EP0708901B1 - Support de combustion ceramique pour bruleurs radiants en surface - Google Patents
Support de combustion ceramique pour bruleurs radiants en surface Download PDFInfo
- Publication number
- EP0708901B1 EP0708901B1 EP94925377A EP94925377A EP0708901B1 EP 0708901 B1 EP0708901 B1 EP 0708901B1 EP 94925377 A EP94925377 A EP 94925377A EP 94925377 A EP94925377 A EP 94925377A EP 0708901 B1 EP0708901 B1 EP 0708901B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- support element
- combustion support
- element according
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/12—Radiant burners
- F23D14/16—Radiant burners using permeable blocks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/106—Assemblies of different layers
Definitions
- the invention relates to a ceramic combustion carrier element, preferably in Form of a ceramic composite body in surface radiation burners for industrial conversion and heating processes in the temperature range up to especially about 1300 ° C.
- Surface radiant burners are especially for space heating and Drying purposes in the infrared range and as low-pollution combustion units Various versions in use in the heating and boiler area. Here will be all the possibilities of low-pollutant operation at application temperatures used up to 1000 ° C.
- Multi-flame surface burners There are generally two basic types, namely Multi-flame surface burners and quasi-flameless surface burners.
- Multi-flame burners are characterized by the fact that the Starting from the burner surface, form a large number of individual flames, which are defined in certain Unite performance areas to a flame front.
- the quasi-flameless surface burners form a second group.
- the burner type sits in a certain power range in the flame root Surface layer of the combustion carrier and makes it glow. Through the Decoupling considerable portions of radiant heat is the Combustion temperature of the fuel-air mixtures conducted through the flame carrier lowered and NOx formation significantly suppressed. Above one certain burner output and with a high excess of combustion air also dissolves with these burners the flame off the surface and causes one Deterioration of exhaust gas hygiene.
- An essential form of this type of burner is based on radiation combustion elements made of ceramic fibers, which Vacuum forming in connection with binders, preferably on a metal sieve be deposited. Refinements of this form are e.g.
- EP-A-0 382 674 EP-A-0 397 591; US-A-4 416 619; DE-A-3 311 953; US-A-3 179 156; US-A-3 275 497 and US-A-4 519 770.
- the flame support solutions described in EP-A-0 382 674 and EP-A-0 397 591 allow a very small control range to be expected.
- the as described with Alumina coating cross-linked thick fiber layer is mechanically vulnerable, in particular sensitive to all handling, vibration and tends to increase Erosion in the thermal aging process.
- the closed burner head shape leaves a jamming effect with uneven distribution of the flame on the ceramic jacket and thus a deterioration in exhaust gas hygiene as well as increased erosion of fibers in expect this area (hot spot formation).
- the binder structure with the targeted gamma and theta phases of Al 2 O 3 as the main binder component is used both for the heat treatment to remove the pore former and also limits for the later operating temperature of the fiber ceramics, which are around 1100 ° C.
- the gas chemical effect is less important, unless the large surface area of the gamma and theta phases is required in connection with catalytic additives.
- the embrittlement of the surface layer due to phase transition of the Al 2 O 3 into the alpha phase above about 982.2 ° C. is important here (see DE-A-3 311 953).
- Metallic fiber radiation burners e.g. in EP-A-0 157 432, EP-A-0 227 131 and EP-A-0 390 255 describes, have mechanical advantages, but have one material-related application limit of 1150 ° C surface temperature are due to the necessary high-quality special steel fiber qualities very expensive and as expected more susceptible to hot corrosion than ceramics with critical exhaust gas components, e.g. Hydrogen halide.
- EP 0 187 508 A3 relates to a combustion carrier element which consists of a porous, by forming and sintering a starting material from ceramic powder, Binder and inorganic fibers formed porous combustion body, which in addition to its porosity, a plurality of preferably drilled through holes , see in particular p. 5, last paragraph to p. 7, first paragraph.
- EP-A-0 410 569 A1 relates to a plate-shaped porous Combustion body, which is supported by a metal sieve and two, transverse to Pass-through extending blocks, of which the second block is one Porosity with larger through openings. An explanation of the actual flow resistance cannot be found.
- the second block can with Be coated or impregnated with metal oxide, see column 7, lines 45 to 55.
- EP-A-0 530 630 A1 discloses a porous combustion body with several zones, in which the structure or porosity refines from the inside out. Also from this document is not an explanation of the actual flow resistance refer to.
- a porous combustion body can be found in AU-B-25742/67 Avoiding flashback has a porous layer caused by application a slurry comprising aluminum powder and fibers is formed.
- FR-A-2 222 329 relates to a porous combustion body different flow resistance, so that there is a pilot flame during operation results.
- WO-A-84 04376 describes a porous combustion body containing fibers described, the outer surface of which is sealed, see in particular p. 5, last paragraph.
- From US-A-3 208 247 is a plate, sleeve or spherical porous combustion body of foam-like or fibrous structure, which can be coated on its focal surface, see in particular column 3.
- a burnout is described to improve the porous structure.
- US-A-4 189 294 relates to flameless combustion in one Catalyst zone and is to be regarded as the more distant prior art.
