[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0716165B1 - Process and apparatus for measuring the temperature and the bath level of molten electrolyte in aluminum winning cells - Google Patents

Process and apparatus for measuring the temperature and the bath level of molten electrolyte in aluminum winning cells Download PDF

Info

Publication number
EP0716165B1
EP0716165B1 EP95420354A EP95420354A EP0716165B1 EP 0716165 B1 EP0716165 B1 EP 0716165B1 EP 95420354 A EP95420354 A EP 95420354A EP 95420354 A EP95420354 A EP 95420354A EP 0716165 B1 EP0716165 B1 EP 0716165B1
Authority
EP
European Patent Office
Prior art keywords
crust
electrolyte
probe
measuring
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95420354A
Other languages
German (de)
French (fr)
Other versions
EP0716165A1 (en
Inventor
Benoít Sulmont
Pierre Homsi
Olivier Granacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Publication of EP0716165A1 publication Critical patent/EP0716165A1/en
Application granted granted Critical
Publication of EP0716165B1 publication Critical patent/EP0716165B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells

Definitions

  • the invention relates to temperature and level measurements. electrolyte based on molten cryolite, in production tanks of aluminum by electrolysis of alumina dissolved in said cryolite as well as the application to the determination of the thickness of the bath of molten electrolysis in these same cells.
  • the volume of the electrolyte covering the layer of liquid aluminum at contact of the cathode at the bottom of the tank, or cathode substrate, must be sufficient to ensure rapid dissolution and distribution of alumina which is introduced at the top of the tank. He ... not must not however exceed a certain level beyond which it disturb the thermal equilibrium of the tank and cause corrosion of the steel logs to which the anodes are fixed and by therefore pollution by the iron of the aluminum produced or metal.
  • the electrolyte level should therefore be checked periodically. representative of its volume, i.e. the level of the interface air / electrolyte. This measure is also useful, in combination with the measurement of the level of the electrolyte / metal interface, to determine by difference the thickness of the electrolyte, i.e. the thickness of the bath molten electrolysis.
  • this method supposes a very great homogeneity of the electrolyte, but its resistivity varies locally and over time with its composition and in particular with the content of dissolved alumina. By elsewhere this method requires significant movements of the anode which can disturb the operation of the tank when this operation is too often repeated.
  • document EP 0288397 describes a process for controlling the solidified bath additions in an electrolysis tank consisting of periodically determine the thickness of the HB electrolyte which is compared to a HC setpoint and then adjusted accordingly. For get HB it is necessary in an intermediate step to measure the level of the bath relative to a fixed mark and this measurement is carried out by means of a probe associated with a level sensor and equipped with a chisel electrically connected to the cathode of the electrolysis tank. When the chisel pin comes into contact with the interface air / electrolyte there is a significant increase in the pointerolle / cathode potential difference. Regardless of whether this process does not give any operational details for this measurement intermediate level (frequency, accuracy and reliability) given in particular the disruptive effect of the solidified bath deposit on the probe, it does not in any way deal with the essential problem of measurement electrolyte temperature.
  • the invention also relates to the device suitable for setting up implements the process, namely the stitching and measurement device intended for measure, after piercing the surface solidified bath crust, the temperature and level of the electrolyte in a production tank of aluminum by electrolysis of alumina dissolved in the electrolyte, said device, integral but electrically isolated from the superstructure comprising means for pricking, or pricking, the crust, being characterized in that it is provided with means for measuring the temperature and of the level of the electrolyte constituted mainly by a probe cylindrical moving vertically along its major axis inside stitching means by performing automatically, according to a determined operating sequence, the periodic control of this temperature and this level, and that said stitching means ensure also the removal of the solidified bath deposit on the measurement probe.
  • the stitching and measurement device intended for measure, after piercing the surface solidified bath crust, the temperature and level of the electrolyte in a production tank of aluminum by electrolysis of alumina dissolved in the electrolyte
  • said device integral
  • the invention constitutes another improvement of the process according to EP 0288397 already analyzed in the prior art of the application.
  • thermocouple probes Due to the short life of immersed thermocouple probes in continuous in the electrolyte due to its very high aggressiveness, but also of the need to increase the frequency of temperature performed manually at the same time as the level measurement of electrolyte, led the applicant to study and to point an automatic temperature and level measurement process the electrolyte with a device suitable for its implementation after have found that temperature measurement at high frequency and with good accuracy is possible by intermittent immersion of a probe thermocouple in the electrolyte for a relatively short time does not not requiring the thermal equilibrium of the probe to be obtained with the electrolyte as soon as we can correctly extrapolate its end temperature rise.
  • the stitching and measuring device 1 is intended to measure after piercing of the bath crust 2 solidified the temperature and the level of the electrolyte 3 in contact with the carbon anodes 4 and above the sheet of liquid aluminum or metal 5 resting on the cathode substrate 6. It is integral but electrically isolated from the superstructure 7 of the tank and comprises stitching means 8 formed in their part lower by a hollow cylindrical pricker 9 actuated by at least one cylinder 10 driven by a vertical translational movement for drilling then maintain a passage opening in the crust allowing work of the means 11 for measuring the temperature and the level of electrolyte mainly constituted by a cylindrical probe 12.
  • the pricker 9 ensures at the same time, by scraping, the removal of the deposit 18 of solidified bath on the external surface of said probe.
  • the clearance between the pricker 9 and the probe 12, according to fig. 2a and fig. 2b, must be sufficient (0.5 to 20 mm radius) to allow their relative displacement without friction but do not must not be too large to avoid the progressive formation of a deposit too much solidified bath on the lower part of the probe 12.
  • a potentiometer 14 makes it possible to determine with precision the position of the probe in height while simultaneously a voltmeter 15 measures the potential difference between probe 12 and the substrate cathodic 6.
  • a level 16 sensor especially when the end bottom of the probe or pin 20 comes into contact with electrolyte 3, acquires the 2 signals on each descent and reassembly of the probe, calculates the level of the electrolyte / air interface which is transmitted to the command and control system 17.
  • the probe 12 consists of an external cylindrical sheath 22, by example in stainless steel, from 100 to 600 mm in length, from 7 to 100 mm of external diameter and whose wall thickness does not exceed 40 mm and is preferably between 2 and 10 mm to reduce losses thermal.
  • a thermocouple 21 in its sheath 19. This thermocouple is electrically connected to its upper part to the command and control system 17, which by extrapolation of the probe temperature determines the temperature of the electrolyte.
  • the immersion time of the probe in the electrolyte is about 950 ° C, corresponds to the time acquisition by the probe of at least the temperature of 850 ° C and preferably 920 ° C, plus the time required to obtain, from this temperature, with a very low heating rate of the probe, for example less than 3 ° C / second.
  • the probe When this threshold is reached, the probe is raised to its initial position and the successive values of temperature measured by the thermocouple 21 are transmitted to the command and regulation system 17 which determines, by extrapolation from the N different pairs of values (ti, Ti) temperature / time, the temperature Tb of the electrolyte.
  • the method and device according to the invention can also be adapted to measuring the level of the electrolyte / metal interface. Indeed so analogous you can record by pushing the probe into the sheet of metal a new potential variation between the substrate cathodic and the pointerolle of the probe when this crosses the electrolyte / metal interface. This variation results in a strong decrease in potential probe-metal / cathode difference compared to the previously recorded potential probe-electrolyte / cathode difference due to the significant decrease in resistance of the new medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

DOMAINE TECHNIQUE DE L'INVENTIONTECHNICAL FIELD OF THE INVENTION

L'invention concerne les mesures de température et du niveau de l'électrolyte à base de cryolithe fondue, dans les cuves de production d'aluminium par électrolyse d'alumine dissoute dans ladite cryolithe ainsi que l'application à la détermination de l'épaisseur du bain d'électrolyse fondu dans ces mêmes cuves.The invention relates to temperature and level measurements. electrolyte based on molten cryolite, in production tanks of aluminum by electrolysis of alumina dissolved in said cryolite as well as the application to the determination of the thickness of the bath of molten electrolysis in these same cells.

ETAT DE LA TECHNIQUESTATE OF THE ART

La conduite des cuves d'électrolyse modernes pour la production d'aluminium selon le procédé Hall-Héroult nécessite une surveillance permanente de la température et du volume du bain d'électrolyse fondu. La plus grande partie du bain d'électrolyse est à l'état fondu et constitue l'électrolyte dans lequel sont immergées les anodes carbonées, le reste du bain solidifié forme les talus latéraux et la croûte qui recouvrent la surface libre de l'électrolyte. Cet électrolyte est essentiellement constitué de cryolithe Na3AlF6 et peut comporter des additifs divers tels que CaF2, AlF3, LiF, MgF2, etc... ayant pour effet de modifier le point de fusion, les propriétés électrochimiques ainsi que l'aptitude du bain à dissoudre l'alumine.The operation of modern electrolysis tanks for the production of aluminum according to the Hall-Héroult process requires constant monitoring of the temperature and volume of the molten electrolysis bath. Most of the electrolysis bath is in the molten state and constitutes the electrolyte in which the carbon anodes are immersed, the rest of the solidified bath forms the lateral slopes and the crust which cover the free surface of the electrolyte. This electrolyte essentially consists of cryolite Na 3 AlF 6 and can contain various additives such as CaF 2 , AlF 3 , LiF, MgF 2 , etc ... having the effect of modifying the melting point, the electrochemical properties as well as the ability of the bath to dissolve alumina.

