[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0734043B1 - Ecran plat de visualisation a double grille - Google Patents

Ecran plat de visualisation a double grille Download PDF

Info

Publication number
EP0734043B1
EP0734043B1 EP96410030A EP96410030A EP0734043B1 EP 0734043 B1 EP0734043 B1 EP 0734043B1 EP 96410030 A EP96410030 A EP 96410030A EP 96410030 A EP96410030 A EP 96410030A EP 0734043 B1 EP0734043 B1 EP 0734043B1
Authority
EP
European Patent Office
Prior art keywords
gate
addressed
cathode
comb
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96410030A
Other languages
German (de)
English (en)
Other versions
EP0734043A1 (fr
Inventor
Bernard Bancal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pixtech SA
Original Assignee
Pixtech SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixtech SA filed Critical Pixtech SA
Publication of EP0734043A1 publication Critical patent/EP0734043A1/fr
Application granted granted Critical
Publication of EP0734043B1 publication Critical patent/EP0734043B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group

Definitions

  • the present invention relates to the production of a flat display screen. It applies more particularly to a flat screen of the type comprising a bombardment cathode electronics of an anode carrying phosphor elements. It is, for example, a fluorescent screen in which an electronic emission is obtained by extraction of electrons microtips or a thin film, for example a film carbon-diamond.
  • Figure 1 shows the functional structure a microtip flat screen of the type to which it relates the invention.
  • Such a microtip screen essentially consists a cathode 1 with microtips 2 and a grid 3 provided of holes 4 corresponding to the locations of the microtips 2.
  • Cathode 1 is placed opposite a cathode-luminescent anode 5 of which a glass substrate 6 constitutes the surface screen.
  • Cathode 1 is organized in columns and is made up, on a substrate 10, for example made of glass, of conductors cathodes organized in mesh from a conductive layer.
  • the microtips 2 are made on a resistive layer 11 deposited on the cathode conductors and are arranged inside the meshes defined by the conductors of cathode.
  • Figure 1 partially showing the interior of a mesh, the cathode conductors do not appear on this figure.
  • Cathode 1 is associated with grid 3 which is it organized in rows, an insulating layer (not shown) being interposed between the cathode conductors and the grid 3. The intersection of a row of grid 3 and a column of cathode 1, defines a pixel.
  • This device uses the electric field created between cathode 1 and grid 3 so that electrons are extracts from microtips 2 to phosphor elements 7 of the anode 5 by crossing an inter-electrode empty space 12.
  • the anode 5 is provided with strips alternating phosphor elements 7, each corresponding to a color (Blue, Red, Green).
  • the bands are separated from each other by an insulator 8.
  • the phosphor elements 7 are deposited on electrodes 9, made up of corresponding bands a transparent conductive layer such as indium tin oxide (ITO). Tape sets blue, red, green are alternately polarized with respect at cathode 1, so that the electrons extracted from the microtips 2 of a pixel of the cathode / grid are alternately directed towards the phosphor elements 7 opposite each of the colors.
  • ITO indium tin oxide
  • the display of an image is done by suitably polarizing the anode, the cathode and the grid by means of a control electronics (not shown).
  • the rows of grid 3 are sequentially polarized at a potential of the order of 80 volts while the strips of phosphor elements (for example 7g in Figure 1) to be excited are biased under a voltage of the order of 400 volts, the other bands (for example 7r and 7b in FIG. 1) being at zero potential.
  • the columns of the cathode 1, whose potential represents for each row of grid 3 the brightness of the pixel defined by the intersection of the cathode column and the grid row in the color considered, are brought to respective potentials between a maximum emission potential and a potential no emission (for example, 0 and 30 respectively volts).
  • the choice of the values of the polarization potentials is related to the characteristics of phosphor elements 7 and microtips 2. Conventionally, below a difference of potential of 50 volts between cathode 1 and grid 3, there has no electronic emission and the maximum emission used corresponds to a potential difference of 80 volts.
  • a disadvantage of conventional screens is that the individual addressing of the rows of grid 3 requires a row connection to the control electronics. Electronics must therefore include an output stage by grid row which increases the cost. The output stages associated with the grid must also support tensions up to 100 volts which makes them relatively Dear. In addition, the silicon surface being proportional squared of the breakdown voltage, such stages of output, realized in the form of integrated circuit, require relatively large areas.
  • the present invention aims to overcome these drawbacks by offering a flat display screen in which the number of output stages and connections intended for the addressing of the grid is less than the number of lines of the screen.
  • the invention also aims to allow the realization a high definition screen with small dimensions.
  • the invention further aims to propose the realization of such a flat display screen which does not require modification of the cathode and the anode, nor of the elements of the control electronics associated with the cathode or the anode.
  • the present invention provides a flat display screen of the type comprising a cathode organized in columns of electronic bombardment an anode provided with phosphor elements, and comprising a first grid organized in rows likely to be addressed individually and a second grid consisting of at least at least two alternating track combs parallel to said rows of said first grid, the same row of said first grid being associated with a track of each comb and the intersection of each track with a cathode column defining a screen pixel.
  • an image is displayed, in an interlaced manner, by sequentially addressing said rows of the first grid during the duration of an alternative addressing of said second grid combs.
  • the cathode columns are addressed simultaneously to each row of the first grid, their potential being a function of the desired brightness for the pixel defined by their intersection with the comb track addressed from the second grid which is plumb with the current row.
  • the polarization potentials of said combs are chosen so that the tracks of an addressed comb focus, towards the anode, the electrons emitted from the cathode columns at plumb with the track of said focusing comb associated with a addressed row, and so that the tracks of a comb that is not addressed collect the electrons emitted from the columns of the cathode directly above the track of said associated collecting comb to the row addressed.
  • the potential of a focusing comb is greater than potential of the rows of the first grid which are not addressed, the potential of a collecting comb being lower to the potential of the rows of the first grid which are not addressed.
  • the pitch of the rows of the first grid is dimensioned depending on the minimum pitch to be respected between connections individual of these rows towards an electronics of control, the number of combs of the second grid being chosen according to the desired definition for the screen.
