EP0849556A2 - Kondensator für binäre/polynäre Kondensation - Google Patents
Kondensator für binäre/polynäre Kondensation Download PDFInfo
- Publication number
- EP0849556A2 EP0849556A2 EP97810915A EP97810915A EP0849556A2 EP 0849556 A2 EP0849556 A2 EP 0849556A2 EP 97810915 A EP97810915 A EP 97810915A EP 97810915 A EP97810915 A EP 97810915A EP 0849556 A2 EP0849556 A2 EP 0849556A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- condensation
- mixture
- pipes
- capacitor according
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005494 condensation Effects 0.000 title claims abstract description 40
- 238000009833 condensation Methods 0.000 title claims abstract description 38
- 239000000203 mixture Substances 0.000 claims abstract description 44
- 239000002826 coolant Substances 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000003990 capacitor Substances 0.000 claims description 23
- 230000007704 transition Effects 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 238000010586 diagram Methods 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004200 deflagration Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000003716 rejuvenation Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
- F28F27/02—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B1/00—Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
- F28B1/02—Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/007—Auxiliary supports for elements
- F28F9/013—Auxiliary supports for elements for tubes or tube-assemblies
- F28F9/0135—Auxiliary supports for elements for tubes or tube-assemblies formed by grids having only one tube per closed grid opening
- F28F9/0136—Auxiliary supports for elements for tubes or tube-assemblies formed by grids having only one tube per closed grid opening formed by intersecting strips
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/184—Indirect-contact condenser
- Y10S165/205—Space for condensable vapor surrounds space for coolant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/184—Indirect-contact condenser
- Y10S165/205—Space for condensable vapor surrounds space for coolant
- Y10S165/207—Distinct outlets for separated condensate and gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/355—Heat exchange having separate flow passage for two distinct fluids
- Y10S165/40—Shell enclosed conduit assembly
- Y10S165/401—Shell enclosed conduit assembly including tube support or shell-side flow director
- Y10S165/402—Manifold for shell-side fluid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/355—Heat exchange having separate flow passage for two distinct fluids
- Y10S165/40—Shell enclosed conduit assembly
- Y10S165/401—Shell enclosed conduit assembly including tube support or shell-side flow director
- Y10S165/416—Extending transverse of shell, e.g. fin, baffle
- Y10S165/423—Bar
- Y10S165/424—Bar forming grid structure
Definitions
- the invention relates to a capacitor for implementation binary / polynary condensation.
- Such capacitors are required for example in Power generation systems used to increase efficiency work with a circulating substance which is in the energy cycle is easily convertible, for example an ammonia / water mixture.
- a circulating substance which is in the energy cycle is easily convertible, for example an ammonia / water mixture.
- the invention has for its object a deflator Creating capacitor for binary / polynary condensation, who works with minimal exergetic losses.
- the "deflegatory” refers to the condensation a steam mixture with a change in concentration of the Phases involved in the condensation process.
- such a capacitor is distinguished through an upright arrangement of the coolant Pipes, through an at least approximately in the upper area of the coolant pipes arranged inlet port for the condensing mixture and through a below the coolant pipes arranged collecting room for the condensate to be discharged, the inlet connection and the collecting space via one connected the condenser jacket enveloping the tubes are further characterized in that the coolant predominantly Part of the condensation space in pure counterflow to the Liquid / vapor mixture is led and the mixture and the condensate film flows in direct current, which is why the pipes flow over one tube plate with one inlet side and one outlet side Water chamber are connected.
- the steam side sliding achieved with such an apparatus Temperature profile is a result of segregation or separation work, which occurs due to binary / polynary condensation.
- a mixture condenses, which is enriched with the heavy-boiling component of the mixture, while at the end of the condensation path condensed another mixture, which with the lower-boiling Component of the mixture is enriched.
- the apparatus shown in Fig. 1 is usually different Heat and mass transfer in a not shown Column associated. So he could be the bottom part of one represent such a pillar. It exists in its outer form essentially of cylindrical parts, namely one upper inlet connection 1, a lower collecting space 2 and in between the inlet port with the collecting room connecting capacitor jacket 3. All elements are in vertical arrangement and are from the condensed Flows through the mixture from top to bottom.
- this condensable mixture consists of ammonia (NH 3 ) and water (H 2 O). It has an ammonia concentration of 0.6 to 0.3 parts by mass. It is fed to the inlet port 1 at a pressure of approximately 4.0 to 1.5 bar and at approximately the dew point temperature, ie close to saturation.