Le volume de l'électrolyte recouvrant la couche d'aluminium liquide au contact de la cathode en fond de cuve, ou substrat cathodique, doit être suffisant pour assurer une dissolution et une répartition rapide de l'alumine qui est introduite à la partie supérieure de la cuve. Il ne doit toutefois pas dépasser un certain niveau au-delà duquel il perturberait l'équilibre thermique de la cuve et provoquerait une corrosion des rondins d'acier auxquels sont fixées les anodes et par conséquent une pollution par le fer de l'aluminium produit ou métal. The volume of the electrolyte covering the layer of liquid aluminum at contact of the cathode at the bottom of the tank, or cathode substrate, must be sufficient to ensure rapid dissolution and distribution of alumina which is introduced at the top of the tank. He ... not must not however exceed a certain level beyond which it disturb the thermal equilibrium of the tank and cause corrosion of the steel logs to which the anodes are fixed and by therefore pollution by the iron of the aluminum produced or metal.

Il convient donc de contrôler périodiquement le niveau de l'électrolyte représentatif de son volume, c'est-à-dire le niveau de l'interface air/électrolyte. Cette mesure est également utile,en combinaison avec la mesure du niveau de l'interface électrolyte/métal, pour déterminer par différence l'épaisseur de l'électrolyte, c'est-à-dire l'épaisseur du bain d'électrolyse fondu.The electrolyte level should therefore be checked periodically. representative of its volume, i.e. the level of the interface air / electrolyte. This measure is also useful, in combination with the measurement of the level of the electrolyte / metal interface, to determine by difference the thickness of the electrolyte, i.e. the thickness of the bath molten electrolysis.

De même, la connaissance et le suivi de la température de l'électrolyte sont très importants, d'une part pour bien réguler le fonctionnement de la cuve en régime de marche permanent correspondant à un équilibre thermique entre la puissance fournie et la puissance dissipée, d'autre part pour optimiser le processus d'électrolyse notamment le rendement Faraday, sachant qu'une simple augmentation de la température du bain d'une dizaine de degrés celsius peut abaisser de 1 à 2% le rendement Faraday, alors qu'inversement un abaissement de température de l'électrolyte d'une dizaine de degrés celsius peut dans la zone de température considérée (environ 950°C) réduire la solubilité déjà faible de l'alumine dans la cryolithe et favoriser "l'effet d'anode", c'est-à-dire la polarisation d'anode, avec montée brutale de la tension aux bornes de la cuve et dégagement en quantité importante de produits fluorés provenant de la décomposition de l'électrolyte.Similarly, knowledge and monitoring of the electrolyte temperature are very important, firstly to properly regulate the functioning of the tank in permanent operating mode corresponding to a balance thermal between the power supplied and the power dissipated, other part to optimize the electrolysis process including yield Faraday, knowing that a simple increase in the temperature of the bath about ten degrees celsius can lower the yield by 1 to 2% Faraday, while conversely a lowering of the electrolyte of about ten degrees celsius can in the area of temperature considered (around 950 ° C) reduce already low solubility alumina in the cryolite and promote the "anode effect", that is to say the anode polarization, with sudden rise in voltage at the tank terminals and release in large quantity of products fluorides from the breakdown of the electrolyte.

Ces mesures de température et de niveau de bain sont effectuées manuellement par un opérateur qui périodiquement ouvre la porte ou des capots de cuve et plonge dans l'électrolyte une canne pyrométrique pour la mesure de température, puis une baguette en acier pour la mesure du niveau et de l'épaisseur de l'électrolyte. On ne peut en effet avoir recours à une sonde immergée en continu dans l'électrolyte compte tenu de sa très grande agressivité. Cette façon de procéder présente à l'évidence de nombreux inconvénients en particulier du point de vue :

  • des rejets de gaz fluorés dans l'atmosphère environnante lors des ouvertures de la porte ou des capots de la cuve,
  • des conditions de travail avec l'exposition de l'opérateur à ces rejets gazeux,
  • de la fréquence peu élevée (1 mesure par 24 à 48 h) de ces mesures difficiles à réaliser, qui ne permet pas un contrôle suffisamment suivi et fiable de la température et du niveau de l'électrolyte par rapport aux nouvelles exigences de conduite des cuves à haute intensité.
These temperature and bath level measurements are carried out manually by an operator who periodically opens the door or tank covers and immerses in the electrolyte a pyrometric rod for temperature measurement, then a steel rod for level measurement and the thickness of the electrolyte. One cannot in fact have recourse to a probe immersed continuously in the electrolyte given its very great aggressiveness. This procedure obviously has many drawbacks, in particular from the point of view:
  • releases of fluorinated gases into the surrounding atmosphere when the door or tank covers are opened,
  • working conditions with the operator's exposure to these gaseous discharges,
  • the low frequency (1 measurement per 24 to 48 h) of these difficult-to-perform measurements, which does not allow sufficiently monitored and reliable control of the temperature and level of the electrolyte compared to the new requirements for operating the vessels high intensity.

Or l'art antérieur, même récent, n'apporte que des solutions très incomplètes à ces problèmes en négligeant totalement l'aspect mesure de température et en préconisant, pour les mesures de niveau ou d'épaisseur de l'électrolyte, des méthodes dont la précision reste discutable et impliquant de surcroít de disposer d'un réglage individuel du niveau d'anode sur les cuves. Ainsi le document EP 0195143 décrit un procédé de mesure du niveau de l'électrolyte dans une cuve d'électrolyse selon lequel une des anodes parcourue par un courant donné est progressivement relevée, on mesure la diminution du courant en fonction de l'augmentation de la distance interpolaire, donc de la hauteur de relevage et on note la hauteur pour laquelle le courant a baissé jusqu'à une fraction prédéterminée de sa valeur initiale. Après étalonnage on peut déduire le niveau de l'électrolyte. Pour cela on ajoute à la distance parcourue par l'anode, la distance interpolaire initiale et un terme de correction géométrique.However, the prior art, even recent, provides only very solutions incomplete to these problems by totally neglecting the measurement aspect of temperature and recommending, for level or thickness measurements electrolyte, methods whose accuracy remains questionable and moreover implying having an individual level adjustment anode on the tanks. Thus the document EP 0195143 describes a method of measurement of the level of the electrolyte in an electrolytic cell according to which one of the anodes traversed by a given current is gradually measured, the decrease in current is measured as a function of the increase of the interpolar distance, therefore of the lifting height and we note the height for which the current has dropped to a fraction predetermined from its initial value. After calibration we can deduce the electrolyte level. For this we add to the distance traveled by the anode, the initial interpolar distance and a correction term geometric.

En fait cette méthode suppose une très grande homogénéité de l'électrolyte, or sa résistivité varie localement et dans le temps avec sa composition et notamment avec la teneur en alumine dissoute. Par ailleurs cette méthode nécessite des mouvements importants de l'anode qui peuvent perturber la marche de la cuve lorsque cette opération est trop souvent répétée.In fact this method supposes a very great homogeneity of the electrolyte, but its resistivity varies locally and over time with its composition and in particular with the content of dissolved alumina. By elsewhere this method requires significant movements of the anode which can disturb the operation of the tank when this operation is too often repeated.

De même le document EP 0288397 décrit un procédé de contrôle des additions de bain solidifié dans une cuve d'électrolyse consistant à déterminer périodiquement l'épaisseur de l'électrolyte HB qui est comparée à une valeur de consigne HC puis ajustée en conséquence. Pour obtenir HB, il est nécessaire dans une étape intermédiaire de mesurer le niveau du bain par rapport à un repère fixe et cette mesure est réalisée au moyen d'une sonde associée à un capteur de niveau et équipée d'une pointerolle reliée électriquement à la cathode de la cuve d'électrolyse. Au moment de la mise en contact de la pointerolle avec l'interface air/électrolyte on enregistre une augmentation importante de la différence de potentiel pointerolle/cathode. Indépendamment du fait que ce procédé ne donne aucun détail opératoire pour cette mesure intermédiaire de niveau (fréquence, précision et fiabilité) compte tenu notamment de l'effet perturbateur du dépôt de bain solidifié sur la sonde, il ne traite en aucune manière du problème essentiel de la mesure de température de l'électrolyte.Likewise, document EP 0288397 describes a process for controlling the solidified bath additions in an electrolysis tank consisting of periodically determine the thickness of the HB electrolyte which is compared to a HC setpoint and then adjusted accordingly. For get HB it is necessary in an intermediate step to measure the level of the bath relative to a fixed mark and this measurement is carried out by means of a probe associated with a level sensor and equipped with a chisel electrically connected to the cathode of the electrolysis tank. When the chisel pin comes into contact with the interface air / electrolyte there is a significant increase in the pointerolle / cathode potential difference. Regardless of whether this process does not give any operational details for this measurement intermediate level (frequency, accuracy and reliability) given in particular the disruptive effect of the solidified bath deposit on the probe, it does not in any way deal with the essential problem of measurement electrolyte temperature.

