[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0846756B1 - Coated detergent tablet and the process for producing the same - Google Patents

Coated detergent tablet and the process for producing the same Download PDF

Info

Publication number
EP0846756B1
EP0846756B1 EP96203473A EP96203473A EP0846756B1 EP 0846756 B1 EP0846756 B1 EP 0846756B1 EP 96203473 A EP96203473 A EP 96203473A EP 96203473 A EP96203473 A EP 96203473A EP 0846756 B1 EP0846756 B1 EP 0846756B1
Authority
EP
European Patent Office
Prior art keywords
coating
tablet
tablets
coating material
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96203473A
Other languages
German (de)
French (fr)
Other versions
EP0846756A1 (en
Inventor
Serge Salager
Paul Irma Albertus Van Dijk
Jeroen Van Poucke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES96203473T priority Critical patent/ES2284164T3/en
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to AT96203473T priority patent/ATE360056T1/en
Priority to DE69637030T priority patent/DE69637030T2/en
Priority to EP96203473A priority patent/EP0846756B1/en
Priority to CA002272537A priority patent/CA2272537C/en
Priority to CN97181564.XA priority patent/CN1245527A/en
Priority to JP52560298A priority patent/JP2001506682A/en
Priority to TR1999/01233T priority patent/TR199901233T2/en
Priority to HU0000221A priority patent/HUP0000221A3/en
Priority to PCT/US1997/021041 priority patent/WO1998024873A1/en
Priority to US09/319,475 priority patent/US6169062B1/en
Priority to BR9713871-1A priority patent/BR9713871A/en
Priority to AU54436/98A priority patent/AU5443698A/en
Priority to ZA9710697A priority patent/ZA9710697B/en
Priority to EG129797A priority patent/EG21191A/en
Priority to ARP970105747A priority patent/AR010747A1/en
Priority to MA24890A priority patent/MA24418A1/en
Publication of EP0846756A1 publication Critical patent/EP0846756A1/en
Application granted granted Critical
Publication of EP0846756B1 publication Critical patent/EP0846756B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0082Coated tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0052Gas evolving or heat producing compositions

