[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0849529B1 - Tangentiale Brennstoffeintrittsdüse - Google Patents

Tangentiale Brennstoffeintrittsdüse Download PDF

Info

Publication number
EP0849529B1
EP0849529B1 EP19970310463 EP97310463A EP0849529B1 EP 0849529 B1 EP0849529 B1 EP 0849529B1 EP 19970310463 EP19970310463 EP 19970310463 EP 97310463 A EP97310463 A EP 97310463A EP 0849529 B1 EP0849529 B1 EP 0849529B1
Authority
EP
European Patent Office
Prior art keywords
fuel
combustion air
centerbody
cylindrical passage
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19970310463
Other languages
English (en)
French (fr)
Other versions
EP0849529A2 (de
EP0849529A3 (de
Inventor
Timothy S. Snyder
William A. Sowa
Stephen K. Kramer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/771,408 external-priority patent/US5899076A/en
Priority claimed from US08/771,409 external-priority patent/US5896739A/en
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of EP0849529A2 publication Critical patent/EP0849529A2/de
Publication of EP0849529A3 publication Critical patent/EP0849529A3/de
Application granted granted Critical
Publication of EP0849529B1 publication Critical patent/EP0849529B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/30Arrangement of components
    • F05B2250/32Arrangement of components according to their shape
    • F05B2250/322Arrangement of components according to their shape tangential
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • This invention relates to low NOx premix fuel nozzles, and particularly to such nozzles for use in gas turbine engines.
  • NOx nitrous oxides
  • a linear array of orifices located on the outer scroll opposite the inner trailing edge injects fuel into the airflow at each inlet slot from a manifold to produce a uniform fuel air mixture before exiting into the combustor.
  • Further examples of a tangential entry fuel nozzle is shown in WO 96/19699 and WO 95/23316.
  • Premix fuel nozzles of this type have demonstrated low emissions of NOx relative to fuel nozzles of the prior art.
  • the nozzle experienced durability problems related to severe deterioration of the centerbody as a result of attachment of the flame to the centerbody.
  • the operational life of such nozzles when used in gas turbine engines has been limited.
  • What is needed is a method of combustion and a tangential entry nozzle that significantly reduces the tendency of the combustion flame to attach to the centerbody of a tangential entry nozzle, and tends to disgorge the flame if it does attach thereto.
  • the invention provides a method for burning fuel in the combustor of a gas turbine engine, as claimed in claim 1.
  • the invention provides a fuel nozzle as claimed in claim 3.
  • a method of combustion which prevents or reduces the tendency of the combustion flame to stabilise within a tangential entry nozzle is disclosed which comprises mixing fuel and air in a mixing zone within a fuel nozzle assembly, and combusting the mixture downstream of the throat of a combustor inlet port while isolating the combustion products from the mixed fuel and air within the nozzle at all operating conditions of the engine.
  • a tangential air entry fuel nozzle which has a longitudinal axis and two cylindrical-arc scrolls with the centerline of each offset from that of the other. Overlapping ends of these scrolls form an air inlet slot therebetween for the introduction of an air/fuel mixture into the fuel nozzle.
  • a combustor-end endplate has a central opening to permit air and fuel to exit into a combustor, while at the opposite end another endplate blocks the nozzle flow area.
  • the scrolls are secured between these endplates.
  • a frusto-conical centerbody is located between the scrolls coaxial with the axis.
  • the centerbody has a base which includes at least one air supply port extending therethrough, and first and second cylindrical members that have an internal passageway.
  • the frusto-conical member tapers towards, and terminates at a discharge orifice at the passageway of the first cylindrical member.
  • the passageway of the second cylindrical member is located within the frusto-conical member and has a diameter greater than the discharge orifice.
  • a fuel-lance that is coaxial with the axis and extends through the base and terminates within the second passageway provides fuel to the air flow in the centerbody.