En résumé aucun procédé, ni dispositif de l'art antérieur, ne résout de façon complète et satisfaisante le problème de la mesure précise et fiable de la température et du niveau de l'électrolyte dans les cuves de production d'aluminium par électrolyse afin de s'affranchir des classiques mesures manuelles.In summary, no process or device of the prior art solves completely and satisfactorily the problem of precise measurement and reliable temperature and electrolyte level in the tanks aluminum production by electrolysis in order to get rid of classic manual measurements.

OBJET DE L'INVENTIONOBJECT OF THE INVENTION

Le procédé de l'invention et son dispositif pour le mettre en oeuvre permettent non seulement de pallier les inconvénients des mesures manuelles de température et de niveau de l'électrolyte, mais présentent également de nouveaux avantages résultant de leur automatisation notamment :

  • une précision plus grande des mesures de température à ± 2°C (au lieu de ± 5°C en méthode manuelle) et de niveau de l'électrolyte ± 5 mm (au lieu de ± 10 mm en méthode manuelle) associée à une fiabilité accrue de la conduite des cuves d'électrolyse du fait de la plus grande fréquence des mesures, de préférence toutes les 30 minutes à 48 heures au lieu de toutes les 24 à 48 heures, permettant d'éliminer les mesures anormales intervenant notamment en régime de marche transitoire de la cuve.
  • un gain de productivité consécutivement à la disparition du poste de mesure manuelle, associé à une amélioration très sensible des conditions de travail au voisinage des cuves avec la suppression de l'ouverture de la porte ou des capots.
The method of the invention and its device for implementing it not only make it possible to overcome the drawbacks of manual temperature and level measurements of the electrolyte, but also have new advantages resulting from their automation, in particular:
  • greater accuracy of temperature measurements at ± 2 ° C (instead of ± 5 ° C in manual method) and electrolyte level ± 5 mm (instead of ± 10 mm in manual method) associated with reliability increased handling of the electrolytic cells due to the greater frequency of measurements, preferably every 30 minutes to 48 hours instead of every 24 to 48 hours, making it possible to eliminate the abnormal measurements occurring in particular in transient operation of the tank.
  • a gain in productivity following the disappearance of the manual measuring station, associated with a very noticeable improvement in working conditions in the vicinity of the tanks with the elimination of the opening of the door or the covers.

Plus précisément l'invention concerne un procédé de mesure de la température et du niveau du bain d'électrolyse fondu, ou électrolyte, dans une cuve de production d'aluminium par électrolyse, selon le procédé Hall-Héroult, de l'alumine dissoute dans ledit électrolyte au contact des anodes carbonées et reposant sur la nappe de métal liquide formée sur le substrat cathodique et dont la surface au contact de l'air à la partie supérieure de la cuve est recouverte d'une croûte de bain solidifié, caractérisé en ce que, à l'aide d'un dispositif approprié, solidaire mais isolé électriquement de la superstructure de la cuve, muni notamment de moyens de piquage de la croûte de bain solidifié, ou piqueur, ainsi que de moyens de mesure de la température et du niveau d'électrolyte, on réalise périodiquement et de préférence selon une périodicité de 30 minutes à 48 heures la séquence suivante d'opérations:

  • a) Perçage de la croûte de bain solidifié et immersion à une profondeur suffisante par l'orifice ainsi créé, de l'extrémité d'une sonde de température dans l'électrolyte jusqu'à l'obtention d'une température au moins égale à 850°C et de préférence à 920°C, puis maintien de l'immersion de la sonde pendant une durée prédéterminée inférieure à la durée de mise en équilibre thermique de la sonde avec l'électrolyte,
  • b) Retrait de la sonde et détermination de la température de l'électrolyte par extrapolation des valeurs de température acquises par la sonde au-delà de 850°C et de préférence de 920°C, selon un programme de calcul préétabli,
  • c) après dégagement éventuel de l'orifice du passage de sonde précédemment créé et enlèvement du dépôt de bain solidifié sur ladite sonde, mesure du niveau d'électrolyte dans la cuve à partir d'un point de cote de référence, par enregistrement de la variation du potentiel entre le substrat cathodique et la sonde dont la position est déterminée par un potentiomètre et dont le potentiel augmente brusquement lorsque l'extrémité inférieure de la sonde ou pointerolle entre en contact avec l'électrolyte,
  • d) remontée de la sonde et calcul du niveau de l'électrolyte par le capteur après acquisition des signaux potentiel/position de la pointerolle.
  • More precisely, the invention relates to a process for measuring the temperature and the level of the molten electrolysis bath, or electrolyte, in a tank for the production of aluminum by electrolysis, according to the Hall-Héroult process, of the alumina dissolved in said electrolyte in contact with carbon anodes and resting on the sheet of liquid metal formed on the cathode substrate and the surface of which in contact with air at the top of the tank is covered with a solidified bath crust, characterized in that that, using an appropriate device, integral but electrically isolated from the superstructure of the tank, provided in particular with means for tapping the solidified bath crust, or tapping device, as well as means for measuring the temperature and the electrolyte level, the following sequence of operations is carried out periodically and preferably at a frequency of 30 minutes to 48 hours:
  • a) Drilling of the solidified bath crust and immersion at a sufficient depth through the orifice thus created, from the end of a temperature probe in the electrolyte until a temperature at least equal to is obtained. 850 ° C and preferably at 920 ° C, then maintaining the immersion of the probe for a predetermined duration less than the duration of thermal equilibration of the probe with the electrolyte,
  • b) Removal of the probe and determination of the temperature of the electrolyte by extrapolation of the temperature values acquired by the probe above 850 ° C and preferably 920 ° C, according to a pre-established calculation program,
  • c) after possible clearing of the orifice of the previously created probe passage and removal of the solidified bath deposit on said probe, measurement of the level of electrolyte in the tank from a reference point of measurement, by recording the variation of the potential between the cathode substrate and the probe, the position of which is determined by a potentiometer and the potential of which increases suddenly when the lower end of the probe or pin points in contact with the electrolyte,
  • d) raising of the probe and calculation of the level of the electrolyte by the sensor after acquisition of the potential / position signals of the chisel.
  • L'invention concerne également le dispositif approprié pour mettre en oeuvre le procédé à savoir le dispositif de piquage et mesure destiné à mesurer, après perçage de la croûte superficielle de bain solidifié, la température et le niveau de l'électrolyte dans une cuve de production d'aluminium par électrolyse d'alumine dissoute dans l'électrolyte, ledit dispositif, solidaire mais isolé électriquement de la superstructure comportant des moyens de piquage, ou piqueur, de la croûte, étant caractérisé en ce qu'il est muni de moyens de mesure de la température et du niveau de l'électrolyte constitués principalement par une sonde cylindrique se déplaçant verticalement selon son grand axe à l'intérieur des moyens de piquage en effectuant de façon automatique, selon une séquence opératoire déterminée, le contrôle périodique de cette température et de ce niveau, et que lesdits moyens de piquage assurent également l'enlèvement du dépôt de bain solidifié sur la sonde de mesure.The invention also relates to the device suitable for setting up implements the process, namely the stitching and measurement device intended for measure, after piercing the surface solidified bath crust, the temperature and level of the electrolyte in a production tank of aluminum by electrolysis of alumina dissolved in the electrolyte, said device, integral but electrically isolated from the superstructure comprising means for pricking, or pricking, the crust, being characterized in that it is provided with means for measuring the temperature and of the level of the electrolyte constituted mainly by a probe cylindrical moving vertically along its major axis inside stitching means by performing automatically, according to a determined operating sequence, the periodic control of this temperature and this level, and that said stitching means ensure also the removal of the solidified bath deposit on the measurement probe.

    L'invention selon le procédé et son dispositif de mise en oeuvre est applicable non seulement à la mesure de niveau de l'électrolyte mais également à la mesure du niveau de métal à l'interface électrolyte/métal liquide et par voie de conséquence à la détermination automatique de l'épaisseur de l'électrolyte HB = HT - HM où HT représente la distance du niveau de l'électrolyte (interface air/électrolyte) par rapport à un niveau fixe de référence et HM la distance du niveau de métal (interface électrolyte/métal liquide) par rapport à ce même niveau fixe. Dans cette application l'invention constitue un autre perfectionnement du procédé selon EP 0288397 déjà analysé dans l'art antérieur de la demande.The invention according to the method and its implementation device is applicable not only to the electrolyte level measurement but also for measuring the metal level at the electrolyte / metal interface liquid and consequently to the automatic determination of the thickness of the electrolyte HB = HT - HM where HT represents the distance from electrolyte level (air / electrolyte interface) relative to a fixed reference level and HM the distance from the metal level (interface electrolyte / liquid metal) with respect to this same fixed level. In this application the invention constitutes another improvement of the process according to EP 0288397 already analyzed in the prior art of the application.