Definitions

  • the present invention relates to coated detergent tablets, especially those adapted for use in washing machines, and to processes for making the coated detergent tablets.
  • coating of tablets is often desired for aesthetic reasons, to improve the outer appearance of the tablet or to achieve some particular aesthetic effect.
  • GB-A-0 989 683 published on 22nd April 1965, discloses a process for preparing a particulate detergent from surfactants and inorganic salts; spraying on water-soluble silicate; and pressing the detergent particles into a solid form-retaining tablet.
  • a readily water-soluble organic film-forming polymer for example, polyvinyl alcohol
  • EP-A-0 002 293 published on 13th June 1979, discloses a tablet coating comprising hydrated salt such as acetate, metaborate, orthophosphate, tartrate, and sulphate.
  • EP-A-0 716 144 published on 12th June 1996, also discloses laundry detergent tablets with water-soluble coatings which may be organic polymers including acrylic/maleic copolymer, polyethylene glycol, PVPVA, and sugar.
  • WO9518215 published on 6th July 1995, provides water-insoluble coatings for solid cast tablets.
  • the tablets are provided with hydrophobic coatings including wax, fatty acid, fatty acid amides, and polyethylene glycol.
  • a disadvantage of the prior art disclosures is that a coating which is thick enough and strong enough to withstand abrasion, also tends to be slow to break up or dissolve in use.
  • the present invention provides a means by which tablets with a core which is formed by compressing a particulate material, the particulate material comprising surfactant and detergent builder, can be provided with a hard, thin, coating so that they can be stored, shipped and handled, but the coating is broken when the tablet is in the washing machine exposing the soft core which breaks up easily and rapidly, releasing the active ingredients into the wash solution.
  • the objective of the present invention is to provide a tablet which completely disintegrates and disperses, in particular in alkaline or surfactant-rich solutions such as the wash liquor.
  • the object of the present invention is achieved by providing a tablet comprising a core and a coating, the core being formed by compressing a particulate material, the particulate material comprising surfactant and detergent builder, characterised in that the coating material has a solubility in water at 25°C of less than 20 g/l and is selected from C 2 -C 13 dicarboxylic acids, and the coating comprises a disintegrant, which will swell once in contact with water, at a level to break the coating of up to 30% by weight of the coating. It is preferred that the tablet further comprises an effervescent, for example a soluble acid source and an alkali metal carbonate.
  • an effervescent for example a soluble acid source and an alkali metal carbonate.
  • the coating materials have a melting point in the range of from 40 °C to 200 °C.
  • Tablets to be coated in the present invention can be prepared simply by mixing the solid ingredients together and compressing the mixture in a conventional tablet press as used, for example, in the pharmaceutical industry.
  • Any liquid ingredients for example the surfactant or suds suppressor, can be incorporated in a conventional manner into the solid particulate ingredients.
  • the principal ingredients are used in particulate form.
  • the ingredients such as builder and surfactant can be spray-dried in a conventional manner and then compacted at a suitable pressure.
  • the detergent tablets can be made in any size or shape and can, if desired, be surface treated before coating, according to the present invention.
  • a surfactant and a builder which normally provides a substantial part of the cleaning power of the tablet.
  • builder is intended to mean all materials which tend to remove calcium ion from solution, either by ion exchange, complexation, sequestration or precipitation.
  • the particulate material used for making the tablet of this invention can be made by any particulation or granulation process.
  • An example of such a process is spray drying (in a co-current or counter current spray drying tower) which typically gives low bulk densities 600g/l or lower.
  • Particulate materials of higher density can be prepared by granulation and densification in a high shear batch mixer/granulator or by a continuous granulation and densification process (e.g. using Lodige ® CB and/or Lodige ® KM mixers).
  • Other suitable processes include fluid bed processes, compaction processes (e.g. roll compaction), extrusion, as well as any particulate material made by any chemical process like flocculation, crystallisation sentering, etc.
  • Individual particles can also be any other particle, granule, sphere or grain.
  • the particulate materials may be mixed together by any conventional means. Batch is suitable in, for example, a concrete mixer, Nauta mixer, ribbon mixer or any other. Alternatively the mixing process may be carried out continuously by metering each component by weight on to a moving belt, and blending them in one or more drum(s) or mixer(s). A liquid spray-on to the mix of particulate materials (e.g. non-ionic surfactants) may be carried out. Other liquid ingredients may also be sprayed on to the mix of particulate materials either separately or premixed. For example perfume and slurries of optical brighteners may be sprayed. A finely divided flow aid (dusting agent such as zeolites, carbonates, silicas) can be added to the particulate materials after spraying the non-ionic, preferably towards the end of the process, to make the mix less sticky.
  • a finely divided flow aid dusting agent such as zeolites, carbonates, silicas
  • the tablets may be manufactured by using any compacting process, such as tabletting, briquetting, or extrusion, preferably tabletting.
  • Suitable equipment includes a standard single stroke or a rotary press (such as Courtoy ® , Korch ® , Manesty ® , or Bonals ® ).
  • the tablets prepared according to this invention preferably have a diameter of between 40mm and 50mm, and a weight between 25 and 60 g.
  • the compaction pressure used for preparing these tablets need not exceed 5000 kN/m 2 , preferably not exceed 3000 kN/m 2 , and most preferably not exceed 1000 kN/m 2 .
  • the tablets are then coated with a coating so that the tablet does not absorb moisture, or absorbs moisture at only a very slow rate.
  • the coating is also strong so that moderate mechanical shocks to which the tablets are subjected during handling, packing and shipping result in no more than very low levels of breakage or attrition.
  • the coating is preferably brittle so that the tablet breaks up when subjected to stronger mechanical shock.
  • the coating material is dissolved under alkaline conditions, or is readily emulsified by surfactants. This avoids the deposition of undissolved particles or lumps of coating material on the laundry load. This may be important when the coating material is completely insoluble (for example less than 1 g/l) in water.
  • substantially insoluble means having a very low solubility in water. This should be understood to mean having a solubility in water at 25°C of less than 20 g/L, preferably less than 5 g/l, and more preferably less than 1 g/l. Water solubility is measured following the test protocol of ASTM E1148-87 entitled, "Standard Test Method for Measurements of Aqueous Solubility".
  • the coating materials are C2-C13 dicarboxylic acids.
  • Preferred dicarboxylic acids are oxalic acid (C2), malonic acid (C3), succinic acid (C4), glutaric acid (C5), adipic acid (C6), pimelic acid (C7), suberic acid (C8), azelaic acid (C9), sebacic acid (C10), undecanedioic acid (C11), dodecanedioic acid (C12) and tridecanedioic acid (C13).
  • the detergent tablets are prepared and in whatever from they are, they are then coated according to the present invention with a coating material having a melting point preferably of from 40 °C to 200 °C.
  • the coating is applied by coating with a molten material.
  • the coating material is applied at a temperature above its melting point, and solidifies on the tablet.
  • the coating material can be applied to the tablet by, for example, spraying or dipping. Normally when the molten material is sprayed on to the tablet, it will rapidly solidify to form a coherent coating. When tablets are dipped into the molten material and then removed, the rapid cooling again causes rapid solidification of the coating material.
  • substantially insoluble materials having a melting point below 40 °C are not sufficiently solid at ambient temperatures and it has been found that materials having a melting point above about 200 °C are not practicable to use.
  • the materials melt in the range from 60 °C to 160 °C, more preferably from 70 °C to 120 °C.
  • melting point is meant the temperature at which the material when heated slowly in, for example, a capillary tube becomes a clear liquid.
  • a coating of any desired thickness can be applied according to the present invention.
  • the coating forms from 1% to 10%, preferably from 1.5% to 5%, of the tablet weight.
  • the tablet coatings of the present invention are very hard and provide extra strength to the tablet.
  • the fracture of the coating in the wash is improved by adding a disintegrant in the coating.
  • This disintegrant will swell once in contact with water and break the coating in small pieces. This will improve the dissolution of the coating in the wash solution.
  • the disintegrant is suspended in the coating melt at a level of up to 30%, preferably between 5 and 20%, and most preferably between 5 and 10% by weight. Possible disintegrants are described in Handbook of Pharmaceutical Excipients (1986).
  • Suitable disintegrants include starch: natural, modified or pregelatinized starch, sodium starch gluconate; gum: agar gum, guar gum, locust bean gum, karaya gum, pectin gum, tragacanth gum; croscarmylose Sodium, crospovidone, cellulose, carboxymethyl cellulose, algenic acid and its salts including sodium alginate, silicone dioxide, clay, polyvinylpyrrolidone, soy polysacharides, ion exchange resins and mixtures thereof.
  • the used compaction force will be adjusted to not affect the strength (Diametral Fracture Stress), and the disintegration time in the washing machine.
  • This process may be used to prepare homogenous or layered tablets of any size or shape.
  • the rate of disintegration of a detergent tablet can be determined in two ways :
  • the tablets further comprises an effervescent.
  • Effervescency as defined herein means the evolution of bubbles of gas from a liquid, as the result of a chemical reaction between a soluble acid source and an alkali metal carbonate, to produce carbon dioxide gas, i.e. C 6 H 8 O 7 + 3NaHCO 3 ⁇ Na 3 C 6 H 5 O 7 + 3CO 2 ⁇ + 3H 2 O
  • acid and carbonate sources and other effervescent systems may be found in : (Pharmaceutical Dosage Forms : Tablets Volume 1 Page 287 to 291)
  • An effervescent may be added to the tablet mix in addition to the detergent ingredients. The addition of this effervescent to the detergent tablet improves the disintegration time of the tablet.
  • the amount will preferably be between 5 and 20 % and most preferably between 10 and 20% by weight of the tablet.
  • the effervescent should be added as an agglomerate of the different particles or as a compact, and not as separated particles. Due to the gas created by the effervescency in the tablet, the tablet can have a higher D.F.S. and still have the same disintegration time as a tablet without effervescency. When the D.F.S. of the tablet with effervescency is kept the same as a tablet without, the disintegration of the tablet with effervescency will be faster.
  • Nonlimiting examples of surfactants useful herein typically at levels from about 1% to about 55%, by weight include the conventional C 11- C 18 alkyl benzene sulfonates ("LAS") and primary, branched-chain and random C 10 -C 20 alkyl sulfates (“AS”), the C 10- C 18 secondary (2,3) alkyl sulfates of the formula CH 3 (CH 2 ) x (CHOSO 3 -M + ) CH 3 and CH 3 (CH 2 ) y (CHOSO 3 -M + ) CH 2 CH 3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the C 10- C 18 alkyl alkoxy sulfates (“AE x S”; especially EO 1-7 ethoxy sulfates), C 10 C 18 alkyl alkoxy carboxylates (
  • the conventional nonionic and amphoteric surfactants such as the C 12- C 18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C 6 -C 12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C 12- C 18 betaines and sulfobetaines ("sultaines"), C 10 -C 18 amine oxides, and the like, can also be included in the overall compositions.
  • the C 10 -C 18 N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C 12 -C 18 N-methylglucamides. See WO 9,206,154.
  • sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C 10 -C 18 N-(3-methoxypropyl) glucamide.
  • the N-propyl through N-hexyl C 12 -C 18 glucamides can be used for low sudsing.
  • C 10 -C 20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C 10 -C 16 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants are listed in standard texts.
  • Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness.
  • Inorganic as well as organic builders can be used. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soils. The level of builder can vary widely depending upon the end use of the composition.
  • Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates.
  • compositions herein function surprisingly well even in the presence of the so-called “weak” builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt” situation that may occur with zeolite or layered silicate builders.
  • silicate builders are the alkali metal silicates, particularly those having a SiO 2 :Na 2 O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck.
  • NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6").
  • Hoechst commonly abbreviated herein as "SKS-6”
  • the Na SKS-6 silicate builder does not contain aluminum.
  • NaSKS-6 has the delta-Na 2 SiO 5 morphology form of layered silicate.
  • SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSi x O 2x+1 ⁇ yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein.
  • Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms.
  • delta-Na 2 SiO 5 (NaSKS-6 form) is most preferred for use herein.
  • Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
  • magnesium silicate which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
  • Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • Aluminosilicate builders are useful in the present invention.
  • Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations.
  • Aluminosilicate builders include those having the empirical formula: M z (zAlO 2 ) y ]-xH 2 O wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
  • Useful aluminosilicate ion exchange materials are commercially available.
  • aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived.
  • a method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976.
  • Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X.
  • the crystalline aluminosilicate ion exchange material has the formula: Na 12 [(AlO 2 ) 12 (SiO 2 ) 12 ] ⁇ xH 2 O wherein x is from about 20 to about 30, especially about 27.
  • This material is known as Zeolite A.
  • the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
  • Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds.
  • polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • alkali metals such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • Included among the polycarboxylate builders are a variety of categories of useful materials.
  • One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S.
  • Patent 3,635,830 issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987.
  • Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
  • ether hydroxypolycarboxylates copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid
  • various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid
  • polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
  • Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations. Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-1,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986.
  • succinic acid builders include the C 5 -C 20 alkyl and alkenyl succinic acids and salts thereof.
  • a particularly preferred compound of this type is dodecenylsuccinic acid.
  • succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986. Other suitable polycarboxylates are disclosed in U.S.
  • Fatty acids e.g., C 12 -C 18 monocarboxylic acids
  • Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
  • the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used.
  • Phosphonate builders such as ethane-1-hydroxy-1,1-diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137) can also be used.
  • the detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators.
  • bleaching agents will typically be at levels of from about 1% to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering.
  • the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
  • the bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents.
  • Perborate bleaches e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein.
  • Another category of bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, U.S.
  • Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551, issued January 6, 1987 to Burns et al.
  • Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate" bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide.
  • Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used.
  • a preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1,250 micrometers.
  • the percarbonate can be coated with silicate, borate or water-soluble surfactants.
  • Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka. Mixtures of bleaching agents can also be used.
  • Peroxygen bleaching agents, the perborates, the percarbonates, etc. are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator.
  • bleach activators Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934.
  • NOBS nonanoyloxybenzene sulfonate
  • TAED tetraacetyl ethylene diamine
  • amido-derived bleach activators are those of the formulae: R 1 N(R 5 )C(O)R 2 C(O)L or R 1 C(O)N(R 5 )R 2 C(O)L wherein R 1 is an alkyl group containing from about 6 to about 12 carbon atoms, R 2 is an alkylene containing from 1 to about 6 carbon atoms, R 5 is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group.
  • a leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion.
  • a preferred leaving group is phenyl sulfonate.
  • bleach activators of the above formulae include (6-octanamido-caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamidocaproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551, incorporated herein by reference.
  • Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference.
  • a highly preferred activator of the benzoxazin-type is: Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae: wherein R 6 is H or an alkyl, aryl, alkoxyaryl, or alkaryl group containing from 1 to about 12 carbon atoms.
  • lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof. See also U.S.
  • Patent 4,545,784 issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perborate.
  • Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein.
  • One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al.
  • detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
  • the bleaching compounds can be catalyzed by means of a manganese compound.
  • Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621, U.S. Pat. 5,244,594; U.S. Pat. 5,194,416; U.S. Pat. 5,114,606; and European Pat. App. Pub. Nos.
  • Preferred examples of these catalysts include Mn IV 2 (u-O) 3 (1,4,7-trimethyl-1,4,7-triazacyclononane) 2 (PF 6 ) 2 , MnIII 2 (u-O) 1 (u-OAC) 2 (1,4,7-trimethyl-1,4,7-triazacyclononane) 2 -(ClO 4 ) 2 , Mn IV 4 (u-O) 6 (1,4,7-triazacyclononane) 4 (ClO 4 ) 4 , Mn III Mn IV 4 (u-O) 1 (u-OAc) 2 -(1,4,7-trimethyl-1,4,7-triazacyclononane) 2 (ClO 4 ) 3 , Mn IV -(1,4,7-trimethyl-1,4,7-triazacyclononane)- (OCH 3 ) 3 (PF 6 ), and mixtures thereof
  • metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,114,611.
  • the use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161; and 5,227,084.
  • compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 500 ppm, of the catalyst species in the laundry liquor.
  • Enzymes can be included in the formulations herein for a wide variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and for the prevention of refugee dye transfer, and for fabric restoration.
  • the enzymes to be incorporated include proteases, amylases, lipases, cellulases, and peroxidases, as well as mixtures thereof.
  • Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. However, their choice is governed by several factors such as pH-activity and/or stability optima, thermostability, stability versus active detergents, builders and so on.
  • bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
  • Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.01 mg to about 3 mg, of active enzyme per gram of the composition.
  • the compositions herein will typically comprise from about 0.001% to about 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation.
  • Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
  • Suitable examples of proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniforms.
  • protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A/S under the registered trade name ESPERASE. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1,243,784 of Novo.
  • Proteolytic enzymes suitable for removing protein-based stains include those sold under the tradenames ALCALASE and SAVINASE by Novo Industries A/S (Denmark) and MAXATASE by International Bio-Synthetics, Inc. (The Netherlands).
  • Other proteases include Protease A (see European Patent Application 130,756, published January 9, 1985) and Protease B (see European Patent Application Serial No.
  • Amylases include, for example, ⁇ -amylases described in British Patent Specification No. 1,296,839 (Novo), RAPIDASE, International Bio-Synthetics, Inc. and TERMAMYL, Novo Industries.
  • the cellulase usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5.
  • Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk (Dolabella Auricula Solander).
  • suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832. CAREZYME (Novo) is especially useful.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. See also lipases in Japanese Patent Application 53,20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co.
  • Lipase P Lipase P
  • Other commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
  • the LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo is a preferred lipase for use herein.
  • Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase.
  • Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October 19, 1989, by O. Kirk, assigned to Novo Industries A/S.
  • a wide range of enzyme materials and means for their incorporation into synthetic detergent compositions are also disclosed in U.S. Patent 3,553,139, issued January 5, 1971 to McCarty et al.
  • Enzymes are further disclosed in U.S. Patent 4,101,457, Place et al, issued July 18, 1978, and in U.S. Patent 4,507,219, Hughes, issued March 26, 1985, both.
  • Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations are disclosed in U.S. Patent 4,261,868, Hora et al, issued April 14, 1981.
  • Enzymes for use in detergents can be stabilized by various techniques. Enzyme stabilization techniques are disclosed and exemplified in U.S. Patent 3,600,319, issued August 17, 1971 to Gedge, et al, and European Patent Application Publication No. 0 199 405, Application No. 86200586.5, published October 29, 1986, Venegas. Enzyme stabilization systems are also described, for example, in U.S. Patent 3,519,570.
  • compositions which are comonly used in detergent compositions and which may be incorpoated into the detergent tablets of the present invention include chelating agents, soil release agents, soil antiredeposition agents, dispersing agents, brighteners, suds suppressors, fabric softeners, dye transfer inhibition agents and perfumes.
  • Nonionic agglomerates comprise 26% nonionic surfactant, 48% zeolite and 26% carbonate.
  • Bleach activator agglomerates comprise 81% TAED, 17% acrylic/maleic copolymer (acid form) and 2% water.
  • Zinc Phthalocyanine sulphonate encapsulates are 10% active.
  • Suds suppressor comprises 11.5% silicone oil (ex Dow Corning), and 88.5% starch.
  • Layered silicate comprises 78% SKS-6, ex Hoechst, 22% citric acid.
  • Dye transfer inhibitor agglomerates comprise 21% PVNO/PVPVI, 61% zeolite and 18% carbonate.
  • Perfume encapsulates comprise 50% perfume and 50% starch.
  • Nonionic paste spray-on comprises 67% C12-C15 AE5 (alcohol with an average of 5 ethoxy groups per molecule), 24% N-methyl glucose amide and 9% water.
  • Effervescent compact comprises 54.5% sodium bicarbonate and 45.5% citric acid.
  • Example 2 All the particulate materials of Example 1, except for the dried zeolite, were mixed together in a mixing drum to form a homogeneous particulate mixture, during this mixing the spray-ons were carried out. After the spray-ons the dusting was carried out with the dried zeolite.
  • a first series of tablets were made the following way, about 37.5 g. of the mixture was introduced into a mould of circular shape with a diameter of 4.5 cm, and compressed with a force of 0.5 kN. or about 30 Newton/cm 2 , to give tablets of about 2.2 cm height and a density of about 1.1 g./cc.
  • the tensile strength of the tablet was 3.5 kPa.
  • Adipic acid was heated in a thermostatic bath till 170°C with gentle stirring until molten.
  • the disintegrant, Nymcel ZSB-16 ® was then added with continuous stirring to the adipic acid to form a suspension.
  • the tablets prepared as above were then dipped into the liquid to give the final coated tablet, this tablet had a total weight of 41.1 g, and a tensile strength of 12.6 kPa.
  • a second series of tablets was made with a compaction force of 1kN. or about 65 N/cm 2 to give tablets of about 2.0 cm height, a density of about 1.2 g./cc, and a tensile strength of 9.0 kPa. After coating with Adipic Acid the tablets had a weight of 41.2 g, and the tensile strength was 21.2 kPa.
  • a third series of tablets was made with a compaction force of 1.5 kN. or about 95N/cm 2 to give tablets of about 1.9 cm height, a density of about 1.3 g./cc, and a tensile strength of 12.9 kPa. After coating with Adipic Acid the tablets had a weight of 41.1 g, and the tensile strength was 31.5 kPa.
  • Example 2 Mixing according to the method described in Example 1, after the dusting the effervescency granules were added to the mix drum, and a final mix was made. Tabletting and coating was carried out according to the method described in Example 1 A first series of tablets was made with a Compaction Force of 1 kN. or about 63 Newton/cm 2 , to give tablets of about 2.2 cm height, a density of about 1.1 gr./cc, and a tensile strength of 4.5 kPa. After coating with Adipic acid the tablets had a weight of 41.1 g, and the tensile strength was 14.4 kPa.
  • a second series of tablets was made with a compaction force of 1.5 kN. or about 95 N/cm 2 to give tablets of about 2.2 cm height, a density of about 1.2 gr./cc, and a tensile strength of 8.5 kPa. After coating with Adipic Acid the tablets had a weight of 41.1 g, and a tensile strength was 22.2 kPa.
  • a third series of tablets was made with a compaction force of 2.5 kN. or about 160 N/cm 2 to give tablets of about 2.0 cm height, a density of about 1.2 g./cc, and a tensile strength of 15.7 kPa. After coating with Adipic Acid the tablets had a weight of 41.1 g, and the tensile strength increased to 31 kPa.
  • Comparative Example 3 the process of example 1 was repeated but without the disintegrant.
  • the final tensile strength of the three series of tablets was 6.5 kPa, 15.5 kPa and 19.5 kPa respectively.
  • Comparative Example 4 the process of example 4 was repeated but without the disintegrant.
  • the final tensile strength of the three series of tablets was 10.4 kPa, 14.5 kPa and 21.3 kPa respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