  • said grids are applied to a color screen of which the anode is provided with three sets of alternating bands phosphor elements each corresponding to a color.
  • said grids are applied to a monochrome screen the anode of which consists of phosphor elements of a single type.
  • the main idea of the present invention is to associate with the screen cathode two superimposed and addressed grids differently.
  • Figure 2 illustrates, by a top view of a cathode plate / grid of a microtip screen, a mode of realization of the present invention.
  • a first grid 20 is similar to the grid (3, Figure 1) with which conventional screens are provided, unlike close that the width of its rows 21 corresponds to the minus two screen pixels. Rows 21 of this first grid 20 are addressed individually and are therefore connected individually by one of their ends to an electronic control (not shown).
  • a second grid 23 is attached to this first wire rack.
  • This second grid 23 consists of at least two combs 24 and 25 of conductive tracks, respectively 26 and 27, alternate.
  • One track of each comb is located at plumb with a row 21 of the first grid 20 so that each row 21 is covered with two tracks 26 and 27 of the second grid 23.
  • all tracks 26, respectively 27, are likely to be addressed simultaneously by being linked together to the electronics control.
  • a pixel of the screen is defined here by the intersection a column, or a conductor 28, of the cathode 1 with a track 26 or 27 of the second grid 23.
  • Rows 21 of the first grid 20 and the tracks 26 and 27 of the second grid 23 are provided with holes 4 to the location of the microtips arranged on conductors 28 of cathode 1 organized in columns. For reasons of clarity, only one hole 4 per pixel has been shown in Figure 2 while in practice the number of holes 4 corresponds to the number of microtips and is several thousand per pixel. Of even, the mesh of cathode conductors 28 has not been represented.
  • Each grid is, for example, made up a layer of niobium etched in the appropriate pattern.
  • a isolation layer, engraved directly above each microtip, is interposed between the cathode 1 and the first grid 20 and, between the first grid 20 and the second grid 23.
  • each comb 24 or 25 of the second grid 23 is to allow, alternatively, depending on whether it is or unaddressed, focusing of electrons emitted by microtips which are plumb with row 21 addressed from the first grid 20 and track 26, respectively 27, addressed, or collecting the electrons emitted by the microtips which are directly above the addressed row 21 and runway 27, respectively 26, not addressed.
  • An image is displayed for a period of time frame (for example 20 ms) by suitably polarizing anode, cathode and grids by means of electronics control.
  • a period of time frame for example 20 ms
  • the strips of phosphor elements 7 of anode 5 are sequentially polarized, during a frame, by sets of bands of the same color, either for a subframe duration corresponding to one third of the frame time (eg 6.6 ms).
  • the display is carried out line by line but interlaced, during each subframe.
  • a "line time” (for example 13.7 ⁇ s) corresponds the duration of a subframe divided by the number of rows 21 of the first grid 20 multiplied by the number of second grid combs 23.
  • the electrons, emitted by the microtips located below the track (for example 27) of the other comb (for example 25) and of the current row 21 of the first grid 20, are collected by this track (for example 27).
  • FIG. 3 represents, partially and in exploded perspective, a conductor 28 of cathode 1 and the two grids 20 and 23 according to the invention. As in Figure 2, only a microtip 2 and a hole 4 per pixel have been shown.
  • the potential V G of a row 21 of the first grid 20 which is addressed is, as for conventional screens, for example of 80 volts while it is 0 volts for the rows 21 which are not addressed.
  • the potential V K of the columns 28 of the cathode is, as for conventional screens, for example between 0 and 30 volts depending on the desired brightness for the pixel considered.
  • the potential V f of the tracks of an addressed comb is greater than the potential of the rows 21 which are not addressed. If the first grid 20 is polarized between 0 and 80 volts, we will choose, for example, a potential V f of the order of 5 volts for the focusing comb.
  • the potential V c thereof is lower than the potential of the rows 21 which are not addressed. If the first grid 20 is polarized between 0 and 80 volts, we will choose, for example, a potential V c of the order of -5 volts for the collector comb.
  • the number of combs of the second grid 23 is chosen according to the number of output stages, or connections, desired for grids and / or desired definition for the screen in the direction of columns 28 of the cathode 1 and / or the form in which the instructions arrive of luminance in the control electronics.
  • the second grid 23 is made up of three combs with one comb per color.
  • the second grid 23 has a greater number of combs. For example, we can consider having the scanned image saved in a frame memory whose content can be easily read by jumps of eight. It will then be possible, advantageously, to provide eight combs for the second grid 23 and thus allow view eight successive interlaced subframes.
  • An advantage of the present invention is that for a screen of a given number N of lines, the number of output stages control electronics associated with the grids, therefore grid connections to control electronics, is M + N / M, where M represents the number of combs of the second grid 23.
  • M represents the number of combs of the second grid 23.
  • a screen, according to the invention, of 288 rows by 360 columns of which the second grid has two combs can be made in using 146 (144 for rows 21 and 2 for combs 24 and 25) output stages and connections associated with grids.
  • Another advantage of the present invention is that it makes it possible to reduce the number of output stages and connections without modifying the cathode structure and of the screen anode, nor of the associated control electronics at the cathode and at the anode.
  • Another advantage of the present invention is that it enables high definition screens and small dimensions, where at least one of the dimensions of a pixel is less than the minimum pitch between the row connections grid. Indeed, for a screen produced with a pitch of rows 21 of the first grid 20 which corresponds to the minimum pitch feasible (for example 200 ⁇ m), the implementation of the invention increases the definition of the screen, at least in the direction perpendicular to the rows of the grid, by factor of M corresponding to the number of combs of the second grid 23. In the example shown in Figures 2 and 3, this is equivalent to doubling the screen definition in this direction.
  • the connections of the cathode and / or first grid columns on allow.
  • a square screen of 1024 pixels per side can, be made on a 10 cm side surface.
  • the step of pixels is then of the order of 0.1 mm.
  • the step of rows 21 of the first grid is 0.2 mm which is compatible with the no minimum of conventional connections.
  • Each track 26 or 27 of the second grid 23 has, for example, a width of around 75 ⁇ m and two neighboring tracks are distant about 25 ⁇ m.
  • the invention also applies to a screen fluorescent whose cathode is made from a film, for example carbon-diamond, electronic emission.