    Du fait de la faible durée de vie des sondes à thermocouple immergées en continu dans l'électrolyte en raison de sa très grande agressivité, mais aussi de la nécessité d'augmenter la fréquence des contrôles de température réalisés manuellement en même temps que la mesure du niveau de l'électrolyte, a conduit la demanderesse à étudier et à mettre au point un procédé automatique de mesure de température et de niveau de l'électrolyte avec un dispositif approprié pour sa mise en oeuvre après avoir constaté que la mesure de température à fréquence élevée et avec une bonne précision est possible par immersion intermittente d'une sonde à thermocouple dans l'électrolyte pendant un temps relativement court ne nécessitant pas l'obtention de l'équilibre thermique de la sonde avec l'électrolyte dès l'instant que l'on peut extrapoler correctement sa fin de montée en température.Due to the short life of immersed thermocouple probes in continuous in the electrolyte due to its very high aggressiveness, but also of the need to increase the frequency of temperature performed manually at the same time as the level measurement of electrolyte, led the applicant to study and to point an automatic temperature and level measurement process the electrolyte with a device suitable for its implementation after have found that temperature measurement at high frequency and with good accuracy is possible by intermittent immersion of a probe thermocouple in the electrolyte for a relatively short time does not not requiring the thermal equilibrium of the probe to be obtained with the electrolyte as soon as we can correctly extrapolate its end temperature rise.

    Pour ce faire la demanderesse a mis en évidence notamment que :

  • 1°) La montée en température de la sonde entre 850°C et 1050°C plage habituelle de travail, obéit à une loi d'évolution dans le temps dont l'asymptote peut être calculée par extrapolation de la courbe obtenue sur une courte période de temps.
  • 2°) Seules les N dernières acquisitions de la sonde indiquant une température supérieure ou égale à 850°C et de préférence supérieure ou égale à 920°C doivent être prises en compte pour déterminer par extrapolation la température d'équilibre ou mesure de température de l'électrolyte.
  • 3°) Le nombre N de ces acquistions de température (N ≥ 10), effectuées généralement toutes les 0,1 à 60 secondes, est limité et donc défini par la condition de sortie de l'électrolyte de la sonde au-delà de 850°C et de préférence de 920°C qui est une vitesse de montée en température inférieure à un seuil prédéfini de préférence compris entre 0,1 et 10°C par seconde. Cette limite est généralement atteinte moins de quelques secondes à quelques minutes avant que la sonde n'ait atteint son équilibre thermique c'est-à-dire la température de l'électrolyte. Ainsi pour une mesure de température la durée totale d'immersion de la sonde dans l'électrolyte dont la température est de l'ordre de 950°C, est comprise entre 30 secondes et 30 minutes sans que sa température ne dépasse généralement 940°C.Ces mesures de température de l'électrolyte par extrapolation de la température d'équilibre de la sonde ont pu être validées par des mesures simultanées de température réalisées avec des sondes à thermocouple de même type, immergées en continu dans l'électrolyte jusqu'à leur destruction et à proximité de l'orifice de passage de la sonde à immersion intermittente. Ainsi il a été possible de s'affranchir des hétérogénéités locales de composition et de température de l'électrolyte et de constater que les écarts de températures mesurées selon les 2 méthodes de contrôle étaient compris dans une fourchette de ± 2°C, qui est l'ordre de grandeur de la précision que l'on peut atteindre avec des thermocouples correctement étalonnés.A noter dans le cas présent que le procédé selon l'invention n'est pas lié à une méthode particulière d'extrapolation de la température d'équilibre. Il inclut aussi toute méthode visant à prédéterminer la température d'équilibre de la sonde à partir d'un temps de maintien de la sonde en immersion qui soit inférieur au temps réel de mise en équilibre de la température de la sonde avec celle de l'électrolyte.Par ailleurs d'autres caractéristiques concernant notamment les conditions de mise en oeuvre de la sonde sont à prendre en compte pour obtenir une mesure de température précise et reproductible.
    • Il s'agit tout d'abord de la profondeur d'immersion de la sonde qui doit être définie précisément. En effet une erreur importante peut être commise, due aux pertes thermiques par conduction et par rayonnement le long de la sonde, car la température du point de mesure (en bout de sonde) est toujours inférieure à celle de l'électrolyte en régime permanent. La profondeur d'immersion doit être au moins d'l centimètre.
    • Il s'agit aussi du nettoyage régulier de la surface externe de la sonde assuré par le piqueur qui entoure ladite sonde et dont le mouvement de translation vertical provoque le décrochement du dépôt de bain solidifié. Il est important en effet que l'extrémité inférieure de la sonde périodiquement immergée soit régulièrement débarrassée du dépôt de bain solidifié sur sa surface externe. Celui-ci, en augmentant à la fois l'épaisseur et la longueur de la sonde, peut fausser d'une part les conditions d'échange thermique électrolyte/sonde et donc la mesure de température et d'autre part le seuil de détection de la pointerolle lors de son entrée dans l'électrolyte et par suite la mesure de niveau d'électrolyte.
    Enfin la fréquence relativement élevée des mesures de température, de préférence toutes les 30 minutes à 48 heures, avec possibilité de sélection et d'annulation des mesures anormales, voire même simplement douteuses, quand elles ont été réalisées au cours d'opérations ponctuelles périodiques qui modifient transitoirement l'état d'équilibre de la cuve, contribue à augmenter la fiabilité du procédé de conduite des cuves.Cette sélection est effectuée par le système de commande et de régulation de la cuve reliée au calculateur qui autorise, après un dégagement de l'orifice de passage de sonde et l'enlèvement par raclage du dépôt de bain solidifié, la mise en oeuvre de la mesure du niveau d'électrolyte par immersion de la pointerolle reliée d'une part à un capteur de déplacement et d'autre part au substrat cathodique, dont la différence de potentiel par rapport audit substrat augmente brutalement lorsque la pointerolle entre en contact avec l'électrolyte.Le capteur procède à l'acquisition de 2 signaux position/potentiel à chaque mesure qu'il transforme en niveau d'électrolyte par rapport à un point de référence exprimé en mm. Ces valeurs de niveau sont ensuite transmises au système de commande et de régulation de la cuve pour détermination du niveau moyen de l'électrolyte après élimination des mesures douteuses ou aberrantes.
  • To do this, the applicant has highlighted in particular that:
  • 1 °) The temperature rise of the probe between 850 ° C and 1050 ° C usual working range, obeys a law of evolution in time whose asymptote can be calculated by extrapolation of the curve obtained over a short period of time.
  • 2 °) Only the last N acquisitions of the probe indicating a temperature greater than or equal to 850 ° C and preferably greater than or equal to 920 ° C must be taken into account to determine by extrapolation the equilibrium temperature or temperature measurement of the electrolyte.
  • 3 °) The number N of these temperature acquisitions (N ≥ 10), generally carried out every 0.1 to 60 seconds, is limited and therefore defined by the condition of exit of the electrolyte from the probe beyond 850 ° C and preferably 920 ° C which is a rate of temperature rise below a predefined threshold preferably between 0.1 and 10 ° C per second. This limit is generally reached less than a few seconds to a few minutes before the probe has reached its thermal equilibrium, that is to say the temperature of the electrolyte. Thus, for a temperature measurement, the total duration of immersion of the probe in the electrolyte, the temperature of which is of the order of 950 ° C., is between 30 seconds and 30 minutes without its temperature generally exceeding 940 ° C. These electrolyte temperature measurements by extrapolation of the equilibrium temperature of the probe could be validated by simultaneous temperature measurements carried out with thermocouple probes of the same type, continuously immersed in the electrolyte up to their destruction and near the orifice of the intermittent immersion probe. Thus it was possible to get rid of the local heterogeneities of composition and temperature of the electrolyte and to note that the temperature differences measured according to the 2 control methods were included in a range of ± 2 ° C, which is l order of magnitude of the precision that can be achieved with correctly calibrated thermocouples. Note in the present case that the method according to the invention is not linked to a particular method of extrapolation of the equilibrium temperature . It also includes any method aiming to predetermine the equilibrium temperature of the probe from a time of maintaining the probe in immersion which is less than the actual time of equilibration of the temperature of the probe with that of the electrolyte. In addition, other characteristics concerning in particular the conditions of implementation of the probe are to be taken into account in order to obtain a precise and reproducible temperature measurement.
    • First of all, it is the depth of immersion of the probe which must be defined precisely. Indeed, a significant error can be made, due to thermal losses by conduction and by radiation along the probe, because the temperature of the measuring point (at the end of the probe) is always lower than that of the electrolyte in steady state. The immersion depth must be at least 1 cm.
    • It is also a question of regular cleaning of the external surface of the probe provided by the pricker which surrounds said probe and the vertical translational movement of which causes the deposit of the solidified bath to drop. It is indeed important that the lower end of the periodically submerged probe is regularly freed from the deposit of solidified bath on its external surface. This, by increasing both the thickness and the length of the probe, can distort on the one hand the electrolyte / probe heat exchange conditions and therefore the temperature measurement and on the other hand the detection threshold of the chuck when it enters the electrolyte and consequently the measurement of electrolyte level.
    Finally, the relatively high frequency of temperature measurements, preferably every 30 minutes to 48 hours, with the possibility of selecting and canceling abnormal, or even simply questionable, measurements when they were carried out during periodic ad hoc operations which transiently modify the state of equilibrium of the tank, contributes to increasing the reliability of the process of driving the tanks. This selection is made by the control and regulation system of the tank connected to the computer which authorizes, after a release of the orifice for the passage of the probe and the removal by scraping of the solidified bath deposit, the implementation of the measurement of the electrolyte level by immersion of the chisel connected on the one hand to a displacement sensor and on the other hand to the cathode substrate, whose potential difference with respect to said substrate increases abruptly when the die comes into contact with the electrol The sensor acquires 2 position / potential signals for each measurement which it transforms into electrolyte level relative to a reference point expressed in mm. These level values are then transmitted to the control and regulation system of the tank to determine the average level of the electrolyte after elimination of doubtful or aberrant measurements.
  • MISE EN OEUVRE DE L'INVENTIONIMPLEMENTATION OF THE INVENTION