  • The present invention relates to coated detergent tablets, especially those adapted for use in washing machines, and to processes for making the coated detergent tablets.
  • Although cleaning compositions in tablet form have often been proposed, these have not (with the exception of soap bars for personal washing) gained any substantial success, despite the several advantages of products in a unit dispensing form. One of the reasons for this may be that detergent tablets require a relatively complex manufacturing process. In particular, it is often desirable to provide the tablet with a coating and this adds to the difficulties of manufacture.
    While tablets without a coating are entirely effective in use, they usually lack the necessary surface hardness to withstand the abrasion that is a part of normal manufacture, packaging and handling. The result is that uncoated tablets suffer from abrasion during these processes, resulting in chipped tablets and loss of active material.
  • Finally, coating of tablets is often desired for aesthetic reasons, to improve the outer appearance of the tablet or to achieve some particular aesthetic effect.
  • Numerous methods of tablet coating have been proposed, and many of these have been suggested for detergent tablets. However, all of these methods have certain disadvantages, as will be explained below.
  • GB-A-0 989 683, published on 22nd April 1965, discloses a process for preparing a particulate detergent from surfactants and inorganic salts; spraying on water-soluble silicate; and pressing the detergent particles into a solid form-retaining tablet. Finally a readily water-soluble organic film-forming polymer (for example, polyvinyl alcohol) provides a coating to make the detergent tablet resistant to abrasion and accidental breakage.
  • EP-A-0 002 293, published on 13th June 1979, discloses a tablet coating comprising hydrated salt such as acetate, metaborate, orthophosphate, tartrate, and sulphate.
  • EP-A-0 716 144, published on 12th June 1996, also discloses laundry detergent tablets with water-soluble coatings which may be organic polymers including acrylic/maleic copolymer, polyethylene glycol, PVPVA, and sugar.
  • WO9518215, published on 6th July 1995, provides water-insoluble coatings for solid cast tablets. The tablets are provided with hydrophobic coatings including wax, fatty acid, fatty acid amides, and polyethylene glycol.
  • A disadvantage of the prior art disclosures is that a coating which is thick enough and strong enough to withstand abrasion, also tends to be slow to break up or dissolve in use.
  • The present invention provides a means by which tablets with a core which is formed by compressing a particulate material, the particulate material comprising surfactant and detergent builder, can be provided with a hard, thin, coating so that they can be stored, shipped and handled, but the coating is broken when the tablet is in the washing machine exposing the soft core which breaks up easily and rapidly, releasing the active ingredients into the wash solution.
  • The objective of the present invention is to provide a tablet which completely disintegrates and disperses, in particular in alkaline or surfactant-rich solutions such as the wash liquor.
  • Summary of the Invention
  • The object of the present invention is achieved by providing a tablet comprising a core and a coating, the core being formed by compressing a particulate material, the particulate material comprising surfactant and detergent builder, characterised in that the coating material has a solubility in water at 25°C of less than 20 g/l and is selected from C2-C13 dicarboxylic acids, and the coating comprises a disintegrant, which will swell once in contact with water, at a level to break the coating of up to 30% by weight of the coating. It is preferred that the tablet further comprises an effervescent, for example a soluble acid source and an alkali metal carbonate.
  • In a further aspect of the invention there is provided a process for making a tablet comprising the steps of :
    1. (a) forming a core by compressing a particulate material, the particulate material comprising surfactant and detergent builder;
    2. (b) applying a coating material to the core, the coating material being in the form of a melt;
    3. (c) allowing the molten coating material to solidify; characterised in that the coating material comprises a disintegrant, which will swell upon contact with water, at a level to break the coating up to 30% by weight and wherein the coating material has a solubility in water at 25°C of less than 20 g/l and is selected from C2-C13 dicarboxylic acids.
  • Preferably the coating materials have a melting point in the range of from 40 °C to 200 °C.
  • Detailed Description of the Invention
  • Tablets to be coated in the present invention can be prepared simply by mixing the solid ingredients together and compressing the mixture in a conventional tablet press as used, for example, in the pharmaceutical industry. Any liquid ingredients, for example the surfactant or suds suppressor, can be incorporated in a conventional manner into the solid particulate ingredients. Preferably the principal ingredients, are used in particulate form.
    In particular for laundry tablets, the ingredients such as builder and surfactant can be spray-dried in a conventional manner and then compacted at a suitable pressure.
    The detergent tablets can be made in any size or shape and can, if desired, be surface treated before coating, according to the present invention. In the core of the tablet is included a surfactant and a builder which normally provides a substantial part of the cleaning power of the tablet. The term "builder" is intended to mean all materials which tend to remove calcium ion from solution, either by ion exchange, complexation, sequestration or precipitation.
  • The particulate material used for making the tablet of this invention can be made by any particulation or granulation process. An example of such a process is spray drying (in a co-current or counter current spray drying tower) which typically gives low bulk densities 600g/l or lower. Particulate materials of higher density can be prepared by granulation and densification in a high shear batch mixer/granulator or by a continuous granulation and densification process (e.g. using Lodige® CB and/or Lodige® KM mixers). Other suitable processes include fluid bed processes, compaction processes (e.g. roll compaction), extrusion, as well as any particulate material made by any chemical process like flocculation, crystallisation sentering, etc. Individual particles can also be any other particle, granule, sphere or grain.
  • The particulate materials may be mixed together by any conventional means. Batch is suitable in, for example, a concrete mixer, Nauta mixer, ribbon mixer or any other. Alternatively the mixing process may be carried out continuously by metering each component by weight on to a moving belt, and blending them in one or more drum(s) or mixer(s). A liquid spray-on to the mix of particulate materials (e.g. non-ionic surfactants) may be carried out. Other liquid ingredients may also be sprayed on to the mix of particulate materials either separately or premixed. For example perfume and slurries of optical brighteners may be sprayed. A finely divided flow aid (dusting agent such as zeolites, carbonates, silicas) can be added to the particulate materials after spraying the non-ionic, preferably towards the end of the process, to make the mix less sticky.
  • The tablets may be manufactured by using any compacting process, such as tabletting, briquetting, or extrusion, preferably tabletting. Suitable equipment includes a standard single stroke or a rotary press (such as Courtoy®, Korch®, Manesty®, or Bonals®). The tablets prepared according to this invention preferably have a diameter of between 40mm and 50mm, and a weight between 25 and 60 g. The compaction pressure used for preparing these tablets need not exceed 5000 kN/m2, preferably not exceed 3000 kN/m2, and most preferably not exceed 1000 kN/m2.
  • According to the present invention, the tablets are then coated with a coating so that the tablet does not absorb moisture, or absorbs moisture at only a very slow rate. The coating is also strong so that moderate mechanical shocks to which the tablets are subjected during handling, packing and shipping result in no more than very low levels of breakage or attrition. Finally the coating is preferably brittle so that the tablet breaks up when subjected to stronger mechanical shock. Furthermore it is advantageous if the coating material is dissolved under alkaline conditions, or is readily emulsified by surfactants. This avoids the deposition of undissolved particles or lumps of coating material on the laundry load. This may be important when the coating material is completely insoluble (for example less than 1 g/l) in water.
  • As defined herein "substantially insoluble" means having a very low solubility in water. This should be understood to mean having a solubility in water at 25°C of less than 20 g/L, preferably less than 5 g/l, and more preferably less than 1 g/l. Water solubility is measured following the test protocol of ASTM E1148-87 entitled, "Standard Test Method for Measurements of Aqueous Solubility".
  • The coating materials are C2-C13 dicarboxylic acids. Preferred dicarboxylic acids are oxalic acid (C2), malonic acid (C3), succinic acid (C4), glutaric acid (C5), adipic acid (C6), pimelic acid (C7), suberic acid (C8), azelaic acid (C9), sebacic acid (C10), undecanedioic acid (C11), dodecanedioic acid (C12) and tridecanedioic acid (C13).
  • However the detergent tablets are prepared and in whatever from they are, they are then coated according to the present invention with a coating material having a melting point preferably of from 40 °C to 200 °C.
    The coating is applied by coating with a molten material. The coating material is applied at a temperature above its melting point, and solidifies on the tablet. The coating material can be applied to the tablet by, for example, spraying or dipping. Normally when the molten material is sprayed on to the tablet, it will rapidly solidify to form a coherent coating. When tablets are dipped into the molten material and then removed, the rapid cooling again causes rapid solidification of the coating material. Clearly substantially insoluble materials having a melting point below 40 °C are not sufficiently solid at ambient temperatures and it has been found that materials having a melting point above about 200 °C are not practicable to use. Preferably, the materials melt in the range from 60 °C to 160 °C, more preferably from 70 °C to 120 °C.
    By "melting point" is meant the temperature at which the material when heated slowly in, for example, a capillary tube becomes a clear liquid.
  • A coating of any desired thickness can be applied according to the present invention. For most purposes, the coating forms from 1% to 10%, preferably from 1.5% to 5%, of the tablet weight.
  • The tablet coatings of the present invention are very hard and provide extra strength to the tablet.
  • In the present invention the fracture of the coating in the wash is improved by adding a disintegrant in the coating. This disintegrant will swell once in contact with water and break the coating in small pieces. This will improve the dissolution of the coating in the wash solution. The disintegrant is suspended in the coating melt at a level of up to 30%, preferably between 5 and 20%, and most preferably between 5 and 10% by weight.
    Possible disintegrants are described in Handbook of Pharmaceutical Excipients (1986). Examples of suitable disintegrants include starch: natural, modified or pregelatinized starch, sodium starch gluconate; gum: agar gum, guar gum, locust bean gum, karaya gum, pectin gum, tragacanth gum; croscarmylose Sodium, crospovidone, cellulose, carboxymethyl cellulose, algenic acid and its salts including sodium alginate, silicone dioxide, clay, polyvinylpyrrolidone, soy polysacharides, ion exchange resins and mixtures thereof.
  • Depending on the composition of the starting material, and the shape of the tablets, the used compaction force will be adjusted to not affect the strength (Diametral Fracture Stress), and the disintegration time in the washing machine. This process may be used to prepare homogenous or layered tablets of any size or shape.
  • Diametrical Fracture Stress (DFS) is a way to express the strength of a tablet, it is determined by the following equation = 2 F μ Dt
    Figure imgb0001