- From US-A-4 814 300 is a molded body made of porous ceramic material remove, consisting of a foamable starting material with a Mixture of alkali silicates, alkali aluminates and ceramic particles.
- porous ceramic material remove consisting of a foamable starting material with a Mixture of alkali silicates, alkali aluminates and ceramic particles.
- a porous body for various uses, under other also kiln.
- US-A-4 643 667 describes a porous combustion body consisting of two Layers, of which the first layer is low and the second layer is higher Has thermal conductivity. In addition, the two layers are different Porosity, see column 5, line 25 and following.
- US-A-4 039 480 is a method of making substantially spherical pelets and their use as a catalyst.
- the spherical pelets contain a flammable substance and they are outside with a ceramic powder coated. Because of this coating they can be under Sinter heat together, burning out the combustible material and hollow ceramic balls are formed.
- the ceramic can be an aluminosilicate such as mullite be.
- US-A-4 889 481 describes a combustion carrier element consisting of a ceramic material which has a plurality of passage openings, the Combustion carrier element is a multilayer composite body with two or three Layers, of which the third layer is chemically evaporated.
- combustion carrier element which consists of spherical aggregates made of ceramic material is built up in one layer.
- the invention has for its object to provide a combustion carrier element, while ensuring great corrosion resistance, stability and durability on the one hand a good flow through the fuel and on the other hand a good and trouble-free combustion even at high temperatures, especially up to about 1300 ° C.
- combustion carrier element there is another requirement for a combustion carrier element in that it is simple and inexpensive with satisfactory porosity as well can create thermal and mechanical stability.
- the purpose of other design features is based on a Combustion carrier element to design so that on its combustion surface a certain, in particular uniform, flow velocity profile or a certain, especially uniform flame distribution arises.
- combustion carrier element create a simple bracket while ensuring a simple design of the combustion carrier element with a low installation or mounting effort in allowed a burner.
- the combustion carrier element according to claim 1 has a porous, spherical or hollow spherical bulk ceramics. Such a bulk ceramic is easy and inexpensive to manufacture and also leads satisfactory strength to an advantageous porosity and trouble-free and even gas flow.
- the invention Combustion carrier element can be used as a post-mixer and mixture distributor for the fuel-air mixture flowing through. Due to the existing porous The combustion carrier element has sufficient aggregate ceramics Flow resistance to prevent flashback. Besides, that is Porosity of satisfactory evenness, resulting in a largely uniform Flow rate profile leads. It is further advantageous that Pre-firing ceramics according to the invention and at least up to such Temperature that it has sufficient strength to last longer as a flame holder Life to be able to function.
- combustion carrier element according to claim 1 and also that multilayer ceramic combustion carrier element according to claim 9 are suitable both for multi-flame surface burners and for quasi-flameless ones Surface burner, the combustion carrier element being particularly suitable for one quasi-flameless surface burner is particularly suitable because the second or a further layer arranged on the outflow side of the holder Flame root favored in its surface layer. Because of the training this combustion carrier element as a composite part is the one according to the invention Combustion carrier element not only of great thermal but also mechanical stability.
- the embodiment according to claim 9 improves the gas outflow, the risk of flashbacks being eliminated or at least largely is reduced.
- Layering can be achieved by combining a gas driving process with a Burn-out process take place, whereby an open macro and micropore spectrum in the range of equivalent pore diameters from> 0 to approx. 1 mm is achieved in the layers and at the same time a multidirectional Cross-linking (reinforcement) of the pile is brought about by fiber materials
- the thermal shock resistance of the layers is very positively influenced.
- the configurations according to the invention are suitable both for a disk-shaped one Shape as well as for a sleeve-shaped or pot-shaped shape of the Combustion carrier element.
- a flame carrier ceramic is preferably made for one quasi-flameless gas radiant burner working according to the premix principle provided, preferably in connection with exhaust gas afterburning Enables heat generation and heat treatment processes up to 1300 ° C in addition, the use of hydrocarbon-containing exhaust gases as fuel directly or at lower concentration than combustion air, which is then a common fuel gas, e.g. Natural gas, to be admixed, is permitted and, if the material is selected, also halogen-containing components in the exhaust gas can be safely thermally burned.
- a common fuel gas e.g. Natural gas
- the invention also in the flame carrier area corrosion-sensitive, delicate, metallic construction elements, e.g. Screen mesh, fine perforated mesh, fine perforated plates and metal fiber fleeces avoided.
- the combustion carrier elements according to the invention are preferably suitable for multi-layer composite ceramics, especially with two or three layers.
- Combustion carrier element E from three layers 1, 2 and 3, which with respect to the Flow direction lie transversely on one another and form a composite body.
- the the upstream fuel-air mixture flow is denoted by 4.
- the combustion carrier elements E forms the fuel-air mixture at the downstream focal surface 5 of the third layer 3 (or the second layer 2 at a two-layer composite body) only hinted at in FIGS. 1 and 4 flame front 6 shown, the flow velocity profile of which is uniform, as the large number of small arrows in the flame front 6 shows.
