidiabetic agents; antidiarrheals; antihistamines; antiinflammatory agents; antimigraine preparations; antinauseants; antineoplastics; antiparkinsonism drugs; antipruritics; antipsychotics; antipyretics; antispasmodics; anticholinergics; sy pathomimetics; xanthine derivatives; cardiovascular preparations including potassium and calcium channel blockers, beta-blockers, alpha-blockers, and antiarrhythmics; antihypertensives; diuretics and antidiuretics; vasodilators including general coronary, peripheral and cerebral; central nervous system stimulants; vasoconstrictors; cough and cold preparations, including deconges
  • an "effective" amount of a pharmacologically active agent means a sufficient amount of a compound to provide the desired local or systemic effect and performance at a reasonable benefit/risk ratio attending any medical treatment.
  • An "effective" amount of a permeation or chemical enhancer as used herein means an amount selected so as to provide the desired increase in skin permeability and the desired depth of penetration, rate of administration, and amount of drug delivered.
  • carriers or “vehicles” refer to carrier materials without significant pharmacological activity at the quantities used that are suitable for administration with other pharmaceutically active materials, and include any such materials known in the art, e.g., any liquid, gel, solvent, liquid diluent, solubilizer, or the like, that is nontoxic at the quantities employed and does not interact with the dmg to be administered in a deleterious manner.
  • Suitable carriers for use herein include water, mineral oil, silicone, inorganic gels, aqueous emulsions, liquid sugars, waxes, petroleum jelly, and a variety of other oils and polymeric materials.
  • a biological membrane is intended to mean a membrane material present within a living organism that separates one area of the organism from another and, in many instances, that separates the organism from its outer environment. Skin and mucous membranes are thus included.
  • “individual” refers to both a human and an animal, to which the present invention may be applied.
  • analyte means any chemical or biological material or compound suitable for passage through a biological membrane by the technology taught in this present invention, or by technology previously known in the art, of which an individual might want to know the concentration or activity inside the body.
  • Glucose is a specific example of an analyte because it is a sugar suitable for passage through the skin, and individuals, for example those having diabetes, might want to know their blood glucose levels.
  • Other examples of analytes include, but are not limited to, such compounds as sodium, potassium, bilimbin, urea, ammonia, calcium, lead, iron, lithium, salicylates, and the like.
  • transdermal flux rate is the rate of passage of any analyte out through the skin of an individual, human or animal, or the rate of passage of any dmg, pharmacologically active agent, dye, or pigment in and through the skin of an individual, human or animal.
  • intensity amplitude As used herein, the terms “intensity amplitude,” “intensity,” and “amplitude” are used synonymously and refer to the amount of energy being produced by the sonic energy system.
  • frequency modulation means a continuous, graded or stepped variation in the amplitude or frequency of ultrasound in a given time period.
  • a frequency modulation is a graded or stepped variation in frequency in a given time period, for example 5.4-5.76 MHz in 1 sec, or 5-10 MHz in 0.1 sec, or 10-5 MHz in 0.1 sec, or any other frequency range or time period that is appropriate to a specific application.
  • a complex modulation can include varying both the frequency and intensity simultaneously.
  • FIGS. 4A and 4B of U.S. Patent No. 5,458,140 could, respectively, represent amplitude and frequency modulations being applied simultaneously to a single sonic energy transducer.
  • phase modulation means the timing of the signal has been changed relative to its initial state shown in Fig. 4C of U.S. Patent No. 5,458,140.
  • the frequency and amplitude of the signal can remain the same.
  • a phase modulation can be implemented with a variable delay such as to selectively retard or advance the signal temporarily in reference to its previous state, or to another signal.
  • the sonic energy in its various applications such as with frequency, intensity or phase modulation, or combinations thereof and the use of chemical enhancers combined with modulated sonic energy, as described herein, can vary over a frequency range of between about 5 kHz to 100 MHz, with a range of between about 20 kHz and 30 MHz being preferred.
  • non-invasive means not requiring the entry of a needle, catheter, or other invasive medical instrument into a part of the body.
  • minimally invasive refers to the use of mechanical, hydraulic, or electrical means that invade the stratum comeum to create a small hole or micropore without causing substantial damage to the underlying tissues.
  • the lower threshold of radiant exposure that must be absorbed by the stratum comeum within the limit of the thermal relaxation time to cause suitable micro-explosions that result in tissue ablation is about 70 mJ/cm 2 within a 50 millisecond (ms) time. In other words, a total of 70 mJ/cm 2 must be delivered within a 50 ms window. This can be done in a single pulse of 70 mJ/cm 2 or in 10 pulses of 7 mJ/cm 2 , or with a continuous illumination of 1.4 watts/cm 2 during the 50 ms time.
  • the upper limit of radiant exposure is that which will ablate the stratum comeum without damage to underlying tissue and can be empirically determined from the light source, wavelength of light, and other variables that are within the experience and knowledge of one skilled in this art.
  • deliver is meant that the stated amount of energy is absorbed by the tissue to be ablated.
  • the excimer laser wavelength of 193 nm essentially 100% abso ⁇ tion occurs within the first 1 or 2 ⁇ m of stratum comeum tissue. Assuming the stratum comeum is about 20 ⁇ m thick, at longer wavelengths, such as 670 nm, only about 5% of incident light is absorbed within the 20 ⁇ m layer. This means that about 95% of the high power beam passes into the tissues underlying the stratum comeum where it will likely cause significant damage.
  • the ideal is to use only as much power as is necessary to perforate the stratum comeum without causing bleeding, thermal, or other damage to underlying tissues from which analytes are to be extracted or drugs or other permeants delivered.
  • Excimer lasers which emit light at wavelengths in the far UV region, are much more expensive to operate and maintain than, for example, diode lasers that emit light at wavelengths in visible and IR regions (600 to 1800 nm). However, at the longer wavelengths, the stratum comeum becomes increasingly more transparent and abso ⁇ tion occurs primarily in the underlying tissues.
  • the present invention facilitates a rapid and painless method of eliminating the barrier function of the stratum comeum to facilitate the transcutaneous transport of therapeutic substances into the body when applied topically or to access the analytes within the body for analysis.
  • the method utilizes a procedure which begins with the contact application of a small area heat source to the targeted area of the stratum comeum.
  • the heat source must have several important properties, as will now be described.
  • the heat source must be sized such that contact with the skin is confined to a small area, typically about 1 to 1000 ⁇ m in diameter.
  • an inherent depth limiting feature of the microporation process can be facilitated if the heat source has both a small enough thermal mass and limited energy source to elevate its temperature such that when it is placed in contact with tissues with more than 30% water content, the thermal dispersion in these tissues is sufficient to limit the maximum temperature of the heat source to less than 100°C. This feature effectively stops the thermal vaporization process once the heat probe had penetrated through the stratum comeum into the lower layers of the epidermis.
  • the heat source placed in contact with the skin, it is cycled through a series of one or more modulations of temperature from an initial point of ambient skin temperature to a peak temperature in excess of 123°C to approxmiately ambient skin temperature.
  • these pulses are limited in duration, and the inte ⁇ ulse spacing is long enough to allow cooling of the viable tissue layers in the skin, and most particularly the enervated dermal tissues, to acheive a mean temperature of less than about 45°C.
  • These parameters are based on the thermal time constants of the viable epidermal tissues (roughly 30-80 ms) located between the heat probe and the enervated tissue in the underlying dermis.
  • the stratum lucidum By limiting the duration of the heat pulse to less than one thermal time constant of the epidermis and allowing any heat energy conducted into the epidermis to dissipate for a sufficiently long enough time, the elevation in temperature of the viable layers of the epidermis is minimal. This allows the entire microporation process to take place without any sensation to the subject and no damage to the underlying and surrounding tissues.
  • the present invention comprises a method for painlessly creating microscopic holes, i.e. micropores, from about 1 to 1000 ⁇ m across, in the stratum comeum of human skin.
  • the key to successfully implementing this method is the creation of an appropriate thermal energy source, or heat probe, which is held in contact with the stratum comeum.
  • the principle technical challenge in fabricating an appropriate heat probe is designing a device that has the desired contact with the skin and that can be thermally modulated at a sufficiently high frequency.
  • an appropriate heat probe by topically applying to the stratum comeum a suitable light- absorbing compound, such as a dye or stain, selected because of its ability to absorb light at the wavelength emitted by a selected light source.
  • the selected light source may be a laser diode emitting at a wavelength which would not normally be absorbed by the skin tissues.
  • the targeted area can be temperature modulated by varying the intensity of the light flux focused on it.
  • a suitable light-absorbing compound such as a dye or stain, selected because of its ability to absorb light at the wavelength emitted by the laser source.
  • a suitable light-absorbing compound such as a dye or stain
  • the same concept can be applied at any wavelength and one must only choose an appropriate dye or stain and optical wavelength.
  • One such reference is Green, The Sigma-Aldrich Handbook of Stains, Dyes and Indicators, Aldrich Chemical Company, Inc. Milwaukee, Wisconsin (1991).
  • copper phthalocyanine (Pigment Blue 15; CPC) absorbs at about 800 nm; copper phthalocyanine tetrasulfonic acid (Acid Blue 249) absorbs at about 610 nm; and Indocyanine Green absorbs at about 775 nm; and Cryptocyanine absorbs at about 703 nm.
  • CPC copper phthalocyanine
  • Acid Blue 249 copper phthalocyanine tetrasulfonic acid
  • Indocyanine Green absorbs at about 775 nm
  • Cryptocyanine absorbs at about 703 nm.
  • CPC is particularly well suited for this embodiment for the following reasons: it is a very stable and inert compound, already approved by the FDA for use as a dye in implantable sutures; it absorbs very strongly at wavelengths from 750 nm to 950 nm, which coincide well with numerous low cost, solid state emitters such as laser diodes and LEDs, and in addition, this area of optical bandwidth is similarly not absorbed directly by the skin tissues in any significant amount; CPC has a very high vaporization point (>550C in a vacuum) and goes directly from a solid phase to a vapor phase with no liquid phase; CPC has a relatively low thermal diffusivity constant, allowing the light energy focused on it to selectively heat only that area directly in the focal point with very little lateral spreading of the 'hot-spot' into the surrounding CPC thereby assisting in the spatial definition of the contact heat-probe.
  • pu ⁇ ose of this disclosure is not to make an exhaustive listing of suitable dyes or stains because such may be easily ascertained by one skilled in the art from data readily available.
  • this method may be implemented with a mechanically shuttered, focused incandescent lamp as the pulse light source.
  • Various catalogs and sales literature show numerouslasers operating in the near UV, visible and near IR range. Representative lasers are Hammamatsu Photonic Systems Model PLP-02 which operates at a power output of 2xl0 '8 J, at a wavelength of 415 nm;
  • Hammamatsu Photonic Systems Model PLP-05 which operates at a power output of 15 J, at a wavelength of 685 nm
  • SDL, Inc. SDL-3250 Series pulsed laser which operates at a power output of 2x10 6 J at a wavelength of about 800-810 nm
  • SDL, Inc. Model SDL-8630 which operates at a power output of 500 mW at a wavelength of about 670 nm
  • Uniphase Laser Model AR-081-15000 which operates at a power output of 15,000 W at a wavelength of
  • a pulsed laser light source can emit radiation over a wide range of wavelengths ranging from between about 100 nm to 12,000 nm.
  • Excimer lasers typically will emit over a range of between about 100 to 400 nm.
  • Commercial excimer lasers are currently available with wavelengths in the range of about 193 nm to 350 nm.
  • a laser diode will have an emission range of between about 380 to 1550 nm.
  • a frequency doubled laser diode will have an emission range of between about 190 and 775 nm.
  • Longer wavelengths ranging from between about 1300 and 3000 nm may be utilized using a laser diode pumped optical parametric oscillator. It is expected, given the amount of research taking place on laser technology, that these ranges will expand with time.
  • Delivered or absorbed energy need not be obtained from a laser as any source of light, whether it is from a laser, a short arc lamp such as a xenon flashlamp, an incandescent lamp, a light-emitting diode (LED), the sun, or any other source may be used.
  • a short arc lamp such as a xenon flashlamp, an incandescent lamp, a light-emitting diode (LED), the sun, or any other source
  • the particular instrument used for delivering electromagnetic radiation is less important than the wavelength and energy associated therewith.
  • Any suitable instrument capable of delivering the necessary energy at suitable wavelengths, i.e. in the range of about 100 nm to about 12,000 nm, can be considered within the scope of the invention.
  • the essential feature is that the energy must be absorbed by the light-absorbing compound to cause localized heating thereof, followed by conduction of sufficient heat to the tissue to be ablated within the timeframe allowed.
  • the heat probe itself is formed from a thin layer, preferably about 5 to 1000 ⁇ m thick, of a solid, non-biologically active compound, applied topically to a selected area of an individual's skin that is large enough to cover the site where a micropore is to be created.
  • the specific formulation of the chemical compound is chosen such that it exhibits high abso ⁇ tion over the spectral range of a light source selected for providing energy to the light-absorbing compound.
  • the probe can be, for example, a sheet of a solid compound, a film treated with a high melting point absorbing compound, or a direct application of the light-absorbing compound to the skin as a precipitate or as a suspension in a carrier.
  • the light-absorbing heat probe Regardless of the configuration of the light-absorbing heat probe, it must exhibit a low enough lateral thermal diffusion coefficient such that any local elevations of temperature will remain spatially defined and the dominant mode of heat loss will be via direct conduction into the stratum comeum through the point of contact between the skin and the probe.
  • the required temperature modulation of the probe can be achieved by focusing a light source onto the light-absorbing compound and modulating the intensity of this light source. If the energy absorbed within the illuminated area is sufficiently high, it will cause the light absorbing compound to rapidly heat up.
  • the amount of energy delivered, and subsequently both the rate of heating and peak temperature of the light-absorbing compound at the focal point, can be easily modulated by varying the pulse width and peak power of the light source. In this embodiment, it is only the small volume of light-absorbing compound heated up by the focused, incident optical energy that forms the heat probe, additional light absorbing compound which may have been applied over a larger area then the actual poration site is incidental.
  • this embodiment comprises choosing a light source with an emission spectmm where very little energy would normally be absorbed in the skin tissues.
  • the energy density of light at the focal waist and the amount of abso ⁇ tion taking place within the light-absorbing compound are set to be sufficient to bring the temperature of the light-absorbing compound, within the area of the small spot defined by the focus of the light source, to greater than 123°C within a few milliseconds.
  • conduction into the stratum comeum delivers energy into these tissues, elevating the local temperature of the stratum co eum.
  • a flash vaporization of this water takes place, ablating the stratum comeum at this point.
  • the temperature of the heat probe can be rapidly modulated and the selective ablation of these tissues can be achieved, allowing a very precisely dimensioned hole to be created, which selectively penetrates only through the first 10 to 30 ⁇ m of skin.
  • An additional feature of this embodiment is that by choosing a light source that would normally have very little energy absorbed by the skin or underlying tissues, and by designing the focusing and delivery optics to have a sufficiently high numerical aperture, the small amount of delivered light that does not happen to get absorbed in the heat probe itself, quickly diverges as it penetrates deep into the body. Since there is very little abso ⁇ tion at the delivered wavelengths, essentially no energy is delivered to the skin directly from the light source. This three dimensional dilution of coupled energy in the tissues due to beam divergence and the low level of abso ⁇ tion in the untreated tissue results in a completely benign interaction between the light beam and the tissues, with no damage being done thereby.
  • a laser diode is used as the light source with an emission wavelength of 800 ⁇ 30 nm.
  • a heat-probe can be formed by topical application of a transparent adhesive tape that has been treated on the adhesive side with a 0.5 cm spot formed from a deposit of finely ground copper phthalocyanine (CPC).
  • CPC finely ground copper phthalocyanine
  • the CPC exhibits extremely high abso ⁇ tion coefficients in the 800 nm spectral range, typically absorbing more than 95% of the radiant energy from a laser diode.
  • FIG. 1 shows a system 10 for delivering light from such a laser diode to a selected area of an individual's skin and for monitoring the progress of the poration process.
  • the system comprises a laser diode 14 coupled to a controller 18, which controls the intensity, duration, and spacing of the light pulses.
  • the laser diode emits a beam 22 that is directed to a collection lens or lenses 26, which focuses the beam onto a mirror 30.
  • the beam is then reflected by the mirror to an objective lens or lenses 34, which focuses the beam at a preselected point 38.
  • This preselected point corresponds with the plane of an xyz stage 42 and the objective hole 46 thereof, such that a selected area of an individual's skin can be irradiated.
  • the xyz stage is connected to the controller such that the position of the xyz stage can be controlled.
  • the system also comprises a monitoring system comprising a CCD camera 50 coupled to a monitor 54 The CCD camera is confocally aligned with the objective lens such that the progress of the poration process can be monitored visually on the monitor.
  • FIG. 2 shows a sensor system 60 for use in this embodiment.
  • the system comprises a light source 64 for emitting a beam of light 68, which is directed through a delivery optics system 72 that focuses the beam at a preselected point 76, such as the surface of an individual's skin 80. A portion of the light contacting the skin is reflected, and other light is emitted from the irradiated area.
  • a portion of this reflected and emitted light passes through a filter 84 and then through a collection optics system 88, which focuses the light on a phototodiode 92.
  • a controller 96 is coupled to both the laser diode and the photodiode for, respectively, controlling the output of the laser diode and detecting the light that reaches the photodiode. Only selected portions of the spectrum emitted from the skin pass through the filter. By analyzing the shifts in the reflected and emitted light from the targeted area, the system has the ability to detect when the stratum comeum has been breached, and this feedback is then used to control the light source, deactivating the pulses of light when the microporation of the stratum co eum is achieved.
  • FIG. 3A shows an illustrative schematic representation thereof.
  • a light source 104 (coupled to a controller 106) emits a beam of light 108, which passes through and is focused by a delivery optics system 112. The beam is focused by the delivery optics system to a preselected point 116, such as a selected area of an individual's skin 120.
  • a cooling device 124 such as a Peltier device or other means of chilling, contacts the skin to cool the surface thereof.
  • the cooling device 124 FIG. 3B
  • a heat sink 132 is also preferably placed in contact with the cooling device.
  • pre-cooling allows a greater safety margin for the system to operate in that the potential sensations to the user and the possibility of any collateral damage to the epidermis directly below the poration site are reduced significantly from non-cooled embodiment.
  • pre-cooling minimizes evaporation of interstitial fluid and can also provide advantageous physical properties, such as decreased surface tension of such interstitial fluid.
  • cooling the tissue is known to cause a localized increase in blood flow in such cooled tissue, thus promoting diffusion of analytes from the blood into the interstitial fluid.
  • the method can also be applied for other micro-surgery techniques wherein the light- absorbing compound/heat-probe is applied to the area to be ablated and then the light source is used to selectively modulate the temperature of the probe at the selected target site, affecting the tissues via the vaporization-ablation process produced.
  • a further feature of the invention is to use the light source to help seal the micropore after its usefulness has passed. Specifically, in the case of monitoring for an intemal analyte, a micropore is created and some amount of interstitial fluid is extracted through this opening. After a sufficient amount of interstitial fluid had been collected, the light source is reactivated at a reduced power level to facilitate rapid clotting or coagulation of the interstitial fluid within the micropore.
  • the use of the light source itself for both the formation of the micropore and the sealing thereof is an inherently sterile procedure, with no physical penetration into the body by any device or apparatus.
  • thermal shock induced by the light energy kills any microbes that may happen to be present at the ablation site.
  • optical sterilization can be extended to include an additional step in the process wherein the light source is first applied in an unfocused manner, covering the target area with an illuminated area that extends 100 ⁇ m or more beyond the actual size of the micropore to be produced.
  • the flux density can be correspondingly reduced to a level well below the ablation threshold but high enough to effectively sterilize the surface of the skin.
  • the system is then configured into the sha ⁇ ly focused ablation mode and the optical microporation process begins.
  • Another illustrative embodiment of the invention is to create the required heat probe from a metallic solid, such as a small diameter wire.
  • the contacting surface of the heat probe must be able to have its temperature modulated from ambient skin temperatures (33°C) to temperatures greater than 123°C, within the required time allowed of, preferably, between about 1 to 50 ms at the high temperature (on-time) and at least about 10 to 50 ms at the low temperature (off-time).
  • ambient skin temperatures 33°C
  • temperatures greater than 123°C within the required time allowed of, preferably, between about 1 to 50 ms at the high temperature (on-time) and at least about 10 to 50 ms at the low temperature (off-time).
  • being able to modulate the temperature up to greater than 150°C for an "on" time of around 5 ms and an off time of 50 ms produces very effective thermal ablation with little or no sensation to the individual.
  • FIG. 4 shows an ohmic heating device 140 with a mechanical actuator.
  • the ohmic heating device comprises an ohmic heat source 144 coupled to a wire heat probe 148.
  • the ohmic heat source is also coupled through an insulating mount 152 to a mechanical modulation device 156, such as a solenoid.
  • a steady state condition can be reached wherein the tip of the wire probe will stabilize at some equilibrium temperature defined by the physical parameters of the stmcture, i.e., the temperature of the ohmic heat source, the length and diameter of the wire, the temperature of the air surrounding the wire, and the material of which the wire is comprised.
  • the modulation of the temperature of the selected area of an individual's skin 160 is effected directly via the mechanical modulation device to altematively place the hot tip of the wire in contact with the skin for, preferably, a 5 ms on-time and then withdraw it into the air for, preferably, a 50 ms off-time.
  • FIG. 5 shows a device 170 comprising a current source 174 coupled to a controller 178.
  • the current source is coupled to a current loop 182 comprising a wire 186 formed into a stmcture such that it presents a high resistance point.
  • the wire is held on a mount 190, and an insulator 194 separates different parts of the current loop.
  • the desired modulation of temperature is then achieved by merely modulating the current through the wire. If the thermal mass of the wire element is appropriately sized and the heat sinking provided by the electrodes connecting it to the current source is sufficient, the warm-up and cool-down times of the wire element can be achieved in a few milliseconds. Contacting the wire with a selected area of skin 198 heats the stratum comeum to achieve the selected ablation.
  • FIG. 6 there is shown still another illustrative example of porating the stratum comeum with a hot wire.
  • the wire 204 can be positioned within a modulatable alternating magnetic field formed by a coil of wire 208, the excitation coil.
  • a controller 212 coupled thereto, eddy currents can be induced in the wire heat probe of sufficient intensity that it will be heated up directly via the intemal ohmic losses.
  • This is essentially a miniature version of an inductive heating system commonly used for heat treating the tips of tools or inducing out- gassing from the electrodes in vacuum or flash tubes.
  • the advantage of the inductive heating method is that the energy delivered into the wire heat probe can be closely controlled and modulated easily via the electronic control of the excitation coil. If the thermal mass of the wire probe itself, and the thermal mass of the stratum comeum in contact with the tip of the probe are known, controlling the inductive energy delivered can produce very precise control of the temperature at the contact point 216 with the skin 220. Because the skin tissue is essentially non-magnetic at the lower frequencies at which inductive heating can be achieved, if appropriately selected frequencies are used in the excitation coil, then this alternating electromagnetic field will have no effect on the skin tissues.
  • an additional feature may be realized by inco ⁇ orating a simple closed loop control system wherein the electrical impedance between the probe tip and the subject's skin is monitored. In this manner, the position of the probe can be brought into contact with the subject's skin, indicated by the step- wise reduction in resistance once contact is made, and then held there for the desired "on- time,” after which it can be withdrawn.
  • a simple closed loop control system wherein the electrical impedance between the probe tip and the subject's skin is monitored. In this manner, the position of the probe can be brought into contact with the subject's skin, indicated by the step- wise reduction in resistance once contact is made, and then held there for the desired "on- time,” after which it can be withdrawn.
  • linear actuators are suitable for this form of closed loop control, such as a voice-coil mechanism, a simple solenoid, a rotary system with a cam or bell-crank, and the like.