    Where F is the maximum force (Newton) to cause tensile failure (fracture) measured by a VK 200 tablet hardness tester supplied by Van Kell industries, Inc. D is the diameter of the tablet, and t the thickness of the tablet. (Method Pharmaceutical Dosage Forms : Tablets Volume 2 Page 213 to 217)
  • The rate of disintegration of a detergent tablet can be determined in two ways :
    1. a) In a "VAN KEL" Friabilator with "Vankel Type" drums.
      • Put 2 tablets with a known weight and D.F.S in the Friabilator drum.
      • Rotate the drum for 20 rotations.
      • Collect all product and remaining tablet pieces from the Friabilator drum, and screen it on 5 mm, and through 1.7 mm
      • Express as % residue on 5 mm and through 1.7 mm.
      • The higher the % of material through 1.7 mm the better the disintegration.
    2. b) In a washing machine according to the following method
      • Take two tablets with a known weight and fracture stress, and put them at the bottom of a washing machine (i.e. a Bauknecht WA 950).
      • Put a 3 kg mixed load on top of the tablets.
      • Run a 30 °C short cycle (program 4) with city water.
      • Stop the cycle after 5 min and check the wash load for undissolved tablet pieces, collect and weigh them, and record the percent residue left.
  • In another preferred embodiment of the present invention the tablets further comprises an effervescent.
  • Effervescency as defined herein means the evolution of bubbles of gas from a liquid, as the result of a chemical reaction between a soluble acid source and an alkali metal carbonate, to produce carbon dioxide gas,