    L'invention sera mieux comprise par la description détaillée de sa mise en oeuvre au moyen du dispositif approprié dit de piquage et de mesure en faisant référence aux figures 1 à 3 concernant respectivement :

    • une représentation schématique de l'ensemble du dispositif de piquage et de mesure avec ses principales connexions (figure 1).
    • une vue en coupe longitudinale de la partie inférieure du dispositif de piquage et de mesure, le piqueur étant en position haute et la sonde en position d'immersion Fig. 2a et le piqueur en position basse et la sonde relevée Fig. 2 b.
    • différentes configurations de montage des vérins de piquage et de mesure (fig. 3a, 3b, 3c, 3d) qui ne limitent en aucune manière le champ de l'invention à ces seuls modes de réalisation
    The invention will be better understood from the detailed description of its implementation by means of the appropriate device called stitching and measurement with reference to FIGS. 1 to 3 concerning respectively:
    • a schematic representation of the entire stitching and measuring device with its main connections (Figure 1).
    • a view in longitudinal section of the lower part of the stitching and measuring device, the nozzle being in the high position and the probe in the immersion position FIG. 2a and the nozzle in the low position and the probe raised Fig. 2 b.
    • different mounting configurations of the stitching and measuring cylinders (fig. 3a, 3b, 3c, 3d) which in no way limit the scope of the invention to these embodiments only

    Le dispositif de piquage et de mesure 1 est destiné à mesurer après perçage de la croûte 2 de bain solidifié la température et le niveau de l'électrolyte 3 au contact des anodes carbonées 4 et au-dessus de la nappe d'aluminium liquide ou métal 5 reposant sur le substrat cathodique 6. Il est solidaire mais isolé électriquement de la superstructure 7 de la cuve et comporte des moyens de piquage 8 formés à leur partie inférieure par un piqueur 9 cylindrique creux actionné par au moins un vérin 10 animé d'un mouvement de translation verticale pour percer puis entretenir dans la croûte un orifice de passage permettant de mettre en oeuvre des moyens 11 de mesure de la température et du niveau d'électrolyte constitués principalement par une sonde cylindrique 12. Dans son mouvement de translation vertical le piqueur 9 assure en même temps, par raclage, l'enlèvement du dépôt 18 de bain solidifié sur la surface externe de ladite sonde. A cet égard le jeu entre le piqueur 9 et la sonde 12, selon fig. 2a et fig. 2b, doit être suffisant (0,5 à 20 mm au rayon) pour permettre leur déplacement relatif sans frottement mais ne doit pas être trop grand pour éviter la formation progressive d'un dépôt trop important de bain solidifié sur la partie inférieure de la sonde 12.The stitching and measuring device 1 is intended to measure after piercing of the bath crust 2 solidified the temperature and the level of the electrolyte 3 in contact with the carbon anodes 4 and above the sheet of liquid aluminum or metal 5 resting on the cathode substrate 6. It is integral but electrically isolated from the superstructure 7 of the tank and comprises stitching means 8 formed in their part lower by a hollow cylindrical pricker 9 actuated by at least one cylinder 10 driven by a vertical translational movement for drilling then maintain a passage opening in the crust allowing work of the means 11 for measuring the temperature and the level of electrolyte mainly constituted by a cylindrical probe 12. In its vertical translation movement the pricker 9 ensures at the same time, by scraping, the removal of the deposit 18 of solidified bath on the external surface of said probe. In this respect the clearance between the pricker 9 and the probe 12, according to fig. 2a and fig. 2b, must be sufficient (0.5 to 20 mm radius) to allow their relative displacement without friction but do not must not be too large to avoid the progressive formation of a deposit too much solidified bath on the lower part of the probe 12.

    Le mouvement vertical de cette sonde mobile à l'intérieur du piqueur 9 qui s'effectue coaxialement à l'axe du piqueur est assuré par un vérin de mesure 13. Un potentiomètre 14 permet de déterminer avec précisions la position de la sonde en hauteur alors que simultanément un voltmètre 15 mesure la différence de potentiel entre la sonde 12 et le substrat cathodique 6. Un capteur de niveau 16, notamment lorsque l'extrémité inférieure de la sonde ou pointerolle 20 entre en contact avec l'électrolyte 3, procède à l'acquisition des 2 signaux à chaque descente et remontée de la sonde, calcule le niveau de l'interface électrolyte/air qui est transmis au système de commande et de régulation 17.The vertical movement of this mobile probe inside the drill 9 which takes place coaxially to the axis of the pricker is ensured by a jack measure 13. A potentiometer 14 makes it possible to determine with precision the position of the probe in height while simultaneously a voltmeter 15 measures the potential difference between probe 12 and the substrate cathodic 6. A level 16 sensor, especially when the end bottom of the probe or pin 20 comes into contact with electrolyte 3, acquires the 2 signals on each descent and reassembly of the probe, calculates the level of the electrolyte / air interface which is transmitted to the command and control system 17.

    La sonde 12 est constituée d'une gaine cylindrique externe 22, par exemple en acier inoxydable, de 100 à 600 mm de longueur, de 7 à 100 mm de diamètre extérieur et dont l'épaisseur de paroi n'excède pas 40 mm et est de préférence comprise entre 2 et 10 mm pour diminuer les pertes thermiques. Dans l'évidement central est placé un thermocouple 21 dans sa gaine 19. Ce thermocouple est relié électriquement à sa partie supérieure au système de commande et de régulation 17, qui par extrapolation de la température de la sonde détermine la température de l'électrolyte.The probe 12 consists of an external cylindrical sheath 22, by example in stainless steel, from 100 to 600 mm in length, from 7 to 100 mm of external diameter and whose wall thickness does not exceed 40 mm and is preferably between 2 and 10 mm to reduce losses thermal. In the central recess is placed a thermocouple 21 in its sheath 19. This thermocouple is electrically connected to its upper part to the command and control system 17, which by extrapolation of the probe temperature determines the temperature of the electrolyte.

    Plusieurs variantes du dispositif de piquage ont été étudiées et sont représentées par les fig. 3a, 3b, 3c et 3d qui ne peuvent être considérées pour autant comme une limitation de l'invention à ces seules configurations.Several variants of the stitching device have been studied and are represented by fig. 3a, 3b, 3c and 3d which cannot be considered however as a limitation of the invention to these only configurations.

    Ainsi dans la configuration selon fig. 3a on a remplacé le vérin de mesure à tige traversante de déplacement de la sonde 12 par un vérin simple qui permet de diminuer la hauteur du dispositif de piquage et de mesure et d'augmenter la puissance du mouvement de la mesure.Thus in the configuration according to fig. 3a we replaced the cylinder through rod measurement of displacement of probe 12 by a jack simple to reduce the height of the stitching device and measure and increase the power of the measure movement.

    Dans la configuration selon fig. 3b on n'utilise qu'un vérin central 10 pour le piquage et un vérin décentré 13 pour la mesure (ou inversement un vérin central pour la mesure et un vérin décentré pour le piquage). L'intérêt est de diminuer le nombre et donc le coût des vérins et surtout l'encombrement en hauteur et largeur.In the configuration according to fig. 3b only a central cylinder 10 is used for tapping and an off-center cylinder 13 for measurement (or conversely a central cylinder for measurement and an offset cylinder for tapping). The advantage is to reduce the number and therefore the cost of the cylinders and above all the overall height and width.

    Enfin la configuration selon fig. 3c l'utilisation d'un vérin unique polyvalent 13, 10 pour déplacer le piqueur et la sonde avec un mécanisme 23 permettant de verrouiller le piqueur permet une réduction du coût des vérins, une réduction de l'encombrement en hauteur et en largeur, en augmentant la puissance du mouvement de la sonde.Finally the configuration according to fig. 3c the use of a single cylinder versatile 13, 10 for moving the prick and the probe with a mechanism 23 allowing the prick to be locked allows a reduction in the cost of cylinders, a reduction in overall height and width, in increasing the power of movement of the probe.