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

La présente invention concerne la réalisation d'un écran plat de visualisation. Elle s'applique plus particulièrement à un écran plat du type comportant une cathode de bombardement électronique d'une anode portant des éléments luminophores. Il s'agit, par exemple, d'un écran fluorescent dans lequel une émission électronique est obtenue par extraction d'électrons de micropointes ou d'un film mince, par exemple un film de carbone-diamant.
La figure 1 représente la structure fonctionnelle d'un écran plat à micropointes du type auquel se rapporte l'invention.
Un tel écran à micropointes est essentiellement constitué d'une cathode 1 à micropointes 2 et d'une grille 3 pourvue de trous 4 correspondant aux emplacements des micropointes 2. La cathode 1 est placée en regard d'une anode cathodo-luminescente 5 dont un substrat de verre 6 constitue la surface d'écran.
Le principe de fonctionnement et le détail de la constitution d'un tel écran à micropointes sont décrits dans le brevet américain numéro 4 940 916 du Commissariat à l'Energie Atomique.
La cathode 1 est organisée en colonnes et est constituée, sur un substrat 10 par exemple en verre, de conducteurs de cathode organisés en mailles à partir d'une couche conductrice. Les micropointes 2 sont réalisées sur une couche résistive 11 déposée sur les conducteurs de cathode et sont disposées à l'intérieur des mailles définies par les conducteurs de cathode. La figure 1 représentant partiellement l'intérieur d'une maille, les conducteurs de cathode n'apparaissent pas sur cette figure. La cathode 1 est associée à la grille 3 qui est elle organisée en rangées, une couche isolante (non représentée) étant interposée entre les conducteurs de cathode et la grille 3. L'intersection, d'une rangée de la grille 3 et d'une colonne de la cathode 1, définit un pixel.
Ce dispositif utilise le champ électrique créé entre la cathode 1 et la grille 3 pour que des électrons soient extraits des micropointes 2 vers des éléments luminophores 7 de l'anode 5 en traversant un espace vide inter-électrodes 12.
Pour un écran couleur, l'anode 5 est pourvue de bandes alternées d'éléments luminophores 7, correspondant chacune à une couleur (Bleu, Rouge, Vert). Les bandes sont séparées les unes des autres par un isolant 8. Les éléments luminophores 7 sont déposés sur des électrodes 9, constituées de bandes correspondantes d'une couche conductrice transparente telle que de l'oxyde d'indium et d'étain (ITO). Les ensembles de bandes bleues, rouges, vertes sont alternativement polarisés par rapport à la cathode 1, pour que les électrons extraits des micropointes 2 d'un pixel de la cathode/grille soient alternativement dirigés vers les éléments luminophores 7 en vis à vis de chacune des couleurs.
L'affichage d'une image s'effectue en polarisant convenablement l'anode, la cathode et la grille au moyen d'une électronique de commande (non représentée).
Généralement, les rangées de la grille 3 sont séquentiellement polarisées à un potentiel de l'ordre de 80 volts tandis que les bandes d'éléments luminophores (par exemple 7g en figure 1) devant être excitées sont polarisées sous une tension de l'ordre de 400 volts, les autres bandes (par exemple 7r et 7b en figure 1) étant à un potentiel nul. Les colonnes de la cathode 1, dont le potentiel représente pour chaque rangée de la grille 3 la brillance du pixel défini par l'intersection de la colonne de la cathode et de la rangée de la grille dans la couleur considérée, sont portées à des potentiels respectifs compris entre un potentiel d'émission maximale et un potentiel d'absence d'émission (par exemple, respectivement 0 et 30 volts).
Le choix des valeurs des potentiels de polarisation est lié aux caractéristiques des éléments luminophores 7 et des micropointes 2. Classiquement, en dessous d'une différence de potentiel de 50 volts entre la cathode 1 et la grille 3, il n'y a pas d'émission électronique et l'émission maximale utilisée correspond à une différence de potentiel de 80 volts.
Un inconvénient des écrans classiques est que l'adressage individuel des rangées de la grille 3 nécessite une connexion par rangée vers l'électronique de commande. L'électronique de commande doit donc comporter un étage de sortie par rangée de grille ce qui en augmente le coût. Les étages de sortie associés à la grille doivent, de plus, supporter des tensions pouvant aller jusqu'à 100 volts ce qui les rend relativement chers. En outre, la surface de silicium étant proportionnelle au carré de la tension de claquage, de tels étages de sortie, réalisés sous la forme de circuit intégré, nécessitent des surfaces relativement importantes.
Un autre inconvénient est que le besoin d'une connexion par rangée de grille interdit la réalisation d'écran de haute définition et de petites dimensions en raison du pas minimal qu'il est nécessaire de maintenir entre deux connexions de deux rangées voisines. En effet, la connectique pour des pas inférieurs à environ 200 µm est très difficile à réaliser.