  • FIG. 7 shows an illustrative example of such a closed loop impedance monitor.
  • this system 230 there is an ohmic heat source 234 coupled to a wire heat probe 238.
  • the heat source is mounted through an insulating mount 242 on a mechanical modulator 246.
  • a controller 250 is coupled to the wire and to the skin 254, wherein the controller detects changes in impedance in the selected area 258 of skin, and when a predetermined level is obtained the controller stops the poration process.
  • hydraulic poration means are icrolancets adapted to just penetrate the stratum comeum for pu ⁇ oses of administering a permeant, such as a dmg, through the pore formed or to withdraw an analyte through the pore for analysis.
  • a permeant such as a dmg
  • Such a device is considered to be "minimally invasive” as compared to devices and/or techniques which are non-invasive.
  • micro-lancets that penetrate below the stratum comeum for withdrawing blood are well known.
  • Such devices are commercially available from manufacturers such as Becton-Dickinson and Lifescan and can be utilized in the present invention by controlling the depth of penetration.
  • micro-lancet device for collecting body fluids
  • This application shows a device for penetration into the dermal layer of the skin, without penetration into subcutaneous tissues, to collect body fluids for monitoring, such as for blood glucose levels.
  • Poration of stratum comeum can also be accomplished using sonic means.
  • Sonic- poration is a variation of the optical means described above except that, instead of using a light source, a very tightly focused beam of sonic energy is delivered to the area of the stratum comeum to be ablated. The same levels of energy are required, i.e.
  • electroporation or short bursts or pulses of electrical current can be delivered to the stratum comeum with sufficient energy to form micropores.
  • Electroporation is known in the art for producing pores in biological membranes and electroporation instmments are commercially available. Thus, a person of skill in this art can select an instrument and conditions for use thereof without undue experimentation according to the guidelines provided herein.
  • the micropores produced in the stratum comeum by the methods of the present invention allow high flux rates of large molecular weight therapeutic compounds to be delivered transdermally.
  • these non-traumatic microscopic openings into the body allow access to various analytes within the body, which can be assayed to determine their intemal concentrations.
  • skin samples were prepared as follows. Epidermal membrane was separated from human cadaver whole skin by the heat-separation method of Klingman and Christopher, 88 Arch. Dermatol. 702 (1963), involving the exposure of the full thickness skin to a temperature of 60°C for 60 seconds, after which time the stratum comeum and part of the epidermis (epidermal membrane) were gently peeled from the dermis.
  • Example 2 Heat separated stratum comeum samples prepared according to the procedure of Example 1 were cut into 1 cm 2 sections. These small samples were than attached to a glass cover slide by placing them on the slide and applying an pressure sensitive adhesive backed disk with a 6 mm hole in the center over the skin sample. The samples were then ready for experimental testing. In some instances the skin samples were hydrated by allowing them to soak for several hours in a neutral buffered phosphate solution or pure water.
  • the delivery optics were designed to produce a focal waist 25 ⁇ m across with a final objective have a numerical aperture of 0.4.
  • the total power delivered to the focal point was measured to be between 50 and 200 milliwatts for the 810 and 1480 nm laser diodes, which were capable of operating in a continuous wave (CW) fashion.
  • the 905 and 1550 nm laser diodes were designed to produce high peak power pulses roughly 10 to 200 nanoseconds long at repetition rates up to 5000 Hz.
  • the peak power levels were measured to be 45 watts at 905 nm and 3.5 watts at 1550 nm. Under these operating conditions, there was no apparent effect on the skin samples from any of the lasers.
  • the targeted area was illuminated continuously for 60 seconds and then examined microscopically, revealing no visible effects.
  • the sample was placed in a modified Franz cell, typically used to test transdermal delivery systems based on chemical permeation enhancers, and the conductivity from one side of the membrane to the other was measured both before and after the irradiation by the laser and showed no change.
  • Example 2 To evaluate the potential sensation to a living subject when illuminated with optical energy under the conditions of Example 2, six volunteers were used and the output of each laser source was applied to their fingertips, forearms, and the backs of their hands. In the cases of the 810, 905 and 1550 nm lasers, the subject was unable to sense when the laser was turned on or off. In the case of the 1480 nm laser, there was a some sensation during the illumination by the 1480 nm laser operating at 70 mW CW, and a short while later a tiny blister was formed under the skin due to the abso ⁇ tion of the 1480 nm radiation by one of the water abso ⁇ tion bands.
  • the amount of energy absorbed was sufficient to induce the formation of the blister, but was not enough to cause the ablative removal of the stratum comeum. Also, the abso ⁇ tion of the 1480 nm light occurred predominantly in the deeper, fully hydrated (85% to 90% water content) tissues of the epidermis and dermis, not the relatively dry (10% to 15% water content) tissue of the stratum comeum.
  • Example 4 Having demonstrated the lack of effect on the skin in its natural state (Example 3), a series of chemical compounds was evaluated for effectiveness in absorbing the light energy and then transferring this absorbed energy, via conduction, into the targeted tissue of the stratum comeum.
  • Compounds tested included India ink; "SHARPIE” brand indelible black, blue, and red marking pens; methylene blue; fuschian red; epolite #67, an absorbing compound developed for molding into polycarbonate lenses for protected laser goggles; tincture of iodine; iodine-polyvinylpyrrolidone complex ("BETADINE"); copper phthalocyanine; and printers ink.
  • BETADINE tincture of iodine
  • Example 1 when using all of these products, however some performed better than others.
  • the copper phthalocyanine (CPC) and the epolite #67 were some of the most effective.
  • One probable reason for the superior performance of the CPC is its high boiling point of greater the 500°C and the fact that it maintains its solid phase up to this temperature.
  • Example 5 As copper phthalocyanine has already been approved by the FDA for use in implantable sutures, and is listed in the Merck index as a rather benign and stabile molecule in regard to human biocompatability, the next step taken was to combine the topical application of the CPC and the focused light source to the skin of healthy human volunteers.
  • a suspension of finely ground CPC in isopropyl alcohol was prepared.
  • the method of application used was to shake the solution and then apply a small drop at the target site. As the alcohol evaporated, a fine and uniform coating of the solid phase CPC was then left on the surface of the skin.
  • the apparatus show in FIG. 1 was then applied to the site, wherein the CPC had been topically coated onto the skin, by placing the selected area of the individual's skin against a reference plate.
  • the reference plate consists of a thin glass window roughly 3 cm X 3 cm, with a 4 mm hole in the center.
  • the CPC covered area was then positioned such that it was within the central hole.
  • a confocal video microscope (FIG. 1) was then used to bring the surface of the skin into sha ⁇ focus.
  • Positioning the skin to achieve the sha ⁇ est focus on the video system also positioned it such that the focal point of the laser system was coincident with the surface of the skin. The operator then activated the pulses of laser light while watching the effects at the target site on the video monitor.
  • the amount of penetration was estimated visually by the operator by gauging the amount of defocusing of the laser spot in the micropore as the depth of the micropore increased, and this can be dynamically corrected by the operator, essentially following the ablated surface down into the tissues by moving the position of the camera/laser source along the "z" axis, into the skin.
  • the appearance of the base of the hole changed noticeably, becoming much wetter and shinier.
  • the operator deactivated the laser.
  • a dramatic outflow of interstitial fluid occurred in response to the barrier function of the stratum comeum being removed over this small area.
  • the video system was used to record this visual record of the accessibility of interstitial fluid at the poration site.
  • Example 6 The procedure of Example 5 was followed except that the CPC was applied to a transparent adhesive tape, which was then caused to adhere to a selected site on the skin of an individual. The results were substantially similar to those of Example 5.
  • the top surface of the skin sample was treated with a solution of copper phthalocyanine (CPC) in alcohol. After the alcohol evaporated, a topical layer of solid phase CPC was distributed over the skin surface with a mean thickness of 10 to 20 um.
  • FIG. 8A shows a cross-section of full thickness skin prior to the laser application, wherein the CPC layer 270, stratum comeum 274, and underlying epidermal layers 278 are shown.
  • FIG. 8A shows a cross-section of full thickness skin prior to the laser application, wherein the CPC layer 270, stratum comeum 274, and underlying epidermal layers 278 are shown.
  • 8B shows the sample after a single pulse of 810 nm light was applied to an 80 um diameter circle with an energy density of 4000 J/cm2, for a pulse period of 20 ms. It is noteworthy that there was still a significant amount of CPC present on the surface of the stratum comeum even in the middle of the ablated crater 282. It should also be noted that laboratory measurements indicate that only about 10% of the light energy incident on the CPC is actually absorbed, with the other 90% being reflected or backscattered. Thus the effective energy flux being deliverd to the dye layer which could cause the desired heating is only about 400 J/cm2.
  • 8C shows the sample after 5 pulses of 810 nm light were applied, wherein the stratum comeum barrier was removed with no damage to the underlying tissue.
  • FIG. 8D shows the sample after 50 pulses were applied. Damaged tissue 286 was present in the epidermal layers due to carbonization of non ablated tissue and thermal denaturing of the underlying tissue.
  • FIGS. 8A-8C show separations between the stratum comeum and the underlying epidermal layers due to an artifact pf dehydration, freezing, and preparations for imaging.
  • Example 8 To examine the details of the thermal ablation mechanism, a mathematical model of the skin tissues was constructed upon which various different embodiments of the thermal ablation method could be tried. This model computes the temperature distribution in a layered semi-infinite medium with a specified heat flux input locally on the surface and heat removal from the surface some distance away, i.e. convection is applied between the two. The axisymmetric, time-dependent diffusion equation is solved in cylindrical coordinates using the alternating-direction-implicit (ADI) method. (Note: Constant Temp. B.C. is applied on lower boundary to serve as z->inf; and zero radial heat flux is applied on max radial boundary to serve as r->inf).
  • ADI alternating-direction-implicit
  • the layers are parallel to the surface and are defined as: (1) dye; (2) stratum comeum; (3) underlying epidermis; and (4) dermis.
  • the depth into the semi-infinite medium and thermal properties, density (rho), specific heat (c), and conductivity (k) must be specified for each layer.
  • rho density
  • c specific heat
  • k conductivity
  • Each embodiment of the method described herein, for which empirical data have been collected, has been modeled for at least one set of operational parameters, showing how stratum comeum ablation can be achieved in a precise and controllable fashion.
  • the output of the simulations is presented graphically in two different formats: (1) a cross-sectional view of the skin showing the different tissue layers with three isotherms plotted on top of this view which define three critical temperature thresholds, and (2) two different temperature -vs- time plots, one for the point in the middle of the stratum comeum directly beneath the target site, and the second for the point at the boundary of the viable cell layers of the epidermis and the underside of the stratum comeum.
  • the model provides a good approximation of the thermal gradients present in the actual tissues.
  • the dimensions used in this, and all subsequent simulations, for the thicknesses of the CPC dye layer and the various skin layers are as follows: dye, 10 ⁇ m; stratum comeum, 30 ⁇ m; underlying epidermis, 70 ⁇ m; and dermis, 100 ⁇ m.
  • stratum co eum may be shown as having a temperature already exceeded the ablation threshold for thermal vaporization of the water content, this event is not modeled, and the subsequent loss of heat energy in the tissues due to this vaporization is not factored into the simulation. This will cause a slight elevation in the temperatures shown in the underlying tissues from that point on in the simulation mn.
  • the basic information presented by the simulation is that if one keeps the "on-time" of the heat pulse to less than 20 milliseconds with the flux density of 400 Joules/cm 2 , then no damage to the living cells in the underlying epidermis will be sustained, even though the ablation threshold isotherm has been moved well into the stratum comeum.
  • ablation of the stratum comeum can be achieved without any damage to the adjacent cells in the underlying epidermis (see FIG. 8C). This is possible in large part due to the significantly different thermal diffusivities of these two tissues layers. That is, the stratum comeum, containing only about 10% to 20% water content, has a much lower thermal conductivity constant, 0.00123
  • the same simulation scenario started in the damage threshold critical point mn illustrated in FIG. 9 is carried out farther in time.
  • the pain sensory isotherm at 45°C just enters the enervated layer of skin comprised by the dermis.
  • the damage threshold isotherm moves significantly farther into the epidermal layer than where it was shown to be in FIG. 9. Relating this simulation to the numerous clinical studies conducted with this method, an excellent verification of the model's accuracy is obtained in that the model shows almost exactly the duration of 'on-time' that the heat probe can be applied to the skin before the individual feels it.
  • a controllable pulse generator was used to set the "on-time”and “off-time” of a series of light pulses applied to the topical layer of copper phthalocyanine (CPC) dye on the skin. While maintaining a constant "off-time” of 80 milliseconds, the "on-time” was gradually increased until the subject reported a mild "pain” sensation. Without exception, all of the subjects involved in these studies, reported the first "pain” at an "on-time” of between 45 and 60 milliseconds, very close to that predicted by the model. In addition, the site-to-site variability mentioned previously as regards the sensation of "pain” was noted in these clinical studies. Accordingly, what is reported as "pain” is the point at which the first unambiguous sensation is noticeable. At one site this may be reported as pain, whereas at an adjacent site the same subject may report this as merely “noticeable.”
  • Example 9 An object of this invention is to achieve a painless, micro-poration of the stratum comeum without causing any significant damage to the adjacent viable tissues.
  • a boundary appears to exist for any given flux density of thermal energy within the ablation target spot within which the micro ⁇ poration can be achieved in just such a painless and non-traumatic manner.
  • Both the in vivo and in vitro studies have shown that this is the case, and this has permitted development through empirical methods of some operational parameters that appear to work very well. The following set of simulations shows how the method works when these specific parameters are used.
  • FIG. 11 shows the final temperature distribution in the skin tissues immediately after this pulse train has ended.
  • the isotherms representing the three critical temperature thresholds show that stratum comeum ablation has been achieved, with no sensation present in the dermal layer nerves and very little cross-over of the damage threshold into the viable cells of the underlying epidermis.
  • the epidermal cells must not only be heated up to a certain point, but they also must be held at this temperature for some period of time, generally thought to be about five seconds.
  • Example 11 Once the basic thermal conduction mechanism of delivering the energy into the skin tissues underlying the effective painless ablation and micro-poration of the stratum comeum is understood, several different specific methods to achieve the required rapid temperature modulations of the contact point can be conceived, such as the hot wire embodiments illustrated in FIGS. 4-7.
  • the heater When electricity is applied with a constant current source, the heater will come up to some temperature and within a few seconds, achieve a steady state with the convection losses to the surrounding air.
  • the wire which is a part of this thermal system, will reach a steady state such that the very tip of the wire can be raised to almost any arbitrary temperature, up to roughly 1000°C with these types of components.
  • the tip can be sized to give exactly the dimension micropore desired.
  • tungsten wires with a diameter of 80 ⁇ m attached to the replaceable tip of a "WAHL" cordless soldering iron with approximately 2 mm of wire protruding from the tip have been utilized.
  • the temperature of the tip has been measured at its steady state, and it has been noted that by varying the constant current settings, steady state temperatures of greater than 700°C can easily be reached.
  • a low mass, fast response electromechanical actuator was coupled to the tip such that the position of the wire could be translated linearly more than 2 mm at up to a 200 Hz rate.
  • this vibrating tip could very controllably be brought into contact with the skin surface in a manner where it was only in contact for less than 10 milliseconds at a time, the "on-time,” while an “off-time” of arbitratily long periods could be acheived by setting the pulse generator accordingly.
  • the hot wire embodiment can be n with the identical simulation code. Because the contact with the wire occurs essentially instantly, there is no time dependent build-up of heat in the CPC dye layer and when the wire is physically removed from contact with the skin, there is a no residual heat still left on the surface as there is with the heated CPC dye layer. Also, as the wire itself defines the area targeted for ablation/micro-poration, there should be no lateral diffusion of thermal energy prior to its application to the stratum comeum. The comparative performances of the "hot ⁇ wire" embodiment are shown in FIGS. 17-19.
  • Example 12 In this example, the procedure of Example 11 was followed except that the skin was pre-cooled according to the procedure of Example 10. Similarly, pre-cooling the target site yields similarly positive results with the "hot-wire" embodiment. The results of the pre-cooled simulation of the "hot-wire" approach are shown in FIGS. 20-22.
  • Tankovich '803 patent appears at first glance to be similar to the presently claimed invention.
  • the simulation model was set up with the operating parameters specified in Tankovich '803, i.e. a pulse width of 1 ⁇ s and a power level of 40,000,000 W/cm 2 .
  • FIGS. 23 and 24 show that under these conditions no portion of the stratum comeum reaches the threshold for flash vaporization of water, 123°C, and thus no ablation/microporation of the stratum comeum occurs.
  • applying this type of high peak power, short duration pulse to the topical dye layer merely vaporizes the dye off of the surface of the skin with no effect on the skin.
  • This example thus, demonstrates that the conditions specified by Tankovich '803 are inoperative in the presently claimed invention.
  • interstitial fluid obtained after porating the skin according to the procedure of Example 6 was collected and analyzed to determine the glucose concentration thereof.
  • Data were obtained on four non-diabetic subjects and six type I diabetic subjects undergoing a glucose load test. Subject's ages ranged from 27 to 43. The goal of the study was to examine the utility of the method for painlessly harvesting enough interstitial fluid
  • ISF insulin receptor presenting in the subject's whole blood
  • the basic design of the study was to recruit a modest number of volunteers, some with diabetes and some without diabetes, from which a series of sample pairs of ISF and whole blood were drawn every 3 to 5 minutes throughout the 3 to 4 hour duration of the study period. Both the blood and the ISF samples were assayed for glucose and the statistical relationship between the blood glucose levels and the interstitial fluid determined. To examine the hypothesized temporal lag of the ISF glucose levels as compared to the whole blood glucose levels, the study subjects were induced to exhibit a significant and dynamic change in their glucose levels. This was accomplished by having each subject fast for 12 hours prior to beginning the test and then giving the subject a glucose load after his or her baseline glucose levels have been established via a set of three fasting blood and ISF glucose levels.
  • the subjects were given a glucose load in the form of sweet juice based on the following guidelines: i.
  • the glucose load was calculated based on a .75 gram glucose per pound of body weight.
  • the glucose load was calculated based on a .75 gram glucose per pound of body weight.
  • the diabetic subjects will self inject their normal morning dose of fast acting insulin.
  • the diabetic subject presents with fasting glucose levels above 300 mg/dL, they were asked to give themselves their insulin injection first, and the glucose load was provided after their blood glucose levels have dropped to below 120 mg/dL.
  • This attachment allowed a convenient method by which a small suction hose could be connected, applying a mild vacuum (10 to 12 inches of Hg) to the porated area to induce the ISF to flow out of the body through the micropores.
  • a mild vacuum (10 to 12 inches of Hg)
  • the top of the teflon disk was fitted with a clear glass window allowing the operator to directly view the micro-porated skin beneath it.
  • This level of vacuum created a nominal pressure gradient of around 5 pounds/square inch (PSI). Without the micropores, no ISF whatsoever could be drawn from the subject's body using only the mild vacuum.
  • the subject was given a glucose load in the form of highly sweetened orange juice.
  • the amount of glucose given was 0.75 grams per pound of body weight for the nondiabetic subjects and 50 grams for the diabetic subjects.
  • the diabetic subjects also self administered a shot of fast acting insulin, (regular) with the dosage appropriately calculated, based on this 50 gram level of glucose concurrent with the ingestion of the glucose load.
  • the diabetic subjects were expected to exhibit an upwards excursion of their blood glucose levels ranging up to 300 mg/dL and then dropping rapidly back into the normal range as the insulin takes effect.
  • the nondiabetic subjects were expected to exhibit the standard glucose tolerance test profiles, typically showing a peak in blood glucose levels between 150 mg/dL and 220 mg/dL from 45 minutes to 90 minutes after administering the glucose load, and then a rapid drop back to their normal baseline levels over the next hour or so.
  • This scaling of the output of the ELITE glucometer when used to measure ISF glucose levels allows one to examine, over the entire data set, the error terms associated with using ISF to estimate blood glucose levels.
  • the correlations between the ISF glucose values and the blood glucose levels are the same as the scaled version.
  • the graph shown in FIG. 25 presents all ten of the glucose load tests, concatenated one after another on an extended time scale.
  • the blood based measurement already contains an error term.
  • the manufacturer's published performance data indicates that the ELITE system has a nominal Coefficient of Variance (CV) of between 5% and 7%, depending on the glucose levels and the amount of hematocrit in the blood.
  • CV Coefficient of Variance
  • ISF ⁇ [(ISF devialion ) 2 - (Blood actual ) 2 p.
  • a histogram of the relative deviation of the ISF to the blood glucose levels is shown in FIG. 27.
  • the present invention also includes a method for the delivery of dmgs, including dmgs currently delivered transdermally, through micro-pores in the stratum comeum.
  • the delivery is achieved by placing the solution in a reservoir over the poration site.
  • a pressure gradient is used to further enhance the delivery.
  • sonic energy is used with or without a pressure gradient to further enhance the delivery.
  • the sonic energy can be operated according to traditional transdermal parameters or by utilizing acoustic streaming effects, which will be described momentarily, to push the delivery solution through the porated stratum comeum.
  • Example 15 This example shows the use of stratum comeum poration for the delivery of lidocaine, a topical analgesic.
  • the lidocaine solution also contained a chemical permeation enhancer formulation designed to enhance its passive diffusion across the stratum comeum.
  • a drawing of an illustrative delivery apparatus 300 is shown in FIG. 28, wherein the apparatus comprises a housing 304 enclosing a reservoir 308 for holding a dmg-containing solution 312.
  • the top portion of the housing comprises an ultrasonic transducer 316 for providing sonic energy to aid in transporting the dmg-containing solution through micropores 320 in the stratum comeum 324.
  • a port 328 in the ultrasonic transducer permits application of pressure thereto for further aiding in transporting the dmg-containing solution through the micropores in the stratum comeum.
  • the delivery apparatus is applied to a selected area of an individual's skin such that it is positioned over at least one, and preferably a plurality, of micropores.
  • An adhesive layer 332 attached to a lower portion of the housing permits the apparatus to adhere to the skin such that the dmg- containing solution in the reservoir is in liquid communication with the micropores. Delivery of the dmg through the micropores results in transport into the underlying epidermis 336 and dermis 340. Five subjects were tested for the effectiveness of drug delivery using poration together with ultrasound.
  • site 1 The site near the thumb will be referred to as site 1
  • site furthest from the thumb will be referred to as site 2.
  • Site 1 was used as a control where the lidocaine and enhancersolution was applied using an identical delivery apparatus 300, but without any micro-poration of the stratum comeum or sonic energy.
  • Site 2 was porated with 24 holes spaced 0.8 millimeters apart in a grid contained within a 1 cm diameter circle. The micropores in Site 2 were generated according to the procedure of Example 6. Lidocaine and low level ultrasound were applied.
  • Ultrasound applications were made with a custom manufactured Zevex ultrasonic transducer assembly set in burst mode with 0.4 Volts peak to peak input with 1000 count bursts occurring at 10 Hz with a 65.4 kHz fundamental frequency, i.e., a pulse modulated signal with the transducer energized for 15 millisecond bursts, and then turned off for the next 85 milliseconds.
  • the measured output ofthe amplifier to the transducer was 0.090 watts
  • the control site, site 1 presented little to no numbness (scale 7 to 10) at 10 to 12 minutes. At approximately 20 minutes some numbness (scale 3) was observed at site 1 as the solution completely permeated the stratum comeum. Site 1 was cleaned at the completion of the lidocaine application. Site 2 presented nearly complete numbness (scale 0 to 1) in the 1 cm circle containing the porations. Outside the 1 cm diameter circle the numbness fell off almost linearly to 1 at a 2.5 cm diameter circle with no numbness outside the 2.5 cm diameter circle.
  • FIGS. 29A-C A graphic representation of illustrative results obtained on a typical subject is shown in FIGS. 29A-C.
  • FIGS. 29A and 29B show the results obtained at Site 2 (porated) after 5 and 10 minutes, respectively.
  • FIG. 29C shows the results obtained at Site 1 (control with no poration).
  • the physics of sonic energy fields created by sonic transducers can be utilized in a method by which sonic frequency can be modulated to improve on flux rates achieved by other methods.