  • a low NOx premix fuel nozzle 10 embodying the present invention includes a centerbody 12 within a scroll swirler 14.
  • the scroll swirler 14 includes first and second endplates 16,18, and the first endplate is connected to the centerbody 12 and is in spaced relation to the second endplate 18, which has a combustor inlet port 20 extending therethrough.
  • a plurality, and preferably two, cylindrical-arc scroll members 22, 24 extend from the first endplate 16 to the second endplate 18.
  • the scroll members 22, 24 are spaced uniformly about the longitudinal axis 26 of the nozzle 10 thereby defining a mixing zone 28 therebetween, as shown in Figure 2.
  • Each scroll member 22, 24 has a radially inner surface which faces the longitudinal axis 26 and defines a surface of partial revolution about a centerline 32, 34.
  • surface of partial revolution means a surface generated by rotating a line less than one complete revolution about one of the centerlines 32, 34.
  • Each scroll member 22 is in spaced relation to the other scroll member 24, and the centerline 32, 34 of each of the scroll members 22, 24 is located within the mixing zone 28, as shown in Figure 2.
  • each of the centerlines 32, 34 is parallel, and in spaced relation, to the longitudinal axis 26, and all of the centerlines 32, 34 are located equidistant from the longitudinal axis 26, thereby defining inlet slots 36, 38 extending parallel to the longitudinal axis 26 between each pair of adjacent scroll members 22, 24 for introducing combustion air 40 into the mixing zone 28.
  • Combustion supporting air 42 from the compressor passes through the inlet slots 36, 38 formed by the overlapping ends 44, 50, 48, 46 of the scroll members 22, 24 with offset centerlines 32, 34.
  • Each of the scroll members 22, 24 further includes a fuel conduit 52, 54 for introducing fuel into the combustion air 40 as it is introduced into the mixing zone 28 through one of the inlet slots 36, 38.
  • a first fuel supply line (not shown), which may supply either a liquid or gas fuel, but preferably gas, is connected to each of the fuel conduits 52, 54.
  • the combustor inlet port 20, which is coaxial with the longitudinal axis 26, is located immediately adjacent the combustor 56 to discharge the fuel and combustion air from the present invention into the combustor 56, where combustion of the fuel and air takes place.
  • the centerbody 12 has a base 58 that has at least one, and preferably a plurality, of air supply ports 60, 62 extending therethrough, and the base 58 is perpendicular to the longitudinal axis 26 extending therethrough.
  • the centerbody 12 also has an internal passageway 64 that is coaxial with the longitudinal axis 26 and discharges into the combustor inlet port 20.
  • the air passing through the internal passageway 64 which is preferably co-rotating with the combustion air entering through the inlet slots 36,38 but may be counter-rotating, may or may not be fuelled.
  • the internal passageway 64 includes a first cylindrical passage 66 having a first end 68 and a second end 70, and a second cylindrical passage 72 of greater diameter than the first cylindrical passage 66 and likewise having a first end 74 and a second end 76.
  • the second cylindrical passage 72 communicates with the first cylindrical passage 66 through a tapered passage 78 having a first end 80 that has a diameter equal to the diameter of the first cylindrical passage 66, and a second end 82 that has a diameter equal to the diameter of the second cylindrical passage 72.
  • Each of the passages 66, 72, 78 is coaxial with the longitudinal axis 26, and the first end 80 of the tapered passage 78 is integral with the second end 70 of the first cylindrical passage 66, while the second end 82 of the tapered passage 78 is integral with the first end 74 of the second cylindrical passage 72.
  • the first cylindrical passage 66 includes a discharge orifice 68 that is circular and coaxial with the longitudinal axis 26, and is located at the first end 68 of the first cylindrical passage 66.
  • both fuel and combustion air flow through the centerbody 12
  • the present invention in other embodiments may be used with a centerbody that flows either fuel, combustion air or neither fuel nor air.