La présente invention vise à pallier ces inconvénients en proposant un écran plat de visualisation dans lequel le nombre d'étages de sortie et de connexions destinés à l'adressage de la grille est inférieur au nombre de lignes de l'écran.
L'invention vise également à permettre la réalisation d'un écran de haute définition et de petites dimensions.
L'invention vise en outre à proposer la réalisation d'un tel écran plat de visualisation qui ne nécessite pas de modification de la cathode et de l'anode, ni des éléments de l'électronique de commande associés à la cathode ou à l'anode.
Pour atteindre ces objets, la présente invention prévoit un écran plat de visualisation du type comportant une cathode organisée en colonnes de bombardement électronique d'une anode pourvue d'éléments luminophores, et comportant une première grille organisée en rangées susceptibles d'être adressées individuellement et une seconde grille constituée d'au moins deux peignes de pistes alternées parallèles auxdites rangées de ladite première grille, une même rangée de ladite première grille étant associée à une piste de chaque peigne et l'intersection de chaque piste avec une colonne de la cathode définissant un pixel de l'écran.
Selon un mode de réalisation de la présente invention, l'affichage d'une image s'effectue, de manière entrelacée, en adressant séquentiellement lesdites rangées de la première grille pendant la durée d'un adressage alternatif desdits peignes de la seconde grille.
Selon un mode de réalisation de la présente invention, les colonnes de la cathode sont adressées simultanément à chaque rangée de la première grille, leur potentiel étant fonction de la brillance souhaitée pour le pixel défini par leur intersection avec la piste du peigne adressé de la seconde grille qui se trouve à l'aplomb de la rangée courante.
Selon un mode de réalisation de la présente invention, les potentiels de polarisation desdits peignes sont choisis pour que les pistes d'un peigne adressé focalisent, vers l'anode, les électrons émis par les colonnes de la cathode à l'aplomb de la piste dudit peigne focalisateur associée à une rangée adressée, et pour que les pistes d'un peigne qui n'est pas adressé collectent les électrons émis par les colonnes de la cathode à l'aplomb de la piste dudit peigne collecteur associée à la rangée adressée.
Selon un mode de réalisation de la présente invention, le potentiel d'un peigne focalisateur est supérieur au potentiel des rangées de la première grille qui ne sont pas adressées, le potentiel d'un peigne collecteur étant inférieur au potentiel des rangées de la première grille qui ne sont pas adressées.
Selon un mode de réalisation de la présente invention, le pas des rangées de la première grille est dimensionné en fonction du pas minimal devant être respecté entre les connexions individuelles de ces rangées vers une électronique de commande, le nombre de peignes de la seconde grille étant choisi en fonction de la définition souhaitée pour l'écran.
Selon un mode de réalisation de la présente invention, lesdites grilles sont appliquées à un écran couleur dont l'anode est pourvue de trois ensembles de bandes alternées d'éléments luminophores correspondant chacun à une couleur.
Selon un mode de réalisation de la présente invention, lesdites grilles sont appliquées à un écran monochrome dont l'anode est constituée d'éléments luminophores d'un seul type.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :
  • la figure 1 décrite précédemment est destinée à exposer l'état de la technique et le problème posé ;
  • la figure 2 représente une vue de dessus d'une plaque de cathode/grille d'un écran plat selon un mode de réalisation de la présente invention ; et
  • la figure 3 est une vue partielle en perspective éclatée de la cathode/grille représentée à la figure 2.
  • Pour des raisons de clarté, les représentations des figures ne sont pas à l'échelle et les mêmes éléments ont été désignés par les mêmes références aux différentes figures.
    L'idée mère de la présente invention est d'associer à la cathode de l'écran deux grilles superposées et adressées différemment.
    La figure 2 illustre, par une vue de dessus d'une plaque de cathode/grille d'un écran à micropointes, un mode de réalisation de la présente invention.
    Une première grille 20 est similaire à la grille (3, figure 1) dont sont pourvus les écrans classiques à la différence près que la largeur de ses rangées 21 correspond à au moins deux pixels de l'écran. Les rangées 21 de cette première grille 20 sont adressées individuellement et sont donc reliées individuellement par une de leurs extrémités à une électronique de commande (non représentée).