            i.e. C6H8O7 + 3NaHCO3 → Na3C6H5O7 + 3CO2 ↑ + 3H2O

    Further examples of acid and carbonate sources and other effervescent systems may be found in : (Pharmaceutical Dosage Forms : Tablets Volume 1 Page 287 to 291)
    An effervescent may be added to the tablet mix in addition to the detergent ingredients. The addition of this effervescent to the detergent tablet improves the disintegration time of the tablet. The amount will preferably be between 5 and 20 % and most preferably between 10 and 20% by weight of the tablet. Preferably the effervescent should be added as an agglomerate of the different particles or as a compact, and not as separated particles.
    Due to the gas created by the effervescency in the tablet, the tablet can have a higher D.F.S. and still have the same disintegration time as a tablet without effervescency. When the D.F.S. of the tablet with effervescency is kept the same as a tablet without, the disintegration of the tablet with effervescency will be faster.
  • Detersive surfactants
  • Nonlimiting examples of surfactants useful herein typically at levels from about 1% to about 55%, by weight, include the conventional C11-C18 alkyl benzene sulfonates ("LAS") and primary, branched-chain and random C10-C20 alkyl sulfates ("AS"), the C10-C18 secondary (2,3) alkyl sulfates of the formula CH3(CH2)x(CHOSO3-M+) CH3 and CH3 (CH2)y(CHOSO3-M+) CH2CH3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the C10-C18 alkyl alkoxy sulfates ("AExS"; especially EO 1-7 ethoxy sulfates), C10C18 alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the C10-18 glycerol ethers, the C10C18 alkyl polyglycosides and their corresponding sulfated polyglycosides, and C12-C18 alpha-sulfonated fatty acid esters. If desired, the conventional nonionic and amphoteric surfactants such as the C12-C18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C12-C18 betaines and sulfobetaines ("sultaines"), C10-C18 amine oxides, and the like, can also be included in the overall compositions. The C10-C18 N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C12-C18 N-methylglucamides. See WO 9,206,154. Other sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C10-C18 N-(3-methoxypropyl) glucamide. The N-propyl through N-hexyl C12-C18 glucamides can be used for low sudsing. C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C10-C16 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants are listed in standard texts.
  • Builders
  • Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness. Inorganic as well as organic builders can be used. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soils. The level of builder can vary widely depending upon the end use of the composition.
    Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates. However, non-phosphate builders are required in some locales. Importantly, the compositions herein function surprisingly well even in the presence of the so-called "weak" builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt" situation that may occur with zeolite or layered silicate builders.
  • Examples of silicate builders are the alkali metal silicates, particularly those having a SiO2:Na2O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck. NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6"). Unlike zeolite builders, the Na SKS-6 silicate builder does not contain aluminum. NaSKS-6 has the delta-Na2SiO5 morphology form of layered silicate. It can be prepared by methods such as those described in German DE-A-3,417,649 and DE-A-3,742,043. SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSixO2x+1·yH2O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein. Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms. As noted above, the delta-Na2SiO5 (NaSKS-6 form) is most preferred for use herein. Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
    Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula:

            Mz(zAlO2)y]-xH2O

    wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
    Useful aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula:

            Na12[(AlO2)12(SiO2)12]·xH2O

    wherein x is from about 20 to about 30, especially about 27. This material is known as Zeolite A. Dehydrated zeolites (x = 0 - 10) may also be used herein. Preferably, the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
    Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds. As used herein, "polycarboxylate" refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates. Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
    Included among the polycarboxylate builders are a variety of categories of useful materials. One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987. Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
    Other useful detergency builders include the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
    Citrate builders, e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
    Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-1,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986. Useful succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof. A particularly preferred compound of this type is dodecenylsuccinic acid. Specific examples of succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
    Other suitable polycarboxylates are disclosed in U.S. Patent 4,144,226, Crutchfield et al, issued March 13, 1979 and in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. See also Diehl U.S. Patent 3,723,322.
    Fatty acids, e.g., C12-C18 monocarboxylic acids, can also be incorporated into the compositions alone, or in combination with the aforesaid builders, especially citrate and/or the succinate builders, to provide additional builder activity. Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
    In situations where phosphorus-based builders can be used, and especially in the formulation of bars used for hand-laundering operations, the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used. Phosphonate builders such as ethane-1-hydroxy-1,1-diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137) can also be used.
  • Bleach
  • The detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators. When present, bleaching agents will typically be at levels of from about 1% to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering. If present, the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
    The bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents. Perborate bleaches, e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein.
    Another category of bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1, 1983. Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551, issued January 6, 1987 to Burns et al.
    Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate" bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used.
    A preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1,250 micrometers. Optionally, the percarbonate can be coated with silicate, borate or water-soluble surfactants. Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
    Mixtures of bleaching agents can also be used.
    Peroxygen bleaching agents, the perborates, the percarbonates, etc., are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator. Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934. The nonanoyloxybenzene sulfonate (NOBS) and tetraacetyl ethylene diamine (TAED) activators are typical, and mixtures thereof can also be used. See also U.S. 4,634,551 for other typical bleaches and activators useful herein.
    Highly preferred amido-derived bleach activators are those of the formulae:

