EP0774364A1 - Verfahren zur Herstellung einer Flachdruckplatte durch bildmässige Erwärmung eines Bildaufnahmeelements mittels eines Thermodruckkopfes - Google Patents
Verfahren zur Herstellung einer Flachdruckplatte durch bildmässige Erwärmung eines Bildaufnahmeelements mittels eines Thermodruckkopfes Download PDFInfo
- Publication number
- EP0774364A1 EP0774364A1 EP95203129A EP95203129A EP0774364A1 EP 0774364 A1 EP0774364 A1 EP 0774364A1 EP 95203129 A EP95203129 A EP 95203129A EP 95203129 A EP95203129 A EP 95203129A EP 0774364 A1 EP0774364 A1 EP 0774364A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- imaging element
- ink
- image
- hydrophilic binder
- image forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C1/00—Forme preparation
- B41C1/10—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
- B41C1/1008—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
- B41C1/1025—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials using materials comprising a polymeric matrix containing a polymeric particulate material, e.g. hydrophobic heat coalescing particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/36—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using a polymeric layer, which may be particulate and which is deformed or structurally changed with modification of its' properties, e.g. of its' optical hydrophobic-hydrophilic, solubility or permeability properties
- B41M5/366—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using a polymeric layer, which may be particulate and which is deformed or structurally changed with modification of its' properties, e.g. of its' optical hydrophobic-hydrophilic, solubility or permeability properties using materials comprising a polymeric matrix containing a polymeric particulate material, e.g. hydrophobic heat coalescing particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/04—Negative working, i.e. the non-exposed (non-imaged) areas are removed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/08—Developable by water or the fountain solution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/22—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by organic non-macromolecular additives, e.g. dyes, UV-absorbers, plasticisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/24—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers
Definitions
- the present invention relates to a method for making a lithographic printing plate involving image-wise heating of an imaging element by means of a thermal head.
- Lithography is the process of printing from specially prepared surfaces, some areas of which are capable of accepting lithographic ink, whereas other areas, when moistened with water, will not accept the ink.
- the areas which accept ink form the printing image areas and the ink-rejecting areas form the background areas.
- a photographic material is made imagewise receptive to oily or greasy inks in the photo-exposed (negative-working) or in the non-exposed areas (positive-working) on a hydrophilic background.
- lithographic printing plates also called surface litho plates or planographic printing plates
- a support that has affinity to water or obtains such affinity by chemical treatment is coated with a thin layer of a photosensitive composition.
- Coatings for that purpose include light-sensitive polymer layers containing diazo compounds, dichromate-sensitized hydrophilic colloids and a large variety of synthetic photopolymers. Particularly diazo-sensitized systems are widely used.
- the exposed image areas become insoluble and the unexposed areas remain soluble.
- the plate is then developed with a suitable liquid to remove the diazonium salt or diazo resin in the unexposed areas.
- Lithocraft 10008 FOTOPLATETM is a diazo based printing plate that comprises on a paper support a hydrophilic layer on top of which is provided a diazo based photosensitive layer.
- a plate can be prepared by image-wise exposure of the lithographic printing plate precursor or imaging element, mounting the exposed imaging element on the press and wiping its surface with Lithocraft® 10008 Developer Desensitizer.
- the plate instructions also contemplate a method wherein no developer desensitizer is used. However, such method most often results in poor lithographic preformance so that in practice a Developer Desensitizer is almost always needed.
- a particular disadvantage of photosensitive imaging elements such as described above for making a printing plate is that they have to be shielded from the light. This is a particular disadvantage if on press development is contemplated since mounting the image-wise exposed imaging element is generally done in normal daylight so that the handling time for mounting the imaging element is limited. Moreover, diazo based aluminium type printing plates are completely unsuitable for on press development.
- the present invention relates to method for making a lithographic printing plate comprising the steps of:
- the present invention further provides a method for making a lithographic printing plate comprising the steps of:
- the present invention also discloses a method for making a lithographic printing plate comprising the steps of:
- the present invention also provides a method for making multiple copies of an original comprising the steps of:
- An imaging element for use in accordance with the present invention comprises on a hydrophilic surface of a lithographic base an image forming layer comprising hydrophobic thermoplastic polymer particles dispersed in a hydrophilic binder.
- the hydrophilic binder of the image forming layer used in connection with the present invention is preferably not cross-linked or only slightly cross-linked.
- the lithographic base comprises a flexible support, such as e.g. paper or plastic film, provided with an ink-repellant layer comprising a cross-linked hydrophilic binder.
- a particularly suitable ink-repellant layer may be obtained from a hydrophilic binder cross-linked with a cross-linking agent such as formaldehyde, glyoxal, polyisocyanate or a hydrolysed tetra-alkylorthosilicate. The latter is particularly preferred.