    Une seconde grille 23 est rapportée sur cette première grille. Cette seconde grille 23 est constituée d'au moins deux peignes 24 et 25 de pistes conductrices, respectivement 26 et 27, alternées. Une piste de chaque peigne se trouve à l'aplomb d'une rangée 21 de la première grille 20 de sorte que chaque rangée 21 est recouverte de deux pistes 26 et 27 de la seconde grille 23. De par leur organisation en peigne, toutes les pistes 26, respectivement 27, sont susceptibles d'être adressées simultanément en étant reliées ensemble à l'électronique de commande. Un pixel de l'écran est ici défini par l'intersection d'une colonne, ou d'un conducteur 28, de la cathode 1 avec une piste 26 ou 27 de la seconde grille 23.
    Les rangées 21 de la première grille 20 et les pistes 26 et 27 de la seconde grille 23 sont pourvues de trous 4 à l'emplacement des micropointes disposées sur des conducteurs 28 de la cathode 1 organisés en colonnes. Pour des raisons de clarté, seul un trou 4 par pixel a été représenté à la figure 2 alors qu'en pratique le nombre de trous 4 correspond au nombre de micropointes et est de plusieurs milliers par pixel. De même, le maillage des conducteurs de cathode 28 n'a pas été représenté.
    La réalisation pratique des grilles 20 et 23 s'effectue d'une manière similaire à la réalisation de la grille d'un écran classique. Chaque grille est, par exemple, constituée d'une couche de niobium gravée selon le motif approprié. Une couche d'isolement, gravée à l'aplomb de chaque micropointe, est interposée entre la cathode 1 et la première grille 20 et, entre la première grille 20 et la seconde grille 23.
    Le rôle de chaque peigne 24 ou 25 de la seconde grille 23 est de permettre, alternativement, selon qu'il est ou non adressé, la focalisation des électrons émis par les micropointes qui sont à l'aplomb de la rangée 21 adressée de la première grille 20 et de la piste 26, respectivement 27, adressée, ou la collecte des électrons émis par les micropointes qui sont à l'aplomb de la rangée 21 adressée et de la piste 27, respectivement 26, non adressée.
    L'affichage d'une image s'effectue pendant un temps de trame (par exemple 20 ms) en polarisant convenablement l'anode, la cathode et les grilles au moyen de l'électronique de commande. Pour un écran couleur, les bandes d'éléments luminophores 7 de l'anode 5 sont séquentiellement polarisées, durant une trame, par ensembles de bandes d'une même couleur, soit pendant une durée de sous-trame correspondant au tiers du temps de trame (par exemple 6,6 ms).
    Selon l'invention, l'affichage s'effectue ligne par ligne mais de façon entrelacée, pendant chaque sous-trame. En d'autres termes, on commence par adresser un des peignes (par exemple 24) de la seconde grille 23 et on adresse, séquentiellement, toutes les rangées 21 de la première grille 20 pendant un "temps de ligne" durant lequel chaque colonne 28 de la cathode 1 est portée à un potentiel qui est fonction de la brillance du pixel à afficher le long de la piste (par exemple 26) associée à la rangée 21 courante dans la couleur considérée. Puis, on adresse l'autre peigne (par exemple 25) de la seconde grille 23 et on adresse de nouveau, séquentiellement, toutes les rangées 21 de la première grille 20 pendant un "temps de ligne" durant lequel chaque colonne 28 de la cathode 1 est portée à un potentiel qui est fonction de la brillance du pixel à afficher le long de la piste (par exemple 27) associée à la rangée 21 courante dans la couleur considérée.
    La polarisation des colonnes 28 de la cathode 1 change à chaque nouvelle rangée 21 du balayage ligne de la première grille 20. Un "temps de ligne" (par exemple 13,7 µs) correspond à la durée d'une sous-trame divisée par le nombre de rangées 21 de la première grille 20 multipliée par le nombre de peignes de la seconde grille 23.
    Pendant qu'un peigne (par exemple 24) est adressé, les électrons, émis par les micropointes situées à l'aplomb de la piste (par exemple 27) de l'autre peigne (par exemple 25) et de la rangée courante 21 de la première grille 20, sont collectés par cette piste (par exemple 27).
    Ce fonctionnement est illustré par la figure 3 qui représente, partiellement et en perspective éclatée, un conducteur 28 de la cathode 1 et les deux grilles 20 et 23 selon l'invention. Comme dans le cas de la figure 2, seuls une micropointe 2 et un trou 4 par pixel ont été représentés.
    On suppose dans cette figure que le peigne 24 ainsi que la rangée 21 représentée de la première grille 20 sont adressés. Ainsi, les électrons émis par la micropointe 2', en regard de la piste 26 du peigne 24, sont focalisés vers l'anode (non représentée) tandis que les électrons émis par la micropointe 2", en regard de la piste 27 du peigne 25, sont collectés par cette piste 27.
    Le potentiel VG d'une rangée 21 de la première grille 20 qui est adressée est, comme pour les écrans classiques, par exemple de 80 volts alors qu'il est de 0 volt pour les rangées 21 qui ne sont pas adressées. Le potentiel VK des colonnes 28 de la cathode est, comme pour les écrans classiques, par exemple compris entre 0 et 30 volts en fonction de la brillance souhaitée pour le pixel considéré.
    Pour permettre la focalisation des électrons, le potentiel Vf des pistes d'un peigne adressé est supérieur au potentiel des rangées 21 qui ne sont pas adressées. Si la première grille 20 est polarisée entre 0 et 80 volts, on choisira, par exemple, un potentiel Vf de l'ordre de 5 volts pour le peigne focalisateur.