            R1N(R5)C(O)R2C(O)L or R1C(O)N(R5)R2C(O)L

    wherein R1 is an alkyl group containing from about 6 to about 12 carbon atoms, R2 is an alkylene containing from 1 to about 6 carbon atoms, R5 is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group. A leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion. A preferred leaving group is phenyl sulfonate.
    Preferred examples of bleach activators of the above formulae include (6-octanamido-caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamidocaproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551, incorporated herein by reference.
    Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference. A highly preferred activator of the benzoxazin-type is:
    Figure imgb0002
    Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
    Figure imgb0003
    wherein R6 is H or an alkyl, aryl, alkoxyaryl, or alkaryl group containing from 1 to about 12 carbon atoms. Highly preferred lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perborate.
    Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein. One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al.
  • If used, detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
    If desired, the bleaching compounds can be catalyzed by means of a manganese compound. Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621, U.S. Pat. 5,244,594; U.S. Pat. 5,194,416; U.S. Pat. 5,114,606; and European Pat. App. Pub. Nos. 549,271A1, 549,272A1, 544,440A2, and 544,490A1; Preferred examples of these catalysts include MnIV 2(u-O)3(1,4,7-trimethyl-1,4,7-triazacyclononane)2(PF6)2, MnIII2(u-O)1(u-OAC)2(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(ClO4)2, MnIV 4(u-O)6(1,4,7-triazacyclononane)4(ClO4)4, MnIIIMnIV 4(u-O)1(u-OAc)2-(1,4,7-trimethyl-1,4,7-triazacyclononane)2(ClO4)3, MnIV-(1,4,7-trimethyl-1,4,7-triazacyclononane)- (OCH3)3(PF6), and mixtures thereof. Other metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,114,611. The use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161; and 5,227,084.
    As a practical matter, and not by way of limitation, the compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 500 ppm, of the catalyst species in the laundry liquor.
  • Enzymes
  • Enzymes can be included in the formulations herein for a wide variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and for the prevention of refugee dye transfer, and for fabric restoration. The enzymes to be incorporated include proteases, amylases, lipases, cellulases, and peroxidases, as well as mixtures thereof. Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. However, their choice is governed by several factors such as pH-activity and/or stability optima, thermostability, stability versus active detergents, builders and so on. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
    Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.01 mg to about 3 mg, of active enzyme per gram of the composition. Stated otherwise, the compositions herein will typically comprise from about 0.001% to about 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation. Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
    Suitable examples of proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniforms. Another suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A/S under the registered trade name ESPERASE. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1,243,784 of Novo. Proteolytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the tradenames ALCALASE and SAVINASE by Novo Industries A/S (Denmark) and MAXATASE by International Bio-Synthetics, Inc. (The Netherlands). Other proteases include Protease A (see European Patent Application 130,756, published January 9, 1985) and Protease B (see European Patent Application Serial No. 87303761.8, filed April 28, 1987, and European Patent Application 130,756, Bott et al, published January 9, 1985).
    Amylases include, for example, α-amylases described in British Patent Specification No. 1,296,839 (Novo), RAPIDASE, International Bio-Synthetics, Inc. and TERMAMYL, Novo Industries.
  • The cellulase usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk (Dolabella Auricula Solander). suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832. CAREZYME (Novo) is especially useful.
    Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. See also lipases in Japanese Patent Application 53,20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P." Other commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli. The LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo (see also EPO 341,947) is a preferred lipase for use herein.
    Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase. Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October 19, 1989, by O. Kirk, assigned to Novo Industries A/S.
    A wide range of enzyme materials and means for their incorporation into synthetic detergent compositions are also disclosed in U.S. Patent 3,553,139, issued January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. Patent 4,101,457, Place et al, issued July 18, 1978, and in U.S. Patent 4,507,219, Hughes, issued March 26, 1985, both. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. Patent 4,261,868, Hora et al, issued April 14, 1981. Enzymes for use in detergents can be stabilized by various techniques. Enzyme stabilization techniques are disclosed and exemplified in U.S. Patent 3,600,319, issued August 17, 1971 to Gedge, et al, and European Patent Application Publication No. 0 199 405, Application No. 86200586.5, published October 29, 1986, Venegas. Enzyme stabilization systems are also described, for example, in U.S. Patent 3,519,570.
  • Other components which are comonly used in detergent compositions and which may be incorpoated into the detergent tablets of the present invention include chelating agents, soil release agents, soil antiredeposition agents, dispersing agents, brighteners, suds suppressors, fabric softeners, dye transfer inhibition agents and perfumes.
  • EXAMPLES
  • Ex. 1 Ex. 2 Comp. Ex. 3 Comp. Ex. 4
    Anionic Agglomerates 24.48 19.59 25.00 20.00
    Nonionic Agglomerate 5.40 4.32 5.53 4.42
    Bleach Activator Agglomerates 5.56 4.45 5.69 4.55
    Zinc Phthalocyanine sulphonate encapsulate 0.02 0.02 0.03 0.02
    Suds Suppressor 3.15 2.52 3.23 2.58
    Dried Zeolite 6.16 4.93 6.30 5.04
    Layered Silicate 13.38 10.70 13.69 10.95
    Dye transfer Inhibitor Agglomerate 0.12 0.09 0.13 0.10
    Perfume Encapsulates 0.22 0.18 0.23 0.18
    Nonionic Paste Spray-on 5.30 4.24 5.43 4.34
    Fluorescer 0.25 0.20 0.26 0.21
    Sodium carbonate 4.57 3.66 4.68 3.74
    Sodium percarbonate 19.38 15.50 19.78 15.86
    Sodium HEDP 0.77 0.62 0.79 0.63
    Soil Release polymer 0.17 0.14 0.18 0.14
    Perfume 0.32 0.25 0.33 0.26
    Protease 0.85 0.68 0.86 0.69
    Cellulase 0.24 0.19 0.25 0.20
    Lipase 0.21 0.16 0.21 0.17
    Amylase 0.68 0.55 0.70 0.56
    Adipic Acid 7.88 7.88 6.70 6.70
    Effervescency Compact - 18.25 - 18.66
    Disintegrant NYMCEL ZSB-16 0.88 0.88 - -
    TOTAL 100.00 100.00 100.00 100.00
    Anionic agglomerates comprise 38% anionic surfactant, 22% zeolite and 40% carbonate.
    Nonionic agglomerates comprise 26% nonionic surfactant, 48% zeolite and 26% carbonate.
    Bleach activator agglomerates comprise 81% TAED, 17% acrylic/maleic copolymer (acid form) and 2% water.
    Zinc Phthalocyanine sulphonate encapsulates are 10% active. Suds suppressor comprises 11.5% silicone oil (ex Dow Corning), and 88.5% starch.
    Layered silicate comprises 78% SKS-6, ex Hoechst, 22% citric acid.
    Dye transfer inhibitor agglomerates comprise 21% PVNO/PVPVI, 61% zeolite and 18% carbonate.
    Perfume encapsulates comprise 50% perfume and 50% starch.
    Nonionic paste spray-on comprises 67% C12-C15 AE5 (alcohol with an average of 5 ethoxy groups per molecule), 24% N-methyl glucose amide and 9% water.
    Effervescent compact comprises 54.5% sodium bicarbonate and 45.5% citric acid.
  • All the particulate materials of Example 1, except for the dried zeolite, were mixed together in a mixing drum to form a homogeneous particulate mixture, during this mixing the spray-ons were carried out. After the spray-ons the dusting was carried out with the dried zeolite.
  • A first series of tablets were made the following way, about 37.5 g. of the mixture was introduced into a mould of circular shape with a diameter of 4.5 cm, and compressed with a force of 0.5 kN. or about 30 Newton/cm2, to give tablets of about 2.2 cm height and a density of about 1.1 g./cc. The tensile strength of the tablet was 3.5 kPa.
    Adipic acid was heated in a thermostatic bath till 170°C with gentle stirring until molten. The disintegrant, Nymcel ZSB-16®, was then added with continuous stirring to the adipic acid to form a suspension. The tablets prepared as above were then dipped into the liquid to give the final coated tablet, this tablet had a total weight of 41.1 g, and a tensile strength of 12.6 kPa.
  • A second series of tablets was made with a compaction force of 1kN. or about 65 N/cm2 to give tablets of about 2.0 cm height, a density of about 1.2 g./cc, and a tensile strength of 9.0 kPa.
    After coating with Adipic Acid the tablets had a weight of 41.2 g, and the tensile strength was 21.2 kPa.
  • A third series of tablets was made with a compaction force of 1.5 kN. or about 95N/cm2 to give tablets of about 1.9 cm height, a density of about 1.3 g./cc, and a tensile strength of 12.9 kPa. After coating with Adipic Acid the tablets had a weight of 41.1 g, and the tensile strength was 31.5 kPa.
  • Example 2
  • Mixing according to the method described in Example 1, after the dusting the effervescency granules were added to the mix drum, and a final mix was made.
    Tabletting and coating was carried out according to the method described in Example 1
    A first series of tablets was made with a Compaction Force of 1 kN. or about 63 Newton/cm2, to give tablets of about 2.2 cm height, a density of about 1.1 gr./cc, and a tensile strength of 4.5 kPa.
    After coating with Adipic acid the tablets had a weight of 41.1 g, and the tensile strength was 14.4 kPa.
  • A second series of tablets was made with a compaction force of 1.5 kN. or about 95 N/cm2 to give tablets of about 2.2 cm height, a density of about 1.2 gr./cc, and a tensile strength of 8.5 kPa.
    After coating with Adipic Acid the tablets had a weight of 41.1 g, and a tensile strength was 22.2 kPa.
  • A third series of tablets was made with a compaction force of 2.5 kN. or about 160 N/cm2 to give tablets of about 2.0 cm height, a density of about 1.2 g./cc, and a tensile strength of 15.7 kPa.
    After coating with Adipic Acid the tablets had a weight of 41.1 g, and the tensile strength increased to 31 kPa.
  • In Comparative Example 3, the process of example 1 was repeated but without the disintegrant. The final tensile strength of the three series of tablets was 6.5 kPa, 15.5 kPa and 19.5 kPa respectively.
  • In Comparative Example 4, the process of example 4 was repeated but without the disintegrant. The final tensile strength of the three series of tablets was 10.4 kPa, 14.5 kPa and 21.3 kPa respectively.