- Combustion carrier element E can be used to hold the Combustion carrier element E serve a tubular holder 7, which Combustion carrier element E encloses on its circumference.
- Combustion carrier element E tapers stepwise or conically towards the outflow side, whereby a step surface 8 is formed, which can be engaged by the holder 7 to an undesired slipping out of the combustion carrier element from the holder 7 prevent.
- the fuel-air mixture 4 is the combustion carrier element E upstream fed, e.g. in the holder 7, there is an increased in the center of the flow 4 Back pressure, which without special control devices on the downstream side to one in this Area enlarged flow rate profile leads.
- a uniform flow velocity profile e.g. of the Flow resistance of the combustion carrier element E is made larger in the center than in the area surrounding the center, the measure of Radially gas permeability increases progressively. This can e.g. by a different porosity can be achieved.
- the combustion carrier element E in the sense of a The above-described closed sleeve on the outflow side according to FIGS. 4 and 5 Flow pressure in the front region of the cavity 11 also to one enlarged flow velocity profile at the with rounded corners flattened end face 13 (Fig. 4) or in particular hemispherical rounded end face 13 (Fig. 5) of the combustion carrier element E.
- the first layer 1 has a thickness dl which is larger than the thickness d im region of the first layer 1 adjoining the rear side.
- the front end of the The shape of the cavity 11 corresponds to the outer shape of the first layer 1 customized.
- such a flow change, in particular reduction also by a compressed area 14 of the first layer 1 in the front end area can be reached.
- a compressed area 14 can through a more or less dense application or coating with a suitable one Funds are created.
- Such an agent can not only layer 1 coat, but it can also penetrate into layer 1.
- such a compressed region 14 is in each case on the outside on the Layer 1 created in the center region of the combustion carrier element E and through the second layer 2 covered.
- Such a coating or compression need not be completely sealed, it can also have a lower porosity or Have gas permeability, like the first layer 1.
- This compressed area 14a extends up to the second layer 2 or possibly also existing third layer 3.
- the compressed area preferably extends 14a on the back of the first layer 1 also radially inward by a few millimeters.
- This radial section is designated 14b. Possibly. can be a corresponding radial Section 14c can also be arranged on the outflow side of the first layer 1, as is the case 3 shows in particular. In such a case, the second layer 2 or the third layer 3 covers the section 14c.
- the upstream holding area is also at sleeve-shaped layer 1 with a compressed region 14a, as the 4 and 5 show.
- the sleeve-shaped layer 1 protrudes over layer 2 or possibly also layer 3 on the upstream side around a section 15 required for mounting, the lateral surface of this section 15 in the sense of the compressed region 14a is sealed.
- the compressed region 14a preferably does not only extend with it a radial section 14b on the downstream end face of the first layer 1, but also with a section 14d on the inner wall of the cavity 11.
- a seal 14 or 14a described above is preferably a slip cover.
- Preferred layer thicknesses for layer 1 are between approximately 10 and 50 mm, for the second layer 2 between approximately 1 and 4 mm and for the third layer 3 between approximately 1 and 4 mm, depending on the fuel type, output, design and pre-pressure of the fuel / air mixture .
- the particularly preferred layer thickness for the second layer 2 is 1.5 mm - 2.5 mm and for the third layer 3 1 to 2 mm.
- the first layer 1 is preferably made of hollow spherical mullite ceramic. Under The use of analog aggregate sizes, grain sizes, binder quantities and types is Production also with other hollow sphere materials of the high temperature range, such as for example corundum, zirconium oxide, titanium oxide, cordierite etc. can be realized.
- the binder is started by mixing the Dry ingredients, with the addition of the silica sol until all are evenly distributed Ingredients stirred.
- the water is introduced via the silica sol, if necessary also additionally by the phosphate liquid binder and in an extended configuration by a commercially available organic thickeners, e.g. Methyl cellulose, Carboxymethyl cellulose or hydroxyethyl cellulose, which is used to improve Processing consistency can optionally be added.
- the dry premixed aggregates and aggregates (fillers) is under Continuing the mixing process, the added binder is added continuously mixed until uniform consistency is achieved.
- the molding is preferably carried out by shaking into an appropriate one Form, pounding or isostatic pressing.
- the green body is about two hours dried to about 180 ° C.
- Fluidically desired sealing areas 14 or 14a, 14b, 14c, are treated with a slip coating made of binder, combined with an elevated one Filler portion, covered or penetrated. Then the burning process takes place between about 1200 and 1600 ° C cooking temperature.
- the second layer 2 explained at the beginning with regard to its functional effect is preferably described according to the invention using the example of a solid-reinforced mullite fiber aggregate.
- Embodiments based on other crystalline (single and / or polycrystalline) high-temperature fibers or fiber mixtures with application temperatures approximately above 1500 ° C, such as Al 2 O 3 fibers with 95% AL 2 O 3 or with more than 99.5% Al 2 O 3 , ZrO 2 fibers or silicon nitride fibers are possible using appropriate colloidal solutions and fillers.
- the fiber diameter should preferably be in a narrow spectrum above 3 ⁇ m. Fibers with a diameter of 10 ⁇ m and larger are particularly preferred.