  • the energy distribution of an sonic transducer can be divided into near and far fields.
  • the near field characterized by length N, is the zone from the first energy minimum to the last energy maximum.
  • the zone distal to the last maximum is the far field.
  • the near (N) field patte is dominated by a large number of closely spaced local pressure peaks and nulls.
  • the length of the near field zone, N is a function of the frequency, size, and shape of the transducer face, and the speed of sound in the medium through which the ultrasound travels.
  • intensity variations within its normal operating range do not affect the nature of the sonic energy distribution other than in a linear fashion.
  • the relative intensities of separate transducers do affect the energy distribution in the sonic medium, regardless of whether it is skin or another medium.
  • a frequency modulation from high to low drives the pressure peaks into the body, whereas a frequency modulation from low to high pulls the pressure peaks from within the body toward the surface and through the skin to the outside of the body.
  • a frequency modulation of 1 MHz produces a movement of about 2.5 mm ofthe peaks and nulls of the near field energy patte in the vicinity ofthe stratum comeum.
  • this degree of action provides access to the area well below the stratum comeum and even the epidermis, dermis, and other tissues beneath it.
  • the flux of a dmg or analyte across the skin can also be increased by changing either the resistance (the diffusion coefficient) or the driving force (the gradient for diffusion). Flux can be enhanced by the use of so-called penetration or chemical enhancers.
  • Chemical enhancers are comprised of two primary categories of components, i.e., cell- envelope disordering compounds and solvents or binary systems containing both cell-envelope disordering compounds and solvents.
  • Cell envelope disordering compounds are known in the art as being useful in topical pharmaceutical preparations and function also in analyte withdrawal through the skin. These compounds are thought to assist in skin penetration by disordering the lipid stmcture ofthe stratum comeum cell-envelopes. A comprehensive list of these compounds is described in European Patent Application 43,738, published June 13, 1982, which is inco ⁇ orated herein by reference. It is believed that any cell envelope disordering compound is useful for pu ⁇ oses of this invention.
  • Suitable solvents include water; diols, such as propylene glycol and glycerol; mono- alcohols, such as ethanol, propanol, and higher alcohols; DMSO; dimethylformamide; N,N- dimethylacetamide; 2-pyrrolidone; N-(2-hydroxyethyl) pyrroiidone, N-methylpyrrolidone, 1- dodecylazacycloheptan-2-oneand other n-substituted-a!kyl-azacycloalkyl-2-ones(azones) and the like.
  • a dual enhancer consisting of glycerol monolaurate and ethanol for the transdermal delivery of dmgs is shown in U.S. Patent 4,820,720.
  • U.S. Patent 5,006,342 lists numerous enhancers for transdermal drug administration consisting of fatty acid esters or fatty alcohol ethers of C 2 to C 4 alkanediols, where each fatty acid/alcohol portion of the ester/ether is of about 8 to 22 carbon atoms.
  • Patent 4,863,970 shows penetration-enhancing compositions for topical application comprising an active permeant contained in a penetration-enhancing vehicle containing specified amounts of one or more cell-envelope disordering compounds such as oleic acid, oleyl alcohol, and glycerol esters of oleic acid; a C 2 or C 3 alkanol and an inert diluent such as water.
  • cell-envelope disordering compounds such as oleic acid, oleyl alcohol, and glycerol esters of oleic acid
  • C 2 or C 3 alkanol such as water.
  • Other chemical enhancers, not necessarily associated with binary systems include DMSO or aqueous solutions of DMSO such as taught in Herschler, U.S. Patent 3,551,554; Herschler, U.S. Patent 3,711,602; and Herschler, U.S. Patent 3,711,606, and the azones (n-substituted-alkyl- azacyclo
  • U.S. Patent 4,855,298 discloses compositions for reducing skin irritation caused by chemical enhancer containing compositions having skin irritation properties with an amount of glycerin sufficient to provide an anti-irritating effect.
  • the specific carrier vehicle and particularly the chemical enhancer utilized can be selected from a long list of prior art vehicles some of which are mentioned above and inco ⁇ orated herein by reference. To specifically detail or enumerate that which is readily available in the art is not thought necessary.
  • the invention is not drawn to the use of chemical enhancers per se and it is believed that all chemical enhancers, useful in the delivery of drugs through the skin, will function with dyes in optical microporation and also with sonic energy in effecting measurable withdrawal of analytes from beneath and through the skin surface or the delivery of permeants or dmgs through the skin surface.
  • Modulated sonic energy and chemical enhancers were tested for their ability to control transdermal flux on human cadaver skin samples.
  • the epidermal membrane had been separated from the human cadaver whole skin by the heat-separation method of Example 1.
  • the epidermal membrane was cut and placed between two halves of the permeation cell with the stratum comeum facing either the upper (donor) compartment or lower (receiver) compartment.
  • Modified Franz cells were used to hold the epidermis, as shown in FIG. 2 of U.S. Patent No. 5,445,611.
  • Each Franz cell consists of an upper chamber and a lower chamber held together with one or more clamps.
  • the lower chamber has a sampling port through which materials can be added or removed.
  • a sample of stratum comeum is held between the upper and lower chambers when they are clamped together.
  • the upper chamber of each Franz cell is modified to allow an ultrasound transducer to be positioned within 1 cm ofthe stratum comeum membrane.
  • Methylene blue solution was used as an indicator molecule to assess the permeation ofthe stratum co eum.
  • a visual record of the process and results of each experiment was obtained in a time stamped magnetic tape format with a video camera and video cassette recorder (not shown).
  • the system for producing and controlling the sonic energy included a programmable 0-30 MHz arbitrary waveform generator (Stanford Reserach Systems Model DS345), a 20 watt 0-30 MHz amplifier, and two unfocused ultrasound immersion transducers having peak resonances at 15 and
  • Example 16 the heat-separated epidermis was placed in the Franz cells with the epidermal side facing up, and the stratum comeum side facing down, unless noted otherwise.
  • the lower chambers were filled with distilled water, whereas the upper chambers were filled with concentrated methylene blue solution in distilled water.
  • Heat Separated Epidermis Immediately after filling the upper chambers with methylene blue solution, sonic energy was applied to one of the cells with the transducer fully immersed. This orientation would correspond, for example, to having the transducer on the opposite side of a fold of skin, or causing the sonic energy to be reflected off a reflector plate similarly positioned and being used to "push" analyte out of the other side of the fold into a collection device.
  • the sonic energy setting was initially set at the nominal operating frequency of 25 MHz with an intensity equivalent to a 20 volt peak-to-peak (P-P) input wave form.
  • the frequency was set to modulate or sweep from 30 MHz to 10 MHz. This 20 MHz sweep was performed ten times per second, i.e., a sweep rate of 10 Hz.
  • a contact thermocouple was applied to the body ofthe transducer and power was cycled on and off to maintain maximum temperature of the transducer under 42°C. After about 30 minutes of cycling maximum power at about a 50% duty cycle of 1 minute on and 1 minute off, there was still no visually detectable permeation of the stratum comeum by the methylene blue dye.
  • Perforated Stratum Comeum Six cells were prepared as described above in Example 16. The clamps holding the upper and lower chambers of the Franz cells were tightened greater than the extent required to normally seal the upper compartment from the lower compartment, and to the extent to artificially introduce perforations and "pinholes" into the heat-separated epidermal samples. When dye solution was added to the upper chamber of each cell, there were immediate visual indications of leakage of dye into the lower chambers through the perforations formed in the stratum comeum. Upon application of sonic energy to cells in which the stratum comeum was so perforated with small "pinholes," a rapid increase in the transport of fluid through a pinhole in the stratum comeum was observed.
  • the rate of transport of the indicator dye molecules was directly related to whether the sonic energy was applied or not. That is, application of the sonic energy caused an immediate (lag time approximately ⁇ 0.1 second) pulse ofthe indicator molecules through the pinholes in the stratum comeum. This pulse of indicator molecules ceased immediately upon turning off of the sonic energy (a shutoff lag of approximately ⁇ 0.1 second). The pulse could be repeated as described.
  • Chemical Enhancer One or CE1 was an admixture of ethanol/glycerol/water/glycerol monooleate/methyl laurate in a 50/30/15/2.5/2.5 volume ratio. These are components generally regarded as safe, i.e. GRAS, by the FDA for use as pharmaceutical excipients.
  • Chemical Enhancer Two or CE2 is an experimental formulation shown to be very effective in enhancing transdermal dmg delivery, but generally considered too irritating for long term transdermal delivery applications.
  • CE2 contained ethanol/glycerol/water/lauradone/methyllaurate in the volume ratios 50/30/15/2.5/2.5.
  • Lauradone is the lauryl (dodecyl) ester of 2-pyrrolidone-5- carboxylic acid (“PCA”) and is also referred to as lauryl PCA.
  • Example 16 Six Franz cells were set up as before (Example 16) except that the heat separated epidermis was installed with the epidermal layer down, i.e., stratum co eum side facing up. Hydration was established by exposing each sample to distilled water ovemight. To begin the experiment, the distilled water in the lower chambers was replaced with methylene blue dye solution in all six cells. The upper chambers were filled with distilled water and the cells were observed for about 30 minutes confirming no passage of dye to ensure that no pinhole perforations were present in any ofthe cells. When none were found, the distilled water in the upper chambers was removed from four of the cells. The other two cells served as distilled water controls. The upper chambers of two of the experimental cells were then filled with CE1 and the other two experimental cells were filled with CE2.
  • Sonic energy was immediately applied to one of the two CE2 cells.
  • dye flux was visually detected. No dye flux was detected in the other five cells.
  • Sonic energy was then applied to one of the two cells containing CE1 at the same settings. Dye began to appear in the upper chamber within 5 minutes. Thus, sonic energy together with a chemical enhancer significantly increased the transdermal flux rate of a marker dye through the stratum comeum, as well as reduced the lag time.
  • Formulations of the two chemical enhancers, CE1 and CE2 were prepared minus the glycerin and these new formulations, designated CE1MG and CE2MG, were tested as before.
  • the cells were then drained of all fluids and flushed with distilled water on both sides of the stratum comeum.
  • the lower chambers were then immediately filled with distilled water and the upper chambers were refilled with dye solution.
  • the cells were observed for 30 minutes. No holes in the stratum comeum samples were observed and no large amount of dye was detected in the lower chambers. A small amount of dye became visible in the lower chambers, probably due to the dye and enhancer trapped in the skin samples from their previous exposures. After an additional 12 hours, the amount of dye detected was still very small.
  • Perforated Stratum Co eum Three cells were prepared with heat-separated epidermis samples with the epidermal side facing toward the upper side of the chamber from the same donor as in Example 16. The samples were hydrated for 8 hours and then the distilled water in the lower chambers was replaced with either CE1MG or CE2MG. The upper chambers were then filled with dye solution. Pinhole perforations in the stratum comeum samples permitted dye to leak through the stratum comeum samples into the underlying enhancer containing chambers. Sonic energy was applied. Immediately upon application of the sonic energy, the dye molecules were rapidly pushed through the pores. As shown above, the rapid flux of the dye through the pores was directly and immediately correlated with the application of the sonic energy.
  • Example 22 Effects of Sonic Energy and Chemical Enhancers
  • TDK #NB-58S-01 (TDK Co ⁇ .) was tested for its capability to enhance transdermal flux rates.
  • the peak response of this transducer was determined to be about 5.4 MHz with other local peaks occurring at about 7 MHz, 9 MHz, 12.4 MHz, and 16 MHz.
  • This TDK transducer was then tested at 5.4 MHz for its ability to enhance transdermal flux rate in conjunction with CE1MG.
  • Three cells were set up with the epidermal side facing the lower chamber, then the skin samples were hydrated for 8 hrs. The dye solution was placed in the lower chamber.
  • the transducer was placed in the upper chamber immersed in CE IMG. Using swept frequencies from 5.3 to 5.6 MHz as the sonic energy excitation, significant quantities of dye moved through the stratum comeum and were detected in the collection well of the cell in 5 minutes. Local heating occurred, with the transducer reaching a temperature of 48°C. In a control using CE1MG without sonic energy, a 24 hour exposure yielded less dye in the collection well than the 5 minute exposure with sonic energy.
  • FIGS. 3 A and 3B of U.S. Patent No. 5,445,611 show plots of data obtained from three separate cells with the trandermal flux rate measured in the monitoring direction. Even at the 5 minute time point, readily measurable quantities of the dye were present in the chemical enhancer on the outside of the stratum comeum, indicating transport from the epidermal side through the stratum comeum to the "outside" area of the skin sample.
  • One method involves the use of a pair of optical fibers that are positioned close together in an approximately parallel manner.
  • One ofthe fibers is a source fiber, through which light energy is conducted.
  • the other fiber is a detection fiber connected to a photosensitive diode.
  • a portion of the light energy, the evanescent wave is present at the surface ofthe fiber and a portion of this light energy is collected by the detection fiber.
  • the detection fiber conducts the captured evanescent wave energy to the photosensitive diode which measures it.
  • the fibers are treated with a binder to attract and bind the analyte that is to be measured.
  • analyte molecules bind to the surface (such as the analyte glucose binding to immobilized lectins such as concanavalin A, or to immobilized anti-glucose antibodies) the amount of evanescent wave coupling between the two fibers is changed and the amount of energy captured by the detection fiber and measured by the diode is changed as well.
  • Several measurements of detected evanescent wave energy over short periods of time support a rapid determination of the parameters describing the equilibrium curve, thus making possible calculation ofthe concentration ofthe analyte within the body.
  • the experimental results showing measurable flux within 5 minutes (FIGS. 3A and 3B of U.S. Patent No. 5,445,611) with this system suggest sufficient data for an accurate final reading are collected within 5 minutes.
  • a device that can be utilized for the application of sonic energy and collection of analyte comprises an absorbent pad, either of natural or synthetic material, which serves as a reservoir for the chemical enhancer, if used, and for receiving the analyte from the skin surface.
  • the pad or reservoir is held in place, either passively or aided by appropriate fastening means, such as a strap or adhesive tape, on the selected area of skin surface.
  • An sonic energy transducer is positioned such that the pad or reservoir is between the skin surface and the transducer, and held in place by appropriate means.
  • a power supply is coupled to the transducer and activated by switch means or any other suitable mechanism.
  • the transducer is activated to deliver sonic energy modulated in frequency, phase or intensity, as desired, to deliver the chemical enhancer, if used, from the reservoir through the skin surface followed by collection of the analyte from the skin surface into the reservoir. After the desired fixed or variable time period, the transducer is deactivated.
  • the pad or reservoir, now containing the analyte of interest can be removed to quantitate the analyte, for example, by a laboratory utilizing any number of conventional chemical analyses, or by a portable device.
  • the mechanism for quantitating the analyte can be build into the device used for collection of the analyte, either as an integral portion of the device or as an attachment.
  • Devices for monitoring an analyte are described in U.S. Patent No. 5,458,140, which is inco ⁇ orated herein by reference.
  • An altemate method for detection of an analyte, such as glucose, following the sample collection through the porated skin surface as described above, can be achieved through the use of enzymatic means.
  • enzymatic methods exist for the measurement of glucose in a biological sample.
  • One method involves oxidizing glucose in the sample with glucose oxidase to generate gluconolactone and hydrogen peroxide.
  • the hydrogen peroxide is then converted by peroxidase to water and a colored product.
  • the intensity of the colored product will be proportional to the amount of glucose in the fluid.
  • This color can be determined through the use of conventional absorbance or reflectance methods. By calibration with known concentrations of glucose, the amount of color can be used to determine the concentration of glucose in the collected analyte. By testing to determine the relationship, one can calculate the concentration of glucose in the blood of the subject. This information can then be used in the same way that the information obtained from a blood glucose test from a finger puncture is used. Results can be available within five to ten minutes.
  • Example 25 Any system using a visual display or readout of glucose concentration will indicate to a diagnostician or patient the need for administration of insulin or other appropriate medication.
  • the display may be connected with appropriate signal means which triggers the administration of insulin or other medication in an appropriate manner.
  • appropriate signal means which triggers the administration of insulin or other medication in an appropriate manner.
  • insulin pumps which are implanted into the peritoneum or other body cavity which can be activated in response to extemal or intemal stimuli.
  • an insulin delivery system could be implemented transdermal ly, with control of the flux rates modulated by the signal from the glucose sensing system. In this manner a complete biomedical control system can be available which not only monitors and/or diagnoses a medical need but simultaneously provides corrective action.
  • Biomedical control systems of a similar nature could be provided in other situations such as maintaining correct electrolyte balances or administering analgesics in response to a measured analyte parameter such as prostaglandins.
  • Example 26 Similar to audible sound, sonic waves can undergo reflection, refraction, and abso ⁇ tion when they encounter another medium with dissimilar properties [D. Bommannan et al., 9 Pharm. Res. 559 (1992)]. Reflectors or lenses may be used to focus or otherwise control the distribution of sonic energy in a tissue of interest. For many locations on the human body, a fold of flesh can be found to support this system. For example, an earlobe is a convenient location which would allow use of a reflector or lens to assist in exerting directional control (e.g., "pushing" of analytes or permeants through the porated stratum comeum) similar to what is realized by changing sonic frequency and intensity.
  • directional control e.g., "pushing" of analytes or permeants through the porated stratum comeum
  • Example 27 Multiple sonic energy transducers may be used to selectively direct the direction of transdermal flux through porated stratum comeum either into the body or from the body.
  • a fold of skin such as an earlobe allow transducers to be located on either side of the fold.
  • the transducers may be energized selectively or in a phased fashion to enhance transdermal flux in the desired direction.
  • An array of transducers or an acoustic circuit may be constmcted to use phased array concepts, similar to those developed for radar and microwave communications systems, to direct and focus the sonic energy into the area of interest.
  • Example 28 In this example, the procedure of Example 19 is followed with the exception that the heat-separated epidermis samples are first treated with an excimer laser (e.g. model EMG/200 of
  • Lambda Physik 193 nm wavelength, 14 ns pulsewidth
  • Lambda Physik 193 nm wavelength, 14 ns pulsewidth
  • 70 mJ/cm 2 /50 ms a total of 70 mJ/cm 2 /50 ms is delivered to the dye-treated sample with a model TOLD9150 diode laser (Toshiba America Electronic, 30 mW at 690 nm
  • Example 31 In this example, the procedure of Example 29 is followed with the exception that the dye is methylene blue and the laser is a model SDL-8630 (SDL Inc.; 500 mW at 670 nm).
  • Example 33 the procedure of Example 29 is followed with the exception that the dye is contained in a solution comprising a permeation enhancer, e.g. CE1.
  • a permeation enhancer e.g. CE1.
  • Example 29 the procedure of Example 29 is followed with the exception that the dye and enhancer-containing solution are delivered to the stratum comeum with the aid of exposure to ultrasound.
  • Example 31 the procedure of Example 31 is followed with the exception that the pulsed light source is a short arc lamp emitting over the broad range of 400 to 1100 nm but having a bandpass filter placed in the system to limit the output to the wavelength region of about 650 to 700 nm.
  • the pulsed light source is a short arc lamp emitting over the broad range of 400 to 1100 nm but having a bandpass filter placed in the system to limit the output to the wavelength region of about 650 to 700 nm.
  • Example 35 In this example, the procedure of Example 19 is followed with the exception that the heat-separated epidermis samples are first punctured with a microlancet (Becton Dickinson) calibrated to produce a micropore in the stratum co eum without reaching the underlying tissue.
  • a microlancet Becton Dickinson
  • Example 36 In this example, the procedure of Example 19 is followed with the exception that the heat-separated epidermis samples are first treated with focused sonic energy in the range of 70-480 mJ/cm 2 /50 ms to ablate the stratum comeum.
  • Example 37 In this example, the procedure of Example 19 is followed with the exception that the stratum comeum is first punctured hydraulically with a high pressure jet of fluid to form a micropore of up to about 100 ⁇ m diameter.
  • Example 38
  • Example 19 the procedure of Example 19 is followed with the exception that the stratum comeum is first punctured with short pulses of electricity to form a micropore of up to about 100 ⁇ m diameter.
  • An additional aspect of this invention is the utilization of sonic energy to create an acoustic streaming effect on the fluids flowing around and between the intact cells in the epidermis and dermis ofthe human skin.
  • Acoustic streaming is a well documented mode by which sonic energy can interact with a fluid medium. Nyborg, Physical Acoustics Principles and Methods, p.265-331, Vol II-Part B, Academic Press, 1965. The first theoretical analysis of acoustic streaming phenomenon was given by Rayleigh (1884, 1945). In an extensive treatment of the subject, Longuet-Higgins
  • the design ofthe sonic systems for the enhancement of transdermal flux rates has been based on the early realization that the application of an existing therapeutic ultrasound unit designed to produce a "deep-heating" effect on the subject, when used in conjunction with a topical application of a gelled or liquid preparation containing the drug to be delivered into the body, could produce a quantifiable increase in the flux rate ofthe dmg into the body, in the context of the method taught herein to create micro-pores in this barrier layer, the use of sonic energy may now be thought of in a totally new and different sense than the classically defined concepts of sonophoresis. Based on the experimental discovery mentioned in U.S.
  • frequencies of sonic energy can be determined for which the skin tissues are virtually transparent, that is at the very low frequency region of 1 kHz to 500 KHz. Even at some ofthe lowest frequencies tested, significant acoustic streaming effects could be observed by using a micro-scope to watch an in vivo test wherein the subject's skin was micro-porated and ISF was induced to exit the body an pool on the surface of the skin. Energizing the sonic transducer showed dramatic visual indications of the amount of acoustic streaming as small pieces of particulate matter were carried along with the ISF as it swirled about.
  • Typical magnitude of motion exhibited can be described as follows: for a 3 mm diameter circular pool of ISF on the surface of the skin, a single visual particle could be seen to be completing roughly 3 complete orbits per second. This equates to a linear fluid velocity of more than 2.5 mm/second. All of this action was demonstrated with sonic power levels into the tissues of less than 100 mW/cm2.
  • 31-33 is comprised of a thich walled cylinder of piezo-electric material, with an intemal diameter of roughly 8 mm and a wall thickness of 4 mm.
  • the cylinder has been polarized such that when an electrical field is applied across the metalized surfaces ofthe outer diameter and inner diameter, the thickness ofthe wall ofthe cylinder expands or contracts in response to the field polarity.
  • this configuration results in a device which rapidly squeezes the tissue which has been suctioned into the central hole, causing an inward radial acoustic streaming effect on those fluids present in these tissues. This inward acoustic streaming is responsible for bringing more ISF to the location of the micro-porations in the center of the hole, where it can leave the body for extemal collection.
  • FIG. 34A-B A similar device shown in FIG. 34A-B was built and tested and produced similar initial results.
  • an ultrasonic transducer built by Zevex, Inc. Salt Lake City, Utah was modified by having a spatulate extension added to the sonic hom.
  • a 4 mm hole was placed in the 0.5 mm thick spatulate end of this extension.
  • the physical perturbation of the metalic spatula casued by the placement of the 4 mm hole results in a very active, but chaotic, large displacement behavior at this point.
  • the skin ofthe subject was suctioned up into this hole, and the sonic energy was then cunductined into the skin in a fashion similar to that illustrated in FIG. 33.
  • a much lower frequency system can be utilized which has very little abso ⁇ tion in the skin tissues, yet can still create the fluidic streaming phenomenon desired within the intercellular passageways between the epidermal cells which contain the interstitial fluid.
  • the mode of interaction with the tissues and fluids therein is the so-called "streaming" mode, recognized in the sonic literature as a unique and different mode than the classical vibrational interactions capable of shearing cell membranes and accelerating the passive diffusion process.
  • the above examples are but representative of systems which may be employed in the utilization of ultrasound or ultrasound and chemical enhancers in the collection and quantification of analytes for diagnostic pu ⁇ oses and for the transdermal delivery of permeants.
  • the invention is directed to the discovery that the poration of the stratum comeum followed by the proper use of ultrasound, particularly when accompanied with the use of chemical enhancers, enables the noninvasive or minimally invasive transdermal determination of analytes or delivery of permeants.
  • the invention is not limited only to the specific illustrations. There are numerous poration techniques and enhancer systems, some of which may function better than another, for detection and withdrawn of certain analytes or delivery of permeants through the stratum comeum.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Dermatology (AREA)
  • Hematology (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Surgical Instruments (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Laser Surgery Devices (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