Claims (6)

  1. A tablet comprising a core and a coating, the core being formed by compressing a particulate material, the particulate material comprising surfactant and detergent builder, characterised in that the coating material has a solubility in water at 25°C of less than 20 g/l and is selected from C2-C13 dicarboxylic acids, and the coating comprises a disintegrant, which will swell once in contact with water, at a level to break the coating of up to 30% by weight of the coating.
  2. The tablet according to claim 1 comprising a disintegrant selected from the group consisting of natural starch, modified starch, pregelatinized starch, sodium starch gluconate, croscarmylose sodium, crospovidone, cellulose, carboxymethyl cellulose, algenic acid, sodium alginate, silicone dioxide, clay, agar gum, guar gum, locust bean gum, karaya gum, pectin gum, tragacanth gum, polyvinylpyrrolidone, soy polysacharides, ion exchange resins and mixtures thereof.
  3. The tablet according to either claim 1 or claim 2 further comprising an effervescent.
  4. The tablet according to claim 3 wherein the effervescent is a soluble acid source and an alkali metal carbonate.
  5. A process for making a tablet comprising the steps of :
    (a) forming a core by compressing a particulate material, the particulate material comprising surfactant and detergent builder;
    (b) applying a coating material to the core, the coating material being in the form of a melt;
    (c) allowing the molten coating material to solidify;
    characterised in that the coating material comprises a disintegrant, which will swell upon contact with water, at a level to break the coating up to 30% by weight, and wherein the coating material has a solubility in water at 25°C of less than 20 g/l and is selected from C2-C13 dicarboxylic acids.
  6. A process according to claim 5 wherein the coating material, or mixture of materials, has a melting point of from 40°C to 200°C.
EP96203473A 1996-12-06 1996-12-06 Coated detergent tablet and the process for producing the same Expired - Lifetime EP0846756B1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
AT96203473T ATE360056T1 (en) 1996-12-06 1996-12-06 COATED CLEANING AGENT IN TABLET FORM AND PRODUCTION METHOD THEREOF
DE69637030T DE69637030T2 (en) 1996-12-06 1996-12-06 Coated cleaning agent in tablet form and manufacturing method therefor
EP96203473A EP0846756B1 (en) 1996-12-06 1996-12-06 Coated detergent tablet and the process for producing the same
ES96203473T ES2284164T3 (en) 1996-12-06 1996-12-06 PAD OF DETERGENT COVERED AND PROCEDURE TO PRODUCE THE SAME.
HU0000221A HUP0000221A3 (en) 1996-12-06 1997-11-19 Coated detergent tablet
CN97181564.XA CN1245527A (en) 1996-12-06 1997-11-19 Coated detergent tablet
JP52560298A JP2001506682A (en) 1996-12-06 1997-11-19 Coated detergent tablet
TR1999/01233T TR199901233T2 (en) 1996-12-06 1997-11-19 Coated detergent tablet.
CA002272537A CA2272537C (en) 1996-12-06 1997-11-19 Coated detergent tablet
PCT/US1997/021041 WO1998024873A1 (en) 1996-12-06 1997-11-19 Coated detergent tablet
US09/319,475 US6169062B1 (en) 1996-12-06 1997-11-19 Coated detergent tablet
BR9713871-1A BR9713871A (en) 1996-12-06 1997-11-19 Coated detergent tablet
AU54436/98A AU5443698A (en) 1996-12-06 1997-11-19 Coated detergent tablet
ZA9710697A ZA9710697B (en) 1996-12-06 1997-11-27 Coated detergent tablet.
EG129797A EG21191A (en) 1996-12-06 1997-12-04 Cooted detergent tablet
MA24890A MA24418A1 (en) 1996-12-06 1997-12-05 COATED DETERGENT TABLET
ARP970105747A AR010747A1 (en) 1996-12-06 1997-12-05 COATED DETERGENT TABLET AND PROCESS TO MANUFACTURE SUCH TABLET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP96203473A EP0846756B1 (en) 1996-12-06 1996-12-06 Coated detergent tablet and the process for producing the same

Publications (2)

Publication Number Publication Date
EP0846756A1 EP0846756A1 (en) 1998-06-10
EP0846756B1 true EP0846756B1 (en) 2007-04-18

Family

ID=8224675

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96203473A Expired - Lifetime EP0846756B1 (en) 1996-12-06 1996-12-06 Coated detergent tablet and the process for producing the same

Country Status (16)

Country Link
EP (1) EP0846756B1 (en)
JP (1) JP2001506682A (en)
CN (1) CN1245527A (en)
AR (1) AR010747A1 (en)
AT (1) ATE360056T1 (en)
AU (1) AU5443698A (en)
BR (1) BR9713871A (en)
CA (1) CA2272537C (en)
DE (1) DE69637030T2 (en)
EG (1) EG21191A (en)
ES (1) ES2284164T3 (en)
HU (1) HUP0000221A3 (en)
MA (1) MA24418A1 (en)
TR (1) TR199901233T2 (en)
WO (1) WO1998024873A1 (en)
ZA (1) ZA9710697B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012069895A1 (en) 2010-11-12 2012-05-31 Dental Care Innovation Gmbh Soluble tablet, containing abrasive media