    Quant à la configuration simplifiée selon fig. 3d consistant à remplacer la fonction piquage destiné à assurer une ouverture dans la croûte de bain solidifié par une protection fixe 9' permettant de maintenir un trou dans la croûte, elle simplifie le dispositif de piquage et de mesure avec un seul vérin de mesure 13.As for the simplified configuration according to fig. 3d of replacing the stitching function intended to ensure an opening in the crust of bath solidified by a fixed protection 9 'to maintain a hole in the crust, it simplifies the stitching and measuring device with a single measuring cylinder 13.

    Ces caractéristiques structurelles étant précisées, le dispositif de piquage et de mesure 1 de la température et du niveau de l'électrolyte 3 est mis en oeuvre à intervalle régulier, généralement toutes les 30 minutes à 48 heures, de la façon suivante pour la conduite des cuves de production d'aluminium :

    • par l'intermédiaire des vérins 10 le piqueur 9 est actionné en descente jusqu'au niveau du bain solidifié pour perçage ou dégagement du trou déjà formé dans la croûte 2 puis au bout de 1 à 5 secondes est relevé
    • la sonde 12 en position haute dont l'extrémité inférieure 20 est au moins à 50 cm du niveau de l'électrolyte, est alors activée en descente par le vérin 13 jusqu'à la profondeur d'immersion visée, de préférence 8 à 16 cm, de l'extrémité inférieure ou pointerolle 20.
    These structural characteristics being specified, the tapping and measuring device 1 for the temperature and the level of the electrolyte 3 is implemented at regular intervals, generally every 30 minutes to 48 hours, in the following manner for carrying out the aluminum production tanks:
    • by means of the jacks 10 the pricker 9 is actuated downward to the level of the solidified bath for drilling or clearing the hole already formed in the crust 2 then after 1 to 5 seconds is raised
    • the probe 12 in the high position, the lower end 20 of which is at least 50 cm from the level of the electrolyte, is then activated in descent by the jack 13 to the desired immersion depth, preferably 8 to 16 cm , from the lower end or chisel 20.

    La durée d'immersion de la sonde dans l'électrolyte, dont la température selon la composition est d'environ 950°C, correspond au temps d'acquisition par la sonde au moins de la température de 850°C et de préférence 920°C, majoré du temps nécessaire à l'obtention, à partir de cette température, d'une vitesse d'échauffement de la sonde très faible, par exemple de moins de 3°C/seconde.The immersion time of the probe in the electrolyte, including the temperature according to the composition is about 950 ° C, corresponds to the time acquisition by the probe of at least the temperature of 850 ° C and preferably 920 ° C, plus the time required to obtain, from this temperature, with a very low heating rate of the probe, for example less than 3 ° C / second.

    Lorsque ce seuil est atteint, la sonde est remontée à sa position intiale et les valeurs successives de température mesurée par le thermocouple 21 sont transmises au système de commande et de régulation 17 qui détermine, par extrapolation à partir des N différents couples de valeurs (ti, Ti) température/temps, la température Tb de l'électrolyte.When this threshold is reached, the probe is raised to its initial position and the successive values of temperature measured by the thermocouple 21 are transmitted to the command and regulation system 17 which determines, by extrapolation from the N different pairs of values (ti, Ti) temperature / time, the temperature Tb of the electrolyte.

    Pour réaliser la mesure de niveau de l'électrolyte on actionne par sécurité le piqueur 9 en descente afin d'assurer le nettoyage et le passage de sonde 12 puis sa remontée qui autorise l'engagement de la séquence de mesure de niveau de l'électrolyte. Celle-ci comporte l'acquisition par le capteur de niveau 16 du potentiel de la sonde 12 par rapport au substrat cathodique 6 ainsi que du signal du potentiomètre 14. To carry out the electrolyte level measurement, actuate by safety the pricker 9 downhill to ensure cleaning and passage of probe 12 then its ascent which authorizes the engagement of the electrolyte level measurement sequence. This includes the acquisition by the level sensor 16 of the potential of the probe 12 by relative to the cathode substrate 6 as well as the signal from the potentiometer 14.

    A la descente de la sonde 12 le potentiel par rapport à la cathode 6 augmente brutalement quand la pointerolle 20 entre en contact avec le bain 3, puis rechute lorsque cette même pointerolle quitte l'électrolyte au relevage de la sonde après une durée d'immersion n'excédant pas de préférence 20 secondes. Ces variations de potentiel sont enregistrées par le capteur de niveau qui détermine avec précision l'instant où la sonde plonge dans l'électrolyte et calcule l'épaisseur de l'électrolyte après filtrage et lissage de la courbe d'enregistrement en vue d'éliminer les effets parasites pouvant perturber les signaux du potentiomètre et de la pointerolle. La valeur ainsi calculée est transmise alors au système de commande et de régulation 17.When the probe 12 descends the potential with respect to the cathode 6 increases sharply when the chisel 20 comes into contact with the bath 3, then relapse when this same punch leaves the electrolyte when the probe is lifted after a period of immersion not exceeding preferably 20 seconds. These potential variations are recorded by the level sensor which accurately determines when the probe dives into the electrolyte and calculates the thickness of the electrolyte after filtering and smoothing the recording curve in order to eliminate the parasitic effects which could disturb the potentiometer and chisel. The value thus calculated is then transmitted to the control and regulation 17.

    AVANTAGES ET APPLICATIONS DE L'INVENTIONADVANTAGES AND APPLICATIONS OF THE INVENTION

    Outre le fait qu'il est possible d'effectuer avec une sonde, sans intervention manuelle et sans risque de pollution, plus de 2000 mesures de température à ± 2°C et cela avec une fiabilité accrue de la conduite des cuves en raison de l'augmentation de la fréquence des mesures de température et de niveau ainsi que du choix du moment pour les réaliser en dehors des périodes de régime transitoire des cuves d'électrolyse, le procédé et le dispositif selon l'invention peuvent être aussi adaptés à la mesure du niveau de l'interface électrolyte/métal. En effet de façon analogue on peut enregistrer par enfoncement de la sonde jusque dans la nappe de métal une nouvelle variation de potentiel entre le substrat cathodique et la pointerolle de la sonde lorsque celle-ci traverse l'interface électrolyte/métal. Cette variation se traduit par une forte diminution de différence potentiel sonde-métal/cathode par rapport à la différence potentiel sonde-électrolyte/cathode précédemment enregistrée en raison de la diminution sensible de résistance du nouveau milieu.Besides the fact that it is possible to perform with a probe, without manual intervention and without risk of pollution, more than 2000 measurements temperature to ± 2 ° C and this with increased reliability of the pipe tanks due to the increased frequency of temperature and level as well as the choice of the moment to realize them outside the periods of transient regime of the electrolytic cells, the method and device according to the invention can also be adapted to measuring the level of the electrolyte / metal interface. Indeed so analogous you can record by pushing the probe into the sheet of metal a new potential variation between the substrate cathodic and the pointerolle of the probe when this crosses the electrolyte / metal interface. This variation results in a strong decrease in potential probe-metal / cathode difference compared to the previously recorded potential probe-electrolyte / cathode difference due to the significant decrease in resistance of the new medium.

    Ainsi peut-on déterminer rapidement à partir d'une même origine, par 2 séries successives de mesures de niveau de l'électrolyte et de mesures de niveau de métal, le niveau moyen de l'électrolyte HT et le niveau moyen du métal HM et en déduire HB = HT - HM l'épaisseur de l'électrolyte dont on veut réguler avec précision le volume par adjonction de bain broyé solide ou prélèvement de l'électrolyte. Ce mode de détermination de l'épaisseur de l'électrolyte est évidemment plus rapide que celui préconisé par EP 0288 397 basé sur la détermination indirecte du niveau du métal à partir du plan anodique mal défini et de la vitesse d'usure des anodes. A cet égard l'application du procédé et dispositif de l'invention à la mesure de l'épaisseur de l'électrolyte en vue de sa régulation constitue à la fois un complément et un perfectionnement au procédé selon EP 0288397.So we can quickly determine from the same origin, by 2 successive series of electrolyte level measurements and metal level, the average level of the HT electrolyte and the average level of the metal HM and deduce therefrom HB = HT - HM the thickness of the electrolyte of which we want to precisely regulate the volume by adding ground bath solid or electrolyte sample. This method of determining the thickness of the electrolyte is obviously faster than that recommended by EP 0288 397 based on the indirect determination of the level metal from the poorly defined anode plane and wear rate anodes. In this regard the application of the method and device of the invention in measuring the thickness of the electrolyte with a view to its regulation is both a complement and an improvement to process according to EP 0288397.

    Claims (23)

    1. Method for measuring the temperature and the level of the molten electrolysis bath, or electrolyte, in a cell for production of aluminium by electrolysis, according to the Hall-Héroult process, of alumina dissolved in said electrolyte in contact with the carbonaceous anodes and resting on the sheet of liquid metal formed on the cathodic substrate, and the surface of which in contact with the air at the upper part of the cell is covered by a crust of solidified bath, characterised in that with the aid of an appropriate device, integral but electrically insulated from the superstructure of the cell, provided in particular with means for breaking the crust of solidified bath, or a crust-breaker, as well as means for measuring the temperature and the level of the electrolyte, the following sequence of operations is periodically carried out:
      a) Piercing of the crust of solidified bath and immersion into the electrolyte, through the aperture thereby created, of the extremity of a temperature probe to a sufficient depth until a temperature of at least 850°C, and preferably 920°C is obtained, then, from this temperature. maintaining the immersion of the probe for a pre-determined length of time, which is less than the time taken to establish the thermal equilibrium of the probe with the electrolyte,
      b) withdrawal of the probe and determination of the temperature of the electrolyte by extrapolation of the temperature values established by the probe above 850°C and preferably 920°C, according to a pre-established computation program.
      c) after optional clearing of the aperture for the passage of the probe previously created, and removal of the solidified bath deposit from said probe, measurement of the level of electrolyte in the cell from a datum point by recording the variation in potential between the cathodic substrate and the probe, the position of which is determined by a potentiometer, and the potential of which increases rapidly when the lower extremity of the probe or tip comes into contact with the electrolyte,
      d) raising of the probe and calculation of the level of the electrolyte by the sensor after establishment of potential/position signals from the tip.
    2. Method according to claim 1, characterised in that the sequence of operations for measuring the temperature and the level of the electrolyte is carried out according to a periodicity of 30 minutes to 48 hours.
    3. Method according to claim 1, characterised in that the length of time the probe is kept in the electrolyte at above 850°C and preferably 920°C is defined by the condition of withdrawal of the probe, which is a speed of temperature increase less than a pre-determined threshold, preferably between 0.1 and 10°C per second.
    4. Method according to claim 1, characterised in that for a measurement of the temperature, the total immersion time of the probe in the electrolyte is between 30 seconds and 30 minutes.
    5. Method according to claim 1, characterised in that the depth of immersion of the extremity of the probe in the electrolyte is at least 1cm, and preferably 8 to 16 cm.
    6. Method according to claim 1, characterised in that the removal of the deposit of solidified bath on the external surface of the probe is regularly carried out with the aid of a crust-breaker driven by a vertical translation movement.
    7. Method according to claim 6, characterised in that during each measurement of the level the extremity of the probe or tip is immersed in the electrolyte for a duration preferably not exceeding 20 seconds.
    8. Device for crust-breaking and measuring (1) intended for measuring, after piercing of the superficial crust (2) of solidified bath, the temperature and the level of the electrolyte (3) in a cell for production of aluminium by the electrolysis of alumina dissolved in the electrolyte, said device, integral with but electrically insulated from the superstructure (7) of the cell, comprising means for breaking the crust, or a crust-breaker (8), being characterised in that it is provided with means (11) for measuring the temperature and the level of the electrolyte (3) principally constituted by a cylindrical probe (12) moving vertically along its main axis inside crust-breaking means (8), carrying out, in an automatic manner according to a determined sequence of operations, the periodic monitoring of this temperature and of this level, and that said crust-breaking means also make possible the removal of the deposit (18) of solidified bath on the measuring probe.
    9. Device for crust-breaking and measuring according to claim 8, characterised in that the crust-breaking means (8) are formed, in their lower part, by a cylindrical hollow crust-breaker (9), operated by at least one crust-breaking actuator (10) and driven by a vertical translation movement.
    10. Means of crust-breaking and measuring according to claim 8, characterised in that the means (11) for measuring the temperature and the level of the electrolyte are principally constituted by a cylindrical probe (12) moveable inside the crust-breaker (9), the vertical displacement of which coaxially to the axis of the crust-breaker is made possible by a measuring actuator (13).
    11. Device for crust-breaking and measuring according to claim 8 or 10, characterised in that a potentiometer (14) is fixed integrally to the rid of the actuator (13) to determine the position of the probe (12).
    12. Device for crust-breaking and measuring according to any one of claims 8 or 10, characterised in that a voltmeter (15) measures the difference in potential between the probe (12) and the cathodic substrate (6).
    13. Device for crust-breaking and measuring according to any one of claims 8, 10, 11 and 12, characterised in that a level sensor (16) connected electrically to the voltmeter (15) and to the potentiometer proceeds with the establishment of the signals for potential/position of the probe (12) and calculates the level of air/electrolyte interface, or electrolyte level, with each lowering and raising of the probe.
    14. Device for crust-breaking and measuring according to any one of claims 8, 10, 11, 12 and 13, characterised in that the probe (12) is constituted by an external cylindrical casing (22), 100 to 600 mm long and 7 to 100 mm in external diameter, with a wall thickness not exceeding 40 mm.
    15. Device for crust-breaking and measuring according to claim 14, characterised in that the external cylindrical casing (22) of the probe (12) has a wall thickness of preferably between 2 and 10 mm.
    16. Device for crust-breaking and measuring according to one of claims 8, 10, 11, 12, 13 and 14, characterised in that the cylindrical casing (22) contains a thermocouple (21) in its casing (19), connected electrically by its upper part to the control and regulation system (17).
    17. Device for crust-breaking and measuring according to claim 9 or 10, characterised in that the clearance between the crust-breaker (9) and the cylindrical probe (12) has a radius of between 0.5 and 20 mm.
    18. Device for crust-breaking and measuring according to any one of claims 8, 9 or 10, characterised in that the measuring actuator (13) is central and preferably has a cross rod.
    19. Device for crust-breaking and measuring according to any one of claims 8, 9 or 10, characterised in that the measuring actuator (13) is off-centre and that the sole crust-breaking actuator (10) is central.
    20. Device for crust-breaking and measuring according to any one of claims 8, 9 or 10, characterised in that it comprises a single polyvalent actuator (13 or 10) for measuring and crust-breaking.
    21. Device for crust-breaking and measuring according to any one of claims 8 or 10, characterised in that the measuring actuator (13) is central and that the crust-breaking means (8) intended to produce an opening in the crust (2) are constituted by a permanent fixed protector (9').
    22. Application of the method of measuring the level of the electrolyte according to claims 1 to 7 to the measurement of the level of liquid metal in the electrolysis cell.
    23. Application of the method of measuring the level of the electrolyte and of the metal according to claims 1 to 7 and 22 to the determination of the thickness of the electrolyte by difference in the measurements of the level of the electrolyte and the level of metal.
    EP95420354A 1994-12-09 1995-12-07 Process and apparatus for measuring the temperature and the bath level of molten electrolyte in aluminum winning cells Expired - Lifetime EP0716165B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9415086A FR2727985B1 (en) 1994-12-09 1994-12-09 METHOD AND DEVICE FOR MEASURING THE TEMPERATURE AND LEVEL OF THE MELT ELECTROLYSIS BATH IN ALUMINUM PRODUCTION TANKS
    FR9415086 1994-12-09

    Publications (2)

    Publication Number Publication Date
    EP0716165A1 EP0716165A1 (en) 1996-06-12
    EP0716165B1 true EP0716165B1 (en) 1998-07-08

    Family

    ID=9469818

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95420354A Expired - Lifetime EP0716165B1 (en) 1994-12-09 1995-12-07 Process and apparatus for measuring the temperature and the bath level of molten electrolyte in aluminum winning cells

    Country Status (7)

    Country Link
    US (1) US6065867A (en)
    EP (1) EP0716165B1 (en)
    AU (1) AU689973B2 (en)
    CA (1) CA2164687C (en)
    DE (1) DE69503342T2 (en)
    FR (1) FR2727985B1 (en)
    NO (1) NO312554B1 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN102703934A (en) * 2012-06-08 2012-10-03 云南铝业股份有限公司 Method for improving calcination temperature evenness of aluminium electrolysis cell
    CN104480495A (en) * 2014-12-17 2015-04-01 湖南创元铝业有限公司 Method for controlling aluminium tapping volume of single groove of aluminium electrolysis cell