A method of enhancing the permeability of the skin (120, 274) to an analytic for diagnostic purposes or to a drug for therapeutic purposes is described utilizing micro-pore and optionally sonic energy and a chemical enhancer. If selected, the sonic energy may be modulated by means of frequency modulation, amplitude modulation, phase modulation, and/or combinations thereof. Micro-pore is accomplished by (a) ablating the stratum corneum (274) by localized rapid heating of water such that water is vaporized, thus eroding cells; (b) puncturing the stratum corneum (274) which a micro-lancet calibrated to form a micro-pore of up to about 1000 νm in diameter; (c) ablating the stratum corneum (274) by focusing a tightly focused beam of sonic energy onto the stratum corneum (274); (d) hydraulically puncturing the stratum corneum (274) with a high-pressure jet of fluid to form a micro-pore of up to about 1000 νm in diameter; or (e) puncturing the stratum corneum (274) with short pulses of electricity to form a micro-pore of up to about 1000 νm in diameter.

Description

5 MICROPORATION OF HUMAN SKIN FOR DRUG DELIVERY
AND MONITORING APPLICATIONS CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of application Serial No. 08/520,547, filed
** August 29, 1995, which is a continuation-in-part of Serial No. 08/152,442, filed November 15,
10 1993, now U.S. Patent No. 5,458,140, and of Serial No. 08/152,174, filed December 8, 1993, now U.S. Patent No. 5,445,611; this application also claims the benefit of U.S. Provisional
Application No. 60/008,043, filed October 30, 1995.
BACKGROUND OF THE INVENTION 15 This invention relates generally to the field of monitoring of analytes in the body and the transdermal delivery of drugs to the body. More particularly, this invention relates to a minimally invasive to non-invasive method of increasing the permeability of the skin through microporation of the stratum comeum, which can be combined with sonic energy, chemical permeation enhancers, pressure, and the like for selectively enhancing outward flux of analytes
20 from the body for monitoring thereof or the delivery of drugs into the body.
The stratum comeum is chiefly responsible for the well known barrier properties of skin. Thus, it is this layer that presents the greatest barrier to transdermal flux of drugs or other molecules into the body and of analytes out of the body. The stratum co eum, the outer homy layer of the skin, is a complex structure of compact keratinized cell remnants separated 25 by lipid domains. Compared to the oral or gastric mucosa, the stratum comeum is much less permeable to molecules either extemal or intemal to the body. The stratum comeum is formed from keratinocytes, which comprise the majority of epidermal cells, that lose their nuclei and become comeocytes. These dead cells comprise the stratum comeum, which has a thickness of only about 10-30 μm and, as noted above, is a very resistant waterproof membrane that
30 protects the body from invasion by exterior substances and the outward migration of fluids and " dissolved molecules. The stratum comeum is continuously renewed by shedding of comeum cells during desquamination and the formation of new comeum cells by the keratinization process. The flux of a drug or analyte across the skin can be increased by changing either the resistance (the diffusion coefficient) or the driving force (the gradient for diffusion). Flux may be enhanced by the use of so-called penetration or chemical enhancers. Chemical enhancers are well known in the art and a more detailed description will follow.
Another method of increasing the permeability of skin to drugs is iontophoresis. Iontophoresis involves the application of an exte al electric field and topical delivery of an ionized form of dmg or an un-ionized drug carried with the water flux associated with ion transport (electro-osmosis). While permeation enhancement with iontophoresis has been effective, control of drug delivery and irreversible skin damage are problems associated with the technique. Sonic energy has also been used to enhance permeability of the skin and synthetic membranes to d gs and other molecules. Ultrasound has been defined as mechanical pressure waves with frequencies above 20 kHz, H. Lutz et al., Manual of Ultrasound 3-12 (1984). Sonic energy is generated by vibrating a piezoelectric crystal or other electromechanical element by passing an alternating current through the material, R. Brucks et al., 6 Pharm. Res. 697 (1989). The use of sonic energy to increase the permeability of the skin to dmg molecules has been termed sonophoresis or phonophoresis.
Although it has been acknowledged that enhancing permeability of the skin should theoretically make it possible to transport molecules from inside the body through the skin to outside the body for collection or monitoring, practicable methods have not been disclosed. U.S. Patent No. 5,139,023 to Stanley et al. discloses an apparatus and method for noninvasive blood glucose monitoring. In this invention, chemical permeation enhancers are used to increase the permeability of mucosal tissue or skin to glucose. Glucose then passively diffuses through the mucosal tissue or skin and is captured in a receiving medium. The amount of glucose in the receiving medium is measured and correlated to determine the blood glucose level. However, as taught in Stanley et al., this method is much more efficient when used on mucosal tissue, such as buccal tissue, which results in detectable amounts of glucose being collected in the receiving medium after a lag time of about 10-20 minutes. However, the method taught by Stanley et al. results in an extremely long lag time, ranging from 2 to 24 hours depending on the chemical enhancer composition used, before detectable amounts of glucose can be detected diffusing through human skin (heat-separated epidermis) in vitro. These long lag times may be attributed to the length of time required for the chemical permeation enhancers to passively diffuse through the skin and to enhance the permeability of the barrier stratum comeum, as well as the length of time required for the glucose to passively diffuse out through the skin. Thus, Stanley et al. clearly does not teach a method for transporting blood glucose or other analytes non-invasively through the skin in a manner that allows for rapid monitoring, as is required for blood glucose monitoring of diabetic patients and for many other body analytes such blood electrolytes. While the use of sonic energy for drug delivery is known, results have been largely disappointing in that enhancement of permeability has been relatively low. There is no consensus on the efficacy of sonic energy for increasing dmg flux across the skin. While some studies report the success of sonophoresis, J. Davick et al., 68 Phys. Ther. 1672 (1988); J. Griffin et al., 47 Phys. Ther. 594 (1967); J. Griffin & J. Touchstone, 42 Am. J. Phys. Med. 77 (1963); J. Griffin et al., 44 Am. J. Phvs. Med. 20 (1965); D. Levy et al., 83 J. Clin. Invest.
2074); D. Bommannan et al., 9 Pharm. Res. 559 (1992), others have obtained negative results, H. Benson et al., 69 Phys. Ther. 113 (1988); J. McElnay et al., 20 Br. J. Clin. Pharmacol. 4221 (1985); H. Pratzel et al., 13 J. Rheumatol. 1122 (1986). Systems in which rodent skin were employed showed the most promising results, whereas systems in which human skin was employed have generally shown disappointing results. It is well known to those skilled in the art that rodent skin is much more permeable than human skin, and consequently the above results do not teach one skilled in the art how to effectively utilize sonophoresis as applied to transdermal delivery and/or monitoring through human skin.
A significant improvement in the use of ultrasonic energy in the monitoring of analytes and also in the delivery of dmgs to the body is disclosed and claimed in copending applications Serial No. 08/152,442 filed November 15, 1993, now U.S. Patent No. 5,458,140, and Serial No. 08/152,174 filed December 8, 1993, now U.S. Patent No. 5,445,611, both of which are incoφorated herein by reference. In these inventions, the transdermal sampling of an analyte or the transdermal delivery of drugs, is accomplished through the use of sonic energy that is modulated in intensity, phase, or frequency or a combination of these parameters coupled with the use of chemical permeation enhancers. Also disclosed is the use of sonic energy, optionally with modulations of frequency, intensity, and/or phase, to controllably push and/or pump molecules through the stratum comeum via perforations introduced by needle puncture, hydraulic jet, laser, electroporation, or other methods.
The formation of micropores (i.e. microporation) in the stratum comeum to enhance the delivery of drugs has been the subject of various studies and has resulted in the issuance of patents for such techniques. Jacques et al., 88 J. Invest. Dermatol. 88-93 (1987), teaches a method of administering a dmg by ablating the stratum comeum of a region of the skin using pulsed laser light of wavelength, pulse length, pulse energy, pulse number, and pulse repetition rate sufficient to ablate the stratum comeum without significantly damaging the underlying epidermis and then applying the dmg to the region of ablation. This work resulted in the issuance of U.S. Patent 4,775,361 to Jacques et al. The ablation of skin through the use of ultraviolet-laser irradiation was earlier reported by Lane et al., 121 Arch. Dermatol. 609-617 (1985). Jacques et al. is restricted to use of few wavelengths of light and expensive lasers.
Tankovich, U.S. Patent No. 5,165,418 (hereinafter, "Tankovich '418"), discloses a method of obtaining a blood sample by irradiating human or animal skin with one or more laser pulses of sufficient energy to cause the vaporization of skin tissue so as to produce a hole in the skin extending through the epidermis and to sever at least one blood vessel, causing a quantity of blood to be expelled through the hole such that it can be collected. Tankovich '418 thus is inadequate for noninvasive or minimally invasive permeabilization of the stratum co eum such that a drug can be delivered to the body or an analyte from the body can be analyzed.
Tankovich et al., U.S. Patent No. 5,423,803 (hereinafter, "Tankovich '803") discloses a method of laser removal of superficial epidermal skin cells in human skin for cosmetic applications. The method comprises applying a light-absorbing "contaminant" to the outer layers of the epidermis and forcing some of this contaminant into the intercellular spaces in the stratum comeum, and illuminating the infiltrated skin with pulses of laser light of sufficient intensity that the amount of energy absorbed by the contaminant will cause the contaminant to explode with sufficient energy to tear off some of the epidermal skin cells. Tankovich '803 further teaches that there should be high absoφtion of energy by the contaminant at the wavelength of the laser beam, that the laser beam must be a pulsed beam of less than 1 μs duration, that the contaminant must be forced into the upper layers of the epidermis, and that the contaminant must explode with sufficient energy to tear off epidermal cells upon absoφtion of the laser energy. This invention also fails to disclose or suggest a method of dmg delivery or analyte collection.
Raven et al., WO 92/00106, describes a method of selectively removing unhealthy tissue from a body by administering to a selected tissue a compound that is highly absorbent of infrared radiation of wavelength 750-860 nm and irradiating the region with corresponding infrared radiation at a power sufficient to cause thermal vaporization of the tissue to which the compound was administered but insufficient to cause vaporization of tissue to which the compound had not been administered. The absorbent compound should be soluble in water or serum, such as indocyanine green, chlorophyll, poφhyrins, heme-containing compounds, or compounds containing a polyene structure, and power levels are in the range of 50-1000 W/cm2 or even higher. Konig et al., DD 259351, teaches a process for thermal treatment of tumor tissue that comprises depositing a medium in the tumor tissue that absorbs radiation in the red and/or near red infrared spectral region, and irradiating the infiltrated tissue with an appropriate wavelength of laser light. Absorbing media can include methylene blue, reduced poφhyrin or its aggregates, and phthalocyanine blue. Methylene blue, which strongly absorbs at 600-700 nm, and a krypton laser emitting at 647 and 676 nm are exemplified. The power level should be at least 200 mW/cm2. It has been shown that by stripping the stratum comeum from a small area of the skin with repeated application and removal of cellophane tape to the same location one can easily collect arbitrary quantities of interstitial fluid, which can then be assayed for a number of analytes of interest. Similarly, the 'tape-stripped' skin has also been shown to be permeable to the transdermal delivery of compounds into the body. Unfortunately, 'tape-stripping' leaves a open sore which takes weeks to heal, and for this, as well as other reasons, is not considered as an acceptable practice for enhancing transcutaneous transport in wide applications.
As discussed above, it has been shown that pulsed lasers, such as the excimer laser operating at 193 nm, the erbium laser operating near 2.9 μm or the C02 laser operating at 10.2 μm, can be used to effectively ablate small holes in the human stratum comeum. These laser ablation techniques offer the potential for a selectiv'e and potentially non-traumatic method for opening a delivery and/or sampling hole through the stratum comeum. However, due to the prohibitively high costs associated with these light sources, there have been no commercial products developed based on this concept. The presently disclosed invention, by defining a method for directly conducting thermal energy into the stratum comeum with very tightly defined spatial and temporal resolution, makes it possible to produce the desired micro-ablation of the stratum comeum using very low cost energy sources.
In view of the foregoing problems and/or deficiencies, the development of a method for safely enhancing the permeability of the skin for minimally invasive or noninvasive monitoring of body analytes in a more rapid time frame would be a significant advancement in the art. It would be another significant advancement in the art to provide a method of minimally invasively or non-invasively enhancing the transdermal flux rate of a dmg into a selected area of an individual's body.
BRIEF SUMMARY OF THE INVENTION An object of the invention is to minimize the barrier properties of the stratum co eum using poration to controllably collect analytes from within the body through perforations in the stratum co eum to enable the monitoring of these analytes. It is also an object of the invention to provide a method of monitoring selected analytes in the body through micropores in the stratum comeum in combination with sonic energy, permeation enhancers, pressure gradients, and the like.
Another object of the invention is to provide a method for controlling transdermal flux rates of dmgs or other molecules into the body and, if desired, into the bloodstream through minute perforations in the stratum comeum.
It is still another object of the invention to provide a method of delivering dmgs into the body through micropores in the stratum comeum in combination with sonic energy, permeation enhancers, pressure gradients, and the like.
These and other objects may be accomplished by providing a method for monitoring the concentration of an analyte in an individual's body comprising the steps of enhancing the permeability of the stratum comeum of a selected area of the individual's body surface to the analyte by means of
(a) porating the stratum comeum of the selected area by means that form a micro-pore in the stratum comeum without causing serious damage to the underlying tissues, thereby reducing the barrier properties of the stratum comeum to the withdrawal of the analyte;
(b) collecting a selected amount of the analyte; and
(c) quantitating the analyte collected.
In one preferred embodiment, the method further comprises applying sonic energy to the porated selected area at a frequency in the range of about 5 kHz to 100 MHz, wherein the sonic energy is modulated by means of a member selected from the group consisting of frequency modulation, amplitude modulation, phase modulation, and combinations thereof. In another preferred embodiment, the method further comprises contacting the selected area of the individual's body with a chemical enhancer with the application of the sonic energy to further enhance analyte withdrawal. Porating of the stratum comeum is accomplished by means selected from the group consisting of (a) ablating the stratum comeum by contacting a selected area, up to about 1000 μm across, of the stratum corneum with a heat source such that the temperatureu of tissue-bound water and other vaporizable substances in the selected area is elevated above the vaporization point of the water and other vaporizable substances thereby removing the stratum comeum in the selected area; (b) puncturing the stratum comeum with a micro-lancet calibrated to form a micropore of up to about 1000 μm in diameter; (d) ablating the stratum comeum by focusing a tightly focused beam of sonic energy onto the stratum comeum; (d) hydraulically puncturing the stratum comeum with a high pressure jet of fluid to form a micropore of up to about 1000 μm in diameter and (e) puncturing the stratum comeum with short pulses of electricity to form a micropore of up to about 1000 μm in diameter.
One preferred embodiment of thermally ablating the stratum comeum comprises treating at least the selected area with an effective amount of a dye that exhibits strong absoφtion over the emission range of a pulsed light source and focusing the output of a series of pulses from the pulsed light source onto the dye such that the dye is heated sufficiently to conductively transfer heat to the stratum comeum to elevate the temperature of tissue-bound water and other vaporizable substances in the selected area above the vaporization point of the water and other vaporizable substances. Preferably, the pulsed light source emits at a wavelength that is not significantly absorbed by skin. For example, the pulsed light source can be a laser diode emitting in the range of about 630 to 1550 nm, a laser diode pumped optical parametric oscillator emitting in the range of about 700 and 3000 nm, or a member selected from the group consisting of arc lamps, incandescent lamps, and light emitting diodes. A sensing system for determining when the barrier properties of the stratum comeum have been surmounted can also be provided. One preferred sensing system comprises light collection means for receiving light reflected from the selected area and focusing the reflected light on a photodiode, a photodiode for receiving the focused light and sending a signal to a controller wherein the signal indicates a quality of the reflected light, and a controller coupled to the photodiode and to the pulsed light source for receiving the signal and for shutting off the pulsed light source when a preselected signal is received.
In another preferred embodiment, the method further comprises cooling the selected area of stratum comeum and adjacent skin tissues with cooling means such that said selected area and adjacent skin tissues are in a selected precooled, steady state, condition prior to porafion.
In still another preferred embodiment, the method comprises ablating the stratum comeum such that interstitial fluid exudes from the micropores, collecting the interstitial fluid, and analyzing the analyte in the collected interstitial fluid. After the interstitial fluid is collected, the micropore can be sealed by applying an effective amount of energy from the laser diode or other light source such that interstitial fluid remaining in the micropore is caused to coagulate. Preferably, vacuum is applied to the porated selected area to enhance collection of interstitial fluid.
In yet another preferred embodiment, the method comprises, prior to porating the stratum comeum, illuminating at least the selected area with unfocused light from the pulsed light source such that the selected area illuminated with the light is sterilized.
Another preferred method of porating the stratum comeum comprises contacting the selected area with a metallic wire such that the temperature of the selected area is raised from ambient skin temperature to greater than 100°C within about 10 to 50 ms and then retuming the temperature of the selected area to approximately ambient skin temperature within about 30 to 50 ms, wherein this cycle of raising the temperature and retuming to approximately ambient skin temperature is repeated a number of time effective for reducing the barrier properties of the stratum comeum. Preferably, the step of retuming to approximately ambient skin temperature is carried out by withdrawing the wire from contact with the stratum comeum. It is also preferred to provide means for monitoring electrical impedance between the wire and the individual's body through the selected area of stratum comeum and adjacent skin tissues and means for advancing the position of the wire such that as the ablation occurs with a concomitant reduction in resistance, the advancing means advances the wire such that the wire is in contact with the stratum co eum during heating of the wire. Further, it is also preferred to provide means for withdrawing the wire from contact with the stratum comeum, wherein the monitoring means is capable of detecting a change in impedance associated with contacting an epidermal layer underlying the stratum corneum and sending a signal to the withdrawing means to withdrawn the wire from contact with the stratum comeum. The wire can be heated by an ohmic heating element, can have a current loop having a high resistance point wherein the temperature of the high resistance point is modulated by passing a modulated electrical current through said current loop to effect the heating, or can be positioned in a modulatable alternating magnetic field of an excitation coil such that energizing the excitation coil with alternating current produces eddy currents suffient to heat the wire by intemal ohmic losses.
A method for enhancing the transdermal flux rate of an active permeant into a selected area of an individual's body comprising the steps of enhancing the permeability of the stratum comeum layer of the selected area of the individual's body surface to the active permeant by means of (a) porating the stratum comeum of the selected area by means that form a micro-pore in the stratum comeum without causing serious damage to the underlying tissues and thereby reduce the barrier properties of the stratum co eum to the flux of the active permeant; and (b) contacting the porated selected area with a composition comprising an effective amount of the permeant such that the flux of the permeant into the body is enhanced. In a preferred embodiment, the method further comprises applying sonic energy to the porated selected area for a time and at an intensity and a frequency effective to create a fluid streaming effect and thereby enhance the transdermal flux rate of the permeant into the body.
A method is also provided for appyling a tatoo to a selected area of skin on an individual's body surface comprising the steps of: (a) porating the stratum comeum of the selected area by means that form a micro-pore in the stratum comeum without causing serious damage to the underlying tissues and thereby reduce the barrier properties of the stratum co eum to the flux of a permeant; and
(b) contacting the porated selected area with a composition comprising an effective amount of a tattoing ink as a permeant such that the flux of said ink into the body is enhanced. A method is still further provided for reducing a temporal delay in diffusion of an analyte from blood of an individual to said individual's interstitial fluid in a selected area of skin comprising applying means for cooling to said selected area of skin. A method is yet further provided for reducing evaporation of interstitial fluid and the vapor pressure thereof, wherein said interstitial fluid is being collected from a micropore in a selected area of stratum comeum of an individual's skin, comprising applying means for cooling to said selected area of skin.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
FIG. 1 shows a schematic representation of a system for delivering laser diode light and monitoring the progress of poration.
FIG. 2 shows a schematic representation of a closed-loop feedback system for monitoring poration. FIG. 3 A shows a schematic representation of an optical poration system comprising a cooling device.
FIG. 3B shows a top view of a schematic representation of an illustrative cooling device according to FIG. 3A.
FIG. 4 shows a schematic representation of an ohmic heating device with a mechanical actuator.
FIG. 5 shows a schematic representation of a high resistance current loop heating device.
FIG. 6 shows a schematic representation of a device for modulating heating using inductive heating. FIG. 7 shows a schematic representation of a closed loop impedance monitor using changes in inpedance to determine the extent of poration.
FIGS. 8A-D show cross sections of human skin treated with copper phthalocyanine and then subjected, respectively, to 0, 1, 5, and 50 pulses of 810 nm light with an energy density of 4000 J/cm2 for a pulse period of 20 ms. FIGS. 9-11 show graphic representations of temperature distribution during simulated thermal poration events using optical poration. FIGS. 12 and 13 show graphic representations of temperature as a function of time in the stratum comeum and viable epidermis, respectively, during simulated thermal poration events using optical poration.
FIGS. 14-16 show graphic representations of temperature distribution, temperature as a function of time in the stratum comeum, and temperature as a function of time in the viable epidermis, respectively, during simulated thermal poration events using optical poration wherein the tissue was cooled prior to poration.
FIGS. 17-19 show graphic representations of temperature distribution, temperature as a function of time in the stratum comeum, and temperature as a function of time in the viable epidermis, respectively, during simulated thermal poration events wherein the tissue was heated with a hot wire.
FIGS. 20-22 show graphic representations of temperature distribution, temperature as a function of time in the stratum comeum, and temperature as a function of time in the viable epidermis, respectively, during simulated thermal poration events wherein the tissue was heated with a hot wire and the tissue was cooled prior to poration. FIGS. 23 and 24 show graphic representations of temperature distribution and temperature as a function of time in the stratum comeum, respectively, during simulated thermal poration events wherein the tissue is heated optically according to the operating parameters of Tankovich '803.
FIG. 25 shows a graphic representation of interstitial fluid (ISF; o) and blood (*) glucose levels as a function of time.
FIG. 26 shows a scatter plot representation of the difference term between the ISF glucose and the blood glucose data of FIG. 25.
FIG. 27 shows a histogram of the relative deviation of the ISF to the blood glucose levels from FIG. 25. FIG. 28 shows a cross section of an illustrative delivery apparatus for delivering a drug to a selected area on an individual's skin. FIGS. 29A-C show graphic representations of areas of skin affected by delivery of lidocaine to selected areas where the stratum co eum is porated (FIGS. 29A-B) or not porated (FIG. 29C).
FIG. 30 shows a plot comparing the amount of interstitial fluid harvested from micropores with suction alone (o) and with a combination of suction and ultrasound (*). FIGS. 31, 32, and 33 show a perspective view of an ultrasonic transducer/vacuum apparatus for harvesting interstitial fluid, a cross section view of the same apparatus, and cross sectional schematic view of the same apparatus, respectively.
FIGS. 34A-B show a top view of a handheld ultrasonic transducer and a side view of the spatulate end thereof, respectively.
DETAILED DESCRIPTION Before the present methods for permeabilizing the stratum comeum for facilitating transdermal dmg delivery and analyte sampling are disclosed and described, it is to be understood that this invention is not limited to the particular configurations, process steps, and materials disclosed herein as such configurations, process steps, and materials may vary somewhat. It is also to be understood that the terminology employed herein is used for the puφose of describing particular embodiments only and is not intended to be limiting since the scope of the present invention will be limited only by the appended claims and equivalents thereof. It must be noted that, as used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to a method for delivery of "a dmg" includes reference to delivery of a mixture of two or more drugs, reference to "an analyte" includes reference to one or more of such analytes, and reference to "a permeation enhancer" includes reference to a mixture of two or more permeation enhancers.
In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below. As used herein, "poration," "microporation," or any such similar term means the formation of a small hole or pore in the stratum comeum in a selected area of the skin of an individual to lessen the barrier properties of this layer of the skin to the passage of analytes from below the skin surface for analysis or the passage of active permeants or dmgs into the body for therapeutic puφoses. Preferably the hole or pore will be no larger than about 1 mm in diameter, and more preferably no larger than about 100 μm in diameter, and will extend into the stratum comeum sufficiently to break the barrier properties of this layer without adversely affecting the underlying tissues.
As used herein "ablation" means the controlled removal of cells caused by kinetic energy released when the vaporizable components of the cells have been heated to the point that vaporization occurs and the resulting rapid expansion of volume due to this phase change causes cells and possibly some adjacent cells to be "blown away" from the abaltion site.
As used herein "puncture" or "micro-puncture" means the use of mechanical, hydraulic, or electrical means to perforate the stratum comeum. To the extent that "ablation" and "puncture" accomplish the same puφose of poration, i.e. the creating a hole or pore in the stratum comeum without significant damage to the underlying tissues, these terms may be used interchangeably.
As used herein, "penetration enhancement" or "permeation enhancement" means an increase in the permeability of skin to a dmg, analyte, dye, stain, or other chemical molecule (also called "permeant"), i.e., so as to increase the rate at which a dmg, analyte, or chemical molecule permeates the stratum comeum and facilitates the poration of the stratum comeum, the withdrawal of analytes out through the stratum comeum or the delivery of dmgs through the stratum comeum and into the underlying tissues. The enhanced permeation effected through the use of such enhancers can be observed, for example, by observing diffusion of a dye, as a permeant, through animal or human skin using a diffusion apparatus.
As used herein, "chemical enhancer," "penetration enhancer," "permeation enhancer," and the like includes all enhancers that increase the flux of a permeant, analyte, or other molecule across the skin, and is limited only by functionality. In other words, all cell envelope disordering compounds and solvents and any other chemical enhancement agents are intended to be included.
As used herein, "dye," "stain," and the like shall be used interchangeably and refer to a biologically suitable chromophore that exhibits strong absoφtion at the emission range of a pulsed light source used to ablate tissues of the stratum comeum to form micropores therein.
As used herein, "transdermal" or "percutaneous" means passage of a permeant into and through the skin to achieve effective therapeutic blood levels or deep tissue levels of a dmg, or the passage of a molecule present in the body ("analyte") out through the skin so that the analyte molecule may be collected on the outside of the body. As used herein, the term "permeant," "drug," or "pharmacologically active agent" or any other similar term means any chemical or biological material or compound suitable for transdermal administration by the methods previously known in the art and/or by the methods taught in the present invention, that induces a desired biological or pharmacological effect, which may include but is not limited to (1) having a prophylactic effect on the organism and preventing an undesired biological effect such as preventing an infection, (2) alleviating a condition caused by a disease, for example, alleviating pain or inflammation caused as a result of disease, and/or (3) either alleviating, reducing, or completely eliminating the disease from the organism. The effect may be local, such as providing for a local anaesthetic effect, or it may be systemic. This invention is not drawn to novel permeants or to new classes of active agents. Rather it is limited to the mode of delivery of agents or permeants that exist in the state of the art or that may later be established as active agents and that are suitable for delivery by the present invention. Such substances include broad classes of compounds normally delivered into the body, including through body surfaces and membranes, including skin. In general, this includes but is not limited to: antiinfectives such as antibiotics and antiviral agents; analgesics and analgesic combinations; anorexics; antihelminthics; antiarthritics; antiasthmatic agents; anticonvulsants; antidepressants; antidiabetic agents; antidiarrheals; antihistamines; antiinflammatory agents; antimigraine preparations; antinauseants; antineoplastics; antiparkinsonism drugs; antipruritics; antipsychotics; antipyretics; antispasmodics; anticholinergics; sy pathomimetics; xanthine derivatives; cardiovascular preparations including potassium and calcium channel blockers, beta-blockers, alpha-blockers, and antiarrhythmics; antihypertensives; diuretics and antidiuretics; vasodilators including general coronary, peripheral and cerebral; central nervous system stimulants; vasoconstrictors; cough and cold preparations, including decongestants; hormones such as estradiol and other steroids, including corticosteroids; hypnotics; immunosuppressives; muscle relaxants; parasympatholytics; psychostimulants; sedatives; and tranquilizers. By the method of the present invention, both ionized and nonionized drugs may be delivered, as can dmgs of either high or low molecular weight. As used herein, an "effective" amount of a pharmacologically active agent means a sufficient amount of a compound to provide the desired local or systemic effect and performance at a reasonable benefit/risk ratio attending any medical treatment. An "effective" amount of a permeation or chemical enhancer as used herein means an amount selected so as to provide the desired increase in skin permeability and the desired depth of penetration, rate of administration, and amount of drug delivered.
As used herein, "carriers" or "vehicles" refer to carrier materials without significant pharmacological activity at the quantities used that are suitable for administration with other pharmaceutically active materials, and include any such materials known in the art, e.g., any liquid, gel, solvent, liquid diluent, solubilizer, or the like, that is nontoxic at the quantities employed and does not interact with the dmg to be administered in a deleterious manner.
Examples of suitable carriers for use herein include water, mineral oil, silicone, inorganic gels, aqueous emulsions, liquid sugars, waxes, petroleum jelly, and a variety of other oils and polymeric materials.
As used herein, a "biological membrane" is intended to mean a membrane material present within a living organism that separates one area of the organism from another and, in many instances, that separates the organism from its outer environment. Skin and mucous membranes are thus included. As used herein, "individual" refers to both a human and an animal, to which the present invention may be applied.
As used herein, "analyte" means any chemical or biological material or compound suitable for passage through a biological membrane by the technology taught in this present invention, or by technology previously known in the art, of which an individual might want to know the concentration or activity inside the body. Glucose is a specific example of an analyte because it is a sugar suitable for passage through the skin, and individuals, for example those having diabetes, might want to know their blood glucose levels. Other examples of analytes include, but are not limited to, such compounds as sodium, potassium, bilimbin, urea, ammonia, calcium, lead, iron, lithium, salicylates, and the like. As used herein, "transdermal flux rate" is the rate of passage of any analyte out through the skin of an individual, human or animal, or the rate of passage of any dmg, pharmacologically active agent, dye, or pigment in and through the skin of an individual, human or animal.
As used herein, the terms "intensity amplitude," "intensity," and "amplitude" are used synonymously and refer to the amount of energy being produced by the sonic energy system.
As used herein, "frequency modulation" or "sweep" means a continuous, graded or stepped variation in the amplitude or frequency of ultrasound in a given time period. A frequency modulation is a graded or stepped variation in frequency in a given time period, for example 5.4-5.76 MHz in 1 sec, or 5-10 MHz in 0.1 sec, or 10-5 MHz in 0.1 sec, or any other frequency range or time period that is appropriate to a specific application. A complex modulation can include varying both the frequency and intensity simultaneously. For example, FIGS. 4A and 4B of U.S. Patent No. 5,458,140 could, respectively, represent amplitude and frequency modulations being applied simultaneously to a single sonic energy transducer.
As used herein "phase modulation" means the timing of the signal has been changed relative to its initial state shown in Fig. 4C of U.S. Patent No. 5,458,140. The frequency and amplitude of the signal can remain the same. A phase modulation can be implemented with a variable delay such as to selectively retard or advance the signal temporarily in reference to its previous state, or to another signal.
The sonic energy, in its various applications such as with frequency, intensity or phase modulation, or combinations thereof and the use of chemical enhancers combined with modulated sonic energy, as described herein, can vary over a frequency range of between about 5 kHz to 100 MHz, with a range of between about 20 kHz and 30 MHz being preferred.
As used herein, "non-invasive" means not requiring the entry of a needle, catheter, or other invasive medical instrument into a part of the body.
As user herein, "minimally invasive" refers to the use of mechanical, hydraulic, or electrical means that invade the stratum comeum to create a small hole or micropore without causing substantial damage to the underlying tissues.
Means for Poration of the Stratum Comeum
The formation of a micropore in the stratum comeum can be accomplished by various state of the art means as well as certain means disclosed herein that are improvements thereof. The use of laser ablation as described by Jacques et al. in U.S. Patent 4,775,361 and by Lane et al., supra, certainly provide one means for ablating the stratum comeum using an excimer laser. At 193 nm wavelength, and 14 ns pulsewidth, it was found that about 0.24 to 2.8 μm of stratum comeum could be removed by each laser pulse at radiant exposure of between about 70 and 480 mJ/cm2. As the pulse energy increases, more tissue is removed from the stratum comeum and fewer pulses are required for complete poration of this layer.
The lower threshold of radiant exposure that must be absorbed by the stratum comeum within the limit of the thermal relaxation time to cause suitable micro-explosions that result in tissue ablation is about 70 mJ/cm2 within a 50 millisecond (ms) time. In other words, a total of 70 mJ/cm2 must be delivered within a 50 ms window. This can be done in a single pulse of 70 mJ/cm2 or in 10 pulses of 7 mJ/cm2, or with a continuous illumination of 1.4 watts/cm2 during the 50 ms time. The upper limit of radiant exposure is that which will ablate the stratum comeum without damage to underlying tissue and can be empirically determined from the light source, wavelength of light, and other variables that are within the experience and knowledge of one skilled in this art.