- the fiber length should be in the range 0-5 mm, preferably 0-3 mm.
- the aforementioned ceramic Starting material an addition of clay in the order of magnitude 0 - 30% by weight (based on the water-free ceramic starting material) be added.
- the ceramic starting material is also a commercially available thickener, preferably in the form of a cellulose, e.g. in the quality of methyl cellulose, Carboxymethyl cellulose or hydroxyethyl cellulose with a share of 0.2 - 5 wt .-% dry matter (based on the dry starting material) in 1 percent aqueous solution added.
- the elimination of oxygen in the thermal / catalytic decomposition of H 2 O 2 can advantageously be used, preferably about 10 to 30 percent aqueous solutions being used.
- the second layer 2 can be produced, for example, by cutting the fiber Length 3 mm of the aforementioned mullite fiber is wet dispersed to protect the fibers to unlock.
- the combustible aggregate for example as wood flour (sieve passage 0.5 mm) with an elongated splintered shape, is added to the fiber solution and stirred again until uniform distribution.
- the inorganic filler for example mullite fine grain
- the binder for example the Al 2 O 3- SiO 2 mixed binder with 77% Al 2 O 3 and 23% SiO 2
- the organic thickener for example hydroxyethyl cellulose in 1 percent
- added aqueous solution and evenly distributed with stirring The mass is kept below 20 ° C if necessary by cooling the individual components.
- the gas-developing substance for example H 2 O 2
- the mass is brought to the processing consistency by adding water and is preferably applied to the pre-fired carrier ceramic by spatula, brush or spray application.
- the ceramic is dried at 40 ° C for about 12 hours.
- the dried second layer 2 is preferably sanded, with which the layer thickness is adjusted, for example 2 mm. Sanding after drying is also advantageous for the first layer 1.
- the third layer 3 explained at the beginning with regard to its functional effect as a flame carrier layer is explained here using the example of a mullite fiber pile with a modified structure.
- An expanded configuration on the basis of a fiber quality that differs from the second layer 2, in particular in the direction of a higher thermal load capacity, for example fibers with 95% Al 2 O 3 or 99.5% Al 2 O 3 and more, or zirconium oxide fibers or silicon nitride fibers or Fiber mixtures in connection with an adaptation of the oxidic filler materials and colloidal binders based on Al 2 O 3 and ZrO 2 are possible.
- the geometric requirements for the fiber materials with regard to diameter and length described with regard to the second layer 2 also apply to the third layer 3.
- the aforementioned ceramic starting material can be added in the order of clay 0 - 10% by weight (based on the anhydrous ceramic starting material) be added.
- the ceramic starting material is also a commercially available thickener of the quality described for layer 2, with a proportion of 0.1 - 5% by weight dry matter (based on the anhydrous starting material) added in 1 percent aqueous solution.
- a gas-developing substance according to the description of layer 2 is also added to the ceramic starting material, the reactive portion 1 - 10 wt .-% reactive substance (based on the anhydrous ceramic starting material) is.
- Layer 3 is produced in an analogous manner to layer 2.
- the same type and size of the burnout material is added in the basic version, but varies in amount.
- melt mullite fine grain and SiC fine grain are premixed as solid additives in the weight proportions described for layer 3 and added to the mass and incorporated.
- the Al 2 O 3 -SiO 2 binder mentioned and then the thickener are then added in changed proportions by weight and distributed evenly.
- Reactive substance is added to the gas-developing substance, as in layer 2, but in a modified proportion by weight, and the ceramic is treated analogously until the drying process is complete.
- another crystalline fiber of the type Al 2 O 3 or ZrO 2 etc. described or a mixture of fibers including / excluding mullite fiber can be advantageous.
- a surface formed by sanding after drying is for the third layer 3 also advantageous. This improves the gas flow and it can the layer thickness can be adjusted.
- the quality of the burnout material can be be varied, e.g. Synthetic fiber cut with a length of about 3 mm Diameter less than about 0.5 mm.
- the mixed binder can be varied, for example by adding a colloidal solution / precursor of ZrO 2 , which can partially or completely replace the colloidal SiO 2 solution.
- the ceramic After completion of the blowing process and drying, preferably about twelve Hours at around 40 ° C, the ceramic is made depending on the material structure Fired layers between about 1200 ° C and 1600 ° C.
- the outer layer 3 or possibly also second layer 2 becomes the layer thickness reproducible, for example set to about 2 mm.
- the first layer 1 is flown against by the fuel-air mixture 4 and flows through. It distributes this according to the flow resistance Mix as evenly as possible over the focal surface 5 and causes a slight Preheating and postmixing.
- Layer 2 intensifies the Preheating and a further equalization of the flow profile. The mixture is brought up to the reaction temperature. The actual flame sits in front or directly on the layer 3 and makes it glow.
- the outflowing Exhaust gases are illustrated by reference number 6.
- Such a ceramic is included via a suitable media feed Attachment 7 held gastight.