  • the radially outer surface 84 of the centerbody 12 includes a frustum portion 86, which defines the outer surface of a frustum that is coaxial with the longitudinal axis 26 and flares toward the base 58, and a curved portion 88 which is integral with the frustum portion 86 and preferably defines a portion of the surface generated by rotating a circle, which is tangent to the frustum portion 86 and has a center which lies radially outward thereof, about the longitudinal axis 26.
  • the frustum portion 86 terminates at the plane within which the discharge orifice 68 is located, the diameter of the base (not to be confused with the base 58 of the centerbody) of the frustum portion 86 is 2.65 times greater than the diameter of the frustum portion 86 at the apex thereof, and the height 90 of the frustum portion 86 (the distance between the plane in which the base of the frustum portion 86 is located and the plane in which the apex of the frustum portion 86 is located) is approximately 1.90 times the diameter of the frustum portion 86 at the base thereof.
  • the curved portion 88 which is located between the base 58 and the frustum portion 86, provides a smooth transitional surface that directs and turns axially combustion air 40 entering the tangential entry nozzle 10 adjacent the base 58.
  • the internal passageway 64 is located radially inward from the radially outer surface 84 of the centerbody 12, the frustum portion 86 is coaxial with the longitudinal axis 26, and the centerbody 12 is connected to the base 58 such that the frustum portion 86 tapers toward, and terminates at the discharge orifice 68 of the first cylindrical passage 66.
  • the base of the frustum portion 86 fits within a circle 92 inscribed in the mixing zone 28 and having its center 94 on the longitudinal axis 26.
  • the curved portion 88 must be cut to fit therein.
  • a ramp portion 96, 98 is left on the curved portion 88 where the curved portion 88 extends into each inlet slot 36, 38, and this portion is machined to form an aerodynamically shaped ramp 96, 98 that directs the air entering the inlet slot 36, 38 away from the base 58 and onto the curved portion 88 within the mixing zone 28.
  • an internal chamber 100 is located within the centerbody 12 between the base 58 and the second end 76 of the second cylindrical passage 72, which terminates at the chamber 100.
  • Air 102 is supplied to the chamber 100 through the air supply ports 60, 62 in the base 58 which communicate therewith, and the chamber 100, in turn, supplies air to the internal passageway 64 through the second end 76 of the second cylindrical passage 72.
  • the first endplate 16 has openings 104, 106 therein that are aligned with the air supply ports 60, 62 of the base 58 so as not to interfere with the flow of combustion air 102 from the compressor of the gas turbine engine.
  • a swirler 108 preferably of the radial inflow type known in the art, is coaxial with the longitudinal axis 26 and is located within the chamber 100 immediately adjacent the second end 76 of the second cylindrical passage 72 such that all air entering the internal passageway 64 from the chamber 100 must pass through the swirler 108.
  • the preferred embodiment also includes a fuel lance 110, which likewise is coaxial with the longitudinal axis 26, extends through the base 58, the chamber 100, and the swirler 108, and into the second cylindrical passage 72 of the internal passageway 64.
  • the larger diameter of the second cylindrical passage 72 accommodates the cross-sectional area of the fuel-lance 110, so that the flow area within the second cylindrical passage 72 is essentially equal to the flow area of the first cylindrical passage 66.
  • a second fuel supply line (not shown), which may supply either a liquid or gas fuel, is connected to the fuel lance 110 to supply fuel to an inner passage 112 within the fuel lance 110.
  • Fuel jets 114 are located in the fuel lance 110, and provide a pathway for fuel to exit from the fuel lance 110 into the internal passageway 64.
  • the combustor inlet port 20 is coaxial with the longitudinal axis 26 and includes a convergent surface 116 and a divergent discharge surface 118, and a throat 117 therebetween.
  • the discharge surface 118 extends to the exit plane 124 of the fuel nozzle and controls the amount of isolation between the premixed fuel and air and the combustion products thereof.
  • the convergent surface 116 and the divergent surface 118 are coaxial with the longitudinal axis 26, and the convergent surface 116 is located between the first endplate 16 and the divergent surface 118.
  • the convergent surface 116 is substantially conical in shape and tapers toward the divergent surface 118.
  • the divergent surface 118 extends between the intermediate or throat plane 120 and the combustor surface 122 of the combustor inlet port 20, which is perpendicular to the longitudinal axis 26, and defines the exit plane 124 of the fuel nozzle 10 of the present invention.
  • the discharge surface may be optimised from cylindrical, convergent or divergent, ie it can be cylindrical, convergent or divergent.
  • the convergent surface 116 terminates at the intermediate, or throat plane 120, where the diameter of the convergent surface 116 is equal to the diameter of the divergent surface 118.
  • the intermediate or throat plane 120 is located between the exit plane 124 and the discharge orifice 68 of the internal passageway 64, and the convergent surface 116 is located between the divergent surface 118 and the first endplate 16.
  • combustion air from the compressor of the gas turbine engine flows through the openings 104, 106 and the air supply ports 60, 62 in the base 58 and into the chamber 100 of the centerbody 12.
  • the combustion air exits the chamber 100 through the radial inflow swirler 108 and enters the internal passageway 64 with a substantial tangential velocity, or swirl, relative to the longitudinal axis 26.
  • this swirling combustion air passes the fuel lance 110, fuel (if the centerbody is fuelled), preferably in gaseous form, is sprayed from the fuel lance 110 into the internal passage 64 and mixes with the swirling combustion air.
  • the mixture of fuel and combustion air then flows from the second cylindrical passage 72 into the first cylindrical passage 66 through the tapered passage 78.
  • the mixture then proceeds down the length of the first cylindrical passage 66, exiting the first cylindrical passage 66 just short of, or at, the throat plane 120 of the combustor inlet port 20, providing a central stream of fuel air mixture.
  • Additional combustion air from the compressor of the gas turbine engine enters the mixing zone 28 through each of the inlet slots 36, 38.
  • Air entering the inlet slots 36, 38 immediately adjacent the base 58 is directed by the ramps 96, 98 onto the curved portion 88 within the mixing zone 28 of the scroll swirler 14.
  • Fuel, preferably gaseous fuel, supplied to the fuel conduits 52, 54 is sprayed into the combustion air passing through the inlet slots 36, 38 and begins mixing therewith. Due to the shape of the scroll members 22, 24, this mixture establishes an annular stream swirling about the centerbody 12, and the fuel/air mixture continues to mix as it swirls thereabout while progressing along the longitudinal axis 26 toward the combustor inlet port 20.
  • the swirl of the annular stream produced by the scroll swirler 14 is preferably co-rotational with the swirl of the fuel/air mixture in the first cylindrical passage 66, and preferably has an angular velocity at least as great as the angular velocity of the fuel/air mixture in the first cylindrical passage 66. Due to the shape of the centerbody 12, the axial velocity of the annular stream is maintained at speeds which prevent the combustor flame from migrating into the scroll swirler 14 and attaching to the outer surface 84 of the centerbody 12.
  • the swirling fuel/air mixture of the central stream is surrounded by the annular stream of the scroll swirler 14, and the two streams enter the throat 117 of the combustor inlet port 20 and flow radially inward of the convergent surface 116 and the divergent surface 118 until reaching the exit plane 124 of the combustion inlet port 20 downstream of the mixing zone 28, and then flowing into the flame zone adjacent the divergent surface 118 of the combustor inlet port 20.
  • the present invention significantly increases useful life of the centerbody 12 by significantly increasing the axial velocity of the fuel/air mixture swirling about the centerbody 12.
  • the increased axial velocity results from the curved portion 88, which prevents air entering the mixing zone 28 through the inlet slots 36, 38 immediately adjacent the base 58 from recirculating with little or no axial velocity, and the frustum portion 86, which maintains the axial velocity of the annular stream at speeds which prevent attachment of a flame to the centerbody 12, and tend to disgorge the flame if it does attach thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Claims (9)

  1. Verfahren zum Verbrennen von Brennstoff in der Brennkammer einer Gasturbinenmaschine mit einem Vormischverbrennungstyp, aufweisend:
    Bereitstellen eines Schneckendrallerzeugers (14) mit einer ersten und einer zweiten Abschlussplatte (16, 18), wobei die erste Abschlussplatte (16) in beabstandeter Relation zu der zweiten Endplatte (18) eine Mischzone (28) dazwischen definiert, wobei die zweite Endplatte (18) eine Brennkammer-Einlassöffnung (20) hat, die sich dort hindurch erstreckt;
    Bereitstellen eines Zentralkörpers (12), der in der Mischzone (28) angeordnet ist und eine radial äußere Oberfläche (84) hat, der sich in Richtung zu der Brennkammer-Einlassöffnung (20) verjüngt und sich im wesentlichen über die gesamte Länge der Mischzone (28) erstreckt;
    Einbringen eines ersten Teils von Verbrennungsluft tangential in die Mischzone (28) im wesentlichen kontinuierlich entlang deren Länge;
    Einbringen eines ersten Teils von Brennstoff in die Verbrennungsluft, wenn die Verbrennungsluft in die Mischzone (28) eingebracht wird;
    Mischen der Verbrennungsluft und des Brennstoffs durch Wirbeln der Verbrennungsluft und des Brennstoffs um den Zentralkörper (12) und dabei Strömenlassen der Verbrennungsluft und des Brennstoffs in Richtung zu dem Brennkammereinlass (20);
    Einbringen eines zweiten Teils von Verbrennungsluft in den ersten Teil von Verbrennungsluft radial innerhalb davon an der Brennkammer-Einlassöffnung (20);
    Einbringen eines zweiten Teil von Verbrennungsluft in den ersten Teil von Verbrennungsluft radial innerhalb davon an der Brenkammer-Einlassöffnung (20), wobei der Schritt des Einbringens des zweiten Teils von Verbrennungsluft in den ersten Teil radial innerhalb davon an dem Brennkammereinlass (20) das Einbringen eines zweiten Teils von Verbrennungsluft in den Zentralkörper (12) aufweist; und
    Verbrennen des Brennstoffs außerhalb der Mischzone, gekennzeichnet durch
    Einbringen eines zweiten Teils von Brennstoff in den zweiten Teil von Verbrennungsluft in den Zentralkörper (12), und
    Mischen des zweiten Teils von Brennstoff in dem zweiten Teil von Verbrennungsluft in dem Zentralkörper (12).
  2. Verfahren nach Anspruch 1, wobei dem Schritt des Einbringens eines zweiten Teils von Verbrennungsluft in den ersten Teil radial innerhalb davon an der Brennkammer-Einlassöffnung (20) der folgende Schritt voran geht:
    Wirbeln des zweiten Teils von Verbrennungsluft in dem Zentralkörper (12) mit einer Winkelgeschwindigkeit, die im wesentlichen gleich der Winkelgeschwindigkeit des ersten Teils ist.
  3. Brennstoffdüsenanordnung zur Verwendung in einer Gasturbinenmaschine, aufweisend einen Zentralkörper (12), aufweisend:
    eine Längsachse (26),
    eine Basis (58), und
    eine radial äußere Oberfläche, die einen Stumpfbereich aufweist, der die äußere Oberfläche eines Stumpfes definiert, der koaxial zur Längsachse ist und sich in Richtung zur Basis aufweitet;
    einen Schneckendrallerzeuger (14) mit einer ersten und einer zweiten Abschlussplatte (16, 18) hat, wobei die erste Abschlussplatte in beabstandeter Relation zu der zweiten Abschlussplatte ist, wobei die zweite Abschlussplatte eine sich durch diese erstreckende Brennkammer-Einlassöffnung (20) hat;
    mindestens zwei zylinderbogenförmige Schneckenelemente (22, 24), wobei jedes Schneckenelement einen Teilrotationskörper um eine Mittellinie (32, 34) definiert, wobei jedes der Schneckenelemente von der ersten Endplatte zu der zweiten Endplatte ragt und gleichförmig um die Achse beabstandet ist, und so eine Mischzone (28) dazwischen definiert, wobei jedes der Schneckenelemente in beabstandeter Relation zu jedem der anderen Schneckenelemente ist, wobei jede der Mittellinien in der Mischzone angeordnet ist, wobei jede der Mittellinien in beabstandeter Relation zu der Achse mit gleichem Abstand von dieser und parallel zu dieser ist, und so Einlassschlitze (36, 38) definiert, die sich parallel zu der Achse zwischen diesem Paar von benachbarten Schneckenelementen erstrecken zum Einbringen von Verbrennungsluft in die Mischzone, wobei jedes der Schnekkenelemente eine Brennstoffleitung (52, 54) zum Einbringen von Brennstoff in die durch einen der Einlassschlitze eingebrachte Verbrennungsluft aufweist;
    wobei die Basis (58) mit der ersten Abschlussplatte (16) verbunden ist und dadurch gekennzeichnet, dass der Stumpfbereich (84) in die Brennkammer-Einlassöffnung (20) ragt.
  4. Brennstoffdüse nach Anspruch 3, wobei der Zentralkörper (12) einen gekrümmten Bereich (88) hat, der integral mit dem Stumpfbereich (86) ist.
  5. Brennstoffdüse nach Anspruch 4, wobei der gekrümmte Bereich (88) einen Teil der Oberfläche definiert, die durch ein Rotieren eines Kreises um die Längsachse (26) erzeugt wird, der tangential zu dem Stumpfbereich ist und einen Mittelpunkt hat, der radial außerhalb davon liegt.
  6. Brennstoffdüse nach Anspruch 3, 4 oder 5, wobei die Basis (58) mindestens eine durch diese durchgehende Luftversorgungsöffnung (60, 62) hat, und wobei der Zentralkörper (12) ferner einen internen Kanal (64) aufweist, der koaxial zur Längsachse (26) ist und mit der Luftzufuhröffnung kommuniziert, wobei der interne Kanal eine Abgabeöffnung (68) aufweist, die kreisförmig und koaxial zu der Achse ist und in der Brennkammer-Einlassöffnung (20) angeordnet ist.
  7. Brennstoffdüse nach Anspruch 6, wobei der Zentralkörper (12) ferner eine interne Kammer (100) aufweist, die zwischen der Basis (58) und dem internen Kanal (64) angeordnet ist, wobei die Luftzuführöffnungen (60, 62) mit dem internen Kanal durch die Kammer kommunizieren.
  8. Brennstoffdüse nach Anspruch 7, wobei der interne Kanal (64) eine erste zylinderförmige Passage (66), eine zweite zylinderförmige Passage (72) und eine sich verjüngende Passage (78) aufweist, wobei jede Passage ein erstes Ende (68, 74, 80) und ein zweites Ende (70, 76, 82) hat, wobei die zweite zylindrische Passage einen Durchmesser hat, der größer ist als der der ersten zylindrischen Passage, wobei die zweite zylindrische Passage mit der ersten zylindrischen Passage durch die sich verjüngende Passage kommuniziert, wobei das erste Ende der sich verjüngenden Passage integral mit dem zweiten Ende der ersten zylindrischen Passage ist, wobei das zweite Ende der sich verjüngenden Passage integral mit dem ersten Ende der zweiten zylindrischen Passage ist, wobei das erste Ende der sich verjüngenden Passage einen Durchmesser hat, der gleich dem Durchmesser der ersten zylindrischen Passage ist, und wobei das zweite Ende der sich verjüngenden Passage einen Durchmesser hat, der gleich dem Durchmesser der zweiten zylindrischen Passage ist, wobei jede der Passagen koaxial zu der Längsachse (26) ist, wobei die erste zylindrische Passage die an dem ersten Ende der ersten zylindrischen Passage angeordnete Abgabeöffnung aufweist.
  9. Brennstoffdüse nach Anspruch 8, wobei der Zentralkörper (12) ferner einen Drallerzeuger (108) koaxial zur Achse (26) und in der Kammer (100) unmittelbar dem zweiten Ende (76) der zweiten zylindrischen Passage (72) benachbart angeordnet, und
    eine Brennstofflanze (110) aufweist, die koaxial zur Achse (26) ist und sich durch die Basis (58), die interne Kammer und den Drallerzeuger (108) erstreckt und in der zweiten zylindrischen Passage geendet.
EP19970310463 1996-12-20 1997-12-22 Tangentiale Brennstoffeintrittsdüse Expired - Lifetime EP0849529B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/771,408 US5899076A (en) 1996-12-20 1996-12-20 Flame disgorging two stream tangential entry nozzle
US08/771,409 US5896739A (en) 1996-12-20 1996-12-20 Method of disgorging flames from a two stream tangential entry nozzle
US771409 1996-12-20
US771408 1996-12-20