By "deliver" is meant that the stated amount of energy is absorbed by the tissue to be ablated. At the excimer laser wavelength of 193 nm, essentially 100% absoφtion occurs within the first 1 or 2 μm of stratum comeum tissue. Assuming the stratum comeum is about 20 μm thick, at longer wavelengths, such as 670 nm, only about 5% of incident light is absorbed within the 20 μm layer. This means that about 95% of the high power beam passes into the tissues underlying the stratum comeum where it will likely cause significant damage.
The ideal is to use only as much power as is necessary to perforate the stratum comeum without causing bleeding, thermal, or other damage to underlying tissues from which analytes are to be extracted or drugs or other permeants delivered.
It would be beneficial to use sources of energy more economical than energy from excimer lasers. Excimer lasers, which emit light at wavelengths in the far UV region, are much more expensive to operate and maintain than, for example, diode lasers that emit light at wavelengths in visible and IR regions (600 to 1800 nm). However, at the longer wavelengths, the stratum comeum becomes increasingly more transparent and absoφtion occurs primarily in the underlying tissues.
The present invention facilitates a rapid and painless method of eliminating the barrier function of the stratum comeum to facilitate the transcutaneous transport of therapeutic substances into the body when applied topically or to access the analytes within the body for analysis. The method utilizes a procedure which begins with the contact application of a small area heat source to the targeted area of the stratum comeum.
The heat source must have several important properties, as will now be described. First, the heat source must be sized such that contact with the skin is confined to a small area, typically about 1 to 1000 μm in diameter. Second, it must have the capability to modulate the temperature of the stratum co eum at the contact point from ambient skin surface temperature levels (33°C) to greater than 123°C and then retum to approximately ambient skin temperature with cycle times to minimize collateral damage to viable tissues and sensation to the subject individual. This modulation can be created electronically, mechanically, or chemically.
Additionally, an inherent depth limiting feature of the microporation process can be facilitated if the heat source has both a small enough thermal mass and limited energy source to elevate its temperature such that when it is placed in contact with tissues with more than 30% water content, the thermal dispersion in these tissues is sufficient to limit the maximum temperature of the heat source to less than 100°C. This feature effectively stops the thermal vaporization process once the heat probe had penetrated through the stratum comeum into the lower layers of the epidermis.
With the heat source placed in contact with the skin, it is cycled through a series of one or more modulations of temperature from an initial point of ambient skin temperature to a peak temperature in excess of 123°C to approxmiately ambient skin temperature. To minimize or eliminate the subject's sensory perception of the microporation process, these pulses are limited in duration, and the inteφulse spacing is long enough to allow cooling of the viable tissue layers in the skin, and most particularly the enervated dermal tissues, to acheive a mean temperature of less than about 45°C. These parameters are based on the thermal time constants of the viable epidermal tissues (roughly 30-80 ms) located between the heat probe and the enervated tissue in the underlying dermis. The result of this application of pulsed thermal energy is that enough energy is conducted into the stratum comeum within the tiny target spot that the local temperature of this volume of tissue is elevated sufficiently higher than the vaporization point of the tissue-bound water content in the stratum co eum. As the temperature increases above 100°C, the water content of the stratum comeum (typically 5% to 15%) within this localized spot, is induced to vaporize and expand very rapidly, causing a vapor-driven removal of those comeocytes in the stratum comeum located in proximity to this vaporization event. U.S. Patent No. 4,775,361 teaches that a stratum comeum temperature of 123°C represents a threshold at which this type of flash vaporization occurs. As subsequent pulses of thermal energy are applied, additional layers of the stratum comeum are removed until a micropore is formed through the stratum comeum down to the next layer of the epidermis, the stratum lucidum. By limiting the duration of the heat pulse to less than one thermal time constant of the epidermis and allowing any heat energy conducted into the epidermis to dissipate for a sufficiently long enough time, the elevation in temperature of the viable layers of the epidermis is minimal. This allows the entire microporation process to take place without any sensation to the subject and no damage to the underlying and surrounding tissues.
The present invention comprises a method for painlessly creating microscopic holes, i.e. micropores, from about 1 to 1000 μm across, in the stratum comeum of human skin. The key to successfully implementing this method is the creation of an appropriate thermal energy source, or heat probe, which is held in contact with the stratum comeum. The principle technical challenge in fabricating an appropriate heat probe is designing a device that has the desired contact with the skin and that can be thermally modulated at a sufficiently high frequency.
It is possible to fabricate an appropriate heat probe by topically applying to the stratum comeum a suitable light- absorbing compound, such as a dye or stain, selected because of its ability to absorb light at the wavelength emitted by a selected light source. In this instance, the selected light source may be a laser diode emitting at a wavelength which would not normally be absorbed by the skin tissues. By focusing the light source to a small spot on the surface of the topical layer of the dye, the targeted area can be temperature modulated by varying the intensity of the light flux focused on it. It is possible to utilize the energy from laser sources emitting at a longer wavelength than an excimer laser by first topically applying to the stratum comeum a suitable light-absorbing compound, such as a dye or stain, selected because of its ability to absorb light at the wavelength emitted by the laser source. The same concept can be applied at any wavelength and one must only choose an appropriate dye or stain and optical wavelength. One need only look to any reference manual to find which suitable dyes and wavelength of the maximum absorbance of that dye. One such reference is Green, The Sigma-Aldrich Handbook of Stains, Dyes and Indicators, Aldrich Chemical Company, Inc. Milwaukee, Wisconsin (1991). For example, copper phthalocyanine (Pigment Blue 15; CPC) absorbs at about 800 nm; copper phthalocyanine tetrasulfonic acid (Acid Blue 249) absorbs at about 610 nm; and Indocyanine Green absorbs at about 775 nm; and Cryptocyanine absorbs at about 703 nm. CPC is particularly well suited for this embodiment for the following reasons: it is a very stable and inert compound, already approved by the FDA for use as a dye in implantable sutures; it absorbs very strongly at wavelengths from 750 nm to 950 nm, which coincide well with numerous low cost, solid state emitters such as laser diodes and LEDs, and in addition, this area of optical bandwidth is similarly not absorbed directly by the skin tissues in any significant amount; CPC has a very high vaporization point (>550C in a vacuum) and goes directly from a solid phase to a vapor phase with no liquid phase; CPC has a relatively low thermal diffusivity constant, allowing the light energy focused on it to selectively heat only that area directly in the focal point with very little lateral spreading of the 'hot-spot' into the surrounding CPC thereby assisting in the spatial definition of the contact heat-probe.
The puφose of this disclosure is not to make an exhaustive listing of suitable dyes or stains because such may be easily ascertained by one skilled in the art from data readily available.
The same is true for any desired particular pulsed light source. For example, this method may be implemented with a mechanically shuttered, focused incandescent lamp as the pulse light source. Various catalogs and sales literature show numerouslasers operating in the near UV, visible and near IR range. Representative lasers are Hammamatsu Photonic Systems Model PLP-02 which operates at a power output of 2xl0'8 J, at a wavelength of 415 nm;
Hammamatsu Photonic Systems Model PLP-05 which operates at a power output of 15 J, at a wavelength of 685 nm; SDL, Inc., SDL-3250 Series pulsed laser which operates at a power output of 2x106 J at a wavelength of about 800-810 nm; SDL, Inc., Model SDL-8630 which operates at a power output of 500 mW at a wavelength of about 670 nm; Uniphase Laser Model AR-081-15000 which operates at a power output of 15,000 W at a wavelength of
790-830 nm; Toshiba America Electronic Model TOLD9150 which operates at a power output of 30 m W at a wavelength of 690 nm; and LiCONIX, Model Diolite 800-50 which operates at a power 50 raW at a wavelength of 780 nm.
For puφoses of the present invention a pulsed laser light source can emit radiation over a wide range of wavelengths ranging from between about 100 nm to 12,000 nm. Excimer lasers typically will emit over a range of between about 100 to 400 nm. Commercial excimer lasers are currently available with wavelengths in the range of about 193 nm to 350 nm.
Preferably a laser diode will have an emission range of between about 380 to 1550 nm. A frequency doubled laser diode will have an emission range of between about 190 and 775 nm. Longer wavelengths ranging from between about 1300 and 3000 nm may be utilized using a laser diode pumped optical parametric oscillator. It is expected, given the amount of research taking place on laser technology, that these ranges will expand with time.
Delivered or absorbed energy need not be obtained from a laser as any source of light, whether it is from a laser, a short arc lamp such as a xenon flashlamp, an incandescent lamp, a light-emitting diode (LED), the sun, or any other source may be used. Thus, the particular instrument used for delivering electromagnetic radiation is less important than the wavelength and energy associated therewith. Any suitable instrument capable of delivering the necessary energy at suitable wavelengths, i.e. in the range of about 100 nm to about 12,000 nm, can be considered within the scope of the invention. The essential feature is that the energy must be absorbed by the light-absorbing compound to cause localized heating thereof, followed by conduction of sufficient heat to the tissue to be ablated within the timeframe allowed. In one illustrative embodiment, the heat probe itself is formed from a thin layer, preferably about 5 to 1000 μm thick, of a solid, non-biologically active compound, applied topically to a selected area of an individual's skin that is large enough to cover the site where a micropore is to be created. The specific formulation of the chemical compound is chosen such that it exhibits high absoφtion over the spectral range of a light source selected for providing energy to the light-absorbing compound. The probe can be, for example, a sheet of a solid compound, a film treated with a high melting point absorbing compound, or a direct application of the light-absorbing compound to the skin as a precipitate or as a suspension in a carrier. Regardless of the configuration of the light-absorbing heat probe, it must exhibit a low enough lateral thermal diffusion coefficient such that any local elevations of temperature will remain spatially defined and the dominant mode of heat loss will be via direct conduction into the stratum comeum through the point of contact between the skin and the probe.
The required temperature modulation of the probe can be achieved by focusing a light source onto the light-absorbing compound and modulating the intensity of this light source. If the energy absorbed within the illuminated area is sufficiently high, it will cause the light absorbing compound to rapidly heat up. The amount of energy delivered, and subsequently both the rate of heating and peak temperature of the light-absorbing compound at the focal point, can be easily modulated by varying the pulse width and peak power of the light source. In this embodiment, it is only the small volume of light-absorbing compound heated up by the focused, incident optical energy that forms the heat probe, additional light absorbing compound which may have been applied over a larger area then the actual poration site is incidental. By using a solid phase light-absorbing compound with a relatively high melting point, such as copper phthalocyanine (CPC), which remains in its solid phase up to a temperature of greater than 550°C, the heat probe can be quickly brought up to a temperature of several hundred degrees C, and still remain in contact with the skin, allowing this thermal energy to be conducted into the stratum comeum. In addition, this embodiment comprises choosing a light source with an emission spectmm where very little energy would normally be absorbed in the skin tissues. Once the targeted area has the light-absorbing compound topically positioned on it, the heat probe is formed when the light source is activated with the focal waist of the beam positioned to be coincident with the surface of the treated area. The energy density of light at the focal waist and the amount of absoφtion taking place within the light-absorbing compound are set to be sufficient to bring the temperature of the light-absorbing compound, within the area of the small spot defined by the focus of the light source, to greater than 123°C within a few milliseconds. As the temperature of the heat probe rises, conduction into the stratum comeum delivers energy into these tissues, elevating the local temperature of the stratum co eum. When enough energy has been delivered into this small area of stratum comeum to cause the local temperature to be elevated above the boiling point of the water contained in these tissues, a flash vaporization of this water takes place, ablating the stratum comeum at this point.
By turning the light source on and off, the temperature of the heat probe can be rapidly modulated and the selective ablation of these tissues can be achieved, allowing a very precisely dimensioned hole to be created, which selectively penetrates only through the first 10 to 30 μm of skin.
An additional feature of this embodiment is that by choosing a light source that would normally have very little energy absorbed by the skin or underlying tissues, and by designing the focusing and delivery optics to have a sufficiently high numerical aperture, the small amount of delivered light that does not happen to get absorbed in the heat probe itself, quickly diverges as it penetrates deep into the body. Since there is very little absoφtion at the delivered wavelengths, essentially no energy is delivered to the skin directly from the light source. This three dimensional dilution of coupled energy in the tissues due to beam divergence and the low level of absoφtion in the untreated tissue results in a completely benign interaction between the light beam and the tissues, with no damage being done thereby. In one preferred embodiment of the invention, a laser diode is used as the light source with an emission wavelength of 800 ± 30 nm. A heat-probe can be formed by topical application of a transparent adhesive tape that has been treated on the adhesive side with a 0.5 cm spot formed from a deposit of finely ground copper phthalocyanine (CPC). The CPC exhibits extremely high absoφtion coefficients in the 800 nm spectral range, typically absorbing more than 95% of the radiant energy from a laser diode.
FIG. 1 shows a system 10 for delivering light from such a laser diode to a selected area of an individual's skin and for monitoring the progress of the poration process. The system comprises a laser diode 14 coupled to a controller 18, which controls the intensity, duration, and spacing of the light pulses. The laser diode emits a beam 22 that is directed to a collection lens or lenses 26, which focuses the beam onto a mirror 30. The beam is then reflected by the mirror to an objective lens or lenses 34, which focuses the beam at a preselected point 38. This preselected point corresponds with the plane of an xyz stage 42 and the objective hole 46 thereof, such that a selected area of an individual's skin can be irradiated. The xyz stage is connected to the controller such that the position of the xyz stage can be controlled. The system also comprises a monitoring system comprising a CCD camera 50 coupled to a monitor 54 The CCD camera is confocally aligned with the objective lens such that the progress of the poration process can be monitored visually on the monitor.
In another illustrative embodiment of the invention, a system of sensing photodiodes and collection optics that have been confocally aligned with the ablation light source is provided. FIG. 2 shows a sensor system 60 for use in this embodiment. The system comprises a light source 64 for emitting a beam of light 68, which is directed through a delivery optics system 72 that focuses the beam at a preselected point 76, such as the surface of an individual's skin 80. A portion of the light contacting the skin is reflected, and other light is emitted from the irradiated area. A portion of this reflected and emitted light passes through a filter 84 and then through a collection optics system 88, which focuses the light on a phototodiode 92. A controller 96 is coupled to both the laser diode and the photodiode for, respectively, controlling the output of the laser diode and detecting the light that reaches the photodiode. Only selected portions of the spectrum emitted from the skin pass through the filter. By analyzing the shifts in the reflected and emitted light from the targeted area, the system has the ability to detect when the stratum comeum has been breached, and this feedback is then used to control the light source, deactivating the pulses of light when the microporation of the stratum co eum is achieved. By employing this type of active closed loop feedback system, a self regulating, universally applicable device is obtained that produces uniformly dimensioned micropores in the stratum comeum, with minimal power requirements, regardless of variations from one individual to the next. In another illustrative embodiment, a cooling device is incoφorated into the system interface to the skin. FIG. 3A shows an illustrative schematic representation thereof. In this system 100, a light source 104 (coupled to a controller 106) emits a beam of light 108, which passes through and is focused by a delivery optics system 112. The beam is focused by the delivery optics system to a preselected point 116, such as a selected area of an individual's skin 120. A cooling device 124, such as a Peltier device or other means of chilling, contacts the skin to cool the surface thereof. In a preferred embodiment of the cooling device 124 (FIG. 3B), there is a central hole 128 through which the beam of focused light passes to contact the skin. Referring again to FIG. 3A, a heat sink 132 is also preferably placed in contact with the cooling device. By providing a cooling device with a small hole in its center coincident with the focus of the light, the skin tissues in the general area where the poration is to be created may be pre-cooled to 5°C to 10°C. This pre-cooling allows a greater safety margin for the system to operate in that the potential sensations to the user and the possibility of any collateral damage to the epidermis directly below the poration site are reduced significantly from non-cooled embodiment. Moreover, for monitoring applications, pre-cooling minimizes evaporation of interstitial fluid and can also provide advantageous physical properties, such as decreased surface tension of such interstitial fluid. Still further, cooling the tissue is known to cause a localized increase in blood flow in such cooled tissue, thus promoting diffusion of analytes from the blood into the interstitial fluid.
The method can also be applied for other micro-surgery techniques wherein the light- absorbing compound/heat-probe is applied to the area to be ablated and then the light source is used to selectively modulate the temperature of the probe at the selected target site, affecting the tissues via the vaporization-ablation process produced. A further feature of the invention is to use the light source to help seal the micropore after its usefulness has passed. Specifically, in the case of monitoring for an intemal analyte, a micropore is created and some amount of interstitial fluid is extracted through this opening. After a sufficient amount of interstitial fluid had been collected, the light source is reactivated at a reduced power level to facilitate rapid clotting or coagulation of the interstitial fluid within the micropore. By forcing the coagulation or clotting of the fluid in the pore, this opening in the body is effectively sealed, thus reducing the risk of infection. Also, the use of the light source itself for both the formation of the micropore and the sealing thereof is an inherently sterile procedure, with no physical penetration into the body by any device or apparatus.
Further, the thermal shock induced by the light energy kills any microbes that may happen to be present at the ablation site.
This concept of optical sterilization can be extended to include an additional step in the process wherein the light source is first applied in an unfocused manner, covering the target area with an illuminated area that extends 100 μm or more beyond the actual size of the micropore to be produced. By selecting the area over which the unfocused beam is to be applied, the flux density can be correspondingly reduced to a level well below the ablation threshold but high enough to effectively sterilize the surface of the skin. After a sufficiently long exposure of the larger area, either in one continuous step or in a series of pulses, to the sterilizing beam, the system is then configured into the shaφly focused ablation mode and the optical microporation process begins.
Another illustrative embodiment of the invention is to create the required heat probe from a metallic solid, such as a small diameter wire. As in the previously described embodiment, the contacting surface of the heat probe must be able to have its temperature modulated from ambient skin temperatures (33°C) to temperatures greater than 123°C, within the required time allowed of, preferably, between about 1 to 50 ms at the high temperature (on-time) and at least about 10 to 50 ms at the low temperature (off-time). In particular, being able to modulate the temperature up to greater than 150°C for an "on" time of around 5 ms and an off time of 50 ms produces very effective thermal ablation with little or no sensation to the individual.
Several methods for modulating the temperatures of the wire heat probe contact area may be successfully implemented. For example, a short length of wire may be brought up to the desired high temperature by an extemal heating element such as an ohmic heating element used in the tip of a soldering iron. FIG. 4 shows an ohmic heating device 140 with a mechanical actuator. The ohmic heating device comprises an ohmic heat source 144 coupled to a wire heat probe 148. The ohmic heat source is also coupled through an insulating mount 152 to a mechanical modulation device 156, such as a solenoid. In this configuration, a steady state condition can be reached wherein the tip of the wire probe will stabilize at some equilibrium temperature defined by the physical parameters of the stmcture, i.e., the temperature of the ohmic heat source, the length and diameter of the wire, the temperature of the air surrounding the wire, and the material of which the wire is comprised. Once the desired temperature is achieved, the modulation of the temperature of the selected area of an individual's skin 160 is effected directly via the mechanical modulation device to altematively place the hot tip of the wire in contact with the skin for, preferably, a 5 ms on-time and then withdraw it into the air for, preferably, a 50 ms off-time.
Another illustrative example (FIG. 5), shows a device 170 comprising a current source 174 coupled to a controller 178. The current source is coupled to a current loop 182 comprising a wire 186 formed into a stmcture such that it presents a high resistance point.
Preferably, the wire is held on a mount 190, and an insulator 194 separates different parts of the current loop. The desired modulation of temperature is then achieved by merely modulating the current through the wire. If the thermal mass of the wire element is appropriately sized and the heat sinking provided by the electrodes connecting it to the current source is sufficient, the warm-up and cool-down times of the wire element can be achieved in a few milliseconds. Contacting the wire with a selected area of skin 198 heats the stratum comeum to achieve the selected ablation.
In FIG. 6 there is shown still another illustrative example of porating the stratum comeum with a hot wire. In this system 200, the wire 204 can be positioned within a modulatable alternating magnetic field formed by a coil of wire 208, the excitation coil. By energizing the alternating current in the excitation coil by means of a controller 212 coupled thereto, eddy currents can be induced in the wire heat probe of sufficient intensity that it will be heated up directly via the intemal ohmic losses. This is essentially a miniature version of an inductive heating system commonly used for heat treating the tips of tools or inducing out- gassing from the electrodes in vacuum or flash tubes. The advantage of the inductive heating method is that the energy delivered into the wire heat probe can be closely controlled and modulated easily via the electronic control of the excitation coil. If the thermal mass of the wire probe itself, and the thermal mass of the stratum comeum in contact with the tip of the probe are known, controlling the inductive energy delivered can produce very precise control of the temperature at the contact point 216 with the skin 220. Because the skin tissue is essentially non-magnetic at the lower frequencies at which inductive heating can be achieved, if appropriately selected frequencies are used in the excitation coil, then this alternating electromagnetic field will have no effect on the skin tissues.
If a mechanically controlled contact modulation is employed, an additional feature may be realized by incoφorating a simple closed loop control system wherein the electrical impedance between the probe tip and the subject's skin is monitored. In this manner, the position of the probe can be brought into contact with the subject's skin, indicated by the step- wise reduction in resistance once contact is made, and then held there for the desired "on- time," after which it can be withdrawn. Several types of linear actuators are suitable for this form of closed loop control, such as a voice-coil mechanism, a simple solenoid, a rotary system with a cam or bell-crank, and the like. The advantage is that as the thermal ablation progresses, the position of the thermal probe tip can be similarly advanced into the skin, always ensuring good a contact to facilitate the efficient transfer of the required thermal energy. Also, the change in the conductivity properties of the stratum comeum and the epidermis can be used to provide an elegant closed loop verification that the poration process is complete, i.e., when the resistance indicates that the epidermis has been reached, it is time to stop the poration process. FIG. 7 shows an illustrative example of such a closed loop impedance monitor. In this system 230, there is an ohmic heat source 234 coupled to a wire heat probe 238. The heat source is mounted through an insulating mount 242 on a mechanical modulator 246. A controller 250 is coupled to the wire and to the skin 254, wherein the controller detects changes in impedance in the selected area 258 of skin, and when a predetermined level is obtained the controller stops the poration process.
Along the same line as hydraulic poration means are icrolancets adapted to just penetrate the stratum comeum for puφoses of administering a permeant, such as a dmg, through the pore formed or to withdraw an analyte through the pore for analysis. Such a device is considered to be "minimally invasive" as compared to devices and/or techniques which are non-invasive. The use of micro-lancets that penetrate below the stratum comeum for withdrawing blood are well known. Such devices are commercially available from manufacturers such as Becton-Dickinson and Lifescan and can be utilized in the present invention by controlling the depth of penetration. As an example of a micro-lancet device for collecting body fluids, reference is made to Erickson et al., Intemational Published PCT Application WO 95/10223 (published 20 April 1995). This application shows a device for penetration into the dermal layer of the skin, without penetration into subcutaneous tissues, to collect body fluids for monitoring, such as for blood glucose levels. Poration of stratum comeum can also be accomplished using sonic means. Sonic- poration is a variation of the optical means described above except that, instead of using a light source, a very tightly focused beam of sonic energy is delivered to the area of the stratum comeum to be ablated. The same levels of energy are required, i.e. a threshold of 70 mJ/cm2/50 ms still must be absorbed. The same pulsed focused ultrasonic transducers as described in parent applications Serial Nos. 08/152,442 and 08/152,174 can be utilized to deliver the required energy densities for ablation as are used in the delivery of sonic energy which is modulated in intensity, phase, or frequency or a combination of these parameters for the transdermal sampling of an analyte or the transdermal delivery of d gs. This has the advantage of allowing use of the same transducer to push a dmg through the stratum comeum or pull a body fluid to the surface for analysis to be used to first create a micro-pore.
Additionally, electroporation or short bursts or pulses of electrical current can be delivered to the stratum comeum with sufficient energy to form micropores. Electroporation is known in the art for producing pores in biological membranes and electroporation instmments are commercially available. Thus, a person of skill in this art can select an instrument and conditions for use thereof without undue experimentation according to the guidelines provided herein. The micropores produced in the stratum comeum by the methods of the present invention allow high flux rates of large molecular weight therapeutic compounds to be delivered transdermally. In addition, these non-traumatic microscopic openings into the body allow access to various analytes within the body, which can be assayed to determine their intemal concentrations. Example 1
In this example, skin samples were prepared as follows. Epidermal membrane was separated from human cadaver whole skin by the heat-separation method of Klingman and Christopher, 88 Arch. Dermatol. 702 (1963), involving the exposure of the full thickness skin to a temperature of 60°C for 60 seconds, after which time the stratum comeum and part of the epidermis (epidermal membrane) were gently peeled from the dermis.
Example 2 Heat separated stratum comeum samples prepared according to the procedure of Example 1 were cut into 1 cm2 sections. These small samples were than attached to a glass cover slide by placing them on the slide and applying an pressure sensitive adhesive backed disk with a 6 mm hole in the center over the skin sample. The samples were then ready for experimental testing. In some instances the skin samples were hydrated by allowing them to soak for several hours in a neutral buffered phosphate solution or pure water.
As a test of these untreated skin samples, the outputs of several different infrared laser diodes, emitting at roughly 810, 905, 1480 and 1550 nanometers were applied to the sample.
The delivery optics were designed to produce a focal waist 25 μm across with a final objective have a numerical aperture of 0.4. The total power delivered to the focal point was measured to be between 50 and 200 milliwatts for the 810 and 1480 nm laser diodes, which were capable of operating in a continuous wave (CW) fashion. The 905 and 1550 nm laser diodes were designed to produce high peak power pulses roughly 10 to 200 nanoseconds long at repetition rates up to 5000 Hz. For the pulsed lasers the peak power levels were measured to be 45 watts at 905 nm and 3.5 watts at 1550 nm. Under these operating conditions, there was no apparent effect on the skin samples from any of the lasers. The targeted area was illuminated continuously for 60 seconds and then examined microscopically, revealing no visible effects. In addition, the sample was placed in a modified Franz cell, typically used to test transdermal delivery systems based on chemical permeation enhancers, and the conductivity from one side of the membrane to the other was measured both before and after the irradiation by the laser and showed no change.
Based on these tests which were run on skin samples from four different donors, it was concluded that at these wavelengths the coupling of the optical energy into the skin tissue was so small that no effects are detectable.
Example 3
To evaluate the potential sensation to a living subject when illuminated with optical energy under the conditions of Example 2, six volunteers were used and the output of each laser source was applied to their fingertips, forearms, and the backs of their hands. In the cases of the 810, 905 and 1550 nm lasers, the subject was unable to sense when the laser was turned on or off. In the case of the 1480 nm laser, there was a some sensation during the illumination by the 1480 nm laser operating at 70 mW CW, and a short while later a tiny blister was formed under the skin due to the absoφtion of the 1480 nm radiation by one of the water absoφtion bands. Apparently the amount of energy absorbed was sufficient to induce the formation of the blister, but was not enough to cause the ablative removal of the stratum comeum. Also, the absoφtion of the 1480 nm light occurred predominantly in the deeper, fully hydrated (85% to 90% water content) tissues of the epidermis and dermis, not the relatively dry (10% to 15% water content) tissue of the stratum comeum.
Example 4 Having demonstrated the lack of effect on the skin in its natural state (Example 3), a series of chemical compounds was evaluated for effectiveness in absorbing the light energy and then transferring this absorbed energy, via conduction, into the targeted tissue of the stratum comeum. Compounds tested included India ink; "SHARPIE" brand indelible black, blue, and red marking pens; methylene blue; fuschian red; epolite #67, an absorbing compound developed for molding into polycarbonate lenses for protected laser goggles; tincture of iodine; iodine-polyvinylpyrrolidone complex ("BETADINE"); copper phthalocyanine; and printers ink. Using both of the C W laser diodes described in Example 2, positive ablation results were observed on the in vitro samples of heat-separated stratum comeum prepared according to
Example 1 when using all of these products, however some performed better than others. In particular the copper phthalocyanine (CPC) and the epolite #67 were some of the most effective. One probable reason for the superior performance of the CPC is its high boiling point of greater the 500°C and the fact that it maintains its solid phase up to this temperature.
Example 5 As copper phthalocyanine has already been approved by the FDA for use in implantable sutures, and is listed in the Merck index as a rather benign and stabile molecule in regard to human biocompatability, the next step taken was to combine the topical application of the CPC and the focused light source to the skin of healthy human volunteers. A suspension of finely ground CPC in isopropyl alcohol was prepared. The method of application used was to shake the solution and then apply a small drop at the target site. As the alcohol evaporated, a fine and uniform coating of the solid phase CPC was then left on the surface of the skin. The apparatus show in FIG. 1 was then applied to the site, wherein the CPC had been topically coated onto the skin, by placing the selected area of the individual's skin against a reference plate. The reference plate consists of a thin glass window roughly 3 cm X 3 cm, with a 4 mm hole in the center. The CPC covered area was then positioned such that it was within the central hole. A confocal video microscope (FIG. 1) was then used to bring the surface of the skin into shaφ focus. Positioning the skin to achieve the shaφest focus on the video system also positioned it such that the focal point of the laser system was coincident with the surface of the skin. The operator then activated the pulses of laser light while watching the effects at the target site on the video monitor. The amount of penetration was estimated visually by the operator by gauging the amount of defocusing of the laser spot in the micropore as the depth of the micropore increased, and this can be dynamically corrected by the operator, essentially following the ablated surface down into the tissues by moving the position of the camera/laser source along the "z" axis, into the skin. At the point when the stratum comeum had been removed down to the epidermis, the appearance of the base of the hole changed noticeably, becoming much wetter and shinier. Upon seeing this change, the operator deactivated the laser. In many instances, depending on the state of hydration of the subject as well as other physiological conditions, a dramatic outflow of interstitial fluid occurred in response to the barrier function of the stratum comeum being removed over this small area. The video system was used to record this visual record of the accessibility of interstitial fluid at the poration site.
Example 6 The procedure of Example 5 was followed except that the CPC was applied to a transparent adhesive tape, which was then caused to adhere to a selected site on the skin of an individual. The results were substantially similar to those of Example 5.
Example 7 Histology experiments were performed on cadaver skin according to methods well known in the art to determine ablation threshold parameters for given dye mixtures and collateral damage information. The top surface of the skin sample was treated with a solution of copper phthalocyanine (CPC) in alcohol. After the alcohol evaporated, a topical layer of solid phase CPC was distributed over the skin surface with a mean thickness of 10 to 20 um. FIG. 8A shows a cross-section of full thickness skin prior to the laser application, wherein the CPC layer 270, stratum comeum 274, and underlying epidermal layers 278 are shown. FIG.
8B shows the sample after a single pulse of 810 nm light was applied to an 80 um diameter circle with an energy density of 4000 J/cm2, for a pulse period of 20 ms. It is noteworthy that there was still a significant amount of CPC present on the surface of the stratum comeum even in the middle of the ablated crater 282. It should also be noted that laboratory measurements indicate that only about 10% of the light energy incident on the CPC is actually absorbed, with the other 90% being reflected or backscattered. Thus the effective energy flux being deliverd to the dye layer which could cause the desired heating is only about 400 J/cm2. 8C shows the sample after 5 pulses of 810 nm light were applied, wherein the stratum comeum barrier was removed with no damage to the underlying tissue. These results are a good representation of the "ideal" optically modulated thermal ablation performance. FIG. 8D shows the sample after 50 pulses were applied. Damaged tissue 286 was present in the epidermal layers due to carbonization of non ablated tissue and thermal denaturing of the underlying tissue. FIGS. 8A-8C show separations between the stratum comeum and the underlying epidermal layers due to an artifact pf dehydration, freezing, and preparations for imaging.
Example 8 To examine the details of the thermal ablation mechanism, a mathematical model of the skin tissues was constructed upon which various different embodiments of the thermal ablation method could be tried. This model computes the temperature distribution in a layered semi-infinite medium with a specified heat flux input locally on the surface and heat removal from the surface some distance away, i.e. convection is applied between the two. The axisymmetric, time-dependent diffusion equation is solved in cylindrical coordinates using the alternating-direction-implicit (ADI) method. (Note: Constant Temp. B.C. is applied on lower boundary to serve as z->inf; and zero radial heat flux is applied on max radial boundary to serve as r->inf). The layers are parallel to the surface and are defined as: (1) dye; (2) stratum comeum; (3) underlying epidermis; and (4) dermis. The depth into the semi-infinite medium and thermal properties, density (rho), specific heat (c), and conductivity (k) must be specified for each layer. First, a heat-transfer coefficient, h, on the skin is computed based on the "steady," "1-