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896053B1 (en) * 1997-08-08 2004-09-08 The Procter & Gamble Company Detergent tablet
DE19739384A1 (en) * 1997-09-09 1999-03-11 Henkel Kgaa Detergent tablets with improved solubility
CA2296354C (en) * 1997-11-10 2003-05-27 The Procter & Gamble Company Detergent compositions
GB2331994A (en) * 1997-12-02 1999-06-09 Procter & Gamble Detergent tablet
US6274538B1 (en) 1997-11-10 2001-08-14 The Procter & Gamble Company Detergent compositions
EP0971029B1 (en) * 1998-07-10 2005-02-16 The Procter & Gamble Company Detergent tablet with high mechanical and dissolution characteristics
EP0971028A1 (en) * 1998-07-10 2000-01-12 The Procter & Gamble Company Detergent tablet with high dissolution and mechanical characteristics
US6559115B1 (en) * 1998-07-10 2003-05-06 The Procter & Gamble Company Detergent tablet with high mechanical and dissolution characteristics
GB2339574A (en) * 1998-07-15 2000-02-02 Procter & Gamble Disintegrating components
EP0997387A1 (en) 1998-10-28 2000-05-03 The Procter & Gamble Company Packing material releasing perfume or other odoriferous substances
EP1004661A1 (en) 1998-11-11 2000-05-31 DALLI-WERKE WÄSCHE- und KÖRPERPFLEGE GmbH & Co. KG High density granule, method for production thereof, and its use as disintegrant in tablets
DE59800410D1 (en) 1998-11-11 2001-02-01 Dalli Werke Waesche & Koerperp Compacted granules, manufacturing process and use as disintegrant for molded articles
ATE292172T1 (en) * 1999-01-23 2005-04-15 Procter & Gamble DETERGENT TABLET
GB9901688D0 (en) 1999-01-26 1999-03-17 Unilever Plc Detergent compositions
ATE257856T1 (en) * 1999-02-03 2004-01-15 Procter & Gamble COATED CLEANING AGENT IN TABLET FORM
EP1026229A1 (en) * 1999-02-03 2000-08-09 The Procter & Gamble Company Coated detergent tablet
EP1026227A1 (en) * 1999-02-03 2000-08-09 The Procter & Gamble Company Coated detergent tablet
DE69938228T2 (en) * 1999-03-12 2009-02-19 The Procter & Gamble Company, Cincinnati Perfumed detergent tablet
ATE406431T1 (en) * 1999-03-12 2008-09-15 Procter & Gamble PERFUMED DETERGENT TABLET
US7084102B1 (en) 1999-03-12 2006-08-01 The Procter & Gamble Company Perfumed detergent tablet
US6630438B1 (en) 1999-03-12 2003-10-07 The Procter & Gamble Company Perfumed detergent tablet
ATE201714T1 (en) * 1999-03-29 2001-06-15 Dalli Werke Waesche & Koerperp DETERGENT TABLETS CONTAINING EXPLOSIVE GRANULES
ATE211164T1 (en) * 1999-03-29 2002-01-15 Dalli Werke Waesche & Koerperp DISHWASHER CLEANING TABLETS CONTAINING EXPLOSIVE GRANULES
GB2349390A (en) * 1999-04-30 2000-11-01 Procter & Gamble Cleaning compositions comprising compressed clay
DE19920118B4 (en) * 1999-05-03 2016-08-11 Henkel Ag & Co. Kgaa Detergent tablets with coating and process for its preparation
JP3352977B2 (en) 1999-06-15 2002-12-03 花王株式会社 Solid detergent
EP1072674A1 (en) * 1999-07-27 2001-01-31 The Procter & Gamble Company Coated detergent tablet
DE19940547A1 (en) 1999-08-26 2001-03-01 Henkel Kgaa Detergent tablets with partial coating
AU6288999A (en) * 1999-10-06 2001-05-10 Procter & Gamble Company, The Detergent tablet with high dissolution and mechanical characteristics
GB9925829D0 (en) * 1999-11-02 1999-12-29 Smiths Industries Plc Disposal means
ATE293680T1 (en) * 2000-11-24 2005-05-15 Unilever Nv CLEANING TABLETS
DE10064985A1 (en) 2000-12-23 2002-07-11 Henkel Kgaa Detergent tablets with coating
EP1293556A1 (en) * 2001-09-14 2003-03-19 Rent-a-Scientist GmbH Detergent tablet having a coating comprising carbamide
JP4424605B2 (en) * 2004-12-09 2010-03-03 花王株式会社 Washing soap
DE102006029793A1 (en) * 2006-06-27 2008-01-03 Licciardi, Natale, Dipl.-Ing. Process for the preparation of a slide cleaner concentrate in tablet form, disc cleaner concentrate itself and appropriate presentation
WO2008040152A1 (en) * 2006-09-01 2008-04-10 Tao Wang A solid detergent and its preparation method
JP5917964B2 (en) * 2012-03-19 2016-05-18 富士ゼロックス株式会社 Tablet, tablet manufacturing method, tablet management device, tablet verification device, and program
JP5985547B2 (en) * 2013-07-25 2016-09-06 四国化成工業株式会社 Floating effervescent tablets
RU2017123523A (en) 2014-12-05 2019-01-11 Далли-Верке Гмбх Унд Ко. Кг BEAUTIFUL PECTIN COMPOSITIONS
CN106381235A (en) * 2016-08-27 2017-02-08 朱耀灯 Ultra-concentrated multifunctional laundry sheet and preparation method thereof
CN106367222A (en) * 2016-08-27 2017-02-01 朱耀灯 Multifunctional laundry sheet and preparing method thereof
CN106381236A (en) * 2016-08-27 2017-02-08 朱耀灯 Laundry sheet and preparation method thereof
CN110505867A (en) 2017-02-02 2019-11-26 洁碧有限公司 The tablet including grinding agent for cleaning of teeth
EP3825392A1 (en) 2019-11-21 2021-05-26 Dalli-Werke GmbH & Co. KG Detergent tablet comprising an effervescent system
EP4166638A1 (en) 2021-10-13 2023-04-19 CLARO Products GmbH Cleaning tablet for cleaning spectacles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231505A (en) * 1961-04-03 1966-01-25 Colgate Palmolive Co Process for manufacturing detergent tablet
US3751277A (en) * 1971-03-24 1973-08-07 Dow Chemical Co Tablet coating process and composition
EP0716144A2 (en) * 1994-11-14 1996-06-12 Unilever Plc Detergent tablet having a water-soluble coating

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3324038A (en) * 1964-04-17 1967-06-06 Procter & Gamble Detergent composition
US3487021A (en) * 1966-08-11 1969-12-30 Katz Jacob M One-use hand-cleaning tablets
DE2406455A1 (en) * 1974-02-11 1975-08-21 Henkel & Cie Gmbh Stable, readily-soluble detergent additives - consisting of active ingredients embedded in coating agents contg. fatty acids or fatty alcohols
US4219436A (en) * 1977-06-01 1980-08-26 The Procter & Gamble Company High density, high alkalinity dishwashing detergent tablet
GB2041966A (en) * 1977-11-29 1980-09-17 Procter & Gamble Detergent tablet having a hydrated salt coating and process for preparing the tablet
DE3417820A1 (en) * 1984-05-14 1985-11-14 Henkel KGaA, 4000 Düsseldorf METHOD FOR PRODUCING A WASHING ADDITIVE IN TABLET FORM
GB9015504D0 (en) * 1990-07-13 1990-08-29 Unilever Plc Detergents composition
GB9015503D0 (en) * 1990-07-13 1990-08-29 Unilever Plc Detergent composition
CA2040307A1 (en) * 1991-04-12 1992-10-13 Yogesh Sennik Effervescent detergent tablets
GB9114184D0 (en) * 1991-07-01 1991-08-21 Unilever Plc Detergent composition
GB9422925D0 (en) * 1994-11-14 1995-01-04 Unilever Plc Detergent compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231505A (en) * 1961-04-03 1966-01-25 Colgate Palmolive Co Process for manufacturing detergent tablet
US3751277A (en) * 1971-03-24 1973-08-07 Dow Chemical Co Tablet coating process and composition
EP0716144A2 (en) * 1994-11-14 1996-06-12 Unilever Plc Detergent tablet having a water-soluble coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012069895A1 (en) 2010-11-12 2012-05-31 Dental Care Innovation Gmbh Soluble tablet, containing abrasive media
DE102010051226A1 (en) 2010-11-12 2012-05-31 Dental Care Innovation Gmbh Rinse-off tray with abrasive components

Also Published As

Publication number Publication date
BR9713871A (en) 2000-03-14
CA2272537A1 (en) 1998-06-11
HUP0000221A3 (en) 2001-11-28
ZA9710697B (en) 1998-06-12
ATE360056T1 (en) 2007-05-15
DE69637030D1 (en) 2007-05-31
TR199901233T2 (en) 1999-10-21
MA24418A1 (en) 1998-07-01
CN1245527A (en) 2000-02-23
CA2272537C (en) 2002-12-17
AR010747A1 (en) 2000-07-12
ES2284164T3 (en) 2007-11-01
DE69637030T2 (en) 2007-12-27
HUP0000221A2 (en) 2000-06-28
EP0846756A1 (en) 1998-06-10
AU5443698A (en) 1998-06-29
JP2001506682A (en) 2001-05-22
WO1998024873A1 (en) 1998-06-11
EG21191A (en) 2000-12-31

Similar Documents

Publication Publication Date Title
EP0846756B1 (en) Coated detergent tablet and the process for producing the same
EP0846755B1 (en) Coated detergent tablet
US6169062B1 (en) Coated detergent tablet
CA2272642C (en) Coated detergent tablet
EP0896052A1 (en) Detergent tablet
EP0896053B1 (en) Detergent tablet
US6087311A (en) Coated detergent tablet
US6686329B1 (en) Multilayer detergent tablet with different hardness
EP1228190B1 (en) Bleach-containing detergent tablets
EP0971028A1 (en) Detergent tablet with high dissolution and mechanical characteristics
US6232284B1 (en) Coated detergent tablet with disintegration means
EP0971029B1 (en) Detergent tablet with high mechanical and dissolution characteristics
EP0979863A1 (en) Multilayer detergent tablet with different elasticities
US6559115B1 (en) Detergent tablet with high mechanical and dissolution characteristics
EP0979862A1 (en) Multilayer detergent tablet with different hardness
US6677295B1 (en) Detergent tablet
EP1072674A1 (en) Coated detergent tablet
EP0949327A1 (en) Shape and strength of detergent tablets
EP1026227A1 (en) Coated detergent tablet
EP0972827B1 (en) Process for producing a powder from a tablet
WO2001025391A1 (en) Detergent tablet with high dissolution and mechanical characteristics
CZ196299A3 (en) Detergent tablet containing a core and a coating as well as process for preparing thereof
CZ196199A3 (en) Detergent tablet, containing a core and a coating as well as process for preparing thereof
CZ196099A3 (en) Detergent tablet containing a core and a coating as well as process for preparing thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19981130

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20020103

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 11D 17/00 A

RTI1 Title (correction)

Free format text: PROCESS FOR MAKING A COATED DETERGENT TABLET

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APBX Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

RTI1 Title (correction)

Free format text: COATED DETERGENT TABLET AND THE PROCESS FOR PRODUCING THE SAME

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69637030

Country of ref document: DE

Date of ref document: 20070531

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070918

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2284164

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081111

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081213

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081230

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20091221

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091215

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101123

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101207

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121206