- the combustible mixture supplied in the ceramic is replaced by a suitable one Device ignited on the surface, the combustion gases from a combustion chamber fed and a process-dependent more or less intensive heat consumption realized.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
- Compositions Of Oxide Ceramics (AREA)
Claims (17)
- Elément support de combustion (E) destiné à des brûleurs radiants à combustion en surface, notamment à des brûleurs radiants à combustion en surface quasiment sans flammes, comprenantun matériau céramique pourvu grand nombre d'ouvertures de passage,l'élément support de combustion (E) étant un corps composite multicouches, à deux ou trois couches (1, 2, 3),la première couche (1) étant constituée d'agrégats en forme de sphères ou de sphères creuses et formant une céramique agrégée poreuse,la deuxième et/ou la troisième couche (2,3) étant formée(s) d'un mat de fibres de mullite ou d'autres fibres cristallines (mono- et/ou poly-cristallines) résistantes à la température,le matériau de la deuxième couche (2) présentant une résistance à la température plus élevée que le matériau de la première couche (1),et la première couche (1) présentant une conductibilité thermique rapportée à l'épaisseur plus faible que la deuxième couche (2).
- Elément support de combustion selon la revendication 1, caractérisé par le fait que le matériau céramique est une céramique de mullite.
- Elément support de combustion selon la revendication 1, caractérisé par le fait que le matériau céramique est formé de corindon, d'oxyde de zirconium, d'oxyde de titane ou de cordiérite.
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait que le diamètre des fibres est d'environ 3 µm et plus, de préférence d'environ 10 µm et plus, et la longueur des fibres va jusqu'à environ 5 mm, de préférence jusqu'à environ 3 mm.
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait que le matériau de la troisième couche présente une résistance à la température plus élevée que le matériau de la première couche ou de la deuxième couche.
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait qu'un matériau éliminable par combustion, de préférence sous la forme de fibres ou de particules, est incorporé dans le matériau céramique de base de la couche concernée (1, 2, 3).
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait qu'une substance formatrice de gaz est incorporée dans le matériau céramique de base de la couche concernée (1, 2, 3), laquelle substance en présence d'une élévation de température, par exemple lors du séchage, engendre une réaction de gonflement dans la couche, accompagnée d'une formation correspondante de pores.
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait que la surface de sortie de la première, de la deuxième et/ou de la troisième couche (1, 2, 3) est usinée par un procédé par enlèvement de copeaux, par exemple est polie.
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait que les couches (1, 2, 3) sont en un matériau céramique poreux et que la deuxième couche (2), disposée côté aval par rapport à la première couche (1), et/ou la troisième couche (3), lorsqu'elle existe, disposée côté aval par rapport à la deuxième couche (2), présente une résistance à l'écoulement supérieure à la première couche (1) ou que la troisième couche (3) présente une résistance à l'écoulement supérieure à la deuxième couche (2).
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait que la deuxième couche (2) présente une conductibilité thermique rapportée à l'épaisseur de couche inférieure à celle de la troisième couche (3).
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait que la première couche (1) a une épaisseur supérieure à la deuxième couche (2) et/ou à la troisième couche (3) et plus particulièrement que la deuxième couche (2) a une épaisseur supérieure à la troisième couche (3), de préférence l'épaisseur de la première couche (2) étant comprise entre 10 mm et 50 mm, l'épaisseur de la deuxième couche (2) étant comprise entre 1 mm et 4 mm et l'épaisseur de la troisième couche (3) étant comprise entre 1 mm et 4 mm, une épaisseur de couche préférée étant comprise entre 1,5 mm et 2,5 mm pour la deuxième couche et entre 1 mm et 3 mm pour la troisième couche,.
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait que la première couche (1) et/ou la deuxième couche (2) et/ou la troisième couche (3) est/sont constituée(s) chaque fois d'un agrégat et d'un liant et de préférence également d'un additif ou d'une charge.
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait qu'une substance formatrice de gaz est incorporée dans la première couche (1) et/ou la deuxième couche ( 2) et/ou la troisième couche (3) aux fins de libérer du gaz dans la couche (2, 3) avec apparition d'une porosité supplémentaire correspondante.
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait que la deuxième ou la troisième couche (2, 3) comporte un matériau favorisant le rayonnement thermique, par exemple du SiC, du Cr2O3, des spinelles de Cr2O3, des spinelles de Fe2O3 etc, avec une dimension de grains allant de 0 à 0,15 mm.
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait que la deuxième et/ou la troisième couche (2, 3) comporte/comportent un matériau éliminable par combustion réparti à l'intérieur de ladite couche, de préférence sous la forme de fibres ou de particules.
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait que la première couche (1) et/ou la deuxième couche (2) et/ou la troisième couche (3) est/sont usinée(s) par enlèvement de copeaux côté aval, en particulier est/sont polie(s).