D," temperature distribution determined by the ambient air temperature, skin surface temperature, and dermis temperature. It is assumed that there is no dye present and provides "h" on the skin surface. The program then allows one to use this "h" on the dye layer surface or input another desired "h" for the dye surface. Next, the "steady" temperature distribution is computed throughout all layers (including the dye layer) using the specified "h" at the dye surface. This temperature distribution is the initial condition for the time-dependent heating problem. This constitutes the "m-file" initial.m. The program then solves for the time- dependent temperature distribution by marching in time, computing and displaying the temperature field at each step. Each embodiment of the method described herein, for which empirical data have been collected, has been modeled for at least one set of operational parameters, showing how stratum comeum ablation can be achieved in a precise and controllable fashion. The output of the simulations is presented graphically in two different formats: (1) a cross-sectional view of the skin showing the different tissue layers with three isotherms plotted on top of this view which define three critical temperature thresholds, and (2) two different temperature -vs- time plots, one for the point in the middle of the stratum comeum directly beneath the target site, and the second for the point at the boundary of the viable cell layers of the epidermis and the underside of the stratum comeum. These plots show how the temperature at each point varies with time as the heat pulses are applied as if one could implant a microscopic thermocouple into the tissues. In addition, the application of this model allows investigation of the parametric limits within which the method can be employed to set the outer limits for two important aspects of the methods performance. First, general cases are presented cases that define the envelope within which the method can be employed without causing pain or undesired tissue damage. For any given heat source, as described in the several different embodiments of the invention, there is a point at which the effect on the subject's skin tissues becomes non-optimal in that the subject perceives a pain sensation, or that the viable cells in the underlying epidermis and/or dermis sustain temperatures, which if maintained for a long enough duration, will render damage to these tissues. Accordingly, a test simulation was n using the optically heated topical copper phthalocyanine (CPC) dye embodiment as a baseline method to establish how the thermal time constants of the different skin tissue layers essentially define a window within which the method can be employed without pain or damage to adjacent tissue layers. FIGS. 9 and 10 show schematic cross-sectional views of the skin and the topical dye layer. In each figure, three distinct isotherms are displayed: (1) 123°C, the point at which vaporization of the water in the tissue produces an ablation of the tissue; (2) 70°C, the point at which viable cells will be damaged if this temperature is maintained for several seconds; and (3) 45°C, the average point at which a sensation of pain will be perceived by the subject. This pain threshold is described in several basic physiology texts, but experience shows this threshold to be somewhat subjective. In fact, in repeated tests on the same individual, different poration sites within a few millimeters of each other can show significantly different amounts of sensation, possibly due to the proximity to a nerve ending in relationship to the poration site. The dimensions on the graphs show the different layers of the dye and skin, as measured in μm, with flat boundaries defining them. Whereas the actual skin tissues have much more convoluted boundaries, in a mean sense for the dimensions involved, the model provides a good approximation of the thermal gradients present in the actual tissues. The dimensions used in this, and all subsequent simulations, for the thicknesses of the CPC dye layer and the various skin layers are as follows: dye, 10 μm; stratum comeum, 30 μm; underlying epidermis, 70 μm; and dermis, 100 μm.
Additional conditions imposed on the model for this particular simulation are shown in the following tables: Table 1
Initial Conditions for Finite Difference Thermal Model
Ambient Air Temperature Ta = 20°C
Skin Surface Temperature Ts = 30°C
Dermis Temperature Td = 37°C
Dye Vaporization Temperature Tvap = 550°C
S.C. Vaporization Temperature Tel = 123°C
Tissue Damage Temperature Tc2 = 70°C
"Pain" Temperature Tc3 = 45°C
Radius of Irradiated Area Rh0, = 30 μm
Energy Density Applied FLUX = 400 Joules/cm2
Table 2
Parameter Dye S.C. Epidermis Dermis
Thermal Conductivity 0.00046 .00123 0.00421 0.00421
Density 0.67 1.28 1.09 1.09
Specific Heat 0.8 1.88 3.35 3.35
When these simulations are n, the following conservative assumptions are imposed:
1. While some portion of the stratum co eum may be shown as having a temperature already exceeded the ablation threshold for thermal vaporization of the water content, this event is not modeled, and the subsequent loss of heat energy in the tissues due to this vaporization is not factored into the simulation. This will cause a slight elevation in the temperatures shown in the underlying tissues from that point on in the simulation mn.
2. Similarly, when some portion of the copper phthalocyanine (CPC) dye layer is shown to have reached its vaporization point of 550°C, this event is not modeled, but the temperature is merely hard-limited to this level. This will also cause a slight elevation of the subsequent temperatures in the underlying layers as the simulation progresses.
Even with these simplifications used in the model, the correlation between the predicted performance and the empirically observed performance based on both clinical studies and histological studies on donor tissue samples is remarkable. The key data to note in FIGS. 9 and 10 are the length of time which the heat pulse is applied, and the location of the three different threshold temperatures displayed by the isotherms.
In FIG. 9, with a pulse length of 21 milliseconds, the 70°C isotherm just crosses the boundary separating the stratum comeum and the viable cell layers in the epidermis. In in vitro studies on donor skin samples under these conditions, fifty pulses of thermal energy delivered 50 milliseconds apart cause detectable damage to this top layer of living cells (see FIG. 8D). However, it was also shown in the in vitro studies that five pulses of heat energy at these same operating parameters, did not produce any significant damage to these tissues. It seems reasonable that even though the nominal damage threshold may have been exceeded, at least in a transient sense, this temperature must be maintained for some cumulative period of time to actually cause any damage to the cells. Nevertheless, the basic information presented by the simulation is that if one keeps the "on-time" of the heat pulse to less than 20 milliseconds with the flux density of 400 Joules/cm2, then no damage to the living cells in the underlying epidermis will be sustained, even though the ablation threshold isotherm has been moved well into the stratum comeum. In other words, by using a low flux density thermal energy source, modulated such that the "on time" is suitably short, ablation of the stratum comeum can be achieved without any damage to the adjacent cells in the underlying epidermis (see FIG. 8C). This is possible in large part due to the significantly different thermal diffusivities of these two tissues layers. That is, the stratum comeum, containing only about 10% to 20% water content, has a much lower thermal conductivity constant, 0.00123
J/(S*cm*K), than the .00421 J/(S*cm*K) of the epidermis. This allows the temperature to build up in the stratum comeum, while maintaining a tight spatial definition, to the point at which ablation will occur.
In FIG. 10, the same simulation scenario started in the damage threshold critical point mn illustrated in FIG. 9 is carried out farther in time. By leaving the heat pulse on for 58 milliseconds at the same flux density of 400 Joules/cm2 within the 60 μm diameter circle of dye being heated, the pain sensory isotherm at 45°C just enters the enervated layer of skin comprised by the dermis. In addition, the damage threshold isotherm moves significantly farther into the epidermal layer than where it was shown to be in FIG. 9. Relating this simulation to the numerous clinical studies conducted with this method, an excellent verification of the model's accuracy is obtained in that the model shows almost exactly the duration of 'on-time' that the heat probe can be applied to the skin before the individual feels it. In clinical tests, a controllable pulse generator was used to set the "on-time"and "off-time" of a series of light pulses applied to the topical layer of copper phthalocyanine (CPC) dye on the skin. While maintaining a constant "off-time" of 80 milliseconds, the "on-time" was gradually increased until the subject reported a mild "pain" sensation. Without exception, all of the subjects involved in these studies, reported the first "pain" at an "on-time" of between 45 and 60 milliseconds, very close to that predicted by the model. In addition, the site-to-site variability mentioned previously as regards the sensation of "pain" was noted in these clinical studies. Accordingly, what is reported as "pain" is the point at which the first unambiguous sensation is noticeable. At one site this may be reported as pain, whereas at an adjacent site the same subject may report this as merely "noticeable."
One element of this clinical research is the realization that even at the same site, a non-uniform pulse-train of heat pulses may work with the subject's psycho-physiological neuro-perception to cause a genuine reduction in perceived sensation. For example, a series of shorter length heat pulses can be used to saturate the neurons in the area, momentarily depleting the neuro-transmitters available at this synaptic junction and therefore limiting the ability to send a "pain" message. This then allows a longer pulse following these short pulses to be less noticeable than if it were applied at the beginning of the sequence. Accordingly, a series of experiments was conducted with some arbitrarily created pulse trains, and the results were consistent with this hypothesis. An analogy for this situation might be found in the perception when one first steps into a very hot bath that is painful at first, but quickly becomes tolerable as one acclimates to the heat sensation.
Example 9 An object of this invention is to achieve a painless, micro-poration of the stratum comeum without causing any significant damage to the adjacent viable tissues. As described in the simulation illustrated in Example 8 and FIGS. 9-10, a boundary appears to exist for any given flux density of thermal energy within the ablation target spot within which the micro¬ poration can be achieved in just such a painless and non-traumatic manner. Both the in vivo and in vitro studies have shown that this is the case, and this has permitted development through empirical methods of some operational parameters that appear to work very well. The following set of simulations shows how the method works when these specific parameters are used.
In the first case, a pulse train of ten pulses, 10 milliseconds "on-time" separated by 10 milliseconds "off-time" is applied to the CPC-covered skin. FIG. 11 shows the final temperature distribution in the skin tissues immediately after this pulse train has ended. As can be seen, the isotherms representing the three critical temperature thresholds show that stratum comeum ablation has been achieved, with no sensation present in the dermal layer nerves and very little cross-over of the damage threshold into the viable cells of the underlying epidermis. As mentioned previously, it appears that to actually do permanent cell damage, the epidermal cells must not only be heated up to a certain point, but they also must be held at this temperature for some period of time, generally thought to be about five seconds. FIGS. 12 and 13 show the temperature of the stratum co eum and the viable epidermis, respectively, as a function of time, showing heating during the "on-time" and cooling during the "off-time" for the entire ten cycles. Relating this simulation to the in vivo studies conducted, note that in better than 90% of the poration attempts with the system parameters set to match the simulation, effective poration of the stratum comeum was achieved without pain to the subject, and in subsequent microscopic examination of the poration site several days later, no noticeable damage to the tissues was apparent. The in vitro studies conducted on whole thickness donor skin samples were also consistent with the model's prediction of behavior.
Example 10
In conducting both the empirical in vivo studies, and these simulations, it appears that prechilling of the skin aids in optimizing the micro-poration process for reducing the probability of pain or damage to adjacent tissues. In practice, this can easily be achieved using a simple cold-plate placed against the skin prior to the poration process. For example, applying a Peltier cooled plate to the 1 cm diameter circle surrounding the poration target site, with the plate held at roughly 5°C for a few seconds, significantly reduces the temperature of the tissues. A schematic illustration of an experimental device used for this puφose in the laboratory is shown in FIGS. 3A-B. By applying exactly the same ten-cycle pulse train as used in the run illustrated in Example 9, one can see, by comparing FIG. 11 to FIG. 14, FIG. 12 to FIG. 15, and FIG. 13 to FIG. 16, how much improvement can be made in the control of the temperature penetration into the skin tissues. Once again, the relatively low thermal diffusivity and specific heat of the stratum comeum as compared to the epidermis and dermis is advantageous. Once cooled, the highly hydrated tissues of the epidermis and dermis require a much larger thermal energy input to elevate their temperatures, whereas the stratum comeum, with its relatively dry makeup, can quickly be heated up to the ablation threshold.
Example 11 Once the basic thermal conduction mechanism of delivering the energy into the skin tissues underlying the effective painless ablation and micro-poration of the stratum comeum is understood, several different specific methods to achieve the required rapid temperature modulations of the contact point can be conceived, such as the hot wire embodiments illustrated in FIGS. 4-7.
A basic embodiment, as described herein, uses an Ohmic heating element (FIG. 4), such as the tip of a small cordless soldering iron, with a suitably sized, relatively non-reactive, wire wrapped around it with a short amount of the wire left to protmde away from the body of the heater. When electricity is applied with a constant current source, the heater will come up to some temperature and within a few seconds, achieve a steady state with the convection losses to the surrounding air. Similarly, the wire, which is a part of this thermal system, will reach a steady state such that the very tip of the wire can be raised to almost any arbitrary temperature, up to roughly 1000°C with these types of components. The tip can be sized to give exactly the dimension micropore desired. In the laboratory, tungsten wires with a diameter of 80 μm attached to the replaceable tip of a "WAHL" cordless soldering iron with approximately 2 mm of wire protruding from the tip have been utilized. With a thermocouple, the temperature of the tip has been measured at its steady state, and it has been noted that by varying the constant current settings, steady state temperatures of greater than 700°C can easily be reached. To achieve the desired modulation, a low mass, fast response electromechanical actuator was coupled to the tip such that the position of the wire could be translated linearly more than 2 mm at up to a 200 Hz rate. Then, by mounting the entire apparatus on a precision stage, this vibrating tip could very controllably be brought into contact with the skin surface in a manner where it was only in contact for less than 10 milliseconds at a time, the "on-time," while an "off-time" of arbitratily long periods could be acheived by setting the pulse generator accordingly. These in vivo studies showed that the poration could actually be achieved before the subject being porated even knew that the tip of the wire was being brought into contact with the skin.
To compare the performance of this embodiment to the optically heated topical CPC dye embodiment, the following simulations were run according to the procedure of Example 8. Essentially, by only varying the initial conditions, the hot wire embodiment can be n with the identical simulation code. Because the contact with the wire occurs essentially instantly, there is no time dependent build-up of heat in the CPC dye layer and when the wire is physically removed from contact with the skin, there is a no residual heat still left on the surface as there is with the heated CPC dye layer. Also, as the wire itself defines the area targeted for ablation/micro-poration, there should be no lateral diffusion of thermal energy prior to its application to the stratum comeum. The comparative performances of the "hot¬ wire" embodiment are shown in FIGS. 17-19.
Example 12 In this example, the procedure of Example 11 was followed except that the skin was pre-cooled according to the procedure of Example 10. Similarly, pre-cooling the target site yields similarly positive results with the "hot-wire" embodiment. The results of the pre-cooled simulation of the "hot-wire" approach are shown in FIGS. 20-22.
Example 13
As discussed in the background introduction of this disclosure, the Tankovich '803 patent appears at first glance to be similar to the presently claimed invention. In this example, the simulation model was set up with the operating parameters specified in Tankovich '803, i.e. a pulse width of 1 μs and a power level of 40,000,000 W/cm2. FIGS. 23 and 24 show that under these conditions no portion of the stratum comeum reaches the threshold for flash vaporization of water, 123°C, and thus no ablation/microporation of the stratum comeum occurs. In practice, applying this type of high peak power, short duration pulse to the topical dye layer merely vaporizes the dye off of the surface of the skin with no effect on the skin. This example, thus, demonstrates that the conditions specified by Tankovich '803 are inoperative in the presently claimed invention.
Example 14
In this example, interstitial fluid obtained after porating the skin according to the procedure of Example 6 was collected and analyzed to determine the glucose concentration thereof. Data were obtained on four non-diabetic subjects and six type I diabetic subjects undergoing a glucose load test. Subject's ages ranged from 27 to 43. The goal of the study was to examine the utility of the method for painlessly harvesting enough interstitial fluid
(ISF) from the subjects to allow the ISF samples to be assayed for glucose content, and then compare these concentrations to the glucose level presenting in the subject's whole blood.
All subjects had both the blood and ISF glucose assays performed with the "ELITE" system from Miles-Bayer. All ten subjects underwent identical measurement protocols, with adjustments being made regarding the glucose load and insulin shot for those subjects with insulin dependent diabetes.
The basic design of the study was to recruit a modest number of volunteers, some with diabetes and some without diabetes, from which a series of sample pairs of ISF and whole blood were drawn every 3 to 5 minutes throughout the 3 to 4 hour duration of the study period. Both the blood and the ISF samples were assayed for glucose and the statistical relationship between the blood glucose levels and the interstitial fluid determined. To examine the hypothesized temporal lag of the ISF glucose levels as compared to the whole blood glucose levels, the study subjects were induced to exhibit a significant and dynamic change in their glucose levels. This was accomplished by having each subject fast for 12 hours prior to beginning the test and then giving the subject a glucose load after his or her baseline glucose levels have been established via a set of three fasting blood and ISF glucose levels. After the baseline levels had been established, the subjects were given a glucose load in the form of sweet juice based on the following guidelines: i. For the control subjects, the glucose load was calculated based on a .75 gram glucose per pound of body weight. ii. For the subjects with insulin dependent diabetes the glucose load was
50 grams of glucose. In addition, immediately after taking the glucose load the diabetic subjects will self inject their normal morning dose of fast acting insulin. In the case where the diabetic subject presents with fasting glucose levels above 300 mg/dL, they were asked to give themselves their insulin injection first, and the glucose load was provided after their blood glucose levels have dropped to below 120 mg/dL.
Each subject recruited was first given a complete description of the study in the "Informed Consent" document which they were required to understand and sign before they were officially enrolled into the program. Upon acceptance, they completed a medical history questionnaire. The detailed clinical procedure implemented was:
(a) Subject fasted from 9:00 p.m. the night before the study visit, consuming only water. No caffeine, cigarettes, fruit juice were allowed during this period.
(b) Subject arrived at the testing facility by 9:00 a.m. the next day. (c) Subject was seated in a reclining chair provided for the subject to relax in throughout the study procedure.
(d) Both whole blood and ISF samples were taken at three to five minute intervals beginning upon the subject's arrival and continuing for the next three to four hours. The duration over which the data were collected was based on when the subject's blood glucose levels had retumed to the normal range and stabilized after the glucose load. The ISF samples were harvested using the optical poration, ISF pumping method, described in more detail below. Each ISF sample was roughly 5 uL by volume to ensure a good fill of the ELITE test strip. The blood samples were obtained via a conventional finger prick lancet. Both the ISF and the blood samples were immediately assayed for glucose with the ELITE home glucometer system from Miles-Bayer. To improve the estimate of the 'true' blood glucose levels, two separate ELITE assays were be done on each finger stick sample.
(e) To facilitate the continued collection of the ISF from the same site through¬ out the entire data collection phase for a given individual, a 5 by 5 matrix of twenty five micropores was created on the subject's upper forearm, each micropore being between 50 and 80 μm across and spaced 300 μm apart. A 30 mm diameter teflon disk with a 6 mm hole in the center was attached to the subject's forearm with a pressure sensitive adhesive and positioned such that the 6 mm center hole was located over the 5 by 5 matrix of micro-pores. This attachment allowed a convenient method by which a small suction hose could be connected, applying a mild vacuum (10 to 12 inches of Hg) to the porated area to induce the ISF to flow out of the body through the micropores. The top of the teflon disk was fitted with a clear glass window allowing the operator to directly view the micro-porated skin beneath it. When a 5 uL bead of ISF was formed on the surface of the skin, it could easily be ascertained by visually monitoring the site through this window. This level of vacuum created a nominal pressure gradient of around 5 pounds/square inch (PSI). Without the micropores, no ISF whatsoever could be drawn from the subject's body using only the mild vacuum. (f) After the first three sample pairs have been drawn, the subject was given a glucose load in the form of highly sweetened orange juice. The amount of glucose given was 0.75 grams per pound of body weight for the nondiabetic subjects and 50 grams for the diabetic subjects. The diabetic subjects also self administered a shot of fast acting insulin, (regular) with the dosage appropriately calculated, based on this 50 gram level of glucose concurrent with the ingestion of the glucose load. With the normal 1.5 to 2.5 hour lag between receiving an insulin shot and the maximum effect of the shot, the diabetic subjects were expected to exhibit an upwards excursion of their blood glucose levels ranging up to 300 mg/dL and then dropping rapidly back into the normal range as the insulin takes effect. The nondiabetic subjects were expected to exhibit the standard glucose tolerance test profiles, typically showing a peak in blood glucose levels between 150 mg/dL and 220 mg/dL from 45 minutes to 90 minutes after administering the glucose load, and then a rapid drop back to their normal baseline levels over the next hour or so.
(g) Following the administration of the glucose load or glucose load and insulin shot, the subjects had samples drawn, simultaneously, of ISF and fmger prick whole blood at five minute intervals for the next three to four hours. The sampling was terminated when the blood glucose levels in three successive samples indicate that the subject's glucose had stabilized.
Upon examination of the data, several features were apparent. In particular, for any specific batch of ELITE test strips, there exist a distinct shift in the output shown on the glucometer in mg/dL glucose as compared to the level indicated on the blood. An elevated reading would be expected due to the lack of hematocrit in the ISF and to the normal differences in the electrolyte concentrations between the ISF and whole blood. Regardless of the underlying reasons for this shift in output, it was determined via comparison to a reference assay that the true ISF glucose levels are linearly related to the values produced by the ELITE system, with the scaling coefficients constant for any specific batch of ELITE strips.
Consequently, for the comparison of the ISF glucose levels versus the whole blood measurements, first order linear correction was applied to the ISF data as follows: ISFglucose = 0.606 * ISFEL1TE + 19.5.
This scaling of the output of the ELITE glucometer when used to measure ISF glucose levels, allows one to examine, over the entire data set, the error terms associated with using ISF to estimate blood glucose levels. Of course, even with no linear scaling whatsoever, the correlations between the ISF glucose values and the blood glucose levels are the same as the scaled version.
Based on the majority of the published body of literature on the subject of ISF glucose as well as preliminary data, it was originally expected that a 15 to 20 minute lag between the ISF glucose levels and the those presented in the whole blood from a finger stick would be observed. This is not what the data showed when analyzed. Specifically, when each individual's data set is analyzed to determine the time shift required to achieve the maximum correlation between the ISF glucose levels and the blood glucose levels it was discovered that the worst case time lag for this set of subjects was only 13 minutes and the average time lag was only 6.2 minutes, with several subjects showing a temporal tracking that was almost instantaneous (about 1 minute).
Based on the minimal amount of lag observed in this data set, the graph shown in FIG. 25 presents all ten of the glucose load tests, concatenated one after another on an extended time scale. The data are presented with no time shifting whatsoever, showing the high level of tracking between the ISF and blood glucose levels the entire clinical data set being dealt with in exactly the same manner. If the entire data set is shifted as a whole to find the best temporal tracking estimate, the correlation between the ISF and blood glucose levels peaks with a delay of two (2) minutes at an r value of r=0.97. This is only a trivial improvement from the unshifted correlation of r=0.964. Therefore, for the remainder of the analysis the ISF values are treated with no time shift imposed on them. That is, each set of blood and ISF glucose levels is dealt with as simultaneously collected data pairs.
After the unshifted Elite ISF readings had been scaled to reflect the proportional glucose present in the ISF, it was possible to examine the error associated with these data. The simplest method for this is to assume that the average of the two ELITE finger-stick blood glucose readings is in fact the absolutely correct value, and then to merely compare the scaled ISF values to these mean blood glucose values. These data are as follows: Standard Deviation
Blood-ISF, 13.4 mg/dL; Coefficient of Variance of ISF, 9.7%; Standard Deviation of the Two Elites, 8.3 mg/dL; and Coefficient of Variance of Blood (Miles), 6%.
As these data show, the blood based measurement already contains an error term. Indeed, the manufacturer's published performance data indicates that the ELITE system has a nominal Coefficient of Variance (CV) of between 5% and 7%, depending on the glucose levels and the amount of hematocrit in the blood.
An additional look at the difference term between the ISF glucose and the blood glucose is shown in the form of a scatter plot in FIG. 26. In this figure, the upper and lower bounds of the 90% confidence interval are also displayed for reference. It is interesting to note that with only two exceptions, all of the data in the range of blood glucose levels below 100 mg/dL fall within these 90% confidence interval error bars. This is important as the consequences of missing a trend towards hypoglycemia would be very significant to the diabetic user. That is, it would be much better to under-predict glucose levels in the 40 to 120 mg/dL than to over predict them. Essentially, if one assumes that the basic assay error when the ELITE system is used on ISF is comparable to the assay error associated with the ELITE'S use on whole blood, then the
Deviation of the ISF glucose from the blood glucose can be described as: 'SFdeviaiion = [(ISFact_al) + (ISractua|) J .
Applying this equation to the values shown above, one can solve for the estimated 'tme' value of the ISF error term: ISF^ = [(ISFdevialion)2 - (Bloodactual)2p. Or, solving the equation, ISF^, = [(13.4)2 - (8J)2] = 10.5 mg/dl.
A histogram of the relative deviation of the ISF to the blood glucose levels is shown in FIG. 27.
Dmg Delivery through Pores in the Stratum Comeum The present invention also includes a method for the delivery of dmgs, including dmgs currently delivered transdermally, through micro-pores in the stratum comeum. In one illustrative embodiment, the delivery is achieved by placing the solution in a reservoir over the poration site.
In another illustrative embodiment, a pressure gradient is used to further enhance the delivery.
In still another illustrative embodiment, sonic energy is used with or without a pressure gradient to further enhance the delivery. The sonic energy can be operated according to traditional transdermal parameters or by utilizing acoustic streaming effects, which will be described momentarily, to push the delivery solution through the porated stratum comeum.
Example 15 This example shows the use of stratum comeum poration for the delivery of lidocaine, a topical analgesic. The lidocaine solution also contained a chemical permeation enhancer formulation designed to enhance its passive diffusion across the stratum comeum. A drawing of an illustrative delivery apparatus 300 is shown in FIG. 28, wherein the apparatus comprises a housing 304 enclosing a reservoir 308 for holding a dmg-containing solution 312. The top portion of the housing comprises an ultrasonic transducer 316 for providing sonic energy to aid in transporting the dmg-containing solution through micropores 320 in the stratum comeum 324. A port 328 in the ultrasonic transducer permits application of pressure thereto for further aiding in transporting the dmg-containing solution through the micropores in the stratum comeum. The delivery apparatus is applied to a selected area of an individual's skin such that it is positioned over at least one, and preferably a plurality, of micropores. An adhesive layer 332 attached to a lower portion of the housing permits the apparatus to adhere to the skin such that the dmg- containing solution in the reservoir is in liquid communication with the micropores. Delivery of the dmg through the micropores results in transport into the underlying epidermis 336 and dermis 340. Five subjects were tested for the effectiveness of drug delivery using poration together with ultrasound. The experiment used two sites on the subjects left forearm about three inches apart, equally spaced between the thumb and upper arm. The site near the thumb will be referred to as site 1 the site furthest from the thumb will be referred to as site 2. Site 1 was used as a control where the lidocaine and enhancersolution was applied using an identical delivery apparatus 300, but without any micro-poration of the stratum comeum or sonic energy. Site 2 was porated with 24 holes spaced 0.8 millimeters apart in a grid contained within a 1 cm diameter circle. The micropores in Site 2 were generated according to the procedure of Example 6. Lidocaine and low level ultrasound were applied. Ultrasound applications were made with a custom manufactured Zevex ultrasonic transducer assembly set in burst mode with 0.4 Volts peak to peak input with 1000 count bursts occurring at 10 Hz with a 65.4 kHz fundamental frequency, i.e., a pulse modulated signal with the transducer energized for 15 millisecond bursts, and then turned off for the next 85 milliseconds. The measured output ofthe amplifier to the transducer was 0.090 watts
RMS.
After application of the lidocaine, sensation measurements were made by rubbing a 30 gauge wire across the test site. Experiments were executed on both sites, Site 1 for 10 to 12 minute duration and Site 2 for two 5 minute duration intervals applied serially to the same site. Both sites were assessed for numbness using a scale of 10 to 0, where 10 indicated no numbness and 0 indicated complete numbness as reported by the test subjects. The following summary of results is for all 5 subjects.
The control site, site 1, presented little to no numbness (scale 7 to 10) at 10 to 12 minutes. At approximately 20 minutes some numbness (scale 3) was observed at site 1 as the solution completely permeated the stratum comeum. Site 1 was cleaned at the completion of the lidocaine application. Site 2 presented nearly complete numbness (scale 0 to 1) in the 1 cm circle containing the porations. Outside the 1 cm diameter circle the numbness fell off almost linearly to 1 at a 2.5 cm diameter circle with no numbness outside the 2.5 cm diameter circle. Assessment of site 2 after the second application resulted in a slightly larger totally numb circle of about 1.2 cm diameter with numbness falling off linearly to 1 in an irregular oval pattem with a diameter of 2 to 2.5 cm peφendicular to the forearm and a diameter of 2 to 6 cm parallel to the forearm. Outside the area no numbness was noted. A graphic representation of illustrative results obtained on a typical subject is shown in FIGS. 29A-C. FIGS. 29A and 29B show the results obtained at Site 2 (porated) after 5 and 10 minutes, respectively. FIG. 29C shows the results obtained at Site 1 (control with no poration).
Sonic Energy and Enhancers for Enhancing Transdermal Flux
The physics of sonic energy fields created by sonic transducers can be utilized in a method by which sonic frequency can be modulated to improve on flux rates achieved by other methods. As shown in FIG. 1 of U.S. Patent No. 5,445,611, hereby incoφorated herein by reference, the energy distribution of an sonic transducer can be divided into near and far fields. The near field, characterized by length N, is the zone from the first energy minimum to the last energy maximum. The zone distal to the last maximum is the far field. The near (N) field patte is dominated by a large number of closely spaced local pressure peaks and nulls. The length of the near field zone, N, is a function of the frequency, size, and shape of the transducer face, and the speed of sound in the medium through which the ultrasound travels. For a single transducer, intensity variations within its normal operating range do not affect the nature of the sonic energy distribution other than in a linear fashion. However, for a system with multiple transducers, all being modulated in both frequency and amplitude, the relative intensities of separate transducers do affect the energy distribution in the sonic medium, regardless of whether it is skin or another medium. By changing the frequency of the sonic energy by a modest amount, for example in the range of about 1 to 20%, the pattem of peaks and nulls remains relatively constant, but the length N of the near field zone changes in direct proportion to the frequency. Major changes the frequency, say a factor of 2 or more, will most likely produce a different set of resonances or vibrational modes in the transducer, causing a significantly and unpredictably different near field energy pattem. Thus, with a modest change in the sonic frequency, the complex pattem of peaks and nulls is compressed or expanded in an accordion-like manner. By selecting the direction of frequency modulation, the direction of shift of these local pressure peaks can be controlled. By applying sonic energy at the surface of the skin, selective modulation of the sonic frequency controls movement of these local pressure peaks through the skin either toward the interior ofthe body or toward the surface of the body. A frequency modulation from high to low drives the pressure peaks into the body, whereas a frequency modulation from low to high pulls the pressure peaks from within the body toward the surface and through the skin to the outside of the body. Assuming typical parameters for this application of, for example, a 1.27 cm diameter sonic transducer and a nominal operating frequency of 10 MHz and an acoustic impedance similar to that of water, a frequency modulation of 1 MHz produces a movement of about 2.5 mm ofthe peaks and nulls of the near field energy patte in the vicinity ofthe stratum comeum. From the perspective of transdermal and/or transmucosal withdrawal of analytes, this degree of action provides access to the area well below the stratum comeum and even the epidermis, dermis, and other tissues beneath it. For any given transducer, there may be an optimal range of frequencies within which this frequency modulation is most effective.
The flux of a dmg or analyte across the skin can also be increased by changing either the resistance (the diffusion coefficient) or the driving force (the gradient for diffusion). Flux can be enhanced by the use of so-called penetration or chemical enhancers.
Chemical enhancers are comprised of two primary categories of components, i.e., cell- envelope disordering compounds and solvents or binary systems containing both cell-envelope disordering compounds and solvents. Cell envelope disordering compounds are known in the art as being useful in topical pharmaceutical preparations and function also in analyte withdrawal through the skin. These compounds are thought to assist in skin penetration by disordering the lipid stmcture ofthe stratum comeum cell-envelopes. A comprehensive list of these compounds is described in European Patent Application 43,738, published June 13, 1982, which is incoφorated herein by reference. It is believed that any cell envelope disordering compound is useful for puφoses of this invention.
Suitable solvents include water; diols, such as propylene glycol and glycerol; mono- alcohols, such as ethanol, propanol, and higher alcohols; DMSO; dimethylformamide; N,N- dimethylacetamide; 2-pyrrolidone; N-(2-hydroxyethyl) pyrroiidone, N-methylpyrrolidone, 1- dodecylazacycloheptan-2-oneand other n-substituted-a!kyl-azacycloalkyl-2-ones(azones) and the like.
U.S. Patent 4,537,776, Cooper, issued August 27, 1985, contains an excellent summary of prior art and background information detailing the use of certain binary systems for permeant enhancement. Because of the completeness of that disclosure, the information and terminology utilized therein are incoφorated herein by reference. Similarly, European Patent Application 43,738, referred to above, teaches using selected diols as solvents along with a broad category of cell-envelope disordering compounds for delivery of lipophilic pharmacologically-active compounds. Because of the detail in disclosing the cell- envelope disordering compounds and the diols, this disclosure of European Patent Application 43,738 is also incoφorated herein by reference. A binary system for enhancing metoclopramide penetration is disclosed in UK Patent