Publications (3)

Publication Number Publication Date
EP0849529A2 EP0849529A2 (de) 1998-06-24
EP0849529A3 EP0849529A3 (de) 1999-06-09
EP0849529B1 true EP0849529B1 (de) 2004-03-03

Family

ID=27118459

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970310463 Expired - Lifetime EP0849529B1 (de) 1996-12-20 1997-12-22 Tangentiale Brennstoffeintrittsdüse

Country Status (2)

Country Link
EP (1) EP0849529B1 (de)
DE (1) DE69727899T2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141954A (en) 1998-05-18 2000-11-07 United Technologies Corporation Premixing fuel injector with improved flame disgorgement capacity
CN113669726B (zh) * 2021-09-26 2022-10-21 西安热工研究院有限公司 一种氢燃料燃烧装置
DE102022207493A1 (de) * 2022-07-21 2024-02-01 Rolls-Royce Deutschland Ltd & Co Kg Verbindungsvorrichtung zur Strömungsverbindung zwischen einem Kraftstoff- Zuleitungssystem und einer Düsenvorrichtung, Düsenvorrichtung und Gasturbinenanordnung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307634A (en) 1992-02-26 1994-05-03 United Technologies Corporation Premix gas nozzle
US5461865A (en) * 1994-02-24 1995-10-31 United Technologies Corporation Tangential entry fuel nozzle
US5671597A (en) * 1994-12-22 1997-09-30 United Technologies Corporation Low nox fuel nozzle assembly
DE19545309A1 (de) * 1995-12-05 1997-06-12 Asea Brown Boveri Vormischbrenner

Also Published As

Publication number Publication date
DE69727899D1 (de) 2004-04-08
EP0849529A2 (de) 1998-06-24
EP0849529A3 (de) 1999-06-09
DE69727899T2 (de) 2004-07-29

Similar Documents

Publication Publication Date Title
US6141967A (en) Air fuel mixer for gas turbine combustor
US5899076A (en) Flame disgorging two stream tangential entry nozzle
US6092363A (en) Low Nox combustor having dual fuel injection system
US5680766A (en) Dual fuel mixer for gas turbine combustor
US6301899B1 (en) Mixer having intervane fuel injection
EP0700499B1 (de) Verbrennungskammer eines gasturbinenmotors
US5626017A (en) Combustion chamber for gas turbine engine
US5778676A (en) Dual fuel mixer for gas turbine combustor
EP0849531B1 (de) Verbrennungsverfahren mit geringen akustischen Tönen
EP2400220B1 (de) Dralleinrichtung, Brennstoff-Luftgemischvorrichtung und Brenner
EP0722065B1 (de) Brennstoffeinspritzeinrictung für mit gasförmigem oder flüssigem Brennstoff betriebene Turbine
EP0927854A2 (de) Gasturbinenbrenner mit niedrigem NOx Ausstoss
JP3075732B2 (ja) ガスタービンの燃焼室
WO2001051787A1 (en) Piloted airblast lean direct fuel injector
US5791892A (en) Premix burner
US5896739A (en) Method of disgorging flames from a two stream tangential entry nozzle
EP0849527B1 (de) Verbrennungsverfahren mit einer tangentialen Zweistromdüse
US5127821A (en) Premixing burner for producing hot gas
EP0548143B1 (de) Gasturbine mit Injektor für gasförmigen Brennstoff und Injektor für eine derartige Gasturbine
US5735466A (en) Two stream tangential entry nozzle
EP0849530A2 (de) Brennstoffdüsen und Zentralkörper dafür
US5791562A (en) Conical centerbody for a two stream tangential entry nozzle
EP0849529B1 (de) Tangentiale Brennstoffeintrittsdüse
JPH07293886A (ja) ガスタービンの燃焼室の運転のための方法と装置
US5887795A (en) Premix fuel injector with low acoustics

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990706

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20020417

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69727899

Country of ref document: DE

Date of ref document: 20040408

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081205

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131218

Year of fee payment: 17

Ref country code: GB

Payment date: 20131218

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69727899

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141222

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701