- hydrophilic binder there may be used hydrophilic (co)polymers such as for example, homopolymers and copolymers of vinyl alcohol, acrylamide, methylol acrylamide, methylol methacrylamide, acrylic acid, methacrylic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate or maleic anhydride/vinylmethylether copolymers.
- the hydrophilicity of the (co)polymer or (co)polymer mixture used is preferably the same as or higher than the hydrophilicity of polyvinyl acetate hydrolyzed to at least an extent of 60 percent by weight, preferably 80 percent by weight.
- the amount of crosslinking agent, in particular of tetraalkyl orthosilicate, is preferably at least 0.2 parts by weight per part by weight of hydrophilic binder, preferably between 0.5 and 5 parts by weight, more preferably between 1.0 parts by weight and 3 parts by weight.
- An ink-repellant layer in a lithographic base used in accordance with the present embodiment preferably also contains substances that increase the mechanical strength and the porosity of the layer.
- colloidal silica may be used.
- the colloidal silica employed may be in the form of any commercially available water-dispersion of colloidal silica for example having an average particle size up to 40 nm, e.g. 20 nm.
- inert particles of larger size than the colloidal silica can be added e.g. silica prepared according to Stöber as described in J. Colloid and Interface Sci., Vol. 26.
- the surface of the ink-repellant layer is given a uniform rough texture consisting of microscopic hills and valleys, which serve as storage places for water in background areas.
- the thickness of an ink-repellant layer in a lithographic base in accordance with this embodiment may vary in the range of 0.2 to 25 ⁇ m and is preferably 1 to 10 ⁇ m.
- ink-repellant layers for use in accordance with the present invention are disclosed in EP-A 601240, GB-P-1419512, FR-P-2300354, US-P-3971660, US-P-4284705 and EP-A 514490.
- plastic film e.g. substrated polyethylene terephthalate film, polyethylene naphthalate film, cellulose acetate film, polystyrene film, polycarbonate film etc.
- the plastic film support may be opaque or transparent.
- the amount of silica in the adhesion improving layer is 200 mg per m 2 and 750 mg per m 2 .
- the ratio of silica to hydrophilic binder is preferably more than 1 and the surface area of the colloidal silica is preferably at least 300 m 2 per gram, more preferably a surface area of 500 m 2 per gram.
- an image forming layer on top of a hydrophilic surface of the lithographic base there is provided an image forming layer.
- an image forming layer in connection with the present invention comprises hydrophobic thermoplastic polymer particles dispersed in a hydrophilic binder.
- Suitable hydrophilic binders for use in an image forming layer in connection with this invention are for example synthetic homo or copolymers such as a polyvinylalcohol, a poly(meth)acrylic acid, a poly(meth)acrylamide, a polyhydroxyethyl(meth)acrylate, a polyvinylmethylether or natural binders such as gelatin, a polysacharide such as e.g. dextran, pullulan, cellulose, arabic gum, alginic acid.
- Hydrophobic thermoplastic polymer particles used in connection with the present invention preferably have a coagulation temperature above 35 o C and more preferably above 50 o C. Coagulation may result from softening or melting of the thermoplastic polymer particles under the influence of heat. There is no specific upper limit to the coagulation temperature of the thermoplastic hydrophobic polymer particles, however the temperature should be sufficiently below the decomposition of the polymer particles. Preferably the coagulation temperature is at least 10 o C below the temperature at which the decomposition of the polymer particles occurs.
- said polymer particles When said polymer particles are subjected to a temperature above coagulation temperature they coagulate to form a hydrophobic agglomerate in the hydrophilic layer so that at these parts the hydrophilic layer becomes insoluble in plain water or an aqueous liquid.
- hydrophobic thermoplastic polymer particles for use in connection with the present invention are e.g. polyethylene, polyvinyl chloride, polymethyl (meth)acrylate, polyethyl (meth)acrylate, polyvinylidene chloride, polystyrene polyacrylonitrile, polyvinyl carbazole etc. or copolymers thereof. Most preferably used is polymethyl (meth)acrylate or polystyrene.
- the weight average molecular weight of the polymers may range from 5,000 to 1,000,000g/mol.
- the hydrophobic particles may have a particle size from 0.01 ⁇ m to 50 ⁇ m, more preferably between 0.05 ⁇ m and 10 ⁇ m and most preferably between 0.05 ⁇ m and 2 ⁇ m.
- the polymer particles are present as a dispersion in the aqueous coating liquid of the image forming layer and may be prepared by the methods disclosed in US-P-3.476.937. Another method especially suitable for preparing an aqueous dispersion of the thermoplastic polymer particles comprises:
- the amount of hydrophobic thermoplastic polymer particles contained in the image forming layer is preferably more than 30% by weight, more preferably at least 50% by weight and most preferably at least 65% by weight.
- the image forming layer may further comprise a diazonium salt, diazo resin or aryldiazosulfonate resin.