Application GB 2,153,223 A, published August 21, 1985, and consists of a monovalent alcohol ester ofa C8-32 aliphatic monocarboxylic acid (unsaturated and/or branched if C 18-32) or a C6-24 aliphatic monoalcohol (unsaturated and/or branched if C 14-24) and an N-cyclic compound such as 2-pyrrolidone, N-methylpyrrolidone and the like. Combinations of enhancers consisting of diethylene glycol monoethyl or monomethyl ether with propylene glycol monolaurate and methyl laurate are disclosed in U.S. Patent 4,973,468 as enhancing the transdermal delivery of steroids such as progestogens and estrogens. A dual enhancer consisting of glycerol monolaurate and ethanol for the transdermal delivery of dmgs is shown in U.S. Patent 4,820,720. U.S. Patent 5,006,342 lists numerous enhancers for transdermal drug administration consisting of fatty acid esters or fatty alcohol ethers of C2 to C4 alkanediols, where each fatty acid/alcohol portion of the ester/ether is of about 8 to 22 carbon atoms. U.S. Patent 4,863,970 shows penetration-enhancing compositions for topical application comprising an active permeant contained in a penetration-enhancing vehicle containing specified amounts of one or more cell-envelope disordering compounds such as oleic acid, oleyl alcohol, and glycerol esters of oleic acid; a C2 or C3 alkanol and an inert diluent such as water. Other chemical enhancers, not necessarily associated with binary systems include DMSO or aqueous solutions of DMSO such as taught in Herschler, U.S. Patent 3,551,554; Herschler, U.S. Patent 3,711,602; and Herschler, U.S. Patent 3,711,606, and the azones (n-substituted-alkyl- azacycloalkyl-2-ones) such as noted in Cooper, U.S. Patent 4,557,943.
Some chemical enhancer systems may possess negative side effects such as toxicity and skin irritation. U.S. Patent 4,855,298 discloses compositions for reducing skin irritation caused by chemical enhancer containing compositions having skin irritation properties with an amount of glycerin sufficient to provide an anti-irritating effect.
Because the combination of microporation ofthe stratum comeum and the application of sonic energy accompanied by the use of chemical enhancers can result in an improved rate of analyte withdrawal or permeant delivery through the stratum comeum, the specific carrier vehicle and particularly the chemical enhancer utilized can be selected from a long list of prior art vehicles some of which are mentioned above and incoφorated herein by reference. To specifically detail or enumerate that which is readily available in the art is not thought necessary. The invention is not drawn to the use of chemical enhancers per se and it is believed that all chemical enhancers, useful in the delivery of drugs through the skin, will function with dyes in optical microporation and also with sonic energy in effecting measurable withdrawal of analytes from beneath and through the skin surface or the delivery of permeants or dmgs through the skin surface.
Example 16
Modulated sonic energy and chemical enhancers were tested for their ability to control transdermal flux on human cadaver skin samples. In these tests, the epidermal membrane had been separated from the human cadaver whole skin by the heat-separation method of Example 1. The epidermal membrane was cut and placed between two halves of the permeation cell with the stratum comeum facing either the upper (donor) compartment or lower (receiver) compartment.
Modified Franz cells were used to hold the epidermis, as shown in FIG. 2 of U.S. Patent No. 5,445,611. Each Franz cell consists of an upper chamber and a lower chamber held together with one or more clamps. The lower chamber has a sampling port through which materials can be added or removed. A sample of stratum comeum is held between the upper and lower chambers when they are clamped together. The upper chamber of each Franz cell is modified to allow an ultrasound transducer to be positioned within 1 cm ofthe stratum comeum membrane. Methylene blue solution was used as an indicator molecule to assess the permeation ofthe stratum co eum. A visual record of the process and results of each experiment was obtained in a time stamped magnetic tape format with a video camera and video cassette recorder (not shown). Additionally, samples were withdrawn for measurement with an absoφtion spectrometer to quantitate the amount of dye which had traversed the stratum comeum membrane during an experiment. Chemical enhancers suitable for use could vary over a wide range of solvents and/or cell envelope disordering compounds as noted above. The specific enhancer utilized was: ethanol/glycerol/water/glycerolmonooleate/methyl laurate in 50/30/15/2.5/2.5 volume ratios. The system for producing and controlling the sonic energy included a programmable 0-30 MHz arbitrary waveform generator (Stanford Reserach Systems Model DS345), a 20 watt 0-30 MHz amplifier, and two unfocused ultrasound immersion transducers having peak resonances at 15 and
25 MHz, respectively. Six cells were prepared simultaneously for testing of stratum comeum samples from the same donor. Once the stratum comeum samples were installed, they were allowed to hydrate with distilled water for at least 6 hours before any tests were done.
Example 17
Effects of Sonic Energy without Chemical Enhancers
As stated above in Example 16, the heat-separated epidermis was placed in the Franz cells with the epidermal side facing up, and the stratum comeum side facing down, unless noted otherwise. The lower chambers were filled with distilled water, whereas the upper chambers were filled with concentrated methylene blue solution in distilled water.
Heat Separated Epidermis: Immediately after filling the upper chambers with methylene blue solution, sonic energy was applied to one of the cells with the transducer fully immersed. This orientation would correspond, for example, to having the transducer on the opposite side of a fold of skin, or causing the sonic energy to be reflected off a reflector plate similarly positioned and being used to "push" analyte out of the other side of the fold into a collection device. The sonic energy setting was initially set at the nominal operating frequency of 25 MHz with an intensity equivalent to a 20 volt peak-to-peak (P-P) input wave form. This corresponds to roughly a 1 watt of average input power to the transducer and similarly, assuming the manufacturer's nominal value for conversion efficiency of 1% for this particular transducer, a sonic output power of around 0.01 watts over the 0.78 cm2 surface of the active area or a sonic intensity of 0.13 watts/cm2. Three other control cells had no sonic energy applied to them. After 5 minutes the sonic energy was turned off. No visual indication of dye flux across the stratum comeum was observed during this interval in any ofthe cells, indicating levels less than approximately 0.0015% (v/v) of dye solution in 2 ml of receiver medium. Testing of these same 3 control cells and 1 experimental cell was continued as follows.
The intensity of sonic energy was increased to the maximum possible output available from the driving equipment of a 70 volt peak-to-peak input 12 watts average power input or (=0.13 watts/cm2) of sonic output intensity. Also, the frequency was set to modulate or sweep from 30 MHz to 10 MHz. This 20 MHz sweep was performed ten times per second, i.e., a sweep rate of 10 Hz. At these input power levels, it was necessary to monitor the sonic energy transducer to avoid overheating. A contact thermocouple was applied to the body ofthe transducer and power was cycled on and off to maintain maximum temperature of the transducer under 42°C. After about 30 minutes of cycling maximum power at about a 50% duty cycle of 1 minute on and 1 minute off, there was still no visually detectable permeation of the stratum comeum by the methylene blue dye.
A cooling water jacket was then attached to the sonic energy transducer to permit extended excitation at the maximum energy level. Using the same 3 controls and 1 experimental cell, sonic energy was applied at maximum power for 12 hours to the experimental cell. During this time the temperature ofthe fluid in the upper chamber rose to only 35°C, only slightly above the approximately 31 °C normal temperature ofthe stratum comeum in vivo. No visual evidence of dye flux through the stratum comeum was apparent in any of the four cells after 12 hrs. of sonic energy applied as described above.
Example 18 Effects of Sonic Energy without Chemical Enhancers
Perforated Stratum Comeum: Six cells were prepared as described above in Example 16. The clamps holding the upper and lower chambers of the Franz cells were tightened greater than the extent required to normally seal the upper compartment from the lower compartment, and to the extent to artificially introduce perforations and "pinholes" into the heat-separated epidermal samples. When dye solution was added to the upper chamber of each cell, there were immediate visual indications of leakage of dye into the lower chambers through the perforations formed in the stratum comeum. Upon application of sonic energy to cells in which the stratum comeum was so perforated with small "pinholes," a rapid increase in the transport of fluid through a pinhole in the stratum comeum was observed. The rate of transport of the indicator dye molecules was directly related to whether the sonic energy was applied or not. That is, application of the sonic energy caused an immediate (lag time approximately <0.1 second) pulse ofthe indicator molecules through the pinholes in the stratum comeum. This pulse of indicator molecules ceased immediately upon turning off of the sonic energy (a shutoff lag of approximately <0.1 second). The pulse could be repeated as described.
Example 19 Effects of Sonic Energy and Chemical Enhancers
Two different chemical enhancer formulations were used. Chemical Enhancer One or CE1 was an admixture of ethanol/glycerol/water/glycerol monooleate/methyl laurate in a 50/30/15/2.5/2.5 volume ratio. These are components generally regarded as safe, i.e. GRAS, by the FDA for use as pharmaceutical excipients. Chemical Enhancer Two or CE2 is an experimental formulation shown to be very effective in enhancing transdermal dmg delivery, but generally considered too irritating for long term transdermal delivery applications. CE2 contained ethanol/glycerol/water/lauradone/methyllaurate in the volume ratios 50/30/15/2.5/2.5. Lauradone is the lauryl (dodecyl) ester of 2-pyrrolidone-5- carboxylic acid ("PCA") and is also referred to as lauryl PCA.
Six Franz cells were set up as before (Example 16) except that the heat separated epidermis was installed with the epidermal layer down, i.e., stratum co eum side facing up. Hydration was established by exposing each sample to distilled water ovemight. To begin the experiment, the distilled water in the lower chambers was replaced with methylene blue dye solution in all six cells. The upper chambers were filled with distilled water and the cells were observed for about 30 minutes confirming no passage of dye to ensure that no pinhole perforations were present in any ofthe cells. When none were found, the distilled water in the upper chambers was removed from four of the cells. The other two cells served as distilled water controls. The upper chambers of two of the experimental cells were then filled with CE1 and the other two experimental cells were filled with CE2.
Sonic energy was immediately applied to one of the two CE2 cells. A 25 MHz transducer was used with the frequency sweeping every 0.1 second from 10 MHz to 30 MHz at maximum intensity of =0.13 watts/cm2. After 10-15 minutes of sonic energy applied at a 50% duty cycle, dye flux was visually detected. No dye flux was detected in the other five cells.
Sonic energy was then applied to one of the two cells containing CE1 at the same settings. Dye began to appear in the upper chamber within 5 minutes. Thus, sonic energy together with a chemical enhancer significantly increased the transdermal flux rate of a marker dye through the stratum comeum, as well as reduced the lag time.
Example 20 Effects of Sonic Energy and Chemical Enhancers
Formulations of the two chemical enhancers, CE1 and CE2, were prepared minus the glycerin and these new formulations, designated CE1MG and CE2MG, were tested as before.
Water was substituted for glycerin so that the proportions of the other components remained unchanged. Three cells were prepared in modified Franz cells with the epidermal side ofthe heat separated epidermis samples facing toward the upper side of the chambers. These samples were then hydrated in distilled water for 8 hours. After the hydration step, the distilled water in the lower chambers was replaced with either CE1MG or CE2MG and the upper chamber was filled with the dye solution. Sonic energy was applied to each of the three cells sequentially.
Upon application of pulsed, frequency-modulated sonic energy for a total duration of less than 10 minutes, a significant increase in permeability of the stratum comeum samples was observed. The permeability of the stratum comeum was altered relatively uniformly across the area exposed to both the chemical enhancer and sonic energy. No "pinhole" perforations through which the dye could traverse the stratum comeum were observed. The transdermal flux rate was instantly controllable by tuming the sonic energy on or off. Tuming the sonic energy off appeared to instantly reduce the transdermal flux rate such that no dye was visibly being actively transported through the skin sample; presumably the rate was reduced to that of passive diffusion. Tuming the sonic energy on again instantly resumed the high level flux rate. The modulated mode appeared to provide a regular pulsatile increase in the transdermal flux rate at the modulated rate. When the sonic energy was set to a constant frequency, the maximum increase in transdermal flux rate for this configuration seemed to occur at around 27 MHz.
Having obtained the same results with all three samples, the cells were then drained of all fluids and flushed with distilled water on both sides of the stratum comeum. The lower chambers were then immediately filled with distilled water and the upper chambers were refilled with dye solution. The cells were observed for 30 minutes. No holes in the stratum comeum samples were observed and no large amount of dye was detected in the lower chambers. A small amount of dye became visible in the lower chambers, probably due to the dye and enhancer trapped in the skin samples from their previous exposures. After an additional 12 hours, the amount of dye detected was still very small.
Example 21 Effects of Sonic Energy and Chemical Enhancers
Perforated Stratum Co eum: Three cells were prepared with heat-separated epidermis samples with the epidermal side facing toward the upper side of the chamber from the same donor as in Example 16. The samples were hydrated for 8 hours and then the distilled water in the lower chambers was replaced with either CE1MG or CE2MG. The upper chambers were then filled with dye solution. Pinhole perforations in the stratum comeum samples permitted dye to leak through the stratum comeum samples into the underlying enhancer containing chambers. Sonic energy was applied. Immediately upon application of the sonic energy, the dye molecules were rapidly pushed through the pores. As shown above, the rapid flux of the dye through the pores was directly and immediately correlated with the application of the sonic energy.
Example 22 Effects of Sonic Energy and Chemical Enhancers A low cost sonic energy transducer, TDK #NB-58S-01 (TDK Coφ.), was tested for its capability to enhance transdermal flux rates. The peak response of this transducer was determined to be about 5.4 MHz with other local peaks occurring at about 7 MHz, 9 MHz, 12.4 MHz, and 16 MHz.
This TDK transducer was then tested at 5.4 MHz for its ability to enhance transdermal flux rate in conjunction with CE1MG. Three cells were set up with the epidermal side facing the lower chamber, then the skin samples were hydrated for 8 hrs. The dye solution was placed in the lower chamber. The transducer was placed in the upper chamber immersed in CE IMG. Using swept frequencies from 5.3 to 5.6 MHz as the sonic energy excitation, significant quantities of dye moved through the stratum comeum and were detected in the collection well of the cell in 5 minutes. Local heating occurred, with the transducer reaching a temperature of 48°C. In a control using CE1MG without sonic energy, a 24 hour exposure yielded less dye in the collection well than the 5 minute exposure with sonic energy.
This example demonstrates that a low cost, low frequency sonic energy transducer can strikingly affect transdermal flux rate when used in conjunction with an appropriate chemical enhancer. Although higher frequency sonic energy will theoretically concentrate more energy in the stratum comeum, when used with a chemical enhancer, the lower frequency modulated sonic energy can accelerate the transdermal flux rate to make the technology useful and practical.
Example 23
Demonstration of molecule migration across human skin: Tests with the TDK transducer and CE1MG described above were repeated at about 12.4 MHz, one ofthe highest local resonant peaks for the transducer, with a frequency sweep at a 2 Hz rate from 12.5 to 12.8 MHz and an sonic energy density less than 0.1 W/cm2. The epidermal side ofthe heat-separated epidermis was facing down, the dye solution was in the lower chamber, and the enhancer solution and the sonic energy were placed in the upper chamber. Within 5 minutes a significant amount of dye had moved across the stratum co eum into the collection well. Ohmic heating in the transducer was significantly less than with the same transducer being driven at 5.4 MHz, causing an increase in temperature of the chemical enhancer to only about 33°C.
Even at these low efficiency levels, the results obtained with CE1MG and sonic energy from the TDK transducer were remarkable in the monitoring direction. FIGS. 3 A and 3B of U.S. Patent No. 5,445,611 show plots of data obtained from three separate cells with the trandermal flux rate measured in the monitoring direction. Even at the 5 minute time point, readily measurable quantities of the dye were present in the chemical enhancer on the outside of the stratum comeum, indicating transport from the epidermal side through the stratum comeum to the "outside" area of the skin sample.
To optimize the use of the sonic energy or the sonic energy/chemical enhancer approach for collecting and monitoring analytes from the body, means for assaying the amount of analyte of interest are required. An assay system that takes multiple readings while the unit is in the process of withdrawing analytes by sonic energy with or without chemical enhancers makes it unnecessary to standardize across a broad population base and normalize for different skin characteristics and flux rates. By plotting two or more data points in time as the analyte concentration in the collection system is increasing, a curve-fitting algorithm can be applied to determine the parameters describing the curve relating analyte withdrawal or flux rate to the point at which equilibrium is reached, thereby establishing the measure of the interval concentration.
The genera] form of this curve is invariant from one individual to another; only the parameters change. Once these parameters are established, solving for the steady state solution (i.e., time equals infinity) of this function, i.e., when full equilibrium is established, provides the concentration of the analyte within the body. Thus, this approach permits measurements to be made to the desired level of accuracy in the same amount of time for all members of a population regardless of individual variations in skin permeability.
Several existing detection techniques currently exist that are adaptable for this application. See, D.A. Christensen, in 1648 Proceedings of Fiber Optic, Medical and Fluorescent Sensors and Applications 223-26 (1992). One method involves the use of a pair of optical fibers that are positioned close together in an approximately parallel manner. One ofthe fibers is a source fiber, through which light energy is conducted. The other fiber is a detection fiber connected to a photosensitive diode. When light is conducted through the source fiber, a portion of the light energy, the evanescent wave, is present at the surface ofthe fiber and a portion of this light energy is collected by the detection fiber. The detection fiber conducts the captured evanescent wave energy to the photosensitive diode which measures it. The fibers are treated with a binder to attract and bind the analyte that is to be measured. As analyte molecules bind to the surface (such as the analyte glucose binding to immobilized lectins such as concanavalin A, or to immobilized anti-glucose antibodies) the amount of evanescent wave coupling between the two fibers is changed and the amount of energy captured by the detection fiber and measured by the diode is changed as well. Several measurements of detected evanescent wave energy over short periods of time support a rapid determination of the parameters describing the equilibrium curve, thus making possible calculation ofthe concentration ofthe analyte within the body. The experimental results showing measurable flux within 5 minutes (FIGS. 3A and 3B of U.S. Patent No. 5,445,611) with this system suggest sufficient data for an accurate final reading are collected within 5 minutes.
In its most basic embodiment, a device that can be utilized for the application of sonic energy and collection of analyte comprises an absorbent pad, either of natural or synthetic material, which serves as a reservoir for the chemical enhancer, if used, and for receiving the analyte from the skin surface. The pad or reservoir is held in place, either passively or aided by appropriate fastening means, such as a strap or adhesive tape, on the selected area of skin surface.
An sonic energy transducer is positioned such that the pad or reservoir is between the skin surface and the transducer, and held in place by appropriate means. A power supply is coupled to the transducer and activated by switch means or any other suitable mechanism. The transducer is activated to deliver sonic energy modulated in frequency, phase or intensity, as desired, to deliver the chemical enhancer, if used, from the reservoir through the skin surface followed by collection of the analyte from the skin surface into the reservoir. After the desired fixed or variable time period, the transducer is deactivated. The pad or reservoir, now containing the analyte of interest, can be removed to quantitate the analyte, for example, by a laboratory utilizing any number of conventional chemical analyses, or by a portable device. Altemately, the mechanism for quantitating the analyte can be build into the device used for collection of the analyte, either as an integral portion of the device or as an attachment. Devices for monitoring an analyte are described in U.S. Patent No. 5,458,140, which is incoφorated herein by reference.
Example 24
An altemate method for detection of an analyte, such as glucose, following the sample collection through the porated skin surface as described above, can be achieved through the use of enzymatic means. Several enzymatic methods exist for the measurement of glucose in a biological sample. One method involves oxidizing glucose in the sample with glucose oxidase to generate gluconolactone and hydrogen peroxide. In the presence of a colorless chromogen, the hydrogen peroxide is then converted by peroxidase to water and a colored product.
Glucose Oxidase Glucose » Gluconolactone + H202
2 H202 + chromogen » H20 + colored product
The intensity of the colored product will be proportional to the amount of glucose in the fluid. This color can be determined through the use of conventional absorbance or reflectance methods. By calibration with known concentrations of glucose, the amount of color can be used to determine the concentration of glucose in the collected analyte. By testing to determine the relationship, one can calculate the concentration of glucose in the blood of the subject. This information can then be used in the same way that the information obtained from a blood glucose test from a finger puncture is used. Results can be available within five to ten minutes.
Example 25 Any system using a visual display or readout of glucose concentration will indicate to a diagnostician or patient the need for administration of insulin or other appropriate medication. In critical care or other situations where constant monitoring is desired and corrective action needs to be taken almost concurrently, the display may be connected with appropriate signal means which triggers the administration of insulin or other medication in an appropriate manner. For example, there are insulin pumps which are implanted into the peritoneum or other body cavity which can be activated in response to extemal or intemal stimuli. Altematively, utilizing the enhanced transdermal flux rates possible with micro-poration of the stratum comeum and other techniques described in this invention, an insulin delivery system could be implemented transdermal ly, with control of the flux rates modulated by the signal from the glucose sensing system. In this manner a complete biomedical control system can be available which not only monitors and/or diagnoses a medical need but simultaneously provides corrective action.
Biomedical control systems of a similar nature could be provided in other situations such as maintaining correct electrolyte balances or administering analgesics in response to a measured analyte parameter such as prostaglandins.
Example 26 Similar to audible sound, sonic waves can undergo reflection, refraction, and absoφtion when they encounter another medium with dissimilar properties [D. Bommannan et al., 9 Pharm. Res. 559 (1992)]. Reflectors or lenses may be used to focus or otherwise control the distribution of sonic energy in a tissue of interest. For many locations on the human body, a fold of flesh can be found to support this system. For example, an earlobe is a convenient location which would allow use of a reflector or lens to assist in exerting directional control (e.g., "pushing" of analytes or permeants through the porated stratum comeum) similar to what is realized by changing sonic frequency and intensity.
Example 27 Multiple sonic energy transducers may be used to selectively direct the direction of transdermal flux through porated stratum comeum either into the body or from the body. A fold of skin such as an earlobe allow transducers to be located on either side of the fold. The transducers may be energized selectively or in a phased fashion to enhance transdermal flux in the desired direction. An array of transducers or an acoustic circuit may be constmcted to use phased array concepts, similar to those developed for radar and microwave communications systems, to direct and focus the sonic energy into the area of interest.
Example 28 In this example, the procedure of Example 19 is followed with the exception that the heat-separated epidermis samples are first treated with an excimer laser (e.g. model EMG/200 of
Lambda Physik; 193 nm wavelength, 14 ns pulsewidth) to ablate the stratum co eum according to the procedure described in U.S. Patent No. 4,775,361, hereby incoφorated by reference.
Example 29 In this example, the procedure of Example 19 is followed with the exception that the heat-separated epidermis samples are first treated with 1,1 '-diethy 1-4,4 '-carbocyanine iodide (Aldrich, λmax=703 nm) and then a total of 70 mJ/cm2/50 ms is delivered to the dye-treated sample with a model TOLD9150 diode laser (Toshiba America Electronic, 30 mW at 690 nm) to ablate the stratum comeum.
Example 30 In this example, the procedure of Example 29 is followed with the exception that the dye is indocyanine green (Sigma cat. no. 1-2633; λmax=775 nm) and the laser is a model Diolite 800-50 (LiCONiX, 50 mW at 780 nm).
Example 31 In this example, the procedure of Example 29 is followed with the exception that the dye is methylene blue and the laser is a model SDL-8630 (SDL Inc.; 500 mW at 670 nm).
Example 32
In this example, the procedure of Example 29 is followed with the exception that the dye is contained in a solution comprising a permeation enhancer, e.g. CE1. Example 33
In this example, the procedure of Example 29 is followed with the exception that the dye and enhancer-containing solution are delivered to the stratum comeum with the aid of exposure to ultrasound.
Example 34
In this example, the procedure of Example 31 is followed with the exception that the pulsed light source is a short arc lamp emitting over the broad range of 400 to 1100 nm but having a bandpass filter placed in the system to limit the output to the wavelength region of about 650 to 700 nm.
Example 35 In this example, the procedure of Example 19 is followed with the exception that the heat-separated epidermis samples are first punctured with a microlancet (Becton Dickinson) calibrated to produce a micropore in the stratum co eum without reaching the underlying tissue.
Example 36 In this example, the procedure of Example 19 is followed with the exception that the heat-separated epidermis samples are first treated with focused sonic energy in the range of 70-480 mJ/cm2/50 ms to ablate the stratum comeum.
Example 37 In this example, the procedure of Example 19 is followed with the exception that the stratum comeum is first punctured hydraulically with a high pressure jet of fluid to form a micropore of up to about 100 μm diameter. Example 38
In this example, the procedure of Example 19 is followed with the exception that the stratum comeum is first punctured with short pulses of electricity to form a micropore of up to about 100 μm diameter.
Example 39
Acoustic Streaming
A new mechanism and application of sonic energy in the delivering of therapeutic substances into the body and/or harvesting fluids from within the body into an extemal reservoir through micro-porations formed in the stratum comeum layer will now be described. An additional aspect of this invention is the utilization of sonic energy to create an acoustic streaming effect on the fluids flowing around and between the intact cells in the epidermis and dermis ofthe human skin. Acoustic streaming is a well documented mode by which sonic energy can interact with a fluid medium. Nyborg, Physical Acoustics Principles and Methods, p.265-331, Vol II-Part B, Academic Press, 1965. The first theoretical analysis of acoustic streaming phenomenon was given by Rayleigh (1884, 1945). In an extensive treatment of the subject, Longuet-Higgins
(1953-1960) has given a result applicable to two dimensional flow that results in the near vicinity of any vibrating cylindrical surface. A three dimensional approximation for an arbitrary surface was developed by Nyborg ( 1958). As described by Fairbanks et al., 1975 Ultrasonics Symposium Proceedings, IEEE Cat. #75, CHO 994-4SU, sonic energy, and the acoustic streaming phenomenon can be of great utility in accelerating the flux of a fluid through a porous medium, showing measurable increases in the flux rates by up to 50 times that possible passively or with only pressure gradients being applied.
All previous transdermal delivery or extraction efforts utilizing ultrasound have focused on methods of interaction between the sonic energy and the skin tissues designed to permeabilize the stratum comeum layer. The exact mode of interaction involved has been hypothesized to be due exclusively to the local elevation ofthe temperature in the SC layer, and the resultant melting ofthe lipid domains in the intercellular spaces between the comeocytes. Srinivasan et al. Other researchers have suggested that micro-cavitations and or shearing of the structures in the stratum comeum opens up channels through which fluids may flow more readily. In general, the design ofthe sonic systems for the enhancement of transdermal flux rates has been based on the early realization that the application of an existing therapeutic ultrasound unit designed to produce a "deep-heating" effect on the subject, when used in conjunction with a topical application of a gelled or liquid preparation containing the drug to be delivered into the body, could produce a quantifiable increase in the flux rate ofthe dmg into the body, in the context of the method taught herein to create micro-pores in this barrier layer, the use of sonic energy may now be thought of in a totally new and different sense than the classically defined concepts of sonophoresis. Based on the experimental discovery mentioned in U.S. patents 5,458,140 and 5,445,611 that when a small hole existed or was created in the stratum comeum (SC) in the Franz cells used in the in vitro studies, that the application of an appropriately driven ultrasonic transducer to the fluid reservoir on either side of the porated SC sample, an "acoustic streaming" event could be generated wherein large flux rates of fluid where capable of being pumped through this porated membrane.
With the method taught herein to create the controlled micro-porations in the stratum comeum layer in the living subject's skin, the application of the fluid streaming mode of sonic/fluid interaction to the induction of fluid into or out of the body may now be practically explored. For example, clinical studies have shown that by making a series of four 80 μm diameter micro-pores in a 400 μm square, and then applying a mild (10 to 12 inches of Hg) suction to this area, an average of abouit 1 μl of interstitial fluid can be induced to leave the body for extemal collection in an extemal chamber. By adding a small, low power sonic transducer to this system, configured such that it actively generates inwardly converging concentric circular pressure waves in the 2 to 6 mm of tissue surrounding the poration site, it has been demonstrated that this ISF flux rate can be increased by 50%.
By relieving ourselves of the desire to create some form of direct absoφtion of sonic energy in the skin tissues (as required to generate heating), frequencies of sonic energy can be determined for which the skin tissues are virtually transparent, that is at the very low frequency region of 1 kHz to 500 KHz. Even at some ofthe lowest frequencies tested, significant acoustic streaming effects could be observed by using a micro-scope to watch an in vivo test wherein the subject's skin was micro-porated and ISF was induced to exit the body an pool on the surface of the skin. Energizing the sonic transducer showed dramatic visual indications of the amount of acoustic streaming as small pieces of particulate matter were carried along with the ISF as it swirled about. Typical magnitude of motion exhibited can be described as follows: for a 3 mm diameter circular pool of ISF on the surface of the skin, a single visual particle could be seen to be completing roughly 3 complete orbits per second. This equates to a linear fluid velocity of more than 2.5 mm/second. All of this action was demonstrated with sonic power levels into the tissues of less than 100 mW/cm2.
While one can easily view the top surface of the skin, and the fluidic activity thereon, assessing what is taking place dynamically within the skin tissue layers in response to the coupling into these tissues of sonic energy is much more difficult. One can assume, that if such large fluid velocities (e.g. >2.5 mm/S) may be so easily induced on the surface, then some noticeable increase in the fluid flow in the intercellular channels present in the viable dermal tissues could also be realized in response to this sonic energy input. Currently, an increase in harvested ISF through a given set of microporations when a low frequency sonic energy was applied to the area in a circle surrounding the poration sites has been quantified. In this experiment, an ISF harvesting technique based solely on a mild suction (10 to 12 inches of HG) was alternated with using the exact same apparatus, but with the sonic transducer engaged. Over a series of 10 two-minute harvesting periods, five with mere suction and five with both suction and sonic energy active, it was observed that by activating the sonic source roughly 50% more ISF was collectable in the same time period. These data are shown in FIG. 30. This increase in ISF flux rate was realized with no reported increase in sensation from the test subject due to the sonic energy. The apparatus used for this experiment is illustrated in FIGS. 31-33. The transducer assembly in FIGS.
31-33 is comprised of a thich walled cylinder of piezo-electric material, with an intemal diameter of roughly 8 mm and a wall thickness of 4 mm. The cylinder has been polarized such that when an electrical field is applied across the metalized surfaces ofthe outer diameter and inner diameter, the thickness ofthe wall ofthe cylinder expands or contracts in response to the field polarity. In practice, this configuration results in a device which rapidly squeezes the tissue which has been suctioned into the central hole, causing an inward radial acoustic streaming effect on those fluids present in these tissues. This inward acoustic streaming is responsible for bringing more ISF to the location of the micro-porations in the center of the hole, where it can leave the body for extemal collection.
A similar device shown in FIG. 34A-B was built and tested and produced similar initial results. In the FIG. 34A-B version, an ultrasonic transducer built by Zevex, Inc. Salt Lake City, Utah, was modified by having a spatulate extension added to the sonic hom. A 4 mm hole was placed in the 0.5 mm thick spatulate end of this extension. When activated, the principle motion is longitudinal along the length of the spatula, resulting in essentially a rapid back and forth motion. The physical perturbation of the metalic spatula casued by the placement of the 4 mm hole, results in a very active, but chaotic, large displacement behavior at this point. In use, the skin ofthe subject was suctioned up into this hole, and the sonic energy was then cunductined into the skin in a fashion similar to that illustrated in FIG. 33.
The novel aspect of this new application of ultrasound lies in the following basic areas:
1. The function of the ultrasound is no longer needed to be focused on permeabilizing the SC barrier membrane as taught by Langer, Kost, Bommannan and others.
2. A much lower frequency system can be utilized which has very little absoφtion in the skin tissues, yet can still create the fluidic streaming phenomenon desired within the intercellular passageways between the epidermal cells which contain the interstitial fluid.
3. The mode of interaction with the tissues and fluids therein, is the so-called "streaming" mode, recognized in the sonic literature as a unique and different mode than the classical vibrational interactions capable of shearing cell membranes and accelerating the passive diffusion process.
By optimizing the geometric configuration, frequency, power and modulations applied to the sonic transducer, it has been shown that significant increases in the fluid flux through the porated skin sites can be achieved. The optimization of these parameters is designed to exploit the non-linearities governing the fluid flow relationships in this microscopically scaled environment. Using frequencies under 200 kHz, large fluidic effects can be observed, without any detectable heating or other negative tissue interactions. The sonic power levels required to produce these measurable effects are very low, with average power levels typically under 100 milliwatts/cm2.
Therefore, the above examples are but representative of systems which may be employed in the utilization of ultrasound or ultrasound and chemical enhancers in the collection and quantification of analytes for diagnostic puφoses and for the transdermal delivery of permeants. The invention is directed to the discovery that the poration of the stratum comeum followed by the proper use of ultrasound, particularly when accompanied with the use of chemical enhancers, enables the noninvasive or minimally invasive transdermal determination of analytes or delivery of permeants. However, the invention is not limited only to the specific illustrations. There are numerous poration techniques and enhancer systems, some of which may function better than another, for detection and withdrawn of certain analytes or delivery of permeants through the stratum comeum. However, within the guidelines presented herein, a certain amount of experimentation to obtain optimal poration, enhancers, or optimal time, intensity and frequency of applied ultrasound, as well as modulation of frequency, amplitude and phase of applied ultrasound can be readily carried out by those skilled in the art. Therefore, the invention is limited in scope only by the following claims and functional equivalents thereof.