- the actual heat exchanger consists of a bundle vertically arranged tubes 4, from the coolant, here Water that flows from bottom to top. These pipes, several thousand of which, depending on the desired performance may be present, preferably have a length of approx. 5 to 20 meters. They are over in classic construction a tube sheet 6, 5 with an inlet-side water chamber 7 and an outlet-side water chamber 8 connected. This Water chambers are one with a feed line 9 respectively Lead 10 provided. These penetrate the walls on the one hand the inlet connection 1, on the other hand the collecting room 2 and are in the cooling circuit, not shown switched.
- the correct functioning of the device depends essentially that a clean counterflow between cooling water and steam mixing is realized.
- the transition from Inlet connection to the condensed part on the plane of the upper tube sheet 5 narrowed in a funnel shape.
- the steam mixture is forced into the tube bundle.
- the steam mixture is said to be marginal largely prevented.
- the rejuvenation resp. the diameter the capacitor jacket is therefore dimensioned so that the annular gap 11 between the tubes of the outer bundle periphery and the capacitor jacket as tight as possible is. It should be a maximum of twice the clear width between correspond to two neighboring pipes.
- the empty volume portion of the tube bundle on the steam side on the sum of all pipe sizes with regard to the trickle film [Flow rate in kg / m * sec] is such that the speed of the condensate film flowing down the pipes - which with turbulent film approx. 0.8 to 1.2 m / sec is - about the average flow velocity of the condensing steam mixture corresponds.
- the measure is the heat and heat to be described below Mass transfer between the co-flowing steam mixture and the condensate film ensured.
- the transition from the condensed section to the collecting room 2 is slightly expanded in the plane of the lower tube sheet 6, so that the condensate that collects on the tube sheet runs off can.
- This extension can be like the top taper also be made funnel-shaped.
- the circular lower tube plate 6 is in its central area penetrated by a tube 17, which in its in the part protruding into the condensation space is perforated.
- This tube 17 is for the removal of the non-condensable gases determined from the condensation space. For this it is through the lower water chamber 7 and the wall of the collecting room led out of the apparatus and connected with suitable suction means. The remaining condensing portion from the extracted Mixture which consists practically only of ammonia, is recovered in a downstream absorption column.
- the diagram also teaches that to achieve one possible large separation work, the smallest possible temperature difference between mixture and coolant.
- the invention aims to avoid the latter.
- the goal is one non-isothermal condensation of the mixture with a corresponding Reduction of essential exergy losses.
- Fig. 3 explains which schematically the condensation of a shows saturated flowing steam mixture.
- she is outer tube wall one of the coolant from bottom to top flowed through pipe.
- This tube wall forms one vertical cold surface whose temperature is below the dew point temperature - compared to that in the concentration in The core of the flow - lies. It gets from top to bottom flowing saturated vapor mixture with the cold surface in Touch, a condensate forms, which is a film 22 flows down the surface.
- pure substances call the phase balance and kinetics Formation of a vapor-side mass transfer boundary layer and thus a temperature drop at the phase boundary between Film and steam. The result arises in this Area an enrichment in the low-boiling component of the mixture.
- the concentration is in this area higher than in the core flow.
- Y G denotes the concentration of the lower-boiling component of the mixture, which is constant in the core flow, which is distinguished by its horizontal course.
- the concentration rises to point A.
- the concentration drops from point B at the phase boundary to the pipe wall.
- Points A and B are in the so-called phase equilibrium, and the associated temperatures can then be determined from an enthalpy diagram.
- the temperature curve is designated T in the diagram, T K representing the temperature in the core flow it and T W representing the temperature of the condensate film on the tube wall.
- Fig. 4 shows schematically the course M of this non-isothermal deflagmatory condensation of a mixture in one Diagram "temperature along z" [T, z], where z is the height of the vertical coke deposition room. W denotes the Temperature curve of the coolant. With R is the isothermal Course of a total condensation called. ⁇ T represents the achievable profit, which in the present case is a Ammonia / water mixture several Kelvin, e.g. 5-8K can.
- Capacitor Also decisive for the proper functioning of the Capacitor is the requirement that disturbances in the flow can be largely prevented in the condensation chamber. Such disturbances could lead to undesired mixing of the condensate film and the vapor phase cause what is negative affects deflegmatory condensation.
- the support plates that have been customary in capacitors so far are therefore provided the tubes by horizontally extending bands 12, 13 to support. These bands are mutually in one or several levels arranged along the length of the pipe.