    Pour permettre la collecte des électrons par les pistes de l'autre peigne, le potentiel Vc de celui-ci est inférieur au potentiel des rangées 21 qui ne sont pas adressées. Si la première grille 20 est polarisée entre 0 et 80 volts, on choisira, par exemple, un potentiel Vc de l'ordre de -5 volts pour le peigne collecteur.
    Le nombre de peignes de la seconde grille 23 est choisi en fonction du nombre d'étages de sortie, ou de connexions, souhaités pour les grilles et/ou de la définition souhaitée pour l'écran dans la direction des colonnes 28 de la cathode 1 et/ou de la forme sous laquelle arrivent les consignes de luminance dans l'électronique de commande.
    Un mode de réalisation à deux peignes, tel que représenté aux figures 2 et 3, se prête particulièrement bien à des signaux de télévision dans lesquels les lignes sont généralement entrelacées.
    On pourra également prévoir que la seconde grille 23 soit constituée de trois peignes avec un peigne par couleur.
    On pourra encore prévoir que la seconde grille 23 comporte un plus grand nombre de peignes. Par exemple, on peut envisager que l'image numérisée soit enregistrée dans une mémoire de trame dont on peut facilement lire le contenu par sauts de huit. On pourra alors, avantageusement, prévoir huit peignes pour la seconde grille 23 et permettre ainsi de visualiser huit sous-trames entrelacées successives.
    Un avantage de la présente invention est que pour un écran d'un nombre N de lignes donné, le nombre d'étages de sortie de l'électronique de commande associés aux grilles, donc de connexions des grilles à l'électronique de commande, est de M + N/M, où M représente le nombre de peignes de la seconde grille 23. Dans l'exemple représenté aux figures 2 et 3, on réduit presque de moitié le nombre d'étages de sortie et de connexions nécessaires pour les grilles.
    A titre d'exemple particulier de réalisation, un écran, selon l'invention, de 288 lignes par 360 colonnes dont la seconde grille comporte deux peignes peut être réalisé en ayant recours à 146 (144 pour les rangées 21 et 2 pour les peignes 24 et 25) étages de sorties et connexions associés aux grilles.
    Un autre avantage de la présente invention est qu'elle permet de réduire le nombre d'étages de sortie et de connexions sans modification de la structure de la cathode et de l'anode de l'écran, ni de l'électronique de commande associée à la cathode et à l'anode.
    Un autre avantage de la présente invention est qu'elle permet de réaliser des écrans de haute définition et de petites dimensions, où au moins une des dimensions d'un pixel est inférieure au pas minimal entre les connexions des rangées de grille. En effet, pour un écran réalisé avec un pas de rangées 21 de la première grille 20 qui correspond au pas minimal réalisable (par exemple 200 µm), la mise en oeuvre de l'invention permet d'augmenter la définition de l'écran, au moins dans la direction perpendiculaire aux rangées de la grille, d'un facteur de M correspondant au nombre de peignes de la seconde grille 23. Dans l'exemple représenté aux figures 2 et 3, cela revient à doubler la définition de l'écran dans cette direction.
    Pour que la définition de l'écran puisse être augmentée dans les deux directions, il faut que les connexions des colonnes de la cathode et/ou de la première grille le permettent. Pour ce faire, on peut prévoir, par exemple, que l'emplacement des connexions des colonnes de la cathode soit alternativement à une ou l'autre des extrémités de ces colonnes, ce qui permet de doubler la définition de l'écran dans la direction des rangées de la grille.
    A titre d'exemple particulier de réalisation, un écran carré de 1024 pixels de côté peut, selon l'invention, être réalisé sur une surface de 10 cm de côté. Le pas des pixels est alors de l'ordre de 0,1 mm. Le pas des rangées 21 de la première grille est de 0,2 mm ce qui est compatible avec le pas minimal des connexions classiques. Chaque piste 26 ou 27 de la seconde grille 23 présente, par exemple, une largeur de l'ordre de 75 µm et deux pistes voisines sont distantes d'environ 25 µm.
    Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaítront à l'homme de l'art. En particulier, chacun des éléments décrits pourra être remplacé par un ou plusieurs éléments remplissant la même fonction. De même, les dimensions et potentiels donnés à titre d'exemple pourront être modifiés en fonction de la définition et des caractéristiques de l'écran.
    De plus, bien que l'on ait fait référence dans la description qui précède à un écran couleur, l'invention s'applique également à un écran monochrome que son anode soit, ou non, constituée d'un plan continu d'éléments luminophores.
    En outre, l'invention s'applique également à un écran fluorescent dont la cathode est constituée à partir d'un film, par exemple de carbone-diamant, d'émission électronique.