Claims

CLAIMSWe claim:
1. A method for monitoring the concentration of an analyte in an individual's body comprising the steps of enhancing the permeability of the stratum comeum of a selected area of the individual's body surface to the analyte by means of
(a) porating the stratum comeum of said selected area by means that form a micro-pore in said stratum comeum without causing serious damage to the underlying tissues, thereby reducing the barrier properties of said stratum comeum to the withdrawal of said analyte; (b) collecting a selected amount of the analyte; and (c) quantitating the analyte collected.
2. The method of to Claim 1 further comprising applying sonic energy to said porated selected area at a frequency in the range of about 5 kHz to 100 MHz, wherein said sonic energy is modulated by means of a member selected from the group consisting of frequency modulation, amplitude modulation, phase modulation, and combinations thereof.
3. The method of to Claim 2 further comprising contacting the selected area of the individual's body with a chemical enhancer with the application of the sonic energy to further enhance analyte withdrawal.
4. The method of Claims 1 , 2, 3, or 4 wherein said porating of said stratum comeum in said selected area is accomplished by means selected from the group consisting of (a) ablating the stratum comeum by contacting a selected area, up to about 1000 μm across, of said stratum comeum with a heat source such that the temperature of tissue-bound water and other vaporizable substances in said selected area is elevated above the vaporization point of said water and other vaporizable substances thereby removing the stratum comeum in said selected area; (b) puncturing said stratum comeum with a micro-lancet calibrated to form a micropore of up to about 1000 μ in diameter; (d) ablating the stratum comeum by focusing a tightly focused beam of sonic energy onto said stratum comeum; (d) hydraulically puncturing said stratum comeum with a high pressure jet of fluid to form a micropore of up to about 1000 μm in diameter and (e) puncturing said stratum comeum with short pulses of electricity to form a micropore of up to about 1000 μm in diameter.
5. The method of Claim 4 wherein said porating is accomplished by contacting said selected area, up to about 1000 μm across, of said stratum comeum with a heat source such that the temperature of the tissue-bound water and other vaporizable substances in said selected area is elevated above the vaporization point of said water and other vaporizable substances thereby removing the stratum comeum in said selected area.
6. The method of Claim 5 comprising treating at least said selected area with an effective amount of a dye that exhibits strong absoφtion over the emission range of a pulsed light source and focusing the output ofa series of pulses from said pulsed light source onto said dye such that said dye is heated sufficiently to conductively transfer heat to said stratum co eum to elevate the temperature of tissue-bound water and other vaporizable substances in said selected area above the vaporization point of said water and other vaporizable substances, Wherein said dye functions as a heat source.
7. The method of Claim 6 wherein said pulsed light source emits at a wavelength that is not significantly absorbed by skin.
8. The method of Claim 7 wherein said pulsed light source is a laser diode emitting in the range of about 630 to 1550 nm.
9. The method of Claim 7 wherein said pulsed light source is a laser diode pumped optical parametric oscillator emitting in the range of about 700 and 3000 nm.
10. The method of Claim 6 wherein said pulsed light source is a member selected from the group consisting of arc lamps, incandescent lamps, and light emitting diodes.
11. The method of claim 6 further comprising providing a sensing system for determining when the barrier properties of the stratum comeum have been surmounted.
12. The method of claim 11 wherein said sensing system comprises light collection means for receiving light reflected from said selected area and focusing said reflected light on a photodiode, a photodiode for receiving said focused light and sending a signal to a controller wherein said signal indicates a quality of said reflected light, and a controller coupled to said photodiode and to said pulsed light source for receiving said signal and for shutting off said pulsed light source when a preselected signal is received.
13. The method of claim 6 further comprising cooling said selectedarea of stratum comeum and adjacent skin tissues with cooling means such that said selected area and adjacent skin tissues are in a selected precooled, steady state, condition prior to poration.
14. The method of claim 13 wherein said cooling means comprises a Peltier device.
15. The method of claim 6 wherein said ablating results in exudation of interstitial fluid and said analyte is collected in a selected amount of said interstitial fluid.
16. The method of claim 15 further comprising, after said selected amount of interstitial fluid is collected, sealing said micropore by applying an effective amount of energy from said pulsed light source such that interstitial fluid remaining in said micropore is caused to coagulate.
17. The method of claim 15 further comprising applying a vacuum to said porated selected area of stratum co eum for enhancing exudation of interstitial fluid.
18. The method of claim 6 further comprising, prior to porating said stratum comeum, illuminating at least said selected area with unfocused light from said pulsed light source such that said selected area illuminated with said light is sterilized.
19. The method of claim 5 comprising contacting said selected area with a metallic wire, wherein said metallic wire functions as a heat source, such that the temperature of said selected area is raised from ambient skin temperature to greater than 100°C within about 10 to 50 ms and then retuming the temperature of said selected area to approximately ambient skin temperature within about 30 to 50 ms and wherein a cycle of raising the temperature and retuming to ambient skin temperature is repeated a number of time effective for reducing the barrier properties ofthe stratum comeum.
20. The method of claim 19 wherein said retuming to approximately ambient skin temperature is carried out by withdrawing said wire from contact with the stratum comeum.
21. The method of claim 20 further comprising providing means for monitoring electrical impedance between said wire and said individual's body through said selected area of stratum comeum and adjacent skin tissues and means for advancing the position of said wire such that as said ablation occurs with a concomitant reduction in resistance, wherein said advancing means advances the wire such that the wire is in contact with the stratum comeum during heating ofthe wire.
22. The method of claim 21 further comprising means for withdrawing said wire from contact with the stratum comeum, wherein said monitoring means is capable of detecting a change in impedance associated with contacting an epidermal layer underlying the stratum comeum and sending a signal to said withdrawing means to withdrawn said wire from contact with the stratum comeum.
23. The method of claim 20 wherein said metallic wire is heated by an ohmic heating element.
24. The method of claim 20 wherein said metallic wire is formed such that it contains a current loop having a high resistance point and the temperature of said high resistance point is modulated by passing a modulated electrical current through said current loop.
25. The method of claim 20 wherein said metallic wire is positioned in a modulatable altemating magnetic field of an excitation coil such that energizing the excitation coil with altemating current produces eddy currents suffient to heat the wire by intemal ohmic losses.
26. The metiiod of Claim 4 wherein said poration is accomplished by puncturing said stratum comeum with a micro-lancet calibrated to form a micropore of up to about 1000 μm in diameter.
27. The method of Claim 4 wherein said poration is accomplished by ablating the stratum comeum by focusing a tightly focused beam of sonic energy onto said stratum comeum.
28. The method of Claim 4 wherein said poration is accomplished by hydraulically puncturing said stratum co eum with a high pressure jet of fluid to form a micropore of up to about 1000 μm in diameter.
29. The method of Claim 4 wherein said poration is accomplished by puncturing said stratum comeum with short pulses of electricity to form a micropore of up to about 1000 μm in diameter.
30. The method of Claim 4, 6, or 19 wherein the analyte is glucose.
31. The method of claim 30 wherein the glucose is quantitated by means of a colorimetric assay with glucose oxidase or an electro-chemical biosensor.
32. A method for enhancingthe transdermal flux rate of an active permeant into a selected area of an individual's body comprising the steps of enhancing the permeability of the stratum comeum layer of said selected area of the individual's body surface to said active permeant by- means of
(a) porating the stratum co eum of said selected area by means that form a micro-pore in said stratum comeum without causing serious damage to the underlying tissues and thereby reduce the barrier properties of said stratum comeum to the flux of said active permeant; and
(b) contactingthe porated selectedarea with a composition comprising an effective amount of said permeant such that the flux of said permeant into the body is enhanced.
33. The method of claim 32 further comprising applying sonic energy to said porated selected area for a time and at an intensity and a frequency effective to create a fluid streaming effect and thereby enhance the transdermal flux rate of said permeant into the body.
34. The method of claim 33 wherein said sonic energy is applied to said porated selected area at a frequency in the range of about 5 kHz to 100 MHz, wherein said sonic energy is modulated by means of a member selected from the group consisting of frequency modulation, amplitude modulation, phase modulation, and combinations thereof.
35. The method of to Claim 34 further comprising contacting the selected area of the individual's body with a chemical enhancer with the application ofthe sonic energy to further the flux of said permeant into said individual's body.
36. The method of Claims 32, 33, 34, or 35 wherein said porating of said stratum comeum in said selected area is accomplished by means selected from the group consisting of (a) ablating the stratum comeum by contacting a selected area, up to about 1000 μm across, of said stratum comeum with a heat source such that the temperature of tissue-bound water and other vaporizable substances in said selected area is elevated above the vaporization point of said water and other vaporizable substances thereby removing the stratum comeum in said selectedarea; (b) puncturing said stratum comeum with a micro-lancet calibrated to form a micropore of up to about 1000 μm in diameter; (d) ablating the stratum comeum by focusing a tightly focused beam of sonic energy onto said stratum comeum; (d) hydraulically puncturing said stratum comeum with a high pressure jet of fluid to form a micropore of up to about 1000 μm in diameter and (e) puncturing said stratum comeum with short pulses of electricity to form a micropore of up to about 1000 μm in diameter.
37. The method of Claim 36 wherein said porating is accomplished by contacting said selected area, up to about 1000 μm across, of said stratum comeum with a heat source such that the temperature tissue-bound water and other vaporizable substances in said selected area is elevated above the vaporization point of said water and other vaporizable substances thereby removing the stratum comeum in said selected area.
38. The method of claim 37 comprising treating at least said selectedarea with an effective amount of a dye that exhibits strong absoφtion over the emission range of a pulsed light source and focusing the output of a series of pulses from said pulsed light source onto said dye such that said dye is heated sufficiently to conductively transfer heat to said stratum comeum to elevate the temperature of tissue-bound water and other vaporizable substances in said selected area above the vaporization point of said water and other vaporizable substances, wherein said dye functions as a heat source.
39. The method of Claim 38 wherein said pulsed light source emits at a wavelength that is not significantly absorbed by skin.
40. The method of Claim 39 wherein said pulsed light source is a laser diode emitting in the range of about 630 to 1550 nm.
41. The method of Claim 39 wherein said pulsed light source is a laser diode pumped optical parametric oscillator emitting in the range of about 700 and 3000 nm.
42. The method of Claim 39 wherein said pulsed light source is a member selectedfrom the group consisting of arc lamps, incandescent lamps, and light emitting diodes.
43. The method of claim 38 further comprising providing a sensing system for determining when the barrier properties of the stratum co eum have been surmounted.
44. The method of claim 43 wherein said sensing system comprises light collection means for receiving light reflected from said selected area and focusing said reflected light on a photodiode, a photodiode for receiving said focused light and sending a signal to a controller wherein said signal indicates a quality of said reflected light, and a controller coupled to said photodiode and to said pulsed light source for receiving said signal and for shutting off said pulsed light source when a preselected signal is received.
45. The method of claim 38 further comprising cooling said selected area of stratum comeum and adjacent skin tissues with cooling means such that said selected area and adjacent skin tissues are in a selected precooled, steady state, condition prior to poration.
46. The method of claim 45 wherein said cooling means comprises a Peltier device.
47. The method of claim 38 further comprising, prior to porating said stratum comeum, illuminating at least said selected area with unfocused light from said pulsed light source such that said selected area illuminated with said light is sterilized.
48. The method of claim 37 comprising contacting said selectedarea with a metallic wire, wherein said wire functions as a heat source, such that the temperature of said selected area is raised from ambient skin temperature to greater than 100°C within about 10 to 50 ms and then retuming the temperature of said selected area to approximately ambient skin temperature within about 30 to 50 ms and wherein a cycle of raising the temperature and retuming to ambient skin temperature is repeated a number of time effective for reducing the barrier properties of the stratum comeum.
49. The method of claim 48 wherein said retuming to approximately ambient skin temperature is carried out by withdrawing said wire from contact with the stratum co eum.
50. The method of claim 49 further comprising providing means for monitoring electrical impedance between said wire and said individual's body through said selected area of stratum comeum and adjacent skin tissues and means for advancing the position of said wire such that as said ablation occurs with aconcomitant reduction in resistance, wherein said advancing means advances the wire such that the wire is in contact with the stratum comeum during heating ofthe wire.
51. The method of claim 50 further comprising means for withdrawing said wire from contact with the stratum comeum, wherein said monitoring means is capable of detecting a change in impedance associated with contacting an epidermal layer underlying the stratum comeum and sending a signal to said withdrawing means to withdrawn said wire from contact with the stratum co eum.
52. The method of claim 49 wherein said metallic wire is heated by an ohmic heating element.
53. The method of claim 49 wherein said metallic wire is formed such that it contains a current loop having a high resistance point and the temperature of said high resistance point is modulated by passing a modulated electrical current through said current loop.
54. The method of claim 49 wherein said metallic wire is positioned in a modulatable altemating magnetic field of an excitation coil such that energizing the excitation coil with altemating current produces eddy currents suffient to heat the wire by intemal ohmic losses.
55. The method of Claim 36 wherein said poration is accomplished by puncturing said stratum co eum with a micro-lancet calibrated to form a micropore of up to about 1000 μm in diameter.
56. The method of Claim 36 wherein said poration is accomplished by ablating the stratum comeum by focusing a tightly focused beam of sonic energy onto said stratum comeum.
57. The method of Claim 36 wherein said poration is accomplished by hydraulically puncturing said stratum comeum with a high pressure jet of fluid to form a micropore of up to about 1000 μm in diameter.
58. The method of Claim 36 wherein said poration is accomplished by puncturing said stratum comeum with short pulses of electricity to form a micropore of up to about 1000 μm in diameter.
59. A method for appyling a tatoo to a selected area of skin on an individual's body surface comprising the steps of:
(a) porating the stratum co eum of said selected area by means that form a micro-pore in said stratum comeum without causing serious damage to the underlying tissues and thereby reduce the barrier properties of said stratum comeum to the flux of said active permeant; and (b) contactingthe porated selected area with a composition comprising an effective amount of a tattoing ink such that the flux of said ink into the body is enhanced.
60. A method for reducing a temporal delay in diffusion of an analyte from blood of an individual to said individual's interstitial fluid in a selected area of skin comprising applying means for cooling to said selected area of skin.
61. A method for reducing evaporation of interstitial fluid and the vapor pressure thereof, wherein said interstitial fluid is being collected from a micropore in a selected area of stratum comeum of an individual's skin, comprising applying means for cooling to said selected area of skin.
EP96929098A 1995-08-29 1996-08-29 Microporation of human skin for drug delivery and monitoring applications Withdrawn EP0858285A4 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15151012.0A EP2921111A1 (en) 1995-08-29 1996-08-29 Microporation of human skin for drug delivery and monitoring applications
DK05011002.2T DK1563788T3 (en) 1995-08-29 1996-08-29 Microperforation of human skin for drug administration and monitoring purposes
EP05011002.2A EP1563788B8 (en) 1995-08-29 1996-08-29 Microporation of human skin for drug delivery and monitoring applications

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US52054795A 1995-08-29 1995-08-29
US520547 1995-08-29
US804395P 1995-10-30 1995-10-30
US8043 1995-10-30
PCT/US1996/013865 WO1997007734A1 (en) 1995-08-29 1996-08-29 Microporation of human skin for drug delivery and monitoring applications

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP05011002.2A Division EP1563788B8 (en) 1995-08-29 1996-08-29 Microporation of human skin for drug delivery and monitoring applications
EP15151012.0A Division EP2921111A1 (en) 1995-08-29 1996-08-29 Microporation of human skin for drug delivery and monitoring applications

Publications (2)

Publication Number Publication Date
EP0858285A1 true EP0858285A1 (en) 1998-08-19
EP0858285A4 EP0858285A4 (en) 2000-05-17

Family

ID=26677684

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96929098A Withdrawn EP0858285A4 (en) 1995-08-29 1996-08-29 Microporation of human skin for drug delivery and monitoring applications

Country Status (14)

Country Link
EP (1) EP0858285A4 (en)
JP (2) JP3899427B2 (en)
CN (1) CN1174713C (en)
AU (1) AU707065B2 (en)
BR (1) BR9610012A (en)
CA (1) CA2199002C (en)
ES (1) ES2536459T3 (en)
GB (1) GB2307414B (en)
HK (1) HK1009321A1 (en)
IL (1) IL123379A (en)
NO (1) NO334437B1 (en)
PT (1) PT1563788E (en)
TR (1) TR199800347T1 (en)
WO (1) WO1997007734A1 (en)

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056738A (en) 1997-01-31 2000-05-02 Transmedica International, Inc. Interstitial fluid monitoring
ATE234129T1 (en) 1996-06-18 2003-03-15 Alza Corp DEVICE FOR IMPROVING TRANSDERMAL ADMINISTRATION OF MEDICATIONS OR EXTRACTION OF BODY FLUID
CA2259437C (en) * 1996-07-03 2006-12-05 Altea Technologies, Inc. Multiple mechanical microporation of skin or mucosa
US5983136A (en) * 1996-09-17 1999-11-09 Deka Products Limited Partnership System for delivery of drugs by transport
US20060002949A1 (en) 1996-11-14 2006-01-05 Army Govt. Of The Usa, As Rep. By Secretary Of The Office Of The Command Judge Advocate, Hq Usamrmc. Transcutaneous immunization without heterologous adjuvant
US6527716B1 (en) 1997-12-30 2003-03-04 Altea Technologies, Inc. Microporation of tissue for delivery of bioactive agents
CA2789115C (en) * 1996-12-31 2014-04-29 Altea Therapeutics Corporation Microporation of tissue for delivery of bioactive agents
US6027496A (en) * 1997-03-25 2000-02-22 Abbott Laboratories Removal of stratum corneum by means of light
EP1017320A1 (en) 1997-10-21 2000-07-12 Townsend Engineering Company Apparatus and method for the collection of interstitial fluids
US6155992A (en) * 1997-12-02 2000-12-05 Abbott Laboratories Method and apparatus for obtaining interstitial fluid for diagnostic tests
US6918901B1 (en) 1997-12-10 2005-07-19 Felix Theeuwes Device and method for enhancing transdermal agent flux
DE69806963T2 (en) * 1997-12-11 2002-11-21 Alza Corp., Mountain View DEVICE FOR INCREASING THE TRANSDERMAL ACTIVE SUBSTANCE FLOW
ATE302041T1 (en) * 1997-12-11 2005-09-15 Alza Corp DEVICE FOR INCREASE THE TRANSDERMAL FLOW OF ACTIVE INGREDIENTS
CA2313700C (en) 1997-12-11 2009-11-24 Alza Corporation Device for enhancing transdermal agent flux
US6530915B1 (en) 1998-03-06 2003-03-11 Spectrx, Inc. Photothermal structure for biomedical applications, and method therefor
US6173202B1 (en) * 1998-03-06 2001-01-09 Spectrx, Inc. Method and apparatus for enhancing flux rates of a fluid in a microporated biological tissue
AU2898699A (en) * 1998-03-06 1999-09-20 Altea Technologies, Inc. Photothermal structure for biomedical applications, and method therefor
US6091975A (en) * 1998-04-01 2000-07-18 Alza Corporation Minimally invasive detecting device
US6569157B1 (en) * 1998-05-18 2003-05-27 Abbott Laboratories Removal of stratum corneum by means of light
US6077660A (en) * 1998-06-10 2000-06-20 Abbott Laboratories Diagnostic assay requiring a small sample of biological fluid
US6503231B1 (en) 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
US7344499B1 (en) 1998-06-10 2008-03-18 Georgia Tech Research Corporation Microneedle device for extraction and sensing of bodily fluids
WO2000003758A1 (en) 1998-07-14 2000-01-27 Spectrx, Inc. Controlled removal of biological membrane by pyrotechnic charge for transmembrane transport
US7384396B2 (en) 1998-07-21 2008-06-10 Spectrx Inc. System and method for continuous analyte monitoring
MXPA01000698A (en) * 1998-07-21 2002-04-08 Spectrx Inc System and method for continuous analyte monitoring.
WO2000013573A1 (en) * 1998-09-04 2000-03-16 Powderject Research Limited Monitoring methods using particle delivery methods
US6468229B1 (en) 1998-10-20 2002-10-22 Abbott Laboratories Apparatus and method for the collection of interstitial fluids
US6148232A (en) 1998-11-09 2000-11-14 Elecsys Ltd. Transdermal drug delivery and analyte extraction
US6708060B1 (en) 1998-11-09 2004-03-16 Transpharma Ltd. Handheld apparatus and method for transdermal drug delivery and analyte extraction
US6597946B2 (en) 1998-11-09 2003-07-22 Transpharma Ltd. Electronic card for transdermal drug delivery and analyte extraction
US6611706B2 (en) 1998-11-09 2003-08-26 Transpharma Ltd. Monopolar and bipolar current application for transdermal drug delivery and analyte extraction
US6611707B1 (en) 1999-06-04 2003-08-26 Georgia Tech Research Corporation Microneedle drug delivery device
US6743211B1 (en) 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
DE60027720T2 (en) * 1999-06-08 2007-04-26 Altea Therapeutics Corp. APPARATUS FOR MICROPORING A BIOLOGICAL TISSUE THROUGH A FILM TISSUE INTERFACE DEVICE AND METHOD
US20030078499A1 (en) 1999-08-12 2003-04-24 Eppstein Jonathan A. Microporation of tissue for delivery of bioactive agents
US6355054B1 (en) * 1999-11-05 2002-03-12 Ceramoptec Industries, Inc. Laser system for improved transbarrier therapeutic radiation delivery
DE19963034A1 (en) 1999-12-24 2001-06-28 Roche Diagnostics Gmbh Glucose level detection system based on measurement of interstitial fluid, uses heating device or ultrasound to reduce time offset between concentration in interstitial fluid and blood
IL136008A0 (en) 2000-05-07 2001-05-20 Elecsys Ltd Electrically-mediated transdermal drug injection
US6706032B2 (en) 2000-06-08 2004-03-16 Massachusetts Institute Of Technology Localized molecular and ionic transport to and from tissues
US7597692B2 (en) 2000-06-08 2009-10-06 Massachusetts Institute Of Technology Microscission processes and procedures
AUPR044000A0 (en) * 2000-09-28 2000-10-26 Norwood Abbey Ltd Diagnostic device
US6537243B1 (en) 2000-10-12 2003-03-25 Abbott Laboratories Device and method for obtaining interstitial fluid from a patient for diagnostic tests
US6882884B1 (en) 2000-10-13 2005-04-19 Soundskin, L.L.C. Process for the stimulation of production of extracellular dermal proteins in human tissue
US6733493B2 (en) * 2000-11-16 2004-05-11 Innotech Usa, Inc. Laser skin perforator
WO2002064193A2 (en) 2000-12-14 2002-08-22 Georgia Tech Research Corporation Microneedle devices and production thereof
WO2002050584A2 (en) 2000-12-21 2002-06-27 Biovalve Technologies, Inc. Microneedle array systems
JP4704583B2 (en) * 2001-02-28 2011-06-15 有限会社開発顧問室 Patch test sheet
WO2003039620A2 (en) 2001-05-17 2003-05-15 Transpharma Medical Ltd. Integrated transdermal drug delivery system
US6855117B2 (en) 2001-08-01 2005-02-15 Johnson & Johnson Consumer Companies, Inc. Method of treating the skin of a subject
US6790179B2 (en) 2001-08-01 2004-09-14 Johnson & Johnson Consumer Companies, Inc. Method of examining and diagnosing skin health
US6840910B2 (en) 2001-08-01 2005-01-11 Johnson & Johnson Consumer Companies, Inc. Method of distributing skin care products
US8361037B2 (en) 2001-09-19 2013-01-29 Valeritas, Inc. Microneedles, microneedle arrays, and systems and methods relating to same
DE60239229D1 (en) 2001-09-21 2011-03-31 Valeritas Inc GAS PRESSURE-OPERATED MICRONADEL ARRANGEMENTS AND ASSOCIATED SYSTEMS AND METHODS THEREOF
EP1483019A4 (en) 2002-03-11 2007-07-04 Altea Therapeutics Corp Transdermal drug delivery patch system, method of making same and method of using same
US9918665B2 (en) 2002-03-11 2018-03-20 Nitto Denko Corporation Transdermal porator and patch system and method for using same
EP1499255B1 (en) 2002-04-19 2015-07-22 Syneron Medical Ltd. Handheld transdermal drug delivery and analyte extraction
US7662404B2 (en) 2002-10-31 2010-02-16 Transpharma Medical Ltd. Transdermal delivery system for dried particulate or lyophilized peptides and polypeptides
IL152574A (en) 2002-10-31 2009-09-22 Transpharma Medical Ltd Transdermal delivery system for dried particulate or lyophilized medications
US8133505B2 (en) 2002-10-31 2012-03-13 Transpharma Medical Ltd. Transdermal delivery system for dried particulate or lyophilized medications
US7383084B2 (en) 2002-10-31 2008-06-03 Transpharma Medical Ltd. Transdermal delivery system for dried particulate or lyophilized medications
IL152573A (en) 2002-10-31 2009-11-18 Transpharma Medical Ltd Transdermal delivery system for anti-emetic medication
IL152575A (en) 2002-10-31 2008-12-29 Transpharma Medical Ltd Transdermal delivery system for water insoluble drugs
US7258673B2 (en) 2003-06-06 2007-08-21 Lifescan, Inc Devices, systems and methods for extracting bodily fluid and monitoring an analyte therein
KR20060097751A (en) * 2003-10-24 2006-09-15 알자 코포레이션 Apparatus and method for enhancing transdermal drug delivery
US8016811B2 (en) 2003-10-24 2011-09-13 Altea Therapeutics Corporation Method for transdermal delivery of permeant substances
CA2543086A1 (en) * 2003-10-24 2005-05-12 Alza Corporation Pretreatment method and system for enhancing transdermal drug delivery
RU2007118684A (en) 2004-10-21 2008-11-27 БАЙЕР ХЕЛТКЭА ЭлЭлСи (US) METHOD AND SYSTEM FOR DETERMINING THE CONCENTRATION OF ANALYZED SUBSTANCE IN ORGANISM LIQUID
JP2006326147A (en) * 2005-05-30 2006-12-07 Shingo Wakamatsu Laser therapy equipment
TWI419717B (en) * 2005-06-17 2013-12-21 Altea Therapeutics Corp Permeant delivery system and methods for use thereof
JP5011935B2 (en) * 2006-10-11 2012-08-29 パナソニック株式会社 Blood test equipment
JP5011936B2 (en) * 2006-10-11 2012-08-29 パナソニック株式会社 Blood test equipment
KR101214764B1 (en) 2006-11-14 2012-12-21 가고시마 유니버시티 Drug injecting device
US8386027B2 (en) * 2007-04-27 2013-02-26 Echo Therapeutics, Inc. Skin permeation device for analyte sensing or transdermal drug delivery
EP2200666B1 (en) 2007-10-09 2014-12-03 Syneron Medical Ltd. Magnetic patch coupling
JP5612474B2 (en) 2007-10-17 2014-10-22 トランスファーマ メディカル リミテッド Verification of dissolution rate
JP5407868B2 (en) * 2007-11-06 2014-02-05 コニカミノルタ株式会社 Micro-aperture forming apparatus and body fluid collecting system using the same
KR101304099B1 (en) 2007-12-05 2013-09-05 시네론 메디컬 리미티드 A disposable electromagnetic energy applicator and method of using it
GB0811856D0 (en) 2008-06-27 2008-07-30 Ucl Business Plc Magnetic microbubbles, methods of preparing them and their uses
US8606366B2 (en) 2009-02-18 2013-12-10 Syneron Medical Ltd. Skin treatment apparatus for personal use and method for using same
US20100256466A1 (en) * 2009-04-02 2010-10-07 Avraham Shekalim Metabolite Management System
WO2011013118A2 (en) * 2009-07-27 2011-02-03 Slatkine Michael Methods and devices for tissue ablation
PT105635B (en) * 2011-04-19 2014-04-11 Univ De Coimbra DEVICE FOR THE EFFICIENT ADMINISTRATION OF COMPOUNDS IN THE SKIN OR BIOLOGICAL BARRIERS, OR THROUGH THEM, USING FINE ABSORBENT LIGHT FILMS
WO2016042547A1 (en) * 2014-09-15 2016-03-24 Novoxel Ltd. Methods and devices for thermal surgical vaporization and incision of tissue
CN111529048B (en) 2013-12-18 2024-03-26 诺服塞尔有限公司 Apparatus and method for vaporizing tissue
PL3193761T3 (en) 2014-09-15 2021-10-18 Novoxel Ltd. Methods for manufacturing devices for thermal tissue vaporization and compression
KR20170134478A (en) * 2015-03-03 2017-12-06 가이디드 테라피 시스템스, 엘.엘.씨. Method and system for moving a substance through a impermeable or semipermeable membrane through an artificial microchannel
EP3389486A1 (en) * 2015-12-15 2018-10-24 Koninklijke Philips N.V. Surface treatment device and method
CN108780085A (en) * 2016-01-15 2018-11-09 辛辛那提大学 Advanced electroporation device and method for obtaining the analyte in biofluid
AU2017280014B2 (en) * 2016-06-20 2022-05-26 University Of North Texas Laser-assisted machining (LAM) of non-monolithic composite bone material
FI127811B (en) * 2016-11-21 2019-03-15 Helsingin Yliopisto Device for sampling one or more analytes
EP3361402A1 (en) * 2017-02-14 2018-08-15 Roche Diabetes Care GmbH A computer-implemented method and a portable device for analyzing glucose monitoring data indicative of a glucose level in a bodily fluid, and a computer program product
US11441994B2 (en) * 2017-07-27 2022-09-13 Tata Consultancy Services Limited Method and system for in-silico design of skin electroporation
US20210129136A1 (en) * 2017-08-03 2021-05-06 Fibrotx Oü Lateral flow assay and device for skin care application
CN109157280A (en) * 2018-08-10 2019-01-08 重庆大学 Irreversible electroporated tissue ablation effect dynamic realtime assessment equipment
WO2020264034A1 (en) * 2019-06-28 2020-12-30 Passport Technologies, Inc. Methods and systems for controlling energy delivery to filament devices
TWI723731B (en) * 2019-08-02 2021-04-01 華廣生技股份有限公司 Biosensor implantation device and implantation method
CN110613893A (en) * 2019-10-31 2019-12-27 南京工业职业技术学院 Novel excitation coil
CN111693434B (en) * 2020-06-19 2024-01-19 中建路桥集团有限公司 Experimental device for test concrete impervious performance
CN114504373A (en) * 2020-11-16 2022-05-17 澳美力科技(成都)有限公司 Novel radio frequency conversion beauty instrument
CN112957124B (en) * 2021-01-30 2023-08-22 南京理工大学 In-vitro laser biological tissue welding and sewing method for energy targeting regulation and control
CN113397698B (en) * 2021-05-20 2023-04-18 东莞市飞越激光设备有限公司 Laser tangent device capable of ensuring high precision and high speed
CN114343839B (en) * 2021-12-30 2024-07-23 德州环球之光医疗科技股份有限公司 Treatment pattern conversion method based on adjustable spiral linear laser spots

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775361A (en) * 1986-04-10 1988-10-04 The General Hospital Corporation Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport
US4863970A (en) * 1986-11-14 1989-09-05 Theratech, Inc. Penetration enhancement with binary system of oleic acid, oleins, and oleyl alcohol with lower alcohols
WO1992000106A2 (en) * 1990-06-27 1992-01-09 Diomed Limited Method of treatment and compositions therefore
US5165418A (en) * 1992-03-02 1992-11-24 Tankovich Nikola I Blood sampling device and method using a laser
US5279552A (en) * 1993-01-11 1994-01-18 Anton Magnet Intradermal injection device
US5344418A (en) * 1991-12-12 1994-09-06 Shahriar Ghaffari Optical system for treatment of vascular lesions
US5445611A (en) * 1993-12-08 1995-08-29 Non-Invasive Monitoring Company (Nimco) Enhancement of transdermal delivery with ultrasound and chemical enhancers

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68925030T2 (en) * 1988-01-21 1996-07-25 Massachusetts Inst Technology MOLECULE TRANSPORT THROUGH FABRICS WITH THE USE OF ELECTROPORATION.
US5139023A (en) * 1989-06-02 1992-08-18 Theratech Inc. Apparatus and method for noninvasive blood glucose monitoring
US5016615A (en) * 1990-02-20 1991-05-21 Riverside Research Institute Local application of medication with ultrasound
US5115805A (en) * 1990-02-23 1992-05-26 Cygnus Therapeutic Systems Ultrasound-enhanced delivery of materials into and through the skin
JP3189337B2 (en) * 1991-11-08 2001-07-16 日本電気株式会社 Skin stratum corneum removal device and method
US5246437A (en) * 1992-04-10 1993-09-21 Abela George S Cell treatment apparatus and method
US5643252A (en) * 1992-10-28 1997-07-01 Venisect, Inc. Laser perforator
US5267985A (en) * 1993-02-11 1993-12-07 Trancell, Inc. Drug delivery by multiple frequency phonophoresis
US5582184A (en) * 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
US5458140A (en) 1993-11-15 1995-10-17 Non-Invasive Monitoring Company (Nimco) Enhancement of transdermal monitoring applications with ultrasound and chemical enhancers
ATE227146T1 (en) * 1995-07-25 2002-11-15 Massachusetts Inst Technology IMPROVED TRANSDERMAL TRANSPORT USING ULTRASOUND

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775361A (en) * 1986-04-10 1988-10-04 The General Hospital Corporation Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport
US4863970A (en) * 1986-11-14 1989-09-05 Theratech, Inc. Penetration enhancement with binary system of oleic acid, oleins, and oleyl alcohol with lower alcohols
WO1992000106A2 (en) * 1990-06-27 1992-01-09 Diomed Limited Method of treatment and compositions therefore
US5344418A (en) * 1991-12-12 1994-09-06 Shahriar Ghaffari Optical system for treatment of vascular lesions
US5165418A (en) * 1992-03-02 1992-11-24 Tankovich Nikola I Blood sampling device and method using a laser
US5165418B1 (en) * 1992-03-02 1999-12-14 Nikola I Tankovich Blood sampling device and method using a laser
US5279552A (en) * 1993-01-11 1994-01-18 Anton Magnet Intradermal injection device
US5445611A (en) * 1993-12-08 1995-08-29 Non-Invasive Monitoring Company (Nimco) Enhancement of transdermal delivery with ultrasound and chemical enhancers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9707734A1 *

Also Published As

Publication number Publication date
AU707065B2 (en) 1999-07-01
EP0858285A4 (en) 2000-05-17
HK1009321A1 (en) 1999-05-28
CN1195276A (en) 1998-10-07
BR9610012A (en) 1999-12-21
JP3899427B2 (en) 2007-03-28
NO334437B1 (en) 2014-03-03
IL123379A (en) 2002-04-21
ES2536459T3 (en) 2015-05-25
PT1563788E (en) 2015-06-02
CN1174713C (en) 2004-11-10
NO980878L (en) 1998-04-27
TR199800347T1 (en) 1998-05-21
GB2307414B (en) 1998-03-11
GB9702766D0 (en) 1997-04-02
NO980878D0 (en) 1998-02-27
IL123379A0 (en) 1998-09-24
JPH11511360A (en) 1999-10-05
JP2006192285A (en) 2006-07-27
WO1997007734A1 (en) 1997-03-06
AU6863196A (en) 1997-03-19
CA2199002C (en) 1999-02-23
GB2307414A (en) 1997-05-28
CA2199002A1 (en) 1997-03-01

Similar Documents

Publication Publication Date Title
US6142939A (en) Microporation of human skin for drug delivery and monitoring applications
AU707065B2 (en) Microporation of human skin for drug delivery and monitoring applications
CA2789115C (en) Microporation of tissue for delivery of bioactive agents
US7758561B2 (en) Microporation of tissue for delivery of bioactive agents
US6527716B1 (en) Microporation of tissue for delivery of bioactive agents
US20020169394A1 (en) Integrated tissue poration, fluid harvesting and analysis device, and method therefor
US6056738A (en) Interstitial fluid monitoring
US20010050083A1 (en) Irradiation enhanced permeation and delivery
EP1563788B1 (en) Microporation of human skin for drug delivery and monitoring applications
RU2209031C2 (en) Method for forming micro-pores in human skin for delivering medicaments and carrying out monitiring
WO2002026148A1 (en) Irradiation enhanced permeation and collection
WO2002026149A1 (en) Irradiation enhanced permeation and delivery

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 20000330

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030205

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALTEA THERAPEUTICS CORPORATION

Owner name: SPECTRX INC.

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APAM Information on closure of appeal procedure modified

Free format text: ORIGINAL CODE: EPIDOSCNOA9E

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060301