- Elément support de combustion selon une des revendications précédentes, caractérisé par le fait qu'il est conformé en plaque, en disque ou en manchon, en particulier en manchon fermé par la couche (1) ou les couches (1, 2 ou 3).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4324644A DE4324644A1 (de) | 1993-07-22 | 1993-07-22 | Keramisches Verbrennungsträgerelement für Flächenbrenner und Verfahren zu seiner Herstellung |
DE4324644 | 1993-07-22 | ||
PCT/EP1994/002419 WO1995003511A1 (fr) | 1993-07-22 | 1994-07-22 | Support de combustion ceramique pour bruleurs radiants en surface et son procede de fabrication |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0708901A1 EP0708901A1 (fr) | 1996-05-01 |
EP0708901B1 true EP0708901B1 (fr) | 1999-03-31 |
Family
ID=6493467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94925377A Expired - Lifetime EP0708901B1 (fr) | 1993-07-22 | 1994-07-22 | Support de combustion ceramique pour bruleurs radiants en surface |
Country Status (5)
Country | Link |
---|---|
US (1) | US5749721A (fr) |
EP (1) | EP0708901B1 (fr) |
AT (1) | ATE178397T1 (fr) |
DE (2) | DE4324644A1 (fr) |
WO (1) | WO1995003511A1 (fr) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1003250C2 (nl) * | 1996-05-31 | 1997-12-03 | Gastec Nv | Branderdek van sintermetaal. |
JPH1026315A (ja) * | 1996-07-08 | 1998-01-27 | Aisin Seiki Co Ltd | 触媒燃焼器及び触媒燃焼方法 |
DE19734638A1 (de) * | 1997-08-11 | 1999-02-18 | Bosch Gmbh Robert | Brenner für Heizanlage |
DE19904924B4 (de) * | 1999-02-06 | 2005-09-15 | Robert Bosch Gmbh | Brenner, insbesondere für Heizungsanlagen |
DE29903311U1 (de) * | 1999-02-25 | 2000-05-11 | LS Laborservice GmbH, 64291 Darmstadt | Brenner mit einer Gasversorgung, einem Ventil mit einer daran anschließenden Verteilervorrichtung |
GB2347490B (en) * | 1999-06-11 | 2001-03-07 | Morgan Crucible Co | Surface combustion radiant heaters and heating plaques |
DE10000652C2 (de) * | 2000-01-11 | 2002-06-20 | Bosch Gmbh Robert | Brenner mit einem katalytisch aktiven porösen Körper |
US20020123018A1 (en) * | 2001-03-02 | 2002-09-05 | Lucidi Gerard J. | Infrared generation |
DE10114903A1 (de) * | 2001-03-26 | 2002-10-17 | Invent Gmbh Entwicklung Neuer Technologien | Brenner für ein Gas/Luft-Gemisch |
US6872070B2 (en) * | 2001-05-10 | 2005-03-29 | Hauck Manufacturing Company | U-tube diffusion flame burner assembly having unique flame stabilization |
JP2006513127A (ja) * | 2003-01-08 | 2006-04-20 | スリーエム イノベイティブ プロパティズ カンパニー | セラミック繊維複合材およびその製造方法 |
CN101545634B (zh) * | 2003-04-18 | 2012-04-04 | 贝卡尔特股份有限公司 | 金属燃烧室膜片 |
DE102005027698A1 (de) * | 2005-06-15 | 2006-12-21 | Daimlerchrysler Ag | Porenbrenner mit einer Flammensperre |
DE102010024678A1 (de) * | 2010-06-24 | 2011-12-29 | Arcotec Gmbh | Gasbrenner |
DE102011050368A1 (de) * | 2011-05-15 | 2012-11-15 | Webasto Ag | Verdampferanordnung |
AU2011202498B2 (en) * | 2011-05-27 | 2015-04-09 | Rinnai Corporation | Plate type burner |
US20120301837A1 (en) * | 2011-05-27 | 2012-11-29 | Kazuyuki Akagi | Plate type burner |
US20120301836A1 (en) * | 2011-05-27 | 2012-11-29 | Kazuyuki Akagi | Plate type burner |
US8739547B2 (en) * | 2011-06-23 | 2014-06-03 | United Technologies Corporation | Gas turbine engine joint having a metallic member, a CMC member, and a ceramic key |
RU2497044C1 (ru) * | 2012-02-21 | 2013-10-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ) | Источник направленного инфракрасного излучения |
US10119704B2 (en) * | 2013-02-14 | 2018-11-06 | Clearsign Combustion Corporation | Burner system including a non-planar perforated flame holder |
WO2015042614A1 (fr) * | 2013-09-23 | 2015-03-26 | Clearsign Combustion Corporation | Système de brûleur utilisant de multiples stabilisateurs de flamme perforés et procédé de fonctionnement |
WO2015054323A1 (fr) | 2013-10-07 | 2015-04-16 | Clearsign Combustion Corporation | Brûleur à prémélangé à stabilisateur perforé |
US10458646B2 (en) * | 2014-09-25 | 2019-10-29 | Selas Heat Technology Company Llc | Low NOx, high efficiency, high temperature, staged recirculating burner and radiant tube combustion system |
US10488039B2 (en) * | 2015-02-09 | 2019-11-26 | Gas Technology Institute | Method for surface stabilized combustion (SSC) of gaseous fuel/oxidant mixtures and a burner design thereof |
US11255538B2 (en) * | 2015-02-09 | 2022-02-22 | Gas Technology Institute | Radiant infrared gas burner |