- FIG. 5 Such a pipe support is sketched in FIG. 5.
- Triangular arrangement that is known to be the The largest possible number of pipes can be accommodated.
- a first layer of bands 12 is crosswise from a second arranged position of bands 13 underlaid. With the narrow sides of their tapes form only an insignificant one Blocking of the cross-section flowed through.
- Fig. 6 the leadership respectively. Attachment of such tapes on Capacitor jacket 3 shown.
- they are Tapes can be moved in a heat-circulating manner around the jacket Leadership 14 a.
- the ring-shaped guide can turn on attached several locations of the circumference of the jacket in supports 15 be.
- Toothed belts 16 are used here. Two each Layers can be nested into one another via the toothing and result in a stiff grid through which the pipes 4 can be easily inserted during assembly then with the tube sheets 5 and 6 positive and / or non-positive to be connected.
- Fig. 8 is a steam inflow variant for Condensation room shown. Functionally identical elements are included the same reference numerals as in Fig. 1.
- Execution is the usually circular upper tube plate 5 expanded in diameter.
- This is in Example provided with two lateral steam supply lines 19.
- Via suitable openings 20 in the capacitor jacket 3 the are evenly distributed over its circumference Radially vapor into the tube bundle.
- the top part of the tubing not in counterflow pressurized, but this affects the type of steam introduction the way it works. Because the steam becomes immediate redirected to the vertical and in this area no pronounced capacitor film has formed yet. With This solution can reduce the overall length due to the large needed exchange areas already very "long" apparatus be reduced somewhat.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
- Fig. 1
- einen Längsschnitt eines deflagmatorischen Kondensators;
- Fig. 2
- ein Diagramm Trennarbeit S als Funktion der Konzentration des Gemisches in der Kernströmung;
- Fig. 3
- ein Schema zur Kondensation eines gesättigten strömenden Dampfgemische mit Temperatur- und Konzentrationsverlauf;
- Fig. 4
- einen Ausschnitt eines Diagrammmes mit dem Temperaturverlauf entlang der Rohre;
- Fig. 5
- eine Anordnung der Rohrabstützung;
- Fig. 6
- einen Teilschnitt durch den Kondensator mit der Befestigung der Rohrabstützung;
- Fig. 7
- eine Variante der Rohrabstützung im Längsschnitt.
- Fig. 8
- eine Dampf-Zuströmvariante des Kondensators gemäss Fig. 1.
- Er muss maximale Trennarbeit leisten, weshalb eine deflagmatorische Kondensation anzuwenden ist; als zwingende Folge hiervon muss er mit kleinen Temperaturdifferenzen arbeiten.
- Der einmal gebildete Kondensatfilm soll auf seinem Weg zum Sammelgefäss integer bleiben, d.h. entlang der Kondensationsstrecke soll es zu keiner Rückvermischung (back-mixing) von Kondenssat und Dampf kommen. Am besten erreichbar ist diese Forderung duch einen Gleichsrom zwischen Kondensatfilm und Dampfmischung.
- Schliesslich soll das Kühlmittel im Gegenstrom zu Dampf und Kondensatfilm strömen.
- 1
- Einlassstutzen
- 2
- Sammelraum
- 3
- Kondensatormantel
- 4
- Rohr
- 5
- oberer Rohrboden
- 6
- unterer Rohrboden
- 7
- eintrittseitige Wasserkammer
- 8
- austrittseitige Wasserkammer
- 9
- Kühlwasser-Zuleitung
- 10
- Kühlwasser-Ableitung
- 11
- Ringspalt zwischen 4 und 3
- 12
- Stützbänder
- 13
- Stützbänder
- 14
- Bänder führung
- 15
- Abstützung von 12,13 an 3
- 16
- verzahnte Bänder
- 17
- Rohr für die Extraktion der Inertgase
- 18
- Ringkammer
- 19
- Dampfzuleitung
- 20
- Dampfeintrittöffnung
- 21
- Rohrwand
- 22
- Kondensatfilm
Claims (7)
- Kondensator für die binäre/polynäre Kondensation eines Dampfgemisches, gekennzeichnet durch eine stehende Anordnung der vom Kühlmittel durchströmten Rohre (4), durch einen zumindest annähernd im oberen Bereich der Kühlmittelrohre angeordneten Einlassstutzen (1) für das zu kondensierende Gemisch und durch einen unterhalb der Kühlmittelrohre (4) angeordneten Sammelraum (2) für das abzuführende Kondensat, wobei der Einlassstutzen (1) und der Sammelraum (2) über einen die Rohre (4) umhüllenden Kondensatormantel (3) miteinander verbunden sind
ferner dadurch gekennzeichnet, dass das Kühlmittel im überwiegenden Teil des Kondensationsraumes in reinem Gegenstrom zum Gemisch geführt wird und das Gemisch und der Kondensatfilm im Gleichstrom strömen, wozu die Rohre (4) über je einen Rohrboden (5, 6) mit einer eintrittseitigen und einer austrittseitigen Wasserkammer (7, 8) verbunden sind. - Kondensator nach Anspruch 1, dadurch gekennzeichnet, dass der Leervolumenanteil des Rohrbündels in Bezug auf die Summe aller Rohrumfänge so bemessen ist, dass die Geschwindigkeit des an den Rohren (4) herabfliessenden Kondensatfilmes (22) etwa der mittlere Geschwindigkeit des zu kondensierenden Dampfgemisches entspricht.