    Families Citing this family (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    SE511376C2 (en) * 1997-11-28 1999-09-20 Sintercast Ab Sampling device for thermal analysis of solidifying metal
    DE19909614C1 (en) * 1999-03-05 2000-08-03 Heraeus Electro Nite Int Immersion sensor used for monitoring aluminum electrolysis cells comprises a bath electrode arranged on a carrier with an immersion end
    DE10331124B3 (en) * 2003-07-09 2005-02-17 Heraeus Electro-Nite International N.V. Method and device for measuring the cooling curve of melt samples and / or the heating curve of melt samples and their use
    US6942381B2 (en) * 2003-09-25 2005-09-13 Alcoa Inc. Molten cryolitic bath probe
    FR2862355B1 (en) 2003-11-18 2006-02-10 Ecl SYSTEM FOR CONNECTING TWO TREES IN TRANSLATION
    FR2872176B1 (en) * 2004-06-25 2006-07-28 Ecl Soc Par Actions Simplifiee SCRAPER OF A BODY OF A CRUST OF A BATH OF AN ELECTROLYSIS CELL INTENDED FOR THE PRODUCTION OF ALUMINUM
    US7275429B2 (en) * 2005-04-06 2007-10-02 Itt Manufacturing Enterprises Inc. Mechanical self-cleaning probe via bi-metallic or shape memory
    WO2008002834A2 (en) * 2006-06-27 2008-01-03 Alcoa Inc. Systems and methods useful in controlling operations of metal electrolysis cells
    CN101270485B (en) * 2008-05-10 2010-06-16 中国铝业股份有限公司 Control method for electroanalysis of degree of superheat
    DE102008025090A1 (en) 2008-05-26 2009-12-17 Robert Bosch Gmbh Device for producing aluminum, comprises cathodic vessel, anode means, electrical source for generating direct current between the cathodic vessel and the anode means for extracting molten aluminum from bath, and assembly with chisel
    US8409409B2 (en) * 2009-03-26 2013-04-02 Alcoa Inc. System, method and apparatus for measuring electrolysis cell operating conditions and communicating the same
    AU2015203272B2 (en) * 2009-03-26 2016-06-30 Alcoa Usa Corp. System, method and apparatus for measuring electrolysis cell operating conditions and communicating the same
    CN104233374A (en) * 2013-06-07 2014-12-24 攀钢集团钛业有限责任公司 Magnesium electrolytic bath liquid level measurement device and method thereof and magnesium electrolytic bath
    CN106555211B (en) * 2015-09-25 2018-11-27 沈阳铝镁设计研究院有限公司 A kind of measuring tool and measurement method of cathode drop of aluminium cell
    CN106768167B (en) * 2016-11-15 2019-02-15 北京科技大学 A kind of electrolytic cell liquid level based on impedance variations autonomous measuring system and method online
    CN107164784B (en) * 2017-06-29 2023-06-30 山东宏桥新型材料有限公司 Automatic intermittent aluminum electrolyte temperature detection system
    KR101892732B1 (en) * 2017-10-17 2018-08-28 한국원자력연구원 Long-ranged molten metal liquid level measuring device and thermal system using multi-point temperature sensor
    FR3077018B1 (en) * 2018-01-24 2020-01-24 Rio Tinto Alcan International Limited DRILLING DEVICE COMPRISING A TUBULAR SLEEVE FIXED TO A CYLINDER
    CN110501080B (en) * 2019-09-06 2024-02-13 中冶赛迪信息技术(重庆)有限公司 Aluminum tank molten pool detector, detection device and method
    CN112665642B (en) * 2020-12-02 2023-02-10 沈阳铝镁设计研究院有限公司 On-line measuring system for electrolyte temperature, two levels and furnace bottom pressure drop of aluminum electrolysis cell

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3660256A (en) * 1967-12-07 1972-05-02 Gen Electric Method and apparatus for aluminum potline control
    US3629079A (en) * 1968-02-23 1971-12-21 Kaiser Aluminium Chem Corp Alumina feed control
    US3625842A (en) * 1968-05-24 1971-12-07 Kaiser Aluminium Chem Corp Alumina feed control
    DE2133464A1 (en) * 1970-07-13 1972-01-20 Union Carbide Corp Device for continuously measuring the temperature in a cell for the electrolytic extraction of aluminum
    CH566402A5 (en) * 1972-07-18 1975-09-15 Alusuisse
    SU929747A1 (en) * 1977-10-10 1982-05-23 за вители ЙП;Ог аз,, 5 ATiiHVKy, n-KJ| ;KMS-« . BKiijfSaiEjiA Method for controlling process condition of a aluminium electrolyzer
    DE3305236C2 (en) * 1983-02-10 1985-11-21 Schweizerische Aluminium Ag, Chippis Device for controlling an impact device of a melt flow electrolysis cell and method for operating the device
    SU1236003A1 (en) * 1984-12-27 1986-06-07 Красноярский Политехнический Институт Method of checking temperature of electrolyte in aluminium electrolyzer
    FR2614320B1 (en) * 1987-04-21 1989-06-30 Pechiney Aluminium METHOD AND DEVICE FOR CONTROLLING THE ADDITIONS OF SOLID ELECTROLYSIS IN ELECTROLYSIS TANKS FOR THE PRODUCTION OF ALUMINUM.

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN102703934A (en) * 2012-06-08 2012-10-03 云南铝业股份有限公司 Method for improving calcination temperature evenness of aluminium electrolysis cell
    CN102703934B (en) * 2012-06-08 2015-05-20 云南铝业股份有限公司 Method for improving calcination temperature evenness of aluminium electrolysis cell
    CN104480495A (en) * 2014-12-17 2015-04-01 湖南创元铝业有限公司 Method for controlling aluminium tapping volume of single groove of aluminium electrolysis cell

    Also Published As

    Publication number Publication date
    DE69503342D1 (en) 1998-08-13
    DE69503342T2 (en) 1999-03-04
    CA2164687C (en) 2005-02-15
    EP0716165A1 (en) 1996-06-12
    FR2727985B1 (en) 1997-01-24
    NO954740D0 (en) 1995-11-23
    US6065867A (en) 2000-05-23
    NO312554B1 (en) 2002-05-27
    FR2727985A1 (en) 1996-06-14
    AU689973B2 (en) 1998-04-09
    NO954740L (en) 1996-06-10
    CA2164687A1 (en) 1996-06-10
    AU3901895A (en) 1996-06-20

    Similar Documents

    Publication Publication Date Title
    EP0716165B1 (en) Process and apparatus for measuring the temperature and the bath level of molten electrolyte in aluminum winning cells
    CA1157803A (en) Method and apparatus for accurate control of the loading and the alumina content of an electrolytic cell smelter, and their use in the production of aluminum
    EP0288397B1 (en) Process and apparatus for monitoring the solid electrolyte additions to electrolysis vats for the production of aluminium
    CA2540137C (en) Method and system for controlling addition of powdery materials to the bath of an electrolysis cell for the production of aluminium
    EP0421828A1 (en) Method for continuously determining the thickness of the liquid slag on the surface of a fusion bath in a metallurgical vessel
    CN113847969A (en) Method for accurately measuring liquid level of melting furnace molten pool
    FR2486651A1 (en) METHOD AND APPARATUS FOR DETECTING THE SURFACE LEVEL OF MOLTEN METAL IN A MOLD
    CA2633430A1 (en) Automated-precision pressure meter
    JP5263905B2 (en) Molten metal measurement system and probe used in the system
    US6942381B2 (en) Molten cryolitic bath probe
    FR2483965A1 (en) METHOD AND APPARATUS FOR CONTROLLING ALUMINUM POWER IN A CELL FOR THE PRODUCTION OF ALUMINUM BY ELECTROLYSIS
    FR3021407A1 (en) DEVICE FOR ANALYZING OXIDABLE FUSION METAL BY LIBS TECHNIQUE
    FR2535346A1 (en) DEVICE AND METHOD FOR CONTROLLING AN ACOUSTIC RESONATOR FOR DETERMINING THE CONCENTRATION IN A COMPONENT OF A MULTI-COMPONENT LIQUID
    CA2299962C (en) Immersion sensor, measuring arrangement and measuring method for monitoring aluminum electrolytic cells
    FR2605410A1 (en) METHOD AND DEVICE FOR THE ELECTROCHEMICAL MEASUREMENT OF OXIDE ION CONCENTRATION IN A FAT-BASED HALIDE BATH
    EP0246940A1 (en) Process and apparatus for continuously controlling the undercooling of the solidification front of a single crystal during its development, and use in its growth control
    FR2830875A1 (en) Regulation of an electrolytic cell for the production of aluminum involves controlled addition of alumina as a function of the amount of undissolved alumina in the molten bath
    JP2005125402A (en) Method for continuously casting cast block, and method for judging quality of cast block
    EP3610054B1 (en) Process for installing an anode cover in an electrolytic cell, service machine capable of implementing such a process and computer program product for the implementation of such a process
    FR2673646A1 (en) Process for measuring the level of a bath of liquid metal in a converter
    FR2776370A1 (en) Hot water production tank
    FR2804756A1 (en) Method and tool for determination, by the hole method, of residual constraints in a metal piece
    RU2221994C1 (en) Method determining liquidus temperature of electrolyte melts in working bath
    FR2584189A1 (en) Rapid analysis of metal melt

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR IT

    17P Request for examination filed

    Effective date: 19960628

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19970923

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR IT

    REF Corresponds to:

    Ref document number: 69503342

    Country of ref document: DE

    Date of ref document: 19980813

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051207

    PGRI Patent reinstated in contracting state [announced from national office to epo]

    Ref country code: IT

    Effective date: 20091201

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20110107

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20101228

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20101229

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20120831

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69503342

    Country of ref document: DE

    Effective date: 20120703

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120703

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111207

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120102