[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0853835B1 - Dispositifs electroniques commandables par une impulsion de tension - Google Patents

Dispositifs electroniques commandables par une impulsion de tension Download PDF

Info

Publication number
EP0853835B1
EP0853835B1 EP96931695A EP96931695A EP0853835B1 EP 0853835 B1 EP0853835 B1 EP 0853835B1 EP 96931695 A EP96931695 A EP 96931695A EP 96931695 A EP96931695 A EP 96931695A EP 0853835 B1 EP0853835 B1 EP 0853835B1
Authority
EP
European Patent Office
Prior art keywords
circuit
electronic device
terminal
terminals
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96931695A
Other languages
German (de)
English (en)
Other versions
EP0853835A1 (fr
Inventor
Pierre Vignisse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0853835A1 publication Critical patent/EP0853835A1/fr
Application granted granted Critical
Publication of EP0853835B1 publication Critical patent/EP0853835B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/10Circuits providing for substitution of the light source in case of its failure
    • H05B39/105Circuits providing for substitution of the light source in case of its failure with a spare lamp in the circuit, and a possibility of shunting a failed lamp
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/04Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks

Definitions

  • the present invention relates to devices electronic devices that can be activated by a pulse voltage. These devices can operate in direct or alternating current. Each device can be used as a shunt mounted in parallel on elements of a series mounting, and allow to maintain the current of line in this assembly in the event of failure of one of these elements.
  • mounting we understand a device consisting of an assembly. It can also be mounted in parallel on elements to be protected against overvoltages and overloads. It can be used as a circuit breaker or automatic switch. Another possible application is to mount it in series with a distant circuit to put on the way by sending an impulse. It can be used as a simple remote control switch or selective.
  • This semiconductor circuit is activated as soon as that the voltage across its terminals becomes greater than a threshold of tension previously fixed between its trigger and the second terminal.
  • the voltage threshold is set by means of a circuit consisting on the one hand of a diac and on the other hand of a RC circuit and two Zener diodes mounted head to tail. These are connected respectively to the first and to the second terminal via a resistor current limitation.
  • the RC circuit is connected to the first terminal and at the node between the limiting resistance current and Zener diodes.
  • the diac is connected between the trigger and the knot between resistance and RC circuit capacitor.
  • This assembly remains engaged as long as the current remains above a minimum value called current of maintenance.
  • radiator to dissipate heat produced.
  • the presence of the radiator increases the dimensions of the device and therefore prevents its integration into a volume reduced. It also makes its connection to earth essential, which increases the cost.
  • EMC electro-magnetic
  • each device according to the invention can be used advantageously not only as a shunt but in several other applications.
  • the present invention relates to a device electronic for direct current, called below "polarized device”. It includes a first terminal in upstream and a second terminal downstream.
  • the invention also relates to a device electronic which is not polarized, and which can therefore be used in alternating or direct current.
  • This device is called below "non-polarized device”. It also has a first and a second terminal.
  • a device according to the invention can have two different behaviors: either it is normally open, or it is normally closed. Normally open device does not allow current to flow only after having received a voltage pulse at its terminals. Normally closed device exhibits behavior reverse.
  • the type of behavior of the device is determined by the choice of some of its elements.
  • Electronic devices include the following blocks: a branch circuit to power semiconductor, an accumulation circuit, a transfer circuit, a control circuit for power semiconductor and a discharge circuit.
  • the branch circuit power semiconductor can be chosen from FETs (Field Effect Transistors), bipolar transistors, IGBT (Insulated Gate Bipolar Transistors), MCTs (Metal Oxide Semiconductor Controlled Thyristors), triacs or thyristors.
  • FETs Field Effect Transistors
  • bipolar transistors bipolar transistors
  • IGBT Insulated Gate Bipolar Transistors
  • MCTs Metal Oxide Semiconductor Controlled Thyristors
  • triacs or thyristors Triacs or thyristors.
  • the branch semiconductor power semiconductors can be chosen from FETs, transistors bipolar with a diode, IGBT, MCT, triacs or thyristors provided with a diode.
  • the FETs used can be chosen from MOSFET (Metal Oxide Semiconductor Field Effect Transistors), VFET (Vertical MOSFET), DFET (Double-diffused MOSFET), JFET (Junction FET).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistors
  • VFET Very MOSFET
  • DFET Double-diffused MOSFET
  • JFET Junction FET
  • depletion DFET we can for example use the LND1 and DN25 manufactured by the company SUPERTEX.
  • the circuit advantageously comprises a transistor having a resistance mounted between its base and the first terminal in upstream of the device.
  • the discharge circuit comprises a transistor having a resistance mounted between its base and the first terminal of the device and a resistor mounted between its base and the second terminal of the device.
  • the discharge circuit of a device can additionally include an RC circuit mounted in reaction emitter of the transistor, this RC circuit comprising a resistor connected in parallel with a capacitor.
  • the control circuit capacitor can be a at least 1 ⁇ F capacitor.
  • the time during which state of the power semiconductor is maintained after switching can reach several minutes. In particular, in cases where a capacitor is used several ⁇ F, this time can reach several tens of minutes.
  • the control circuit capacitor can also be an integral part of the power semiconductor, and in this case, the time in question is generally a few milliseconds.
  • the circuit for controlling the power semiconductor (s) further includes a resistor in parallel on the capacitor. This resistance adjusts the duration of the maintenance of the state of the power semiconductor (s) after they tip over, because it increases the speed discharge of the control circuit capacitor.
  • the accumulation circuit of a device may include an RC circuit comprising a current limiting resistor and a capacitor connected in series as well as at least one diode to prevent the discharge from the accumulation circuit to the line on which the device is mounted.
  • the accumulation circuit can further include a discharge resistor in parallel on its capacitor.
  • This discharge resistance avoids the accidental start-up of the device of the invention during the appearance of successive voltage pulses each reaching at least the predefined threshold V but for a duration less than the predefined duration.
  • the transfer circuit of a device comprises a component having a section of curve UI with a negative slope and a triggering threshold V BO lower than the predefined threshold V reached by the voltage pulse.
  • This component allows the transfer of the energy accumulated in the accumulation circuit when the triggering threshold V BO is reached.
  • the predefined threshold V is only correlated with the threshold V BO for its minimum value.
  • a higher threshold V can be provided by adding a resistor in series with the capacitor of the accumulation circuit.
  • the component of the transfer circuit devices according to the invention which has a section of U-I curve with negative slope is an element chosen from diac-type semiconductors, pairs of Zener diodes in opposition, the gas tubes, the pairs of diodes avalanches in opposition, the surgectors, the devices at UJT (Unijunction Transistors), the VDR (Voltage Dependent Resistors), Metal Oxide Varistors (MOVs), MLVs (Multilayer Varistor), one of the previous elements associated to a MOSFET.
  • UJT Unijunction Transistors
  • VDR Voltage Dependent Resistors
  • MOVs Metal Oxide Varistors
  • MLVs Multilayer Varistor
  • the device of the invention which presents the characteristics of a diac, can be used as a component with a sloping U-I curve section transfer circuit negative.
  • the device obtained in this way allows a fast reaction time even with high voltages.
  • the devices of the invention may include a circuit for measurement connected between the two terminals of the device for check the evolution of the voltage at said terminals.
  • This measurement circuit makes it possible to reach the compatibility of the device with EMC standards.
  • a protection circuit can be connected between the two terminals of said electronic device to protect power semiconductors against overvoltages during their changeover.
  • the protection circuit can include an element chosen from VDRs, MOVs, MLVs, the pairs of Zener diodes in opposition.
  • the present invention also relates to assemblies in which one or more devices according to the invention are used.
  • a first assembly is a series assembly elements. On each of them a shunt is mounted in parallel, each shunt consisting of a device according to the invention.
  • a second assembly is the parallel assembly a circuit to be protected and a device according to the invention.
  • the device according to the invention enables said circuit to be protected against overvoltages.
  • Another possible mounting is mounting in parallel of a circuit to be protected and of a device according to the invention, this device allowing the protection of the circuit, and being associated with a semiconductor element.
  • the semiconductor element is chosen from triac, thyristor or MOSFET semiconductors.
  • the device of the invention is used as a self-priming circuit breaker or switch.
  • Each controllable switch is a device according to the invention.
  • Each circuit can be engaged via its respective controllable switch by a pulse of a predetermined duration and voltage for said controllable switch.
  • figure 1 which represents a polarized device 1 according to the invention operating as a "normally open” circuit.
  • the bypass circuit includes as power semiconductor a U $ 1 enrichment MOSFET.
  • An accumulation circuit R4, C2, D1 accumulates the energy of the voltage pulse when it is received at terminals TP1, TP2 of device 1.
  • a transfer circuit R5, D4 transfers the energy accumulated in the accumulation circuit R4, C2, D1 to a MOSFET control circuit, this circuit control comprising a capacitor C3.
  • a circuit of discharge R3, Q1, C1, R1 accelerates the discharge of the capacitor C3 when the voltage across said capacitor C3 is fallout near the MOSFET cut-off voltage U $ 1.
  • a measurement circuit R3, R7 monitors the evolution of the voltage at terminals TP1, TP2 of device 1 and a circuit protection R6 protects the MOSFET U $ 1 against overvoltages.
  • the transistor Q1 is then in a conduction state imposed by the resistor R3, and V CE ⁇ 0 Volt.
  • Capacitors C3 and C1 are not charged since resistance R1 puts them to ground.
  • the potential of trigger of MOSFET U $ 1 is at zero and this last therefore behaves like an open circuit.
  • V 12 rises. If it goes up because of a parasitic pulse on the line, i.e. because of a very short duration pulse and therefore harmless for the protected element, the voltage across the capacitor C2 does not reach normally not the switching threshold V BO of D4. However, if it rises quickly to a value greater than V BO , for example in the event of a disturbance on the line, the voltage across C2 reaches the switching threshold of D4, i.e. V BO , after a delay fixed by a RC circuit (composed of resistor R4 and capacitor C2).
  • D4 switches to passing mode.
  • a impulse current flows through the transfer circuit comprising the current limiting resistor R5 and the diac D4, to capacitor C3 of the control circuit.
  • the impulse current charge C3 as well as C1 via Q1 which is always in saturation. This current will cease to exist as soon as the voltage of D4 will have returned below a value determined by the type of diac used.
  • C2 discharges in R5 since the diode D1 prevents any return to the energy source.
  • the voltage across C3 can reach the value of the control voltage of the MOSFET U $ 1, which will switch to the conduction state and thus function as a branch circuit.
  • the internal resistance R DSon of the MOSFET U $ 1 is only a few milliohms.
  • the voltage V 12 is then only worth a few millivolts.
  • Q1 will then be blocked since R3 will impose a few millivolts at its base (via the MOSFET U $ 1).
  • the switching of Q1 is obviously favored by the charge of C1.
  • the MOSFET U $ 1 presents in this conduction state a resistance R Dson which can, according to the current properties of these elements, go down to approximately 7 milliohms, which constitutes practically the conditions of a perfect short-circuit.
  • the conduction state of MOSFET U $ 1 will last as long that the voltage across C3 will remain greater than the MOSFET control voltage U $ 1.
  • C3 will discharge by its own leakage current, that of the GS capacity of the MOSFET U $ 1 and the minority current of Q1.
  • the duration maximum conduction is therefore determined by the values of C1 and C3, but also by the values of the parameters internal components.
  • the capacitor C3 In the absence of a discharge circuit, the capacitor C3 would discharge very slowly, and the voltage between the source S and the trigger G of the MOSFET U $ 1 would remain for a long time around the cut-off voltage of this MOSFET U $ 1. In the vicinity of this cut-off voltage, it has an increasing resistance and would therefore dissipate an unbearable RI 2 power for MOSFETs without a radiator. However, it is important to avoid any problem of overheating.
  • R3 and Q1 which together form the discharge circuit of the device 1 of the invention, makes it possible to reduce the switching time of the MOSFET U $ 1 by accelerating the discharge of C3 as soon as the drain-source voltage of said MOSFET U $ 1 becomes greater than a threshold set by the user.
  • P max is fixed by the choice of the MOSFET U $ 1 and its box, or U max is fixed by the choice of a resistor R7, which then forms part of a measurement circuit by forming a divider with the resistor R3.
  • the presence of R7 is not compulsory for the operation of the device 1.
  • the presence of the resistance R7 considerably reduces the rate of RFI (which was already greatly reduced compared to the of RFI in the device as described in EP-B1-0 284 592). Thanks to the use of the resistor R7, we can thus align with the EMC compatibility standards.
  • capacitor C1 mounted in parallel with resistance R1 is not compulsory either for the operation of the device 1, but it accelerates the behavior of transistor Q1.
  • the device 1 resumes its state of initial non-conduction. If the fault persists, the cycle start again.
  • the protection circuit R6 is intended, if necessary, to protect the MOSFET U $ 1 against overvoltages during the switching of the device 1, if the voltage V 12 is greater than the maximum voltage that the MOSFET can support.
  • R6 according to the requirements required a VDR, a MOV, an MLV, two Zener diodes in opposition, or any other element which can protect the said MOSFET U $ 1 against overvoltages by eliminating the voltages beyond d '' a limit voltage chosen by the user (depending on the protection element).
  • MOSFET U $ 1 is also protected against control overvoltages by a Zener D3 diode mounted between its second power terminal S and its trigger G.
  • the device 1 of the invention it is possible trigger a short circuit in a very short time, without unacceptable heating and avoiding the phenomenon oscillation that would appear if we used conventionally a battery to control the MOSFET U $ 1 and a comparator to measure the voltage at terminals TP1, TP2.
  • the non-polarized device 2 is a form specially designed for use in alternating current. This form of execution provides obviously greater flexibility of use (no polarity needed), and has essentially the same behavior that the polarized device 1 represented in FIG. 1. However, the device 2 can also be used in direct current.
  • the power semiconductors used are U $ 1, U $ 2 enrichment MOSFETs and device 2 therefore operates as a normally open circuit.
  • the resistor R7 of the device 2 has the function of a measuring circuit, like the resistor R7 of the device 1. It forms a divider with the resistor R9 or with the resistor R3, depending on the polarity of the voltage V 12 .
  • the protection circuit R6 has a function similar to that of R6 in device 1 and protects the MOSFET U $ 1 and U $ 2 against overvoltage. The same types elements can be used.
  • a device is schematically represented non-polarized 2. If applicable, a polarized device 1 can also be used if the fixture is supplied with direct current.
  • a choke is mounted between the first terminal of power D of the power semiconductor U $ 1 and the terminal upstream TP1 of the device 1, it behaves like a switch normally closed and requires a pulse tension to open. The self ensures that the control circuit will capture the energy of the pulse.
  • a device 2 is mounted in parallel on each elements L1, L2, L3, L4 (for example lamps). Yes element L1 slams, its device 2 short-circuits it and the current I continues to supply the other elements L2, L3, L4 intact. This means that the supply voltage will be divided between the other elements L2, L3, L4 of the assembly series, and that each element L2, L3, L4 will receive at its terminals higher tension. This is why the use of a device 1 or 2 in such an arrangement will make it necessary the use of current regulation I.
  • the voltage V 12 at the terminals of the device 2 does not exceed 70 Volts.
  • the short circuit is established after approximately 30 ⁇ s after the breakdown. This short circuit lasts at least 3 minutes.
  • the devices according to the invention 1 or 2 can occupy a volume of less than 1 cm 3 in most cases.
  • the invention is in no way limited to devices comprising particular components mentioned above; any other well chosen component can to be used. The results obtained can still be improved by choosing other parameters for described components or other components.
  • a device 1 or 2 of the invention can protect an entire installation against overvoltages (figure 6): just insert it in parallel with the circuit to be protected 3, between fuse 4 and this circuit 3.
  • a device 1 or 2 in this application, you can also condition to work in direct current, mount a device 1 or 2 according to the invention on the basis or the trigger of a semiconductor element 10, 11 of triac type, thyristor or MOSFET ( Figures 7 and 8).
  • the device 1 or 2 works like a circuit normally open. The whole is then mounted in parallel on the circuit 3 to protect and operates as an automatic circuit breaker.
  • a deflection resistor R20, R21 is connected between the base or trigger of semiconductor element 10 or 11 and its collector or its drain if necessary, to plan a deflection path when the device 1 is engaged. When the overvoltage has disappeared, circuit 3 will be reset automatically after the delay provided in device 1.
  • the devices according to the invention can also allow a circuit 5 to be started remotely by sending a pulse (FIG. 9).
  • the device 2 is connected in series between the power source U and the circuit to be controlled 5.
  • the source U must send a pulse which, in addition to U, will exceed the threshold V BO of the device 2, thus causing it to switch over to a short circuit. This will allow the supply of circuit 5 by the source U.
  • FIG. 10 illustrates different circuits 6, 7, 8, connected in series respectively with the devices according to the invention 2a, 2b, 2c, and connected in parallel.
  • the circuit 6 can be started for example by a pulse V 1 of duration T 1 , the circuit 7 by a pulse V 2 of duration T 2 and the circuit 8 by a pulse V 3 of duration T 3 .
  • One or more of said circuits 6, 7, 8 can be selectively activated by a very precise pulse.
  • Each of the devices 2a, 2b, 2c must be designed to operate as a short circuit for a time corresponding to the duration of the impulse required to engage circuit 6, 7, 8 connected in series. For example, for the assembly of FIG.
  • the device 2a could be engaged with a voltage V1 of 25 Volts with a duration T1 of 10 ⁇ s, the device 2b with a voltage V2 of 40 Volts with a duration T2 of 5 ⁇ s and device 2c with a voltage V3 of 15 Volts with a duration T3 of 30 ⁇ s.
  • the diac D4 can be replaced by any component having a section of curve UI with a negative slope, such as for example a gas tube, a pair of avalanche diodes in opposition, a pair of Zener diodes in opposition, a deep-freezer, a UJT device, VDR, MOV, MLV, one of the previous elements associated with a MOSFET (which greatly reduces switching times), or a device like the one presented in one of FIGS. 1 or 2, made for very low powers and very short times.
  • any component having a section of curve UI with a negative slope such as for example a gas tube, a pair of avalanche diodes in opposition, a pair of Zener diodes in opposition, a deep-freezer, a UJT device, VDR, MOV, MLV, one of the previous elements associated with a MOSFET (which greatly reduces switching times), or a device like the one presented in one of FIGS. 1 or 2, made for very low powers and very short times.

Landscapes

  • Electronic Switches (AREA)

Description

La présente invention concerne des dispositifs électroniques pouvant être actionnés par une impulsion de tension. Ces dispositifs peuvent fonctionner en régime de courant continu ou alternatif. Chaque dispositif peut être utilisé comme un shunt monté en parallèle sur des éléments d'un montage série, et permettre de maintenir le courant de ligne dans ce montage en cas de défaillance d'un de ces éléments. Par "montage", on comprendra un dispositif consistant en un montage. Il peut aussi être monté en parallèle sur des éléments à protéger contre des surtensions et des surcharges. Il peut être utilisé comme disjoncteur ou interrupteur automatique. Une autre application possible est de le monter en série avec un circuit éloigné à mettre en route par l'envoi d'une impulsion. Il peut être utilisé comme interrupteur commandable à distance de manière simple ou sélective.
Dans le domaine des shunts montés en parallèle sur chaque élément d'un montage série, on connaít par exemple le montage à semi-conducteurs décrit dans GB-A-1 095 673.
On connaít aussi, par le brevet EP-B1-0 284 592, un dispositif utilisé avec du courant alternatif, permettant le rétablissement du courant dans la ligne en cas de claquage d'un ou de plusieurs éléments faisant partie d'un montage en série (par exemple des lampes halogènes). Ce dispositif consiste en un circuit qui comporte un montage à semi-conducteur, en pratique un triac, dont la première et la deuxième borne sont reliées respectivement en amont et en aval de l'élément sur lequel le dit dispositif est monté.
Ce montage à semi-conducteur est enclenché dès que la tension à ses bornes devient supérieure à un seuil de tension préalablement fixé entre sa gâchette et la deuxième borne. Le seuil de tension est fixé au moyen d'un circuit constitué d'une part d'un diac et d'autre part d'un circuit RC et de deux diodes Zener montées tête-bêche. Celles-ci sont raccordées respectivement à la première et à la deuxième borne par l'intermédiaire d'une résistance de limitation de courant. Le circuit RC est raccordé à la première borne et au noeud entre la résistance de limitation de courant et les diodes Zener. Le diac est raccordé entre la gâchette et le noeud entre la résistance et le condensateur du circuit RC.
Ce montage reste enclenché tant que le courant reste supérieur à une valeur minimum appelée courant de maintien.
Deux problèmes principaux se présentent en pratique lors de l'utilisation d'un dispositif tel que celui décrit dans le brevet EP-B1-0 284 592.
D'une part, il peut subir un échauffement très important. Ce phénomène est lié à l'utilisation d'un triac. Lorsque le dispositif est utilisé avec le courant alternatif disponible sur le réseau (50 Hz), il est désamorcé chaque fois que le courant passe par zéro (c'est-à-dire 100 fois par seconde). Ceci implique une interruption non négligeable du courant pendant quelque millisecondes à chaque passage par zéro. Cette commutation systématique et automatique contribue à l'échauffement du dispositif, alors que celui-ci dissipait déjà l'inévitable P = I x Vs, Vs étant la tension de seuil du dispositif qui, pour tout élément de ce type atteint au moins 0.7 Volts.
Pour remédier au problème de l'échauffement, on peut utiliser un radiateur, afin de dissiper la chaleur produite. La présence du radiateur augmente les dimensions du dispositif et empêche donc son intégration dans un volume réduit. Elle rend également son raccordement à la terre indispensable, ce qui augmente le coût.
Cette solution n'est en outre pas satisfaisante car la présence du radiateur ne parvient pas à empêcher totalement l'élévation de température du dispositif pendant son utilisation. On observe en effet une élévation équivalente à 12°C par ampère que celui-ci contrôle, ce qui, en pratique, limite la température ambiante d'utilisation à 45°C et impose donc l'éloignement du dispositif de tout générateur de chaleur (par exemple une lampe). Il ne faut pas ignorer que la température au culot d'une lampe peut atteindre 250°C.
D'autre part, la commutation périodique du triac engendre des parasites incompatibles avec les normes de compatibilité électro-magnétique (EMC) actuelles et a fortiori à venir.
De plus, l'apparition d'un parasite sur la ligne peut provoquer l'amorçage accidentel d'un dispositif, lequel engendre donc d'autres parasites susceptibles à leur tour d'amorcer d'autres dispositifs. Dans de telles circonstances, les parasites s'entretiennent mutuellement, ce qui nuit à l'ensemble du montage.
Enfin, la sensibilité du dispositif aux parasites augmente avec la température, ce qui en rend les performances aléatoires.
En pratique, le dispositif décrit dans EP-B1-0 284 592 n'est utilisé que dans l'application décrite dans ce document.
Il existe un besoin pour un shunt adaptable sans surcoût aux normes en matière de compatibilité électro-magnétique (EMC), qui soit d'une taille la plus petite possible, qui puisse être encastré, qui ne doive pas nécessairement être raccordé à la terre, qui dissipe peu ou pas de chaleur et qui accepte une température ambiante de fonctionnement pouvant aller jusqu'à 100°C.
L'objet de la présente invention répond à toutes ces exigences. En outre, grâce à ses qualités, chaque dispositif selon l'invention peut être utilisé avantageusement non seulement comme shunt mais dans plusieurs autres applications.
La présente invention a pour objet un dispositif électronique pour courant continu, appelé ci dessous "dispositif polarisé". Il comprend une première borne en amont et une seconde borne en aval.
L'invention a également pour objet un dispositif électronique qui n'est pas polarisé, et qui peut donc être utilisé en courant alternatif ou en courant continu. Ce dispositif est appelé ci dessous "dispositif non-polarisé". Il comporte également une première et une seconde borne.
Un dispositif suivant l'invention, polarisé ou non-polarisé, peut avoir deux comportements différents: soit il est normalement ouvert, soit il est normalement fermé. Un dispositif normalement ouvert ne laisse passer le courant qu'après avoir reçu à ses bornes une impulsion de tension. Un dispositif normalement fermé présente un comportement inverse.
Le type de comportement du dispositif est déterminé par le choix de certains de ses éléments.
Lorsque, dans la description qui suit, il est fait simplement référence à un dispositif suivant l'invention, il peut s'agir d'un dispositif polarisé ou non-polarisé, présentant un comportement "normalement ouvert" ou "normalement fermé".
Lorsqu'une impulsion de tension, provenant d'une ligne sur laquelle un dispositif est branché et atteignant au moins un seuil V prédéfini pendant une durée prédéfinie, est reçue aux bornes de ce dispositif, celui-ci s'enclenche.
Les dispositifs électroniques suivant l'invention comportent les blocs suivants: un circuit de dérivation à semi-conducteur de puissance, un circuit d'accumulation, un circuit de transfert, un circuit de commande de semi-conducteur de puissance et un circuit de décharge.
Le dispositif électronique pour courant continu selon l'invention ("dispositif polarisé") comprend:
  • un circuit de dérivation comprenant un semi-conducteur de puissance ayant une première borne de puissance reliée à la première borne en amont du dispositif, une seconde borne de puissance reliée à la seconde borne en aval du dispositif, et une borne de commande,
  • un circuit d'accumulation pour accumuler l'énergie de l'impulsion de tension quand elle est reçue aux bornes du dispositif,
  • un circuit de transfert, comprenant un composant présentant un tronçon de courbe U-I à pente négative et un seuil de déclenchement VBO inférieur au seuil V prédéfini atteint par l'impulsion de tension, ce composant permettant le transfert de l'énergie accumulée lorsque le seuil de déclenchement VBO est atteint,
  • un circuit de commande de semi-conducteur de puissance comprenant un condensateur dont les bornes sont reliées respectivement à la borne de commande et à la seconde borne de puissance du semi-conducteur de puissance du circuit de dérivation, la tension aux bornes de ce circuit de commande atteignant, grâce à l'énergie transférée du circuit d'accumulation, une valeur suffisante pour permettre la commande du basculement du semi-conducteur de puissance , et
  • un circuit de décharge pour accélérer la décharge du condensateur du circuit de commande lorsque la tension aux bornes de ce circuit de commande n'est plus suffisante pour maintenir l'état du semi-conducteur de puissance après basculement.
Le dispositif électronique pour courant alternatif ou courant continu selon l'invention ("dispositif non-polarisé") comprend:
  • un circuit de dérivation comportant deux semi-conducteurs de puissance, l'un de ces semi-conducteurs de puissance ayant sa première borne de puissance reliée à la première borne du dispositif, l'autre semi-conducteur de puissance ayant sa première borne de puissance reliée à la seconde borne du dispositif, les deux semi-conducteurs de puissance ayant en commun leur seconde borne de puissance et leur borne de commande,
  • un circuit d'accumulation pour accumuler l'énergie de l'impulsion de tension quand elle est reçue aux bornes du dispositif,
  • un circuit de transfert comprenant un composant présentant un tronçon de courbe U-I à pente négative et un seuil de déclenchement VBO inférieur au seuil V prédéfini atteint par l'impulsion de tension, ce composant permettant le transfert de l'énergie accumulée lorsque le seuil de déclenchement VBO est atteint,
  • un circuit de commande des semi-conducteurs de puissance comprenant un condensateur dont les bornes sont reliées respectivement aux bornes de commande et aux secondes bornes de puissance des semi-conducteurs de puissance du circuit de dérivation, la tension aux bornes de ce circuit de commande atteignant, grâce à l'énergie transférée du circuit d'accumulation, une valeur suffisante pour permettre la commande du basculement d'au moins un semi-conducteur de puissance, et
  • un circuit de décharge pour accélérer la décharge du condensateur du circuit de commande lorsque la tension aux bornes de ce circuit de commande n'est plus suffisante pour maintenir l'état des semi-conducteurs de puissance après basculement.
Dans le cas d'un dispositif polarisé, le semi-conducteur de puissance du circuit de dérivation peut être choisi parmi les FET (Field Effect Transistors), les transistors bipolaires, les IGBT (Insulated Gate Bipolar Transistors), les MCT (Metal Oxide Semiconductor Controlled Thyristors), les triacs ou les thyristors.
Dans le cas d'un dispositif non-polarisé, les semi-conducteurs de puissance du circuit de dérivation peuvent être choisis parmi les FET, les transistors bipolaires pourvus d'une diode, les IGBT, les MCT, les triacs ou les thyristors pourvus d'une diode.
Pour l'un et l'autre dispositif, lorsque le(s) semi-conducteur(s) de puissance est (sont) un (des) FET, celui-ci (ceux-ci) peut (peuvent) être choisi(s) parmi les FET à enrichissement et les FET à appauvrissement.
L'utilisation, dans un dispositif selon l'invention, de FET à enrichissement confère à ce dispositif un comportement de circuit "normalement ouvert". De même, L'utilisation, dans un dispositif selon l'invention, de FET à appauvrissement confère à ce dispositif un comportement de circuit "normalement fermé".
Les FET utilisés peuvent être choisis parmi les MOSFET (Metal Oxide Semiconductor Field Effect Transistors), les VFET (Vertical MOSFET), les DFET (Double-diffused MOSFET), les JFET (Junction FET).
Comme DFET à appauvrissement, on peut par exemple utiliser les LND1 et DN25 fabriqués par la société SUPERTEX.
Dans le cas d'un dispositif polarisé, le circuit de décharge comporte avantageusement un transistor ayant une résistance montée entre sa base et la première borne en amont du dispositif.
Dans le cas d'un dispositif non-polarisé, le circuit de décharge comporte un transistor ayant une résistance montée entre sa base et la première borne du dispositif et une résistance montée entre sa base et la deuxième borne du dispositif.
Le circuit de décharge d'un dispositif peut comporter en outre un circuit RC monté en réaction d'émetteur du transistor, ce circuit RC comprenant une résistance montée en parallèle avec un condensateur.
Dans les dispositifs selon l'invention, le condensateur du circuit de commande peut être un condensateur d'au moins 1µF. Dans ce cas, le temps pendant lequel l'état du semi-conducteur de puissance est maintenu après son basculement peut atteindre plusieurs minutes. En particulier, dans les cas où on utilise un condensateur de plusieurs µF, ce temps peut atteindre plusieurs dizaines de minutes.
Le condensateur du circuit de commande peut aussi faire partie intégrante du semi-conducteur de puissance, et dans ce cas, le temps en question est généralement de quelques millisecondes.
Dans un mode d'exécution avantageux, le circuit de commande du (des) semi-conducteur(s) de puissance comporte en outre une résistance en parallèle sur le condensateur. Cette résistance permet de régler la durée du maintien de l'état du (des) semi-conducteur(s) de puissance après leur basculement, parce qu'elle augmente la vitesse de la décharge du condensateur du circuit de commande.
Le circuit d'accumulation d'un dispositif selon l'invention peut comporter un circuit RC comprenant une résistance de limitation de courant et un condensateur montés en série ainsi qu'au moins une diode pour empêcher la décharge du circuit d'accumulation vers la ligne sur laquelle le dispositif est monté.
Dans ce cas, le circuit d'accumulation peut comporter en outre une résistance de décharge en parallèle sur son condensateur.
Cette résistance de décharge permet d'éviter la mise en route accidentelle du dispositif de l'invention lors de l'apparition d'impulsions de tension successives atteignant chacune au moins le seuil V prédéfini mais pendant une durée inférieure à la durée prédéfinie.
Le circuit de transfert d'un dispositif selon l'invention comprend un composant présentant un tronçon de courbe U-I à pente négative et un seuil de déclenchement VBO inférieur au seuil V prédéfini atteint par l'impulsion de tension. Ce composant permet le transfert de l'énergie accumulée dans le circuit d'accumulation lorsque le seuil de déclenchement VBO est atteint. Le seuil V prédéfini n'est corrélé au seuil VBO que pour sa valeur minimale. On peut prévoir un seuil V plus haut en ajoutant une résistance en série avec le condensateur du circuit d'accumulation.
Le composant du circuit de transfert des dispositifs selon l'invention qui présente un tronçon de courbe U-I à pente négative est un élément choisi parmi les semi-conducteurs de type diac, les paires de diodes Zener en opposition, les tubes à gaz, les paires de diodes avalanches en opposition, les surgectors, les dispositifs à UJT (Unijunction Transistors), les VDR (Voltage Dependent Resistors), les MOV (Metal Oxide Varistors), les MLV (Multilayer Varistor), un des éléments précédents associé à un MOSFET.
Lorsque le composant présentant un tronçon de courbe U-I à pente négative est un des éléments cités ci-dessus, il ne supporte souvent pas plus que 30 Volts.
Il est donc souhaitable, dans certains cas, d'augmenter la valeur de la résistance de limitation de courant du circuit RC du circuit d'accumulation. Ceci a pour conséquence une diminution de la rapidité de réaction du dispositif.
Le dispositif de l'invention, qui présente les caractéristiques d'un diac, peut être utilisé comme un composant présentant un tronçon de courbe U-I à pente négative du circuit de transfert.
Le dispositif obtenu de cette manière permet un temps de réaction rapide même avec des tensions importantes.
Outre les cinq circuits mentionnés ci-dessus, les dispositifs de l'invention peuvent comprendre un circuit de mesure raccordé entre les deux bornes du dispositif pour contrôler l'évolution de la tension aux dites bornes. La présence de ce circuit de mesure permet d'atteindre la compatibilité du dispositif avec les normes EMC.
Un circuit de protection peut être raccordé entre les deux bornes du dit dispositif électronique pour protéger les semi-conducteurs de puissance contre les surtensions pendant leur basculement. Le circuit de protection peut comporter un élément choisi parmi les VDR, les MOV, les MLV, les paires de diodes Zener en opposition.
La présente invention a également pour objet des montages dans lesquels un ou plusieurs dispositifs selon l'invention sont utilisés.
Un premier montage est un montage en série d'éléments. Sur chacun d'entre eux un shunt est monté en parallèle, chaque shunt consistant en un dispositif selon l'invention.
Un deuxième montage est le montage en parallèle d'un circuit à protéger et d'un dispositif selon l'invention. Dans ce montage, le dispositif selon l'invention permet la protection du dit circuit contre les surtensions.
Un autre montage possible est le montage en parallèle d'un circuit à protéger et d'un dispositif selon l'invention, ce dispositif permettant la protection du circuit, et étant associé à un élément semi-conducteur. Dans ce cas, l'élément semi-conducteur est choisi parmi les semi-conducteurs de type triac, thyristor ou MOSFET. Dans cette application, le dispositif de l'invention est utilisé comme disjoncteur ou interrupteur automatique réamorçant.
On peut aussi monter en série un circuit à commander à distance et un interrupteur commandable, ledit interrupteur commandable consistant en un dispositif suivant l'invention.
Une autre application possible est le montage d'au moins deux circuits à commander qui sont montés en parallèle et chacun d'eux étant respectivement monté en série avec un dispositif fonctionnant comme interrupteur commandable de manière sélective du circuit avec lequel il est monté en série. Chaque interrupteur commandable est un dispositif selon l'invention. Chaque circuit peut être enclenché via son interrupteur commandable respectif par une impulsion d'une durée et d'une tension prédéterminée pour ledit interrupteur commandable.
D'autres particularités et avantages de l'invention seront décrits pour différents modes de réalisation particuliers, référence étant faite aux dessins annexés, dans lesquels
  • la figure 1 représente un mode d'exécution d'un dispositif polarisé suivant l'invention, qui fonctionne comme un circuit normalement ouvert,
  • la figure 2 représente un mode d'exécution d'un dispositif non-polarisé selon l'invention, qui fonctionne également comme un circuit normalement ouvert,
  • la figure 3 représente d'une manière schématique un montage série à maintien de courant, sur chaque élément duquel un dispositif suivant l'invention est monté en parallèle,
  • la figure 4 représente un graphique montrant l'évolution, en fonction du temps, de la tension aux bornes d'un dispositif suivant l'invention, pendant sa phase de commutation,
  • la figure 5 représente le même type de graphique, dans le cas d'une variante d'exécution,
  • la figure 6 représente d'une manière schématique un montage dans lequel un dispositif suivant l'invention est utilisé en tant que protection d'un circuit contre les surtensions et les surcharges, ce dispositif étant monté en parallèle aux bornes du circuit à protéger,
  • la figure 7 et la figure 8 représentent d'une manière schématique des montages dans lesquels un dispositif suivant l'invention est utilisé en tant que disjoncteur automatique,
  • la figure 9 représente d'une manière schématique un montage dans lequel un dispositif suivant l'invention est utilisé en tant qu'interrupteur commandable à distance, ce dispositif étant monté en série avec le circuit qu'il contrôle,
  • la figure 10 représente d'une manière schématique un montage dans lequel un dispositif suivant l'invention est utilisé en tant qu'interrupteur commandable à distance de manière discriminative, dans lequel des montages tels que celui représenté à la figure 9 sont montés en parallèle.
  • L'objet de l'invention sera d'abord décrit en prenant comme point de départ le schéma de la figure 1 qui représente un dispositif polarisé 1 selon l'invention fonctionnant comme un circuit "normalement ouvert".
    Le circuit de dérivation comporte comme semi-conducteur de puissance un MOSFET U$1 à enrichissement. Un circuit d'accumulation R4, C2, D1 accumule l'énergie de l'impulsion de tension quand elle est reçue aux bornes TP1, TP2 du dispositif 1. Un circuit de transfert R5, D4 transfère l'énergie accumulée dans le circuit d'accumulation R4, C2, D1 vers un circuit de commande du MOSFET, ce circuit de commande comportant un condensateur C3. Un circuit de décharge R3, Q1, C1, R1 accélère la décharge du condensateur C3 lorsque la tension aux bornes du dit condensateur C3 est retombée au voisinage de la tension de coupure du MOSFET U$1. Un circuit de mesure R3, R7 contrôle l'évolution de la tension aux bornes TP1, TP2 du dispositif 1 et un circuit de protection R6 protège le MOSFET U$1 contre les surtensions.
    Considérons une différence de potentiel positive V12 entre les bornes TP1 et TP2 du montage, différence de potentiel qui est normalement inférieure au seuil de déclenchement VBO du diac D4.
    Le transistor Q1 est alors dans un état de conduction imposé par la résistance R3, et VCE ≈ 0 Volt.
    Les condensateurs C3 et C1 ne sont pas chargés puisque la résistance R1 les met à la masse. Le potentiel de gâchette du MOSFET U$1 est à zéro et ce dernier se comporte donc comme un circuit ouvert.
    Supposons que la valeur de la tension V12 monte. Si elle monte à cause d'une impulsion parasite sur la ligne, c'est-à-dire à cause d'une impulsion de très courte durée et donc inoffensive pour l'élément protégé, la tension aux bornes du condensateur C2 n'atteint normalement pas le seuil de commutation VBO de D4. Toutefois, si elle monte rapidement à une valeur supérieure à VBO, par exemple en cas d'une perturbation sur la ligne, la tension aux bornes de C2 atteint le seuil de commutation de D4, soit VBO, après un délai fixé par un circuit RC (composé de la résistance R4 et du condensateur C2).
    A cet instant, D4 commute en mode passant. Un courant impulsionnel passe par le circuit de transfert comportant la résistance de limitation de courant R5 et le diac D4, vers le condensateur C3 du circuit de commande. Le courant impulsionnel charge C3 ainsi que C1 via Q1 qui est toujours en saturation. Ce courant cessera d'exister dès que la tension de D4 sera revenue en dessous d'une valeur déterminée par le type de diac utilisé. Durant ce laps de temps, C2 se décharge dans R5 puisque la diode D1 empêche tout retour vers la source d'énergie.
    Si la charge de C2 est suffisante, la tension aux bornes de C3 peut atteindre la valeur de la tension de commande du MOSFET U$1, lequel basculera en état de conduction et fonctionnera ainsi comme circuit de dérivation. En état de conduction, la résistance interne RDSon du MOSFET U$1 n'est que de quelques milliohms. La tension V12 ne vaut alors que quelques millivolts. Q1 sera alors bloqué puisque R3 imposera quelques millivolts à sa base (via le MOSFET U$1). La commutation de Q1 est évidemment favorisée par la charge de C1.
    Le MOSFET U$1 présente dans cet état de conduction une résistance RDson qui peut, suivant les propriétés actuelles de ces éléments, descendre à environ 7 milliohms, ce qui constitue pratiquement les conditions d'un court-circuit parfait.
    L'état de conduction du MOSFET U$1 durera tant que la tension aux bornes de C3 restera supérieure à la tension de commande du MOSFET U$1. C3 va se décharger par son propre courant de fuite, celui de la capacité GS du MOSFET U$1 et le courant minoritaire de Q1. La durée maximale de conduction est donc déterminée par les valeurs de C1 et C3, mais aussi par les valeurs des paramètres internes des composants choisis.
    En l'absence d'un circuit de décharge, le condensateur C3 se déchargerait très lentement, et la tension entre la source S et la gâchette G du MOSFET U$1 resterait longtemps aux environs de la tension de coupure de ce MOSFET U$1. Au voisinage de cette tension de coupure, celui-ci présente une résistance de plus en plus grande et dissiperait donc une puissance RI2 insupportable pour des MOSFET sans radiateur. Or, il importe d'éviter tout problème d'échauffement.
    La présence de R3 et Q1, qui forment ensemble le circuit de décharge du dispositif 1 de l'invention, permet de réduire le temps de commutation du MOSFET U$1 en accélérant la décharge de C3 dès que la tension drain-source du dit MOSFET U$1 devient supérieure à un seuil fixé par l'utilisateur. Pmax est fixé par le choix du MOSFET U$1 et son boítier, ou Umax est fixé par le choix d'une résistance R7, qui fait alors partie d'un circuit de mesure en formant un diviseur avec la résistance R3. La présence de R7 n'est pas obligatoire pour le fonctionnement du dispositif 1. Outre qu'elle permet de fixer la valeur Umax, la présence de la résistance R7 réduit considérablement le taux de RFI (qui était déjà fort réduit par rapport au taux de RFI dans le dispositif tel que décrit dans EP-B1-0 284 592). Grâce à l'utilisation de la résistance R7, on peut ainsi s'aligner sur les normes de compatibilité EMC.
    La présence du condensateur C1 monté en parallèle avec la résistance R1 n'est pas obligatoire non plus pour le fonctionnement du dispositif 1, mais elle accélère le comportement du transistor Q1.
    On observe bien la réaction positive: si RDson augmente, alors V12 augmente, IR3 augmente et ICQ1 augmente, d'où C3 se décharge plus vite, d'où augmentation de RDSon, la tension VDS augmente rapidement et ainsi de suite.
    Si le défaut ayant fait apparaítre la surtension a disparu, le dispositif 1 reprend son état de non-conduction initial. Si le défaut persiste, le cycle recommence.
    Le circuit de protection R6 est destiné, le cas échéant, à protéger le MOSFET U$1 contre les surtensions pendant la commutation du dispositif 1, si la tension V12 est plus grande que la tension maximale que peut supporter le MOSFET. On choisira pour R6, selon les impératifs requis une VDR, une MOV, une MLV, deux diodes Zener en opposition, ou n'importe quel autre élément qui puisse protéger le dit MOSFET U$1 contre les surtensions en éliminant les tensions au-delà d'une tension limite choisie par l'utilisateur (en fonction de l'élément de protection).
    Le MOSFET U$1 est également protégé contre des surtensions de commande par une diode Zener D3 montée entre sa seconde borne de puissance S et sa gâchette G.
    Grâce au dispositif 1 de l'invention, on peut déclencher un court-circuit en un temps très court, sans échauffement inadmissible et en évitant le phénomène d'oscillation qui apparaítrait si on utilisait classiquement une batterie pour commander le MOSFET U$1 et un comparateur pour mesurer la tension aux bornes TP1, TP2.
    Finalement, la possibilité d'atteindre un maintien du court-circuit pendant plusieurs dizaines de minutes réduit quasiment à zéro le taux de RFI alors que l'immunité aux impulsions parasites se voit augmentée grâce au procédé de commande mis en oeuvre.
    Si des impulsions qui ont une amplitude assez grande pour atteindre le seuil V prédéfini, mais une durée en principe trop courte pour enclencher le dispositif 1, se suivent rapidement, il pourrait arriver que le dispositif 1 soit enclenché quand même, à cause de la charge qui reste sur le condensateur C2. Pour éviter cela, on peut monter une résistance en parallèle sur le condensateur C2, qui le déchargera assez vite pour ne pas avoir de déclenchement accidentel du dispositif 1.
    Le dispositif 2 non-polarisé selon l'invention représenté schématiquement à la figure 2, est une forme d'exécution spécialement prévue pour être utilisée en courant alternatif. Cette forme d'exécution apporte évidemment une plus grande souplesse d'utilisation (pas de polarité nécessaire), et a en substance le même comportement que le dispositif polarisé 1 représenté à la figure 1. Toutefois, le dispositif 2 peut également être utilisé en courant continu.
    Les semi-conducteurs de puissance utilisés sont des MOSFET à enrichissement U$1, U$2, et le dispositif 2 fonctionne donc comme un circuit normalement ouvert.
    La présence des MOSFET U$1 et U$2, des résistances R9 et R3 et des diodes D1 et D2, similaires respectivement à U$1, R3 et D1, permet au dispositif 2 de l'invention de s'enclencher indépendamment de la polarité de l'énergie présente à ses bornes TP1, TP2.
    La résistance R7 du dispositif 2 a la fonction d'un circuit de mesure, comme la résistance R7 du dispositif 1. Elle forme un diviseur avec la résistance R9 ou avec la résistance R3, selon la polarité de la tension V12.
    Le circuit de protection R6 a une fonction analogue à celle de R6 dans le dispositif 1 et protège les MOSFET U$1 et U$2 contre les surtensions. Les mêmes types d'éléments peuvent être utilisés.
    Dans les figures qui représentent différents montages dans lesquels un dispositif selon l'invention peut être utilisé, on a représenté schématiquement un dispositif non-polarisé 2. Le cas échéant, un dispositif polarisé 1 peut également être utilisé si le montage est alimenté en courant continu.
    Dans la description qui précède, on a expliqué le comportement des dispositifs électroniques 1, 2 pour le cas d'un interrupteur normalement ouvert. L'homme du métier trouvera facilement des montages qui se comportent comme un interrupteur normalement fermé, par exemple en utilisant comme semi-conducteurs de puissance U$1, U$2 des MOSFET à appauvrissement.
    Si, dans le cas du dispositif 1 selon l'invention, une self est montée entre la première borne de puissance D du semi-conducteur de puissance U$1 et la borne en amont TP1 du dispositif 1, celui-ci se comporte comme un interrupteur normalement fermé et nécessite une impulsion de tension pour s'ouvrir. La self permet d'assurer que le circuit de commande capturera l'énergie de l'impulsion.
    Dans le cas du montage série illustré par la figure 3, un dispositif 2 est monté en parallèle sur chacun des éléments L1, L2, L3, L4 (par exemple des lampes). Si l'élément L1 claque, son dispositif 2 le court-circuite et le courant I continue à alimenter les autres éléments L2, L3, L4 intacts. Ceci signifie que la tension d'alimentation sera divisée entre les autres éléments L2, L3, L4 du montage série, et que chaque élément L2, L3, L4 recevra à ses bornes une tension plus haute. C'est pourquoi l'utilisation d'un dispositif 1 ou 2 dans un tel montage rendra nécessaire l'usage d'une régulation du courant I.
    Deux exemples concrets de réalisation du dispositif 2 suivant l'invention, obtenus avec des composants courants sur le marché (c'est-à-dire à faible coût), sont donnés ci dessous:
    Exemple 1
    Il s'agit d'un circuit série de 10 lampes de 50 Watts, alimenté par un régulateur de courant fixé à 4,16 Ampères. Un dispositif 2 suivant l'invention dont les caractéristiques figurent dans le tableau ci dessous est monté sur chaque lampe, comme illustré à la figure 3. Une lampe a claqué.
    Symbole Valeur ou type
    Résistances R1 33 Ω
    R3 3.9 kΩ
    R4 33 Ω
    R5 33 Ω
    R6 Varistor 39 V
    R7
    R9 3.9 kΩ
    Condensateurs C1 10 nF
    C2 1 µF
    C3 1 µF
    Transistor Q1 2N2222
    MOSFETs U$1 RFP50N06
    U$2 RFP50N06
    Diodes D1 1N4148
    D2 1N4148
    D3 1N4148
    Diac D4 BR100 (VBO = 34 V)
    Avec ces valeurs, la tension V12 aux bornes du dispositif 2 ne dépasse pas 70 Volts. Comme on le voit à la figure 4, le court-circuit s'établit après environ 30 µs après le claquage. Ce court-circuit dure au moins pendant 3 minutes.
    Exemple 2
    Le circuit et les valeurs de types d'éléments sont identiques à ceux de l'exemple 1, mais R4 = 16 Ω. Dans ce cas, le court-circuit s'établit en 17 µs (voir figure 5).
    On atteint avec les composants mentionnés aux exemples 1 et 2 des élévations de température inférieures à 1,2°C par ampère contrôlé. On peut descendre facilement, par un choix judicieux des composants, à moins de 0,4°C/A. On observe un échauffement plus de dix fois inférieur à celui obtenu par tous les autres dispositifs connus, qui autorise donc l'absence de refroidisseur sans aucun risque de surchauffe, tout en permettant l'emploi d'un dispositif suivant l'invention dans un environnement à température élevée.
    Les dispositifs suivant l'invention 1 ou 2 peuvent occuper un volume inférieur à 1 cm3 dans la plupart des cas.
    L'invention n'est nullement limitée à des dispositifs comprenant les composants particuliers mentionnés ci-dessus; tout autre composant bien choisi peut être utilisé. Les résultats obtenus peuvent être encore améliorés en choisissant d'autres paramètres pour les composants décrits ou d'autres composants.
    En tant que disjoncteur automatique réamorçant ultra-rapide, un dispositif 1 ou 2 de l'invention peut protéger toute une installation contre des surtensions (figure 6): il suffit de l'insérer en parallèle avec le circuit à protéger 3, entre le fusible 4 et ce circuit 3.
    L'intérêt de ce type d'utilisation des dispositifs de l'invention est très grand vu l'importance et la fréquence des surtensions sur les réseaux.
    Dans cette application, on peut également, à condition de travailler en courant continu, monter un dispositif 1 ou 2 suivant l'invention sur la base ou la gâchette d'un élément semi-conducteur 10, 11 de type triac, thyristor ou MOSFET (figures 7 et 8). Dans ce cas, le dispositif 1 ou 2 fonctionne comme un circuit normalement ouvert. Le tout est alors monté en parallèle sur le circuit 3 à protéger et fonctionne comme un disjoncteur automatique. Une résistance de déviation R20, R21 est connectée entre la base ou la gâchette de l'élément semi-conducteur 10 ou 11 et son collecteur ou son drain le cas échéant, pour prévoir un chemin de déviation quand le dispositif 1 est enclenché. Quand la surtension aura disparu, le circuit 3 sera réamorcé automatiquement après le délai prévu dans le dispositif 1.
    En tant qu'interrupteur, les dispositifs selon l'invention peuvent également permettre la mise en route à distance d'un circuit 5 par l'envoi d'une impulsion (figure 9). Dans ce cas, le dispositif 2 est raccordé en série entre la source d'alimentation U et le circuit à contrôler 5. La source U devra envoyer une impulsion qui, en s'ajoutant à U, dépassera le seuil VBO du dispositif 2, provoquant ainsi son basculement en court-circuit. Cela permettra ainsi l'alimentation du circuit 5 par la source U.
    La figure 10 illustre différents circuits 6, 7, 8, montés en série respectivement avec les dispositifs selon l'invention 2a, 2b, 2c, et raccordés en parallèle. Le circuit 6 peut être enclenché par exemple par une impulsion V1 de durée T1, le circuit 7 par une impulsion V2 de durée T2 et le circuit 8 par une impulsion V3 de durée T3. On peut enclencher de façon sélective par une impulsion bien précise un ou plusieurs des dits circuits 6, 7, 8. Chacun des dispositifs 2a, 2b, 2c doit être conçu pour fonctionner comme court-circuit pendant un temps correspondant à la durée de l'impulsion nécessaire pour enclencher le circuit 6, 7, 8 raccordé en série. Par exemple pour le montage de la figure 10, le dispositif 2a pourrait s'enclencher avec une tension V1 de 25 Volts avec une durée T1 de 10 µs, le dispositif 2b avec une tension V2 de 40 Volts avec une durée T2 de 5 µs et le dispositif 2c avec une tension V3 de 15 Volts avec une durée T3 de 30 µs.
    On peut concevoir beaucoup de configurations différentes des dispositifs 1 et 2 suivant l'invention.
    Par le choix des circuits RC R4C2, R1C1, on peut régler les temps de transition de quelques microsecondes à plusieurs millisecondes. Ainsi, on peut s'aligner sur les normes EMC ,car en réglant le temps de commutation, on choisit le taux de RFI. Dans la mesure où on utilise un dispositif fonctionnant comme un circuit normalement ouvert, on dispose d'un dispositif très performant tout en respectant les normes de sécurité (car on impose 0 Volt plutôt qu'un circuit ouvert, ce qui est plus sécurisant).
    On peut choisir le temps pendant lequel le court-circuit se maintient par le choix du rapport C2/C3. Pour des temps de court-circuit très courts, il faut ajouter une résistance en parallèle avec le condensateur C3.
    Par le choix du diac D4 on peut fixer la valeur du seuil VBO. Par ailleurs, on peut remplacer le diac D4 par tout composant présentant un tronçon de courbe U-I à pente négative, comme par exemple une tube à gaz, une paire de diodes avalanches en opposition, une paire de diodes Zener en opposition, un surgector, un dispositif à UJT, une VDR, une MOV, une MLV, un des éléments précédents associé à un MOSFET (ce qui réduit énormément les temps de commutation), ou encore un dispositif comme celui présenté à l'une des figures 1 ou 2, réalisé pour de très faibles puissances et des temps très courts.

    Claims (24)

    1. Dispositif électronique (1), pour courant continu, comprenant une première borne (TP1) en amont et une seconde borne (TP2) en aval, ledit dispositif (1) s'enclenchant lorsqu'une impulsion de tension, atteignant au moins un seuil V prédéfini pendant une durée prédéfinie, provenant d'une ligne sur laquelle ledit dispositif (1) est branché, est reçue auxdites bornes (TP1, TP2), caractérisé en ce qu'il comprend:
      un circuit de dérivation comprenant un semi-conducteur de puissance (U$1) ayant une première borne de puissance (D) reliée à la première borne (TP1) en amont du dispositif (1), une seconde borne de puissance (S) reliée à la seconde borne (TP2) en aval du dispositif (1), et une borne de commande (G),
      un circuit d'accumulation (R4, C2, D1) pour accumuler l'énergie de l'impulsion de tension quand elle est reçue aux bornes (TP1, TP2) du dispositif (1),
      un circuit de transfert (R5, D4), comprenant un composant (D4) présentant un tronçon de courbe U-I à pente négative et un seuil de déclenchement VBO inférieur au seuil V prédéfini atteint par l'impulsion de tension, ce composant (D4) permettant le transfert de l'énergie accumulée lorsque le seuil de déclenchement VBO est atteint,
      un circuit de commande de semi-conducteur de puissance (U$1) comprenant un condensateur (C3) dont les bornes sont reliées respectivement à la borne de commande (G) et à la seconde borne de puissance (S) du semi-conducteur de puissance (U$1) du circuit de dérivation, la tension aux bornes de ce circuit de commande atteignant, grâce à l'énergie transférée du circuit d'accumulation (R4, C2, D1), une valeur suffisante pour permettre la commande du basculement du semi-conducteur de puissance (U$1), et
      un circuit de décharge (R3, Q1) pour accélérer la décharge du condensateur (C3) du circuit de commande lorsque la tension aux bornes de ce circuit de commande n'est plus suffisante pour maintenir l'état du semi-conducteur de puissance (U$1) après basculement.
    2. Dispositif électronique (2), pour courant alternatif ou courant continu, comprenant une première borne (TP1) et une seconde borne (TP2), ledit dispositif (2) s'enclenchant lorsqu'une impulsion de tension, atteignant au moins un seuil V prédéfini pendant une durée prédéfinie, provenant d'une ligne sur laquelle ledit dispositif (2) est branché, est reçue auxdites bornes (TP1, TP2), caractérisé en ce qu'il comprend:
      un circuit de dérivation comportant deux semi-conducteurs de puissance (U$1, U$2), l'un de ces semi-conducteurs de puissance (U$1) ayant sa première borne de puissance (D) reliée à la première borne (TP1) du dispositif (2), l'autre semi-conducteur de puissance (U$2) ayant sa première borne de puissance (D) reliée à la seconde borne (TP2) du dispositif (2), les deux semi-conducteurs de puissance (U$1, U$2) ayant en commun leur seconde borne de puissance (S) et leur borne de commande (G),
      un circuit d'accumulation (R4, C2, D1, D2) pour accumuler l'énergie de l'impulsion de tension quand elle est reçue aux bornes (TP1, TP2) du dispositif (2),
      un circuit de transfert (R5, D4), comprenant un composant (D4) présentant un tronçon de courbe U-I à pente négative et un seuil de déclenchement VBO inférieur au seuil V prédéfini atteint par l'impulsion de tension, ce composant (D4) permettant le transfert de l'énergie accumulée lorsque le seuil de déclenchement VBO est atteint,
      un circuit de commande des semi-conducteurs de puissance (U$1, U$2) comprenant un condensateur (C3) dont les bornes sont reliées respectivement aux bornes de commande (G) et aux secondes bornes de puissance (S) des semi-conducteurs de puissance (U$1, U$2) du circuit de dérivation, la tension aux bornes de ce circuit de commande atteignant, grâce à l'énergie transférée du circuit d'accumulation (R4, C2, D1, D2), une valeur suffisante pour permettre la commande du basculement d'au moins un semi-conducteur de puissance (U$1, U$2), et
      un circuit de décharge (R3, R9, Q1) pour accélérer la décharge du condensateur (C3) du circuit de commande lorsque la tension aux bornes de ce circuit de commande n'est plus suffisante pour maintenir l'état des semi-conducteurs de puissance (U$1, U$2) après basculement.
    3. Dispositif électronique (1) selon la revendication 1, caractérisé en ce que le semi-conducteur de puissance (U$1) du circuit de dérivation peut être choisi parmi les FET (Field Effect Transistors), les transistors bipolaires, les IGBT (Insulated Gate Bipolar Transistors), les MCT (Metal Oxide Semiconductor Controlled Thyristors), les triacs, les thyristors.
    4. Dispositif électronique (2) selon la revendication 2, caractérisé en ce que les semi-conducteurs de puissance (U$1, U$2) du circuit de dérivation peuvent être choisis parmi les FET (Field Effect Transistors), les transistors bipolaires pourvus d'une diode, les IGBT (Insulated Gate Bipolar Transistors), les MCT (Metal Oxide Semiconductor Controlled Thyristors), les triacs, les thyristors pourvus d'une diode.
    5. Dispositif électronique (1 ; 2) selon l'une quelconque des revendications 3 et 4, caractérisé en ce que le(s) FET est (sont) choisi (s) parmi les FET à enrichissement et les FET à appauvrissement.
    6. Dispositif électronique (1 ; 2) selon la revendication 5, caractérisé en ce que le(s) FET est (sont) choisi(s) parmi les MOSFET (Metal Oxide Semiconductor Field Effect Transistors), les VFET (Vertical MOSFET), les DFET (Double-diffused MOSFET), les JFET (Junction FET).
    7. Dispositif électronique (1) selon l'une quelconque des revendications 1, 3, 5 et 6, caractérisé en ce que le circuit de décharge (R3, Q1) comporte un transistor (Q1) ayant une résistance (R3) montée entre sa base et la première borne (TP1) en amont dudit dispositif électronique (1).
    8. Dispositif électronique (2) selon l'une quelconque des revendications 2, 4, 5 et 6, caractérisé en ce que le circuit de décharge (R3, R9, Q1) comporte un transistor (Q1) ayant une résistance (R3) montée entre sa base et la première borne (TP1) dudit dispositif électronique (2), et une résistance (R9) montée entre sa base et la deuxième borne (TP2) dudit dispositif électronique (2).
    9. Dispositif électronique (1 ; 2) selon l'une quelconque des revendications 7 et 8, caractérisé en ce que le circuit de décharge (R3, Q1 ; R3, R9, Q1) comporte en outre un circuit RC monté en réaction d'émetteur du transistor (Q1), ce circuit RC comprenant une résistance (R1) montée en parallèle avec un condensateur (C1).
    10. Dispositif électronique (1 ; 2) selon l'une quelconque des revendications précédentes, caractérisé en ce que le condensateur (C3) du circuit de commande est un condensateur d'au moins 1 µF.
    11. Dispositif électronique (1 ; 2) selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le condensateur (C3) du circuit de commande fait partie intégrante du semi-conducteur de puissance (U$1 ; U$1, U$2).
    12. Dispositif électronique (1 ; 2) selon l'une quelconque des revendications précédentes, caractérisé en ce que le circuit de commande du (des) semi-conducteur(s) de puissance (U$1 ; U$1, U$2) comporte en outre une résistance en parallèle sur son condensateur (C3).
    13. Dispositif électronique (1 ; 2) selon l'une quelconque des revendications précédentes, caractérisé en ce que le circuit d'accumulation (R4, C2, D1 ; R4, C2, D1, D2) comporte un circuit RC comprenant une résistance de limitation de courant (R4) et un condensateur (C2) montés en série ainsi qu'au moins une diode (D1 ; D1, D2) pour empêcher la décharge du circuit d'accumulation (R4, C2, D1 ; R4, C2, D1, D2) vers la ligne sur laquelle le dispositif (1 ; 2) est monté.
    14. Dispositif électronique (1 ; 2) selon la revendication 13, caractérisé en ce que le circuit d'accumulation (R4, C2, D1 ; R4, C2, D1, D2) comporte en outre une résistance de décharge en parallèle sur son condensateur (C2).
    15. Dispositif électronique (1 ; 2) selon l'une quelconque des revendications précédentes, caractérisé en ce que le composant (D4) présentant un tronçon de courbe U-I à pente négative du circuit de transfert (R5, D4) est un élément choisi parmi les semi-conducteurs de type diac, les paires de diodes Zener en opposition, les tubes à gaz, les paires de diodes avalanches en opposition, les surgectors, les dispositifs à UJT (Unijunction Transistors), les VDR (Voltage Dependent Resistors), les MOV (Metal Oxide Varistors), les MLV (Multilayer Varistor), un des éléments précédents associé à un MOSFET.
    16. Dispositif électronique (1 ; 2) selon l'une quelconque des revendications 1 à 14, caractérisé en ce que le composant (D4) présentant un tronçon de courbe U-I à pente négative du circuit de transfert (R5, D4) est un dispositif (1 ; 2) selon l'une quelconque des revendications 1 à 14.
    17. Dispositif électronique (1 ; 2) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un circuit de mesure (R3, R7 ; R3, R7, R9) est raccordé entre les deux bornes (TP1, TP2) dudit dispositif (1 ; 2) pour contrôler l'évolution de la tension auxdites bornes (TP1, TP2).
    18. Dispositif électronique (1 ; 2) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un circuit de protection (R6) est raccordé entre les deux bornes (TP1, TP2) dudit dispositif électronique (1 ; 2) pour protéger les semi-conducteurs de puissance (U$1 ; U$1, U$2) contre les surtensions pendant leur basculement.
    19. Dispositif électronique (1 ; 2) selon la revendication 18, caractérisé en ce que le circuit de protection (R6) comporte un élément choisi parmi les VDR (résistances dépendantes de la tension), Les MOV (Metal Oxide Varistor), les MLV (Multilayer Varistor), les paires de diodes Zener en opposition.
    20. Dispositif consistant en un montage en série d'éléments (L1, L2, L3, L4) sur chacun desquels un shunt est monté en parallèle, caractérisé en ce que chaque shunt consiste en un dispositif (1 ; 2) suivant l'une quelconque des revendications 1 à 19.
    21. Dispositif consistant en un montage en parallèle d'un circuit (3) à protéger et d'un dispositif permettant la protection dudit circuit contre des surtensions, caractérisé en ce que ledit dispositif permettant la protection consiste en un dispositif (1 ; 2) suivant l'une quelconque des revendications 1 à 19.
    22. Dispositif consistant en un montage en parallèle d'un circuit (3) à protéger et d'un dispositif permettant la protection dudit circuit (3), et étant associé à un élément semi-conducteur, caractérisé en ce que ledit dispositif permettant la protection dudit circuit (3) consiste en un dispositif (1; 2) suivant l'une quelconque des revendications 1 à 19, l'élément semi-conducteur étant choisi parmi les semi-conducteurs de type triac, thyristor, MOSFET.
    23. Dispositif consistant en un montage en série d'un circuit (5) à commander à distance avec un interrupteur commandable, caractérisé en ce que ledit interrupteur commandable consiste en un dispositif (1 ; 2) suivant l'une quelconque des revendications 1 à 19.
    24. Dispositif consistant en un montage d'au moins deux circuits (6, 7, 8) à commander, ces circuits (6, 7, 8) étant montés en parallèle et chacun d'eux étant respectivement monté en série avec un dispositif (1a, 1b, 1c ; 2a, 2b, 2c) fonctionnant comme interrupteur commandable de manière sélective du circuit (6, 7, 8) avec lequel il est monté en série, chaque circuit (6, 7, 8) pouvant être enclenché via son interrupteur commandable respectif (1a, 1b, 1c ; 2a, 2b, 2c) par une impulsion d'une durée et d'une tension prédéterminée pour ledit interrupteur commandable, caractérisé en ce que chaque dispositif fonctionnant comme interrupteur commandable consiste en un dispositif (1a, 1b, 1c ; 2a, 2b, 2c) suivant l'une quelconque des revendications 1 à 19.
    EP96931695A 1995-09-29 1996-09-26 Dispositifs electroniques commandables par une impulsion de tension Expired - Lifetime EP0853835B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    BE9500810 1995-09-29
    BE9500810A BE1009634A3 (fr) 1995-09-29 1995-09-29 Dispositifs electroniques commandables par une impulsion de tension.
    PCT/BE1996/000102 WO1997013307A1 (fr) 1995-09-29 1996-09-26 Dispositifs electroniques commandables par une impulsion de tension

    Publications (2)

    Publication Number Publication Date
    EP0853835A1 EP0853835A1 (fr) 1998-07-22
    EP0853835B1 true EP0853835B1 (fr) 2001-01-24

    Family

    ID=3889208

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96931695A Expired - Lifetime EP0853835B1 (fr) 1995-09-29 1996-09-26 Dispositifs electroniques commandables par une impulsion de tension

    Country Status (4)

    Country Link
    EP (1) EP0853835B1 (fr)
    BE (1) BE1009634A3 (fr)
    DE (1) DE69611685D1 (fr)
    WO (1) WO1997013307A1 (fr)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10358447B3 (de) * 2003-12-13 2005-05-25 Insta Elektro Gmbh Beleuchtungseinrichtung

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8242710B2 (en) 2007-07-02 2012-08-14 Koninklijke Philips Electronics N.V. Driver device for a load and method of driving a load with such a driver device
    WO2009013675A1 (fr) * 2007-07-23 2009-01-29 Nxp B.V. Configuration d'interrupteur de dérivation à led auto-alimentée

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    LU86815A1 (fr) * 1987-03-19 1988-11-17 Jacques Mawet Dispositif permettant le retablissement du courant de ligne en cas de claquage d'un ou de pulsieurs elements d'un montage en serie
    DE3806288A1 (de) * 1988-02-27 1989-09-07 Asea Brown Boveri Ueberspannungsschutzeinrichtung fuer eine einspeiseschaltung
    US5333105A (en) * 1993-05-27 1994-07-26 Eaton Corporation Transient voltage protector

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10358447B3 (de) * 2003-12-13 2005-05-25 Insta Elektro Gmbh Beleuchtungseinrichtung

    Also Published As

    Publication number Publication date
    BE1009634A3 (fr) 1997-06-03
    DE69611685D1 (de) 2001-03-01
    WO1997013307A1 (fr) 1997-04-10
    EP0853835A1 (fr) 1998-07-22

    Similar Documents

    Publication Publication Date Title
    FR2663763A1 (fr) Regulateur de puissance a courant alternatif.
    EP1300743B1 (fr) Dispositif de protection d'une source de tension et d'une charge alimentée par la source de tension
    EP1950885B1 (fr) Dispositif de commande d'un interrupteur électronique de puissance et variateur comprenant un tel dispositif.
    FR2567340A1 (fr) Relais a semi-conducteur protege contre les surcharges de courant
    FR2912849A1 (fr) Dispositif de protection contre les surtensions et appareil utilisant un tel dispositif
    FR2748611A1 (fr) Dispositif de coupure a tec de puissance et detection de court-circuit
    EP3070798B1 (fr) Dispositif de protection contre des surtensions
    FR3004019A1 (fr) Composant de protection contre des surtensions
    FR2521791A1 (fr) Interrupteur electronique de courant monte dans un systeme de distribution de courant continu
    FR2873509A1 (fr) Dispositif de protection contre les surtensions a capacite de coupure du courant de fuite ameliore
    EP0284592B1 (fr) Dispositif permettant le rétablissement du courant de ligne en cas de claquage d'un ou de plusieurs éléments d'un montage en série
    EP0744808B1 (fr) Dispositif d'écrêtage
    FR2547133A1 (fr) Circuit destine a prevenir une dissipation excessive d'energie dans les dispositifs commutateurs de puissance
    EP0853835B1 (fr) Dispositifs electroniques commandables par une impulsion de tension
    EP0677907B1 (fr) Dispositif de protection contre les surintensités
    EP0836280B1 (fr) Interrupteur électronique à alimentation deux fils
    EP0146183A1 (fr) Dispositif d'interface pour un poste telephonique
    EP0180487A1 (fr) Circuit de puissance et dispositif de déclenchement le comportant
    FR2733648A1 (fr) Relais statique protege
    EP1998450B1 (fr) Système de commande et de protection d'une sortie d'un équipement d'automatisme
    WO2010086237A1 (fr) Dispositif de commande d'un transistor jfet
    FR2615676A1 (fr) Dispositif de commutation electrique statique limiteur de courant
    EP2198507B1 (fr) Dispositif de commande variable
    EP3664294B1 (fr) Dispositif de protection d'un circuit de servitude, et dispositif de mesure d'un courant dans un circuit électrique mettant en oeuvre un tel dispositif de protection
    WO2010142646A1 (fr) Circuit de protection par fusible de circuit electrique

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19980428

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE DE FR LU NL

    17Q First examination report despatched

    Effective date: 19981001

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE DE FR LU NL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20010124

    REF Corresponds to:

    Ref document number: 69611685

    Country of ref document: DE

    Date of ref document: 20010301

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20010425

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20011002

    Year of fee payment: 6

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020926

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20021112

    Year of fee payment: 7

    BERE Be: lapsed

    Owner name: *VIGNISSE PIERRE

    Effective date: 20030930

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20040331

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050531

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    BERR Be: reestablished

    Owner name: *VIGNISSE PIERRE

    Effective date: 20051220