    Claims (8)

    1. Ecran plat de visualisation du type comportant une cathode (1) organisée en colonnes (28) de bombardement électronique d'une anode (5) pourvue d'éléments luminophores (7), caractérisé en ce qu'il comporte une première grille (20) organisée en rangées (21) susceptibles d'être adressées individuellement et une seconde grille (23) constituée d'au moins deux peignes (24, 25) de pistes (26, 27) alternées parallèles auxdites rangées (21) de ladite première grille (20), une même rangée (21) de ladite première grille (20) étant associée à une piste (26, 27) de chaque peigne (24, 25) et l'intersection de chaque piste (26, 27) avec une colonne (28) de la cathode (1) définissant un pixel de l'écran.
    2. Ecran plat de visualisation selon la revendication 1, caractérisé en ce que l'affichage d'une image s'effectue, de manière entrelacée, en adressant séquentiellement lesdites rangées (21) de la première grille (20) pendant la durée d'un adressage alternatif desdits peignes (24, 25) de la seconde grille (23).
    3. Ecran plat de visualisation selon la revendication 2, caractérisé en ce que les colonnes (28) de la cathode (1) sont adressées simultanément à chaque rangée (21) de la première grille (20), leur potentiel étant fonction de la brillance souhaitée pour le pixel défini par leur intersection avec la piste (26, 27) du peigne (24, 25) adressé de la seconde grille (23) qui se trouve à l'aplomb de la rangée (21) courante.
    4. Ecran plat de visualisation selon la revendication 2 ou 3, caractérisé en ce que les potentiels de polarisation desdits peignes (24, 25) sont choisis pour que les pistes (26, 27) d'un peigne (24, 25) adressé focalisent, vers l'anode (5), les électrons émis par les colonnes (28) de la cathode (1) à l'aplomb de la piste (26, 27) dudit peigne focalisateur associée à une rangée (21) adressée, et pour que les pistes (27, 26) d'un peigne (25, 24) qui n'est pas adressé collectent les électrons émis par les colonnes (28) de la cathode (1) à l'aplomb de la piste (27, 26) dudit peigne collecteur associée à la rangée (21) adressée.
    5. Ecran plat de visualisation selon la revendication 4, caractérisé en ce que le potentiel d'un peigne (24, 25) focalisateur est supérieur au potentiel des rangées (21) de la première grille (20) qui ne sont pas adressées, le potentiel d'un peigne (25, 24) collecteur étant inférieur au potentiel des rangées (21) de la première grille (20) qui ne sont pas adressées.
    6. Ecran plat de visualisation selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le pas des rangées (21) de la première grille (20) est dimensionné en fonction du pas minimal devant être respecté entre les connexions individuelles de ces rangées (21) vers une électronique de commande, le nombre de peignes (24, 25) de la seconde grille (23) étant choisi en fonction de la définition souhaitée pour l'écran.
    7. Ecran plat de visualisation selon l'une quelconque des revendications 1 à 6, caractérisé en ce que lesdites grilles (20, 21) sont appliquées à un écran couleur dont l'anode (5) est pourvue de trois ensembles de bandes alternées d'éléments luminophores (7) correspondant chacun à une couleur.
    8. Ecran plat de visualisation selon l'une quelconque des revendications 1 à 6, caractérisé en ce que lesdites grilles (20, 21) sont appliquées à un écran monochrome dont l'anode (5) est constituée d'éléments luminophores (7) d'un seul type.
    EP96410030A 1995-03-22 1996-03-21 Ecran plat de visualisation a double grille Expired - Lifetime EP0734043B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9503570A FR2732159B1 (fr) 1995-03-22 1995-03-22 Ecran plat de visualisation a double grille
    FR9503570 1995-03-22

    Publications (2)

    Publication Number Publication Date
    EP0734043A1 EP0734043A1 (fr) 1996-09-25
    EP0734043B1 true EP0734043B1 (fr) 2000-05-31

    Family

    ID=9477451

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96410030A Expired - Lifetime EP0734043B1 (fr) 1995-03-22 1996-03-21 Ecran plat de visualisation a double grille

    Country Status (5)

    Country Link
    US (1) US5764204A (fr)
    EP (1) EP0734043B1 (fr)
    JP (1) JPH08293273A (fr)
    DE (1) DE69608598T2 (fr)
    FR (1) FR2732159B1 (fr)

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    KR0160321B1 (ko) * 1994-04-28 1998-12-01 박현승 평면가스표시관
    FR2748348B1 (fr) * 1996-05-06 1998-07-24 Pixtech Sa Ecran couleur a micropointes a double grille
    GB2321335A (en) * 1997-01-16 1998-07-22 Ibm Display device
    FR2758642B1 (fr) * 1997-01-20 1999-02-26 Gec Alsthom Transport Sa Systeme pour le controle de l'affichage d'une information
    US6133893A (en) * 1998-08-31 2000-10-17 Candescent Technologies, Inc. System and method for improving emitter life in flat panel field emission displays
    JP5044113B2 (ja) * 2005-10-04 2012-10-10 日本放送協会 冷陰極装置、電界放出型ディスプレイ、及び電界放出型ディスプレイの駆動方法