- a diazonium salt, diazo resin or aryldiazosulfonate resin Such offers the advantage that subsequent to image-wise heating and development the printing properties, in particular the ink uptake by the image-areas, can be improved by applying an overall UV exposure to the developed imaging element. Such practice will however only be practical in case of off-line exposure and development rather than in an on-press development.
- diazo resins useful in the present invention include condensation products of an aromatic diazonium salt as the light-sensitive substance.
- condensation products are known and are described, for example, in German Pat. no. 1214086. They are in general prepared by condensation of a polynuclear aromatic diazonium compound, preferably of substituted or unsubstituted diphenylamine-4-diazonium salts, with active carbonyl compounds, preferably formaldehyde, in a strongly acid medium.
- the imaging element is image-wise heated with a thermal head, e.g. in a thermal printer, and subsequently is mounted on a print cylinder of a printing press.
- the printing press is then started and while the print cylinder with the imaging element mounted thereon rotates, the dampener rollers that supply dampening liquid are dropped on the imaging element and subsequent thereto the ink rollers are dropped.
- the dampener rollers that supply dampening liquid are dropped on the imaging element and subsequent thereto the ink rollers are dropped.
- the first clear and useful prints are obtained.
- the ink rollers and dampener rollers may be dropped simultaneously or the ink rollers may be dropped first.
- Suitable dampening liquids that can be used in connection with the present invention are aqueous liquids generally having an acidic pH and comprising an alcohol such as isopropanol.
- dampening liquids useful in the present invention there is no particular limitation and commercially available dampening liquids, also known as fountain solutions, can be used.
- an image-wise heated imaging element e.g. a cotton pad or sponge soaked with water before mounting the imaging element on the press or at least before the printing press starts running. This will remove some non-image areas but will not actually develop the imaging element.
- it has the advantage that possible substantial contamination of the dampening system of the press and ink used is avoided.
- the imaging element is first mounted on the print cylinder of the printing press and then image-wise heated directly on the press. Subsequent to heating, the imaging element can be developed as described above.
- This embodiment requires that a thermal head is build-in the printing press and offers the advantage of shorting total processing time between paste-up of the orginal (e.g. prepared on a computer) and actual printing of copies.
- the imaging element may be image-wise heated and subsequently developed with plain water or an aqueous liquid.
- the obtained dispersion was coated on a polyethyleneterephthalate film support (coated with a hydrophilic adhesion layer) to a wet coating thickness of 50 g/m 2 , dried at 30 °C, and subsequently hardened by subjecting it to a temperature of 57 °C for 1 week.
- the obtained element was then heated for 1 week at 57 °C.
- An imaging element was produced by preparing the following coating composition and coating it to the above described lithographic base in an amount of 35g/m 2 (wet coating amount) and drying it at 30°C.
- An imaging element as described above was image-wise heated in a DRYSTARTM MATRIXTM DI2000 thermal printer (commercially available from Agfa-Gevaert NV) and hereafter the non-heated parts were washed-off manually as follows:
- This printing plate was then mounted on an AB Dick 360TM offsetpress equipped with a VARNTM KOMPAC II dampening system.
- VARNTM KOMPAC II dampening system As ink, Van Son RB2329TM and as a dampening liquid G671cTM (Agfa-Gevaert NV) was used. Good prints were obtained during printing without ink uptake in the non-image areas.
- An imaging element was prepared as described in example 1 and image-wise heated as in example 1. Subsequently, the image-wise heated imaging element was mounted on the offset press mentioned in example 1. The same ink and dampening liquid were used as in example 1.
- the printing press was started and dampening liquid was supplied to the imaging elements surface by dropping the dampener rollers of the printing press. After 5 revolutions the ink rollers were dropped as well and after a further 5 revolutions, a good printing quality was obtained without any ink uptake in the non-image areas.
- An imaging element was then prepared as described in example using the above coating composition instead of that in example 1.
- a printing plate was subsequently prepared using a thus obtained imaging element and this printing plate was then used to print as described in example 1.
- An imaging element was prepared as described in example 3 and image-wise heated as in example 1. Subsequently, the image-wise heated imaging element was mounted on the offset press mentioned in example 1. The same ink and dampening liquid were used as in example 1.
- the printing press was started and dampening liquid was supplied to the imaging elements surface by dropping the dampener rollers of the printing press. After 5 revolutions the ink rollers were dropped as well and after a further 5 revolutions, a good printing quality was obtained without any ink uptake in the non-image areas. 5000 copies of good quality were printed.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Printing Plates And Materials Therefor (AREA)
- Manufacture Or Reproduction Of Printing Formes (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19950203129 EP0774364B1 (de) | 1995-11-16 | 1995-11-16 | Verfahren zur Herstellung einer Flachdruckplatte durch bildmässige Erwärmung eines Bildaufnahmeelements mