EP0853835B1 - Dispositifs electroniques commandables par une impulsion de tension - Google Patents
Dispositifs electroniques commandables par une impulsion de tension Download PDFInfo
- Publication number
- EP0853835B1 EP0853835B1 EP96931695A EP96931695A EP0853835B1 EP 0853835 B1 EP0853835 B1 EP 0853835B1 EP 96931695 A EP96931695 A EP 96931695A EP 96931695 A EP96931695 A EP 96931695A EP 0853835 B1 EP0853835 B1 EP 0853835B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- circuit
- electronic device
- terminal
- terminals
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/04—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
- H02H9/041—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B39/00—Circuit arrangements or apparatus for operating incandescent light sources
- H05B39/10—Circuits providing for substitution of the light source in case of its failure
- H05B39/105—Circuits providing for substitution of the light source in case of its failure with a spare lamp in the circuit, and a possibility of shunting a failed lamp
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H1/00—Details of emergency protective circuit arrangements
- H02H1/04—Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks
Definitions
- the present invention relates to devices electronic devices that can be activated by a pulse voltage. These devices can operate in direct or alternating current. Each device can be used as a shunt mounted in parallel on elements of a series mounting, and allow to maintain the current of line in this assembly in the event of failure of one of these elements.
- mounting we understand a device consisting of an assembly. It can also be mounted in parallel on elements to be protected against overvoltages and overloads. It can be used as a circuit breaker or automatic switch. Another possible application is to mount it in series with a distant circuit to put on the way by sending an impulse. It can be used as a simple remote control switch or selective.
- This semiconductor circuit is activated as soon as that the voltage across its terminals becomes greater than a threshold of tension previously fixed between its trigger and the second terminal.
- the voltage threshold is set by means of a circuit consisting on the one hand of a diac and on the other hand of a RC circuit and two Zener diodes mounted head to tail. These are connected respectively to the first and to the second terminal via a resistor current limitation.
- the RC circuit is connected to the first terminal and at the node between the limiting resistance current and Zener diodes.
- the diac is connected between the trigger and the knot between resistance and RC circuit capacitor.
- This assembly remains engaged as long as the current remains above a minimum value called current of maintenance.
- radiator to dissipate heat produced.
- the presence of the radiator increases the dimensions of the device and therefore prevents its integration into a volume reduced. It also makes its connection to earth essential, which increases the cost.
- EMC electro-magnetic
- each device according to the invention can be used advantageously not only as a shunt but in several other applications.
- the present invention relates to a device electronic for direct current, called below "polarized device”. It includes a first terminal in upstream and a second terminal downstream.
- the invention also relates to a device electronic which is not polarized, and which can therefore be used in alternating or direct current.
- This device is called below "non-polarized device”. It also has a first and a second terminal.
- a device according to the invention can have two different behaviors: either it is normally open, or it is normally closed. Normally open device does not allow current to flow only after having received a voltage pulse at its terminals. Normally closed device exhibits behavior reverse.
- the type of behavior of the device is determined by the choice of some of its elements.
- Electronic devices include the following blocks: a branch circuit to power semiconductor, an accumulation circuit, a transfer circuit, a control circuit for power semiconductor and a discharge circuit.
- the branch circuit power semiconductor can be chosen from FETs (Field Effect Transistors), bipolar transistors, IGBT (Insulated Gate Bipolar Transistors), MCTs (Metal Oxide Semiconductor Controlled Thyristors), triacs or thyristors.
- FETs Field Effect Transistors
- bipolar transistors bipolar transistors
- IGBT Insulated Gate Bipolar Transistors
- MCTs Metal Oxide Semiconductor Controlled Thyristors
- triacs or thyristors Triacs or thyristors.
- the branch semiconductor power semiconductors can be chosen from FETs, transistors bipolar with a diode, IGBT, MCT, triacs or thyristors provided with a diode.
- the FETs used can be chosen from MOSFET (Metal Oxide Semiconductor Field Effect Transistors), VFET (Vertical MOSFET), DFET (Double-diffused MOSFET), JFET (Junction FET).
- MOSFET Metal Oxide Semiconductor Field Effect Transistors
- VFET Very MOSFET
- DFET Double-diffused MOSFET
- JFET Junction FET
- depletion DFET we can for example use the LND1 and DN25 manufactured by the company SUPERTEX.
- the circuit advantageously comprises a transistor having a resistance mounted between its base and the first terminal in upstream of the device.
- the discharge circuit comprises a transistor having a resistance mounted between its base and the first terminal of the device and a resistor mounted between its base and the second terminal of the device.
- the discharge circuit of a device can additionally include an RC circuit mounted in reaction emitter of the transistor, this RC circuit comprising a resistor connected in parallel with a capacitor.
- the control circuit capacitor can be a at least 1 ⁇ F capacitor.
- the time during which state of the power semiconductor is maintained after switching can reach several minutes. In particular, in cases where a capacitor is used several ⁇ F, this time can reach several tens of minutes.
- the control circuit capacitor can also be an integral part of the power semiconductor, and in this case, the time in question is generally a few milliseconds.
- the circuit for controlling the power semiconductor (s) further includes a resistor in parallel on the capacitor. This resistance adjusts the duration of the maintenance of the state of the power semiconductor (s) after they tip over, because it increases the speed discharge of the control circuit capacitor.
- the accumulation circuit of a device may include an RC circuit comprising a current limiting resistor and a capacitor connected in series as well as at least one diode to prevent the discharge from the accumulation circuit to the line on which the device is mounted.
- the accumulation circuit can further include a discharge resistor in parallel on its capacitor.
- This discharge resistance avoids the accidental start-up of the device of the invention during the appearance of successive voltage pulses each reaching at least the predefined threshold V but for a duration less than the predefined duration.
- the transfer circuit of a device comprises a component having a section of curve UI with a negative slope and a triggering threshold V BO lower than the predefined threshold V reached by the voltage pulse.
- This component allows the transfer of the energy accumulated in the accumulation circuit when the triggering threshold V BO is reached.
- the predefined threshold V is only correlated with the threshold V BO for its minimum value.
- a higher threshold V can be provided by adding a resistor in series with the capacitor of the accumulation circuit.
- the component of the transfer circuit devices according to the invention which has a section of U-I curve with negative slope is an element chosen from diac-type semiconductors, pairs of Zener diodes in opposition, the gas tubes, the pairs of diodes avalanches in opposition, the surgectors, the devices at UJT (Unijunction Transistors), the VDR (Voltage Dependent Resistors), Metal Oxide Varistors (MOVs), MLVs (Multilayer Varistor), one of the previous elements associated to a MOSFET.
- UJT Unijunction Transistors
- VDR Voltage Dependent Resistors
- MOVs Metal Oxide Varistors
- MLVs Multilayer Varistor
- the device of the invention which presents the characteristics of a diac, can be used as a component with a sloping U-I curve section transfer circuit negative.
- the device obtained in this way allows a fast reaction time even with high voltages.
- the devices of the invention may include a circuit for measurement connected between the two terminals of the device for check the evolution of the voltage at said terminals.
- This measurement circuit makes it possible to reach the compatibility of the device with EMC standards.
- a protection circuit can be connected between the two terminals of said electronic device to protect power semiconductors against overvoltages during their changeover.
- the protection circuit can include an element chosen from VDRs, MOVs, MLVs, the pairs of Zener diodes in opposition.
- the present invention also relates to assemblies in which one or more devices according to the invention are used.
- a first assembly is a series assembly elements. On each of them a shunt is mounted in parallel, each shunt consisting of a device according to the invention.
- a second assembly is the parallel assembly a circuit to be protected and a device according to the invention.
- the device according to the invention enables said circuit to be protected against overvoltages.
- Another possible mounting is mounting in parallel of a circuit to be protected and of a device according to the invention, this device allowing the protection of the circuit, and being associated with a semiconductor element.
- the semiconductor element is chosen from triac, thyristor or MOSFET semiconductors.
- the device of the invention is used as a self-priming circuit breaker or switch.
- Each controllable switch is a device according to the invention.
- Each circuit can be engaged via its respective controllable switch by a pulse of a predetermined duration and voltage for said controllable switch.
- figure 1 which represents a polarized device 1 according to the invention operating as a "normally open” circuit.
- the bypass circuit includes as power semiconductor a U $ 1 enrichment MOSFET.
- An accumulation circuit R4, C2, D1 accumulates the energy of the voltage pulse when it is received at terminals TP1, TP2 of device 1.
- a transfer circuit R5, D4 transfers the energy accumulated in the accumulation circuit R4, C2, D1 to a MOSFET control circuit, this circuit control comprising a capacitor C3.
- a circuit of discharge R3, Q1, C1, R1 accelerates the discharge of the capacitor C3 when the voltage across said capacitor C3 is fallout near the MOSFET cut-off voltage U $ 1.
- a measurement circuit R3, R7 monitors the evolution of the voltage at terminals TP1, TP2 of device 1 and a circuit protection R6 protects the MOSFET U $ 1 against overvoltages.
- the transistor Q1 is then in a conduction state imposed by the resistor R3, and V CE ⁇ 0 Volt.
- Capacitors C3 and C1 are not charged since resistance R1 puts them to ground.
- the potential of trigger of MOSFET U $ 1 is at zero and this last therefore behaves like an open circuit.
- V 12 rises. If it goes up because of a parasitic pulse on the line, i.e. because of a very short duration pulse and therefore harmless for the protected element, the voltage across the capacitor C2 does not reach normally not the switching threshold V BO of D4. However, if it rises quickly to a value greater than V BO , for example in the event of a disturbance on the line, the voltage across C2 reaches the switching threshold of D4, i.e. V BO , after a delay fixed by a RC circuit (composed of resistor R4 and capacitor C2).
- D4 switches to passing mode.
- a impulse current flows through the transfer circuit comprising the current limiting resistor R5 and the diac D4, to capacitor C3 of the control circuit.
- the impulse current charge C3 as well as C1 via Q1 which is always in saturation. This current will cease to exist as soon as the voltage of D4 will have returned below a value determined by the type of diac used.
- C2 discharges in R5 since the diode D1 prevents any return to the energy source.
- the voltage across C3 can reach the value of the control voltage of the MOSFET U $ 1, which will switch to the conduction state and thus function as a branch circuit.
- the internal resistance R DSon of the MOSFET U $ 1 is only a few milliohms.
- the voltage V 12 is then only worth a few millivolts.
- Q1 will then be blocked since R3 will impose a few millivolts at its base (via the MOSFET U $ 1).
- the switching of Q1 is obviously favored by the charge of C1.
- the MOSFET U $ 1 presents in this conduction state a resistance R Dson which can, according to the current properties of these elements, go down to approximately 7 milliohms, which constitutes practically the conditions of a perfect short-circuit.
- the conduction state of MOSFET U $ 1 will last as long that the voltage across C3 will remain greater than the MOSFET control voltage U $ 1.
- C3 will discharge by its own leakage current, that of the GS capacity of the MOSFET U $ 1 and the minority current of Q1.
- the duration maximum conduction is therefore determined by the values of C1 and C3, but also by the values of the parameters internal components.
- the capacitor C3 In the absence of a discharge circuit, the capacitor C3 would discharge very slowly, and the voltage between the source S and the trigger G of the MOSFET U $ 1 would remain for a long time around the cut-off voltage of this MOSFET U $ 1. In the vicinity of this cut-off voltage, it has an increasing resistance and would therefore dissipate an unbearable RI 2 power for MOSFETs without a radiator. However, it is important to avoid any problem of overheating.
- R3 and Q1 which together form the discharge circuit of the device 1 of the invention, makes it possible to reduce the switching time of the MOSFET U $ 1 by accelerating the discharge of C3 as soon as the drain-source voltage of said MOSFET U $ 1 becomes greater than a threshold set by the user.
- P max is fixed by the choice of the MOSFET U $ 1 and its box, or U max is fixed by the choice of a resistor R7, which then forms part of a measurement circuit by forming a divider with the resistor R3.
- the presence of R7 is not compulsory for the operation of the device 1.
- the presence of the resistance R7 considerably reduces the rate of RFI (which was already greatly reduced compared to the of RFI in the device as described in EP-B1-0 284 592). Thanks to the use of the resistor R7, we can thus align with the EMC compatibility standards.
- capacitor C1 mounted in parallel with resistance R1 is not compulsory either for the operation of the device 1, but it accelerates the behavior of transistor Q1.
- the device 1 resumes its state of initial non-conduction. If the fault persists, the cycle start again.
- the protection circuit R6 is intended, if necessary, to protect the MOSFET U $ 1 against overvoltages during the switching of the device 1, if the voltage V 12 is greater than the maximum voltage that the MOSFET can support.
- R6 according to the requirements required a VDR, a MOV, an MLV, two Zener diodes in opposition, or any other element which can protect the said MOSFET U $ 1 against overvoltages by eliminating the voltages beyond d '' a limit voltage chosen by the user (depending on the protection element).
- MOSFET U $ 1 is also protected against control overvoltages by a Zener D3 diode mounted between its second power terminal S and its trigger G.
- the device 1 of the invention it is possible trigger a short circuit in a very short time, without unacceptable heating and avoiding the phenomenon oscillation that would appear if we used conventionally a battery to control the MOSFET U $ 1 and a comparator to measure the voltage at terminals TP1, TP2.
- the non-polarized device 2 is a form specially designed for use in alternating current. This form of execution provides obviously greater flexibility of use (no polarity needed), and has essentially the same behavior that the polarized device 1 represented in FIG. 1. However, the device 2 can also be used in direct current.
- the power semiconductors used are U $ 1, U $ 2 enrichment MOSFETs and device 2 therefore operates as a normally open circuit.
- the resistor R7 of the device 2 has the function of a measuring circuit, like the resistor R7 of the device 1. It forms a divider with the resistor R9 or with the resistor R3, depending on the polarity of the voltage V 12 .
- the protection circuit R6 has a function similar to that of R6 in device 1 and protects the MOSFET U $ 1 and U $ 2 against overvoltage. The same types elements can be used.
- a device is schematically represented non-polarized 2. If applicable, a polarized device 1 can also be used if the fixture is supplied with direct current.
- a choke is mounted between the first terminal of power D of the power semiconductor U $ 1 and the terminal upstream TP1 of the device 1, it behaves like a switch normally closed and requires a pulse tension to open. The self ensures that the control circuit will capture the energy of the pulse.
- a device 2 is mounted in parallel on each elements L1, L2, L3, L4 (for example lamps). Yes element L1 slams, its device 2 short-circuits it and the current I continues to supply the other elements L2, L3, L4 intact. This means that the supply voltage will be divided between the other elements L2, L3, L4 of the assembly series, and that each element L2, L3, L4 will receive at its terminals higher tension. This is why the use of a device 1 or 2 in such an arrangement will make it necessary the use of current regulation I.
- the voltage V 12 at the terminals of the device 2 does not exceed 70 Volts.
- the short circuit is established after approximately 30 ⁇ s after the breakdown. This short circuit lasts at least 3 minutes.
- the devices according to the invention 1 or 2 can occupy a volume of less than 1 cm 3 in most cases.
- the invention is in no way limited to devices comprising particular components mentioned above; any other well chosen component can to be used. The results obtained can still be improved by choosing other parameters for described components or other components.
- a device 1 or 2 of the invention can protect an entire installation against overvoltages (figure 6): just insert it in parallel with the circuit to be protected 3, between fuse 4 and this circuit 3.
- a device 1 or 2 in this application, you can also condition to work in direct current, mount a device 1 or 2 according to the invention on the basis or the trigger of a semiconductor element 10, 11 of triac type, thyristor or MOSFET ( Figures 7 and 8).
- the device 1 or 2 works like a circuit normally open. The whole is then mounted in parallel on the circuit 3 to protect and operates as an automatic circuit breaker.
- a deflection resistor R20, R21 is connected between the base or trigger of semiconductor element 10 or 11 and its collector or its drain if necessary, to plan a deflection path when the device 1 is engaged. When the overvoltage has disappeared, circuit 3 will be reset automatically after the delay provided in device 1.
- the devices according to the invention can also allow a circuit 5 to be started remotely by sending a pulse (FIG. 9).
- the device 2 is connected in series between the power source U and the circuit to be controlled 5.
- the source U must send a pulse which, in addition to U, will exceed the threshold V BO of the device 2, thus causing it to switch over to a short circuit. This will allow the supply of circuit 5 by the source U.
- FIG. 10 illustrates different circuits 6, 7, 8, connected in series respectively with the devices according to the invention 2a, 2b, 2c, and connected in parallel.
- the circuit 6 can be started for example by a pulse V 1 of duration T 1 , the circuit 7 by a pulse V 2 of duration T 2 and the circuit 8 by a pulse V 3 of duration T 3 .
- One or more of said circuits 6, 7, 8 can be selectively activated by a very precise pulse.
- Each of the devices 2a, 2b, 2c must be designed to operate as a short circuit for a time corresponding to the duration of the impulse required to engage circuit 6, 7, 8 connected in series. For example, for the assembly of FIG.
- the device 2a could be engaged with a voltage V1 of 25 Volts with a duration T1 of 10 ⁇ s, the device 2b with a voltage V2 of 40 Volts with a duration T2 of 5 ⁇ s and device 2c with a voltage V3 of 15 Volts with a duration T3 of 30 ⁇ s.
- the diac D4 can be replaced by any component having a section of curve UI with a negative slope, such as for example a gas tube, a pair of avalanche diodes in opposition, a pair of Zener diodes in opposition, a deep-freezer, a UJT device, VDR, MOV, MLV, one of the previous elements associated with a MOSFET (which greatly reduces switching times), or a device like the one presented in one of FIGS. 1 or 2, made for very low powers and very short times.
- any component having a section of curve UI with a negative slope such as for example a gas tube, a pair of avalanche diodes in opposition, a pair of Zener diodes in opposition, a deep-freezer, a UJT device, VDR, MOV, MLV, one of the previous elements associated with a MOSFET (which greatly reduces switching times), or a device like the one presented in one of FIGS. 1 or 2, made for very low powers and very short times.
Landscapes
- Electronic Switches (AREA)
Description
- un circuit de dérivation comprenant un semi-conducteur de puissance ayant une première borne de puissance reliée à la première borne en amont du dispositif, une seconde borne de puissance reliée à la seconde borne en aval du dispositif, et une borne de commande,
- un circuit d'accumulation pour accumuler l'énergie de l'impulsion de tension quand elle est reçue aux bornes du dispositif,
- un circuit de transfert, comprenant un composant présentant un tronçon de courbe U-I à pente négative et un seuil de déclenchement VBO inférieur au seuil V prédéfini atteint par l'impulsion de tension, ce composant permettant le transfert de l'énergie accumulée lorsque le seuil de déclenchement VBO est atteint,
- un circuit de commande de semi-conducteur de puissance comprenant un condensateur dont les bornes sont reliées respectivement à la borne de commande et à la seconde borne de puissance du semi-conducteur de puissance du circuit de dérivation, la tension aux bornes de ce circuit de commande atteignant, grâce à l'énergie transférée du circuit d'accumulation, une valeur suffisante pour permettre la commande du basculement du semi-conducteur de puissance , et
- un circuit de décharge pour accélérer la décharge du condensateur du circuit de commande lorsque la tension aux bornes de ce circuit de commande n'est plus suffisante pour maintenir l'état du semi-conducteur de puissance après basculement.
- un circuit de dérivation comportant deux semi-conducteurs de puissance, l'un de ces semi-conducteurs de puissance ayant sa première borne de puissance reliée à la première borne du dispositif, l'autre semi-conducteur de puissance ayant sa première borne de puissance reliée à la seconde borne du dispositif, les deux semi-conducteurs de puissance ayant en commun leur seconde borne de puissance et leur borne de commande,
- un circuit d'accumulation pour accumuler l'énergie de l'impulsion de tension quand elle est reçue aux bornes du dispositif,
- un circuit de transfert comprenant un composant présentant un tronçon de courbe U-I à pente négative et un seuil de déclenchement VBO inférieur au seuil V prédéfini atteint par l'impulsion de tension, ce composant permettant le transfert de l'énergie accumulée lorsque le seuil de déclenchement VBO est atteint,
- un circuit de commande des semi-conducteurs de puissance comprenant un condensateur dont les bornes sont reliées respectivement aux bornes de commande et aux secondes bornes de puissance des semi-conducteurs de puissance du circuit de dérivation, la tension aux bornes de ce circuit de commande atteignant, grâce à l'énergie transférée du circuit d'accumulation, une valeur suffisante pour permettre la commande du basculement d'au moins un semi-conducteur de puissance, et
- un circuit de décharge pour accélérer la décharge du condensateur du circuit de commande lorsque la tension aux bornes de ce circuit de commande n'est plus suffisante pour maintenir l'état des semi-conducteurs de puissance après basculement.
Symbole | Valeur ou type | |
Résistances | R1 | 33 Ω |
R3 | 3.9 kΩ | |
R4 | 33 Ω | |
R5 | 33 Ω | |
R6 | Varistor 39 V | |
R7 | ∞ | |
R9 | 3.9 kΩ | |
Condensateurs | C1 | 10 nF |
C2 | 1 µF | |
C3 | 1 µF | |
Transistor | Q1 | 2N2222 |
MOSFETs | U$1 | RFP50N06 |
U$2 | RFP50N06 | |
Diodes | D1 | 1N4148 |
D2 | 1N4148 | |
D3 | 1N4148 | |
Diac | D4 | BR100 (VBO = 34 V) |
Claims (24)
- Dispositif électronique (1), pour courant continu, comprenant une première borne (TP1) en amont et une seconde borne (TP2) en aval, ledit dispositif (1) s'enclenchant lorsqu'une impulsion de tension, atteignant au moins un seuil V prédéfini pendant une durée prédéfinie, provenant d'une ligne sur laquelle ledit dispositif (1) est branché, est reçue auxdites bornes (TP1, TP2), caractérisé en ce qu'il comprend:un circuit de dérivation comprenant un semi-conducteur de puissance (U$1) ayant une première borne de puissance (D) reliée à la première borne (TP1) en amont du dispositif (1), une seconde borne de puissance (S) reliée à la seconde borne (TP2) en aval du dispositif (1), et une borne de commande (G),un circuit d'accumulation (R4, C2, D1) pour accumuler l'énergie de l'impulsion de tension quand elle est reçue aux bornes (TP1, TP2) du dispositif (1),un circuit de transfert (R5, D4), comprenant un composant (D4) présentant un tronçon de courbe U-I à pente négative et un seuil de déclenchement VBO inférieur au seuil V prédéfini atteint par l'impulsion de tension, ce composant (D4) permettant le transfert de l'énergie accumulée lorsque le seuil de déclenchement VBO est atteint,un circuit de commande de semi-conducteur de puissance (U$1) comprenant un condensateur (C3) dont les bornes sont reliées respectivement à la borne de commande (G) et à la seconde borne de puissance (S) du semi-conducteur de puissance (U$1) du circuit de dérivation, la tension aux bornes de ce circuit de commande atteignant, grâce à l'énergie transférée du circuit d'accumulation (R4, C2, D1), une valeur suffisante pour permettre la commande du basculement du semi-conducteur de puissance (U$1), etun circuit de décharge (R3, Q1) pour accélérer la décharge du condensateur (C3) du circuit de commande lorsque la tension aux bornes de ce circuit de commande n'est plus suffisante pour maintenir l'état du semi-conducteur de puissance (U$1) après basculement.
- Dispositif électronique (2), pour courant alternatif ou courant continu, comprenant une première borne (TP1) et une seconde borne (TP2), ledit dispositif (2) s'enclenchant lorsqu'une impulsion de tension, atteignant au moins un seuil V prédéfini pendant une durée prédéfinie, provenant d'une ligne sur laquelle ledit dispositif (2) est branché, est reçue auxdites bornes (TP1, TP2), caractérisé en ce qu'il comprend:un circuit de dérivation comportant deux semi-conducteurs de puissance (U$1, U$2), l'un de ces semi-conducteurs de puissance (U$1) ayant sa première borne de puissance (D) reliée à la première borne (TP1) du dispositif (2), l'autre semi-conducteur de puissance (U$2) ayant sa première borne de puissance (D) reliée à la seconde borne (TP2) du dispositif (2), les deux semi-conducteurs de puissance (U$1, U$2) ayant en commun leur seconde borne de puissance (S) et leur borne de commande (G),un circuit d'accumulation (R4, C2, D1, D2) pour accumuler l'énergie de l'impulsion de tension quand elle est reçue aux bornes (TP1, TP2) du dispositif (2),un circuit de transfert (R5, D4), comprenant un composant (D4) présentant un tronçon de courbe U-I à pente négative et un seuil de déclenchement VBO inférieur au seuil V prédéfini atteint par l'impulsion de tension, ce composant (D4) permettant le transfert de l'énergie accumulée lorsque le seuil de déclenchement VBO est atteint,un circuit de commande des semi-conducteurs de puissance (U$1, U$2) comprenant un condensateur (C3) dont les bornes sont reliées respectivement aux bornes de commande (G) et aux secondes bornes de puissance (S) des semi-conducteurs de puissance (U$1, U$2) du circuit de dérivation, la tension aux bornes de ce circuit de commande atteignant, grâce à l'énergie transférée du circuit d'accumulation (R4, C2, D1, D2), une valeur suffisante pour permettre la commande du basculement d'au moins un semi-conducteur de puissance (U$1, U$2), etun circuit de décharge (R3, R9, Q1) pour accélérer la décharge du condensateur (C3) du circuit de commande lorsque la tension aux bornes de ce circuit de commande n'est plus suffisante pour maintenir l'état des semi-conducteurs de puissance (U$1, U$2) après basculement.
- Dispositif électronique (1) selon la revendication 1, caractérisé en ce que le semi-conducteur de puissance (U$1) du circuit de dérivation peut être choisi parmi les FET (Field Effect Transistors), les transistors bipolaires, les IGBT (Insulated Gate Bipolar Transistors), les MCT (Metal Oxide Semiconductor Controlled Thyristors), les triacs, les thyristors.
- Dispositif électronique (2) selon la revendication 2, caractérisé en ce que les semi-conducteurs de puissance (U$1, U$2) du circuit de dérivation peuvent être choisis parmi les FET (Field Effect Transistors), les transistors bipolaires pourvus d'une diode, les IGBT (Insulated Gate Bipolar Transistors), les MCT (Metal Oxide Semiconductor Controlled Thyristors), les triacs, les thyristors pourvus d'une diode.
- Dispositif électronique (1 ; 2) selon l'une quelconque des revendications 3 et 4, caractérisé en ce que le(s) FET est (sont) choisi (s) parmi les FET à enrichissement et les FET à appauvrissement.
- Dispositif électronique (1 ; 2) selon la revendication 5, caractérisé en ce que le(s) FET est (sont) choisi(s) parmi les MOSFET (Metal Oxide Semiconductor Field Effect Transistors), les VFET (Vertical MOSFET), les DFET (Double-diffused MOSFET), les JFET (Junction FET).
- Dispositif électronique (1) selon l'une quelconque des revendications 1, 3, 5 et 6, caractérisé en ce que le circuit de décharge (R3, Q1) comporte un transistor (Q1) ayant une résistance (R3) montée entre sa base et la première borne (TP1) en amont dudit dispositif électronique (1).
- Dispositif électronique (2) selon l'une quelconque des revendications 2, 4, 5 et 6, caractérisé en ce que le circuit de décharge (R3, R9, Q1) comporte un transistor (Q1) ayant une résistance (R3) montée entre sa base et la première borne (TP1) dudit dispositif électronique (2), et une résistance (R9) montée entre sa base et la deuxième borne (TP2) dudit dispositif électronique (2).
- Dispositif électronique (1 ; 2) selon l'une quelconque des revendications 7 et 8, caractérisé en ce que le circuit de décharge (R3, Q1 ; R3, R9, Q1) comporte en outre un circuit RC monté en réaction d'émetteur du transistor (Q1), ce circuit RC comprenant une résistance (R1) montée en parallèle avec un condensateur (C1).
- Dispositif électronique (1 ; 2) selon l'une quelconque des revendications précédentes, caractérisé en ce que le condensateur (C3) du circuit de commande est un condensateur d'au moins 1 µF.
- Dispositif électronique (1 ; 2) selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le condensateur (C3) du circuit de commande fait partie intégrante du semi-conducteur de puissance (U$1 ; U$1, U$2).
- Dispositif électronique (1 ; 2) selon l'une quelconque des revendications précédentes, caractérisé en ce que le circuit de commande du (des) semi-conducteur(s) de puissance (U$1 ; U$1, U$2) comporte en outre une résistance en parallèle sur son condensateur (C3).
- Dispositif électronique (1 ; 2) selon l'une quelconque des revendications précédentes, caractérisé en ce que le circuit d'accumulation (R4, C2, D1 ; R4, C2, D1, D2) comporte un circuit RC comprenant une résistance de limitation de courant (R4) et un condensateur (C2) montés en série ainsi qu'au moins une diode (D1 ; D1, D2) pour empêcher la décharge du circuit d'accumulation (R4, C2, D1 ; R4, C2, D1, D2) vers la ligne sur laquelle le dispositif (1 ; 2) est monté.
- Dispositif électronique (1 ; 2) selon la revendication 13, caractérisé en ce que le circuit d'accumulation (R4, C2, D1 ; R4, C2, D1, D2) comporte en outre une résistance de décharge en parallèle sur son condensateur (C2).
- Dispositif électronique (1 ; 2) selon l'une quelconque des revendications précédentes, caractérisé en ce que le composant (D4) présentant un tronçon de courbe U-I à pente négative du circuit de transfert (R5, D4) est un élément choisi parmi les semi-conducteurs de type diac, les paires de diodes Zener en opposition, les tubes à gaz, les paires de diodes avalanches en opposition, les surgectors, les dispositifs à UJT (Unijunction Transistors), les VDR (Voltage Dependent Resistors), les MOV (Metal Oxide Varistors), les MLV (Multilayer Varistor), un des éléments précédents associé à un MOSFET.
- Dispositif électronique (1 ; 2) selon l'une quelconque des revendications 1 à 14, caractérisé en ce que le composant (D4) présentant un tronçon de courbe U-I à pente négative du circuit de transfert (R5, D4) est un dispositif (1 ; 2) selon l'une quelconque des revendications 1 à 14.
- Dispositif électronique (1 ; 2) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un circuit de mesure (R3, R7 ; R3, R7, R9) est raccordé entre les deux bornes (TP1, TP2) dudit dispositif (1 ; 2) pour contrôler l'évolution de la tension auxdites bornes (TP1, TP2).
- Dispositif électronique (1 ; 2) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un circuit de protection (R6) est raccordé entre les deux bornes (TP1, TP2) dudit dispositif électronique (1 ; 2) pour protéger les semi-conducteurs de puissance (U$1 ; U$1, U$2) contre les surtensions pendant leur basculement.
- Dispositif électronique (1 ; 2) selon la revendication 18, caractérisé en ce que le circuit de protection (R6) comporte un élément choisi parmi les VDR (résistances dépendantes de la tension), Les MOV (Metal Oxide Varistor), les MLV (Multilayer Varistor), les paires de diodes Zener en opposition.
- Dispositif consistant en un montage en série d'éléments (L1, L2, L3, L4) sur chacun desquels un shunt est monté en parallèle, caractérisé en ce que chaque shunt consiste en un dispositif (1 ; 2) suivant l'une quelconque des revendications 1 à 19.
- Dispositif consistant en un montage en parallèle d'un circuit (3) à protéger et d'un dispositif permettant la protection dudit circuit contre des surtensions, caractérisé en ce que ledit dispositif permettant la protection consiste en un dispositif (1 ; 2) suivant l'une quelconque des revendications 1 à 19.
- Dispositif consistant en un montage en parallèle d'un circuit (3) à protéger et d'un dispositif permettant la protection dudit circuit (3), et étant associé à un élément semi-conducteur, caractérisé en ce que ledit dispositif permettant la protection dudit circuit (3) consiste en un dispositif (1; 2) suivant l'une quelconque des revendications 1 à 19, l'élément semi-conducteur étant choisi parmi les semi-conducteurs de type triac, thyristor, MOSFET.
- Dispositif consistant en un montage en série d'un circuit (5) à commander à distance avec un interrupteur commandable, caractérisé en ce que ledit interrupteur commandable consiste en un dispositif (1 ; 2) suivant l'une quelconque des revendications 1 à 19.
- Dispositif consistant en un montage d'au moins deux circuits (6, 7, 8) à commander, ces circuits (6, 7, 8) étant montés en parallèle et chacun d'eux étant respectivement monté en série avec un dispositif (1a, 1b, 1c ; 2a, 2b, 2c) fonctionnant comme interrupteur commandable de manière sélective du circuit (6, 7, 8) avec lequel il est monté en série, chaque circuit (6, 7, 8) pouvant être enclenché via son interrupteur commandable respectif (1a, 1b, 1c ; 2a, 2b, 2c) par une impulsion d'une durée et d'une tension prédéterminée pour ledit interrupteur commandable, caractérisé en ce que chaque dispositif fonctionnant comme interrupteur commandable consiste en un dispositif (1a, 1b, 1c ; 2a, 2b, 2c) suivant l'une quelconque des revendications 1 à 19.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE9500810 | 1995-09-29 | ||
BE9500810A BE1009634A3 (fr) | 1995-09-29 | 1995-09-29 | Dispositifs electroniques commandables par une impulsion de tension. |
PCT/BE1996/000102 WO1997013307A1 (fr) | 1995-09-29 | 1996-09-26 | Dispositifs electroniques commandables par une impulsion de tension |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0853835A1 EP0853835A1 (fr) | 1998-07-22 |
EP0853835B1 true EP0853835B1 (fr) | 2001-01-24 |
Family
ID=3889208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96931695A Expired - Lifetime EP0853835B1 (fr) | 1995-09-29 | 1996-09-26 | Dispositifs electroniques commandables par une impulsion de tension |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0853835B1 (fr) |
BE (1) | BE1009634A3 (fr) |
DE (1) | DE69611685D1 (fr) |
WO (1) | WO1997013307A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10358447B3 (de) * | 2003-12-13 | 2005-05-25 | Insta Elektro Gmbh | Beleuchtungseinrichtung |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8242710B2 (en) | 2007-07-02 | 2012-08-14 | Koninklijke Philips Electronics N.V. | Driver device for a load and method of driving a load with such a driver device |
WO2009013675A1 (fr) * | 2007-07-23 | 2009-01-29 | Nxp B.V. | Configuration d'interrupteur de dérivation à led auto-alimentée |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU86815A1 (fr) * | 1987-03-19 | 1988-11-17 | Jacques Mawet | Dispositif permettant le retablissement du courant de ligne en cas de claquage d'un ou de pulsieurs elements d'un montage en serie |
DE3806288A1 (de) * | 1988-02-27 | 1989-09-07 | Asea Brown Boveri | Ueberspannungsschutzeinrichtung fuer eine einspeiseschaltung |
US5333105A (en) * | 1993-05-27 | 1994-07-26 | Eaton Corporation | Transient voltage protector |
-
1995
- 1995-09-29 BE BE9500810A patent/BE1009634A3/fr not_active IP Right Cessation
-
1996
- 1996-09-26 WO PCT/BE1996/000102 patent/WO1997013307A1/fr active IP Right Grant
- 1996-09-26 EP EP96931695A patent/EP0853835B1/fr not_active Expired - Lifetime
- 1996-09-26 DE DE69611685T patent/DE69611685D1/de not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10358447B3 (de) * | 2003-12-13 | 2005-05-25 | Insta Elektro Gmbh | Beleuchtungseinrichtung |
Also Published As
Publication number | Publication date |
---|---|
BE1009634A3 (fr) | 1997-06-03 |
DE69611685D1 (de) | 2001-03-01 |
WO1997013307A1 (fr) | 1997-04-10 |
EP0853835A1 (fr) | 1998-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2663763A1 (fr) | Regulateur de puissance a courant alternatif. | |
EP1300743B1 (fr) | Dispositif de protection d'une source de tension et d'une charge alimentée par la source de tension | |
EP1950885B1 (fr) | Dispositif de commande d'un interrupteur électronique de puissance et variateur comprenant un tel dispositif. | |
FR2567340A1 (fr) | Relais a semi-conducteur protege contre les surcharges de courant | |
FR2912849A1 (fr) | Dispositif de protection contre les surtensions et appareil utilisant un tel dispositif | |
FR2748611A1 (fr) | Dispositif de coupure a tec de puissance et detection de court-circuit | |
EP3070798B1 (fr) | Dispositif de protection contre des surtensions | |
FR3004019A1 (fr) | Composant de protection contre des surtensions | |
FR2521791A1 (fr) | Interrupteur electronique de courant monte dans un systeme de distribution de courant continu | |
FR2873509A1 (fr) | Dispositif de protection contre les surtensions a capacite de coupure du courant de fuite ameliore | |
EP0284592B1 (fr) | Dispositif permettant le rétablissement du courant de ligne en cas de claquage d'un ou de plusieurs éléments d'un montage en série | |
EP0744808B1 (fr) | Dispositif d'écrêtage | |
FR2547133A1 (fr) | Circuit destine a prevenir une dissipation excessive d'energie dans les dispositifs commutateurs de puissance | |
EP0853835B1 (fr) | Dispositifs electroniques commandables par une impulsion de tension | |
EP0677907B1 (fr) | Dispositif de protection contre les surintensités | |
EP0836280B1 (fr) | Interrupteur électronique à alimentation deux fils | |
EP0146183A1 (fr) | Dispositif d'interface pour un poste telephonique | |
EP0180487A1 (fr) | Circuit de puissance et dispositif de déclenchement le comportant | |
FR2733648A1 (fr) | Relais statique protege | |
EP1998450B1 (fr) | Système de commande et de protection d'une sortie d'un équipement d'automatisme | |
WO2010086237A1 (fr) | Dispositif de commande d'un transistor jfet | |
FR2615676A1 (fr) | Dispositif de commutation electrique statique limiteur de courant | |
EP2198507B1 (fr) | Dispositif de commande variable | |
EP3664294B1 (fr) | Dispositif de protection d'un circuit de servitude, et dispositif de mesure d'un courant dans un circuit électrique mettant en oeuvre un tel dispositif de protection | |
WO2010142646A1 (fr) | Circuit de protection par fusible de circuit electrique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980428 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR LU NL |
|
17Q | First examination report despatched |
Effective date: 19981001 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR LU NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20010124 |
|
REF | Corresponds to: |
Ref document number: 69611685 Country of ref document: DE Date of ref document: 20010301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20010425 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20011002 Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020926 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20021112 Year of fee payment: 7 |
|
BERE | Be: lapsed |
Owner name: *VIGNISSE PIERRE Effective date: 20030930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040331 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
BERR | Be: reestablished |
Owner name: *VIGNISSE PIERRE Effective date: 20051220 |