WO2016134061A1 (fr) | 2015-02-17 | 2016-08-25 | Clearsign Combustion Corporation | Stabilisateur de flamme perforé à buse de carburant réglable |
DE102016108041B4 (de) * | 2016-04-29 | 2019-12-05 | Webasto SE | Verdampferkörper |
US10539326B2 (en) | 2016-09-07 | 2020-01-21 | Clearsign Combustion Corporation | Duplex burner with velocity-compensated mesh and thickness |
CN113119391B (zh) * | 2019-12-30 | 2023-03-17 | 荣耀终端有限公司 | 陶瓷树脂复合壳体及其制备方法和终端 |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1830826A (en) * | 1925-08-17 | 1931-11-10 | Cox Frederick John | Refractory diaphragm for use in surface-combustion apparatus |
US3179156A (en) * | 1962-01-17 | 1965-04-20 | American Thermocatalytic Corp | Space heater |
US3275497A (en) * | 1962-01-17 | 1966-09-27 | American Thermocatalytic Corp | Method of molding a combustion element of ceramic fibers on a porous support |
US3208247A (en) * | 1962-05-14 | 1965-09-28 | Inst Gas Technology | Gas burner |
US3322179A (en) * | 1963-04-09 | 1967-05-30 | Paul H Goodell | Fuel burner having porous matrix |
DE1303596C2 (de) * | 1966-05-09 | 1973-01-04 | Mehrschichtiger brennerblock fuer strahlungsbrenner | |
AU2574267A (en) * | 1967-08-10 | 1969-02-13 | United Industries, Inc | Combustion elements |
FR2222329A2 (en) * | 1969-06-27 | 1974-10-18 | Shell Int Research | Porous ceramic heat-radiating elements - having a region of reduced flow resistance to prevent gas blow-back |
GB1439767A (en) * | 1972-09-25 | 1976-06-16 | Foseco Int | Radiant gas burners |
US4039480A (en) * | 1975-03-21 | 1977-08-02 | Reynolds Metals Company | Hollow ceramic balls as automotive catalysts supports |
US4189294A (en) * | 1977-10-18 | 1980-02-19 | Comstock & Wescott Inc. | Flameless combustion burner and method of operation |
US4519770A (en) * | 1980-06-30 | 1985-05-28 | Alzeta Corp. | Firetube boiler heater system |
FR2497923B1 (fr) * | 1981-01-15 | 1986-01-24 | Sapco App Elect | Bruleur a gaz, procede de fabrication dudit bruleur et chaudiere utilisant un tel bruleur |
US4416619A (en) * | 1981-08-20 | 1983-11-22 | Thermocatalytic Corp. | Porous ceramic combustion reactor |
DE3311953A1 (de) * | 1983-03-31 | 1984-10-04 | Laurence B. Glen Cove N.Y. Craig | Verfahren zum herstellen eines reaktorzylinders fuer eine strahlungsheizung, sowie reaktorzylinder |
US4605369A (en) * | 1983-05-02 | 1986-08-12 | Slyman Manufacturing Corporation | Radiant burner |
US4533318A (en) * | 1983-05-02 | 1985-08-06 | Slyman Manufacturing Corporation | Radiant burner |
US5356487A (en) * | 1983-07-25 | 1994-10-18 | Quantum Group, Inc. | Thermally amplified and stimulated emission radiator fiber matrix burner |
US4599066A (en) * | 1984-02-16 | 1986-07-08 | A. O. Smith Corp. | Radiant energy burner |
CA1241910A (fr) * | 1984-02-16 | 1988-09-13 | Dirk N. Granberg | Bruleur a energie rayonnante |
GB8405681D0 (en) * | 1984-03-05 | 1984-04-11 | Shell Int Research | Surface-combustion radiant burner |
DE3444398C1 (de) * | 1984-12-05 | 1986-02-13 | Didier-Werke Ag, 6200 Wiesbaden | Verfahren zur Herstellung eines feuerfesten Leichtsteines |
US4673349A (en) * | 1984-12-20 | 1987-06-16 | Ngk Insulators, Ltd. | High temperature surface combustion burner |
US4643667A (en) * | 1985-11-21 | 1987-02-17 | Institute Of Gas Technology | Non-catalytic porous-phase combustor |
DE3671407D1 (de) * | 1985-11-28 | 1990-06-28 | Bekaert Sa Nv | Laminierter gegenstand aus metallfaserschichten. |
JPS62258917A (ja) * | 1986-04-18 | 1987-11-11 | Miura Co Ltd | セラミック粒子からなる助燃体を用いた表面燃焼バーナ |
US4721456A (en) * | 1986-05-08 | 1988-01-26 | A. O. Smith Corporation | Combustion element for a radiant energy burner and method of making same |
US4814300A (en) * | 1987-12-02 | 1989-03-21 | The Duriron Company, Inc. | Porous ceramic shapes, compositions for the preparation thereof, and method for producing same |
US4889481A (en) * | 1988-08-16 | 1989-12-26 | Hi-Tech Ceramics, Inc. | Dual structure infrared surface combustion burner |
US4878837A (en) * | 1989-02-06 | 1989-11-07 | Carrier Corporation | Infrared burner |
BE1003054A3 (nl) * | 1989-03-29 | 1991-11-05 | Bekaert Sa Nv | Brandermembraan. |
US4883423A (en) * | 1989-05-08 | 1989-11-28 | Carrier Corporation | Method for making an infrared burner |
US5249953A (en) * | 1989-06-16 | 1993-10-05 | Hercules Canada, Inc. | Gas distributing and infrared radiating block assembly |
EP0410569A1 (fr) * | 1989-06-16 | 1991-01-30 | Devron-Hercules Inc. | Brûleur à gaz à rayonnement infrarouge |