- Kondensator nach Anspruch 1, dadurch gekennzeichnet, dass die Rohre (4) im Kondensationsraum in mindestens einer Ebene durch horizontal angeordnete Bänder (13, 14, 16) gestützt sind, welche in dem die Rohre umhüllenden Kondensatormantel (3) gelagert sind.
- Kondensator nach Anspruch 1, dadurch gekennzeichnet, dass der untere Rohrboden (6) von mindestens einem Rohr (17) durchdrungen ist, welches in seinem in den Kondensationsraum hineinragenden Teil perforiert ist und welches durch die untere Wasserkammer (7) aus dem Apparat herausgeführt ist zum Abzug der nichtkondensierbaren Gase aus dem Kondensationsraum.
- Kondensator nach Anspruch 1, dadurch gekennzeichnet, dass der Übergang vom Einlassstutzen (1) zum berohrten Kondensationsteil trichterförmig verengt ist.
- Kondensator nach Anspruch 1, dadurch gekennzeichnet, dass der Einlassstutzen (1) für das zu kondensierende Gemisch eine Ringkammer (18) mit mindesten einer Dampfzuleitung (19) aufweist, über welche Ringkammer das Gemisch durch Dampfeintrittöffnungen (20) im Kondensatormantel (3) in den Kondensationsraum einströmt.
- Kondensator nach Anspruch 1, dadurch gekennzeichnet, Übergang vom berohrten Kondensationsteil zum Sammelraum () trichterförmig erweitert ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19653256 | 1996-12-20 | ||
DE19653256A DE19653256A1 (de) | 1996-12-20 | 1996-12-20 | Kondensator für binäre/polynäre Kondensation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0849556A2 true EP0849556A2 (de) | 1998-06-24 |
EP0849556A3 EP0849556A3 (de) | 1998-12-30 |
Family
ID=7815502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97810915A Withdrawn EP0849556A3 (de) | 1996-12-20 | 1997-11-26 | Kondensator für binäre/polynäre Kondensation |
Country Status (5)
Country | Link |
---|---|
US (1) | US5927388A (de) |
EP (1) | EP0849556A3 (de) |
JP (1) | JPH10185457A (de) |
CA (1) | CA2225192A1 (de) |
DE (1) | DE19653256A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3171108A1 (de) * | 2015-11-20 | 2017-05-24 | Praxair Technology, Inc. | Kondensator-verdampfer-system und -verfahren mit perforierten lüftungsrohren |
US10012439B2 (en) | 2014-01-29 | 2018-07-03 | Praxair Technology, Inc. | Condenser-reboiler system and method |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7066241B2 (en) * | 1999-02-19 | 2006-06-27 | Iowa State Research Foundation | Method and means for miniaturization of binary-fluid heat and mass exchangers |
US6802364B1 (en) | 1999-02-19 | 2004-10-12 | Iowa State University Research Foundation, Inc. | Method and means for miniaturization of binary-fluid heat and mass exchangers |
KR100396836B1 (ko) * | 2001-02-20 | 2003-09-13 | 위성점 | 공기 조화기용 응축기 |
US6467535B1 (en) | 2001-08-29 | 2002-10-22 | Visteon Global Technologies, Inc. | Extruded microchannel heat exchanger |
DE10147521A1 (de) * | 2001-09-26 | 2003-04-10 | Behr Gmbh & Co | Wärmeübertrager, insbesondere Gaskühler CO2 - Klimaanlagen |
US20050042178A1 (en) * | 2003-08-18 | 2005-02-24 | Boehringer Ingelheim International Gmbh | Microparticles containing the CGRP-antagonist 1-[N2-[3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxoquinazoline-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-L-lysyl]-4-(4-pyridinyl)-piperazine, process for preparing and the use thereof as inhalation powder |
RU2520769C1 (ru) * | 2012-12-25 | 2014-06-27 | Егор Владимирович Пименов | Конденсатор паровой турбины |
US9366476B2 (en) | 2014-01-29 | 2016-06-14 | Praxair Technology, Inc. | Condenser-reboiler system and method with perforated vent tubes |
RU2576949C1 (ru) * | 2015-04-15 | 2016-03-10 | Общество с ограниченной ответственностью "Пермэкопром" | Устройство для конденсации пара из парогазовой смеси |
CN115265219B (zh) * | 2022-08-01 | 2024-06-18 | 湘潭大学 | 两流程二元非共沸混合工质组分分离型管壳式分液冷凝器 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3572010A (en) * | 1969-08-04 | 1971-03-23 | Duke Inc | Vapor control apparatus |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE89474C (de) * | ||||
US1364921A (en) * | 1918-11-08 | 1921-01-11 | Westinghouse Electric & Mfg Co | Condenser |
US1382676A (en) * | 1920-04-10 | 1921-06-28 | Westinghouse Electric & Mfg Co | Condenser |
US1748676A (en) * | 1927-02-11 | 1930-02-25 | Westinghouse Electric & Mfg Co | Condenser |
US1882474A (en) * | 1928-06-07 | 1932-10-11 | Babcock & Wilcox Co | Heat exchange device |
US1953678A (en) * | 1931-04-20 | 1934-04-03 | Indian Refining Co | Condenser |
DE744612C (de) * | 1940-08-09 | 1944-10-02 | Atlas Werke Ag | Waermeaustauscher, insbesondere schwadenbeheizter Speisewasservorwaermer |
US2312113A (en) * | 1942-02-21 | 1943-02-23 | Westinghouse Electric & Mfg Co | Condenser apparatus |
DE927996C (de) * | 1944-06-06 | 1955-05-23 | Geraetebau Ges Mit Beschraenkt | Mit Kondensatkuehler verbundener Kondensator |
GB661863A (en) * | 1946-11-29 | 1951-11-28 | Gen Am Transport | Heat exchange apparatus and method of operating it |
US2986377A (en) * | 1956-04-17 | 1961-05-30 | Ingersoll Rand Co | Condenser |
US3298427A (en) * | 1964-12-24 | 1967-01-17 | Robert A Erb | Method and apparatus for dropwise condensation |
US3387652A (en) * | 1966-07-06 | 1968-06-11 | Borsig Ag | Heat exchanger reinforcing means |
SE320991B (de) * | 1967-10-27 | 1970-02-23 | Rosenlew W & Co Bjoerneborgs M | |
US3607617A (en) * | 1968-08-09 | 1971-09-21 | Scm Corp | Turpentine recovery from the wet gaseous effluent of wood-pulping processes |
US3545537A (en) * | 1968-12-13 | 1970-12-08 | Combustion Eng | Anti-vibration tube support for vertical steam generator |
US3503440A (en) * | 1968-12-23 | 1970-03-31 | Combustion Eng | Formed plate tube support |
CS155907B1 (de) * | 1970-05-12 | 1974-06-24 | ||
CA921020A (en) * | 1971-03-19 | 1973-02-13 | Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited | Tube bundle assembly |
FR2483009A1 (fr) * | 1980-05-23 | 1981-11-27 | Inst Francais Du Petrole | Procede de production d'energie mecanique a partir de chaleur utilisant un melange de fluides comme agent de travail |
JPS6014095A (ja) * | 1983-05-27 | 1985-01-24 | Mitsubishi Heavy Ind Ltd | 復水器 |
FR2653544B1 (fr) * | 1989-10-24 | 1992-02-14 | Gaz De France | Pompe a vapeur a echangeur air-produits de combustion a contre-courant sans fluide intermediaire. |
US5172760A (en) * | 1990-12-24 | 1992-12-22 | Uop | Heat exchange apparatus for separating a resin phase from a solvent solution containing a solvent, demetallized oil and a resin |
DE4300131C2 (de) * | 1993-01-06 | 1999-08-05 | Hoechst Ag | Kolonne mit integriertem Wärmetauscher |
DE4416932C2 (de) * | 1994-05-13 | 1997-10-16 | Shg Schack Gmbh | Wärmetauscher |
US5642778A (en) * | 1996-04-09 | 1997-07-01 | Phillips Petroleum Company | Rod baffle heat exchangers |
-
1996
- 1996-12-20 DE DE19653256A patent/DE19653256A1/de not_active Withdrawn
-
1997
- 1997-11-10 US US08/966,903 patent/US5927388A/en not_active Expired - Fee Related
- 1997-11-26 EP EP97810915A patent/EP0849556A3/de not_active Withdrawn
- 1997-12-18 CA CA002225192A patent/CA2225192A1/en not_active Abandoned
- 1997-12-22 JP JP9353803A patent/JPH10185457A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3572010A (en) * | 1969-08-04 | 1971-03-23 | Duke Inc | Vapor control apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10012439B2 (en) | 2014-01-29 | 2018-07-03 | Praxair Technology, Inc. | Condenser-reboiler system and method |
US10048004B2 (en) | 2014-01-29 | 2018-08-14 | Praxair Technology, Inc. | Condenser-reboiler system and method |
EP3171108A1 (de) * | 2015-11-20 | 2017-05-24 | Praxair Technology, Inc. | Kondensator-verdampfer-system und -verfahren mit perforierten lüftungsrohren |
CN106766673A (zh) * | 2015-11-20 | 2017-05-31 | 普莱克斯技术有限公司 | 带有穿孔排放管的冷凝器‑重沸器系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
JPH10185457A (ja) | 1998-07-14 |
EP0849556A3 (de) | 1998-12-30 |
CA2225192A1 (en) | 1998-06-20 |
US5927388A (en) | 1999-07-27 |
DE19653256A1 (de) | 1998-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1038562B1 (de) | Vorrichtung zum Sammeln und Verteilen von Flüssigkeit in einer Kolonne | |
CH642566A5 (de) | Trogartige vorrichtung zum sammeln und verteilen der fluessigkeit in einer gegenstromkolonne. | |
EP0849556A2 (de) | Kondensator für binäre/polynäre Kondensation | |
DE10116330A1 (de) | Trennsäule und Verfahren zur Kryotrennung von Gasgemischen | |
DE69529146T2 (de) | Destillationskolonne mit innerem wärmeaustausch | |
EP0461515B1 (de) | Apparat zur Aufwärmung und Entgasung von Wasser | |
DE1949609C3 (de) | Kondensatorverdampfer für einen Doppelsäulenrektifikator | |
DE69102164T2 (de) | Wärmeaustauschvorrichtung, insbesondere für hybride, nichtazeotrope Arbeitsmedien verwendende Wärmepumpen. | |
DE1020598B (de) | Gas-Fluessigkeits-Austauschboden | |
EP0619466B1 (de) | Dampfkondensator | |
DE19549139A1 (de) | Verfahren und Apparateanordnung zur Aufwärmung und mehrstufigen Entgasung von Wasser | |
DE1792139A1 (de) | Mehrstufen-Entspannungsverdampfer fuer die Destillation von Seewasser od.dgl. | |
DE69605347T2 (de) | Wärmetauscher mit gelöteten Platten | |
DE69434264T2 (de) | Zerstäuber | |
EP0325758A1 (de) | Dampfkondensator | |
DE2524080C3 (de) | Wärmeübertrager, in dem ein dampfförmiges Medium unter Wärmeabgabe an ein anderes Medium kondensiert | |
EP1018360B1 (de) | Verfahren und Vorrichtung zum Einspeisen eines Fluids in eine Kolonne | |
DE4237350C2 (de) | Verfahren zum Stoffübertragen sowie Vorrichtung zur Durchführung des Verfahrens | |
DE3538515A1 (de) | Vorrichtung zum kuehlen von heissen, staubbeladenen gasen | |
EP0111941A2 (de) | Boden für Destillier- und/oder Absorptionskolonnen | |
DE19521622C2 (de) | Kondensator für kondensierbare Dämpfe | |
DE3131508A1 (de) | Verfahren zur aufteilung eines stroemenden gas-fluessigkeit-gemisches in mehrere teilstroeme | |
DE2414295A1 (de) | Kondensator | |
CH679280A5 (de) | ||
DE19513204A1 (de) | Apparat zur Aufwärmung und Entgasung von Wasser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT CH DE ES FR GB IT LI NL SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19990520 |
|
AKX | Designation fees paid |
Free format text: AT CH DE ES FR GB IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 20000614 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20001025 |