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3935500A (en) * 1974-12-09 1976-01-27 Texas Instruments Incorporated Flat CRT system
    FR2568394B1 (fr) * 1984-07-27 1988-02-12 Commissariat Energie Atomique Dispositif de visualisation par cathodoluminescence excitee par emission de champ
    US5557296A (en) * 1989-06-01 1996-09-17 U.S. Philips Corporation Flat-panel type picture display device with insulating electron-propagation ducts
    US5012153A (en) * 1989-12-22 1991-04-30 Atkinson Gary M Split collector vacuum field effect transistor
    US5625253A (en) * 1990-05-24 1997-04-29 U.S. Philips Corporation Flat-panel type picture display device
    US5191217A (en) * 1991-11-25 1993-03-02 Motorola, Inc. Method and apparatus for field emission device electrostatic electron beam focussing
    JPH0745218A (ja) * 1993-05-26 1995-02-14 Matsushita Electric Ind Co Ltd 平面型画像表示装置
    KR0156032B1 (ko) * 1993-05-28 1998-10-15 호소야 레이지 전자방출소자 및 그 전자방출소자를 이용한 화상표시장치, 화상표시 장치의 구동장치, 화상표시장치의 화상표시 구동회로
    TW272322B (fr) * 1993-09-30 1996-03-11 Futaba Denshi Kogyo Kk
    GB2285168B (en) * 1993-12-22 1997-07-16 Marconi Gec Ltd Electron field emission devices

    Also Published As

    Publication number Publication date
    JPH08293273A (ja) 1996-11-05
    DE69608598D1 (de) 2000-07-06
    EP0734043A1 (fr) 1996-09-25
    DE69608598T2 (de) 2001-02-08
    FR2732159A1 (fr) 1996-09-27
    US5764204A (en) 1998-06-09
    FR2732159B1 (fr) 1997-06-13

    Similar Documents

    Publication Publication Date Title
    EP0704877B1 (fr) Protection électrique d'une anode d'écran plat de visualisation
    FR2709375A1 (fr) Dispositif d'affichage d'images et circuit de commande associé.
    EP0734043B1 (fr) Ecran plat de visualisation a double grille
    EP0734042B1 (fr) Anode d'écran plat de visualisation à bandes résistives
    EP0729128A2 (fr) Dispositif d'adressage d'une électrode d'écran plat de visualisation à micropointes
    EP0867912A1 (fr) Pose d'espaceurs dans un écran plat de visualisation
    EP1139374A1 (fr) Plaque de cathode d'écran plat de visualisation
    EP0649162B1 (fr) Ecran plat à micropointes à anode commutée
    EP0806788A1 (fr) Anode d'écran plat de visualisation à anneau de protection
    EP0817232B1 (fr) Procédé de régénération de micropointes d'un écran plat de visualisation
    EP1210721B1 (fr) Ecran plat a emission de champ avec electrode de modulation
    EP0747875B1 (fr) Procédé de commande d'écran plat de visualisation
    EP0877407A1 (fr) Anode d'ectran plat de visualisation
    FR2735265A1 (fr) Commutation d'une anode d'ecran plat de visualisation
    EP0844642A1 (fr) Ecran plat de visualisation à grilles focalisatrices
    FR2800512A1 (fr) Ecran plat de visualisation a grille de protection
    EP0844643A1 (fr) Ecran plat de visualisation à déviation latérale
    EP0905670A1 (fr) Simplification de l'adressage d'un écran à micropointes avec électrode de rappel
    FR2761522A1 (fr) Uniformisation de l'emission electronique potentielle d'une cathode d'ecran plat a micropointes
    FR2770338A1 (fr) Elimination de l'effet de moire d'un ecran plat de visualisation
    EP0657914B1 (fr) Collecteur d'électrons comportant des bandes conductrices commandables indépendamment
    FR2790861A1 (fr) Dispositif d'attaque pour dispositif luminescent a emission par effet de champ
    EP1073088A1 (fr) Procédé de fabrication d'une anode d'un écran plat de visualisation, anode obtenue par ce procédé et écran plat utilisant cette anode
    FR2798507A1 (fr) Dispositif permettant de produire un champ electrique module au niveau d'une electrode et son application aux ecrans plats a emission de champ
    FR2809862A1 (fr) Ecran plat de visualisation a memoire d'adressage

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT

    17P Request for examination filed

    Effective date: 19970305

    111Z Information provided on other rights and legal means of execution

    Free format text: DE FR GB IT

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19990705

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000612

    REF Corresponds to:

    Ref document number: 69608598

    Country of ref document: DE

    Date of ref document: 20000706

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: PIXTECH S.A.

    ITF It: translation for a ep patent filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20030916

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20030930

    Year of fee payment: 8

    Ref country code: DE

    Payment date: 20030930

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040321

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041001

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20040321

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041130

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050321