DE4041061A1 (de) * | 1989-12-22 | 1991-06-27 | Siemens Ag | Brennerplatte fuer einen flaechenbrenner |
DE4129711C2 (de) * | 1991-09-06 | 1993-09-30 | Buderus Heiztechnik Gmbh | Gasbrenner mit einem Brennelement aus einem porösen Körper |
-
1993
- 1993-07-22 DE DE4324644A patent/DE4324644A1/de not_active Withdrawn
-
1994
- 1994-07-22 AT AT94925377T patent/ATE178397T1/de not_active IP Right Cessation
- 1994-07-22 DE DE59408046T patent/DE59408046D1/de not_active Expired - Fee Related
- 1994-07-22 EP EP94925377A patent/EP0708901B1/fr not_active Expired - Lifetime
- 1994-07-22 WO PCT/EP1994/002419 patent/WO1995003511A1/fr active IP Right Grant
- 1994-07-22 US US08/592,429 patent/US5749721A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP0708901A1 (fr) | 1996-05-01 |
US5749721A (en) | 1998-05-12 |
DE59408046D1 (de) | 1999-05-06 |
DE4324644A1 (de) | 1995-01-26 |
WO1995003511A1 (fr) | 1995-02-02 |
ATE178397T1 (de) | 1999-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0708901B1 (fr) | Support de combustion ceramique pour bruleurs radiants en surface | |
DE69630681T2 (de) | Keramische struktur | |
DE3879273T2 (de) | Ofen mit einem strahlrohrbrenner mit zweistufiger brennstoffzufuhr. | |
DE69624884T2 (de) | Wabenkörper | |
EP2467642B1 (fr) | Brûleur radiant | |
DE602005003538T2 (de) | Brennofen und verfahren zur herstellung von keramischen teilen mit diesem brennofen | |
DE69838183T3 (de) | Tunnelofen zum Brennen von keramischen Wabenstrukturkörpern | |
EP0363834A1 (fr) | Brûleur, particulièrement brûleur à haute vitesse | |
EP1279898A2 (fr) | Brûleur à prémélange offrant une haute stabilité de flamme | |
DE69425968T2 (de) | Ungesinterter brenner aus einem gemisch aus metall- und keramikfasern | |
DE19527583C2 (de) | Brenner, insbesondere für Heizungsanlagen | |
EP2066878A1 (fr) | Élément filtrant, notamment pour filtrer les gaz d'échappement d'un moteur à combustion interne | |
EP1523641B1 (fr) | Bruleur a corps poreux et appareil de cuisson contenant au moins un bruleur a corps poreux | |
WO1989011621A1 (fr) | Bruleur radiant pour combustible gazeux | |
DE2337034A1 (de) | Hitzebestaendiges wabenfoermiges gebilde und verfahren zu dessen herstellung | |
DE19860460A1 (de) | Integrierter rekuperativer Brenner | |
DE1592105B2 (de) | Verfahren zur herstellung von tonerde zur bildung von zuendkerzenisolatoren | |
EP1415112A1 (fr) | Bruleur a melange prealable et procede permettant de le faire fonctionner | |
DE69625432T2 (de) | Trägerelement für Katalysator | |
DE959423C (de) | Vorrichtung zur Verbrennung von fluessigen und festen Brennstoffen, insbesondere in Strahltriebwerken od. dgl. | |
DE10032190C2 (de) | Gasbrenner mit einem Brennkörper aus porösem Material | |
DE69636077T2 (de) | Filter zur Reinigung von Abgas | |
WO2009087126A2 (fr) | Corps thermorayonnant en céramique, sous forme de plaque, d'un émetteur plan infrarouge | |
DE8908324U1 (de) | Brenner zum Beheizen von Brennöfen mit gasförmigen Brennstoffen | |
DE9304989U1 (de) | Keramischer Brenner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960116 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE ES FR GB IT LI NL SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GOSSLER THERMAL CERAMICS GMBH |
|
17Q | First examination report despatched |
Effective date: 19970925 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE ES FR GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990331 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990331 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19990331 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990331 |
|
REF | Corresponds to: |
Ref document number: 178397 Country of ref document: AT Date of ref document: 19990415 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE Ref country code: CH Ref legal event code: EP |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 59408046 Country of ref document: DE Date of ref document: 19990506 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990722 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010704 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010717 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20010723 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010928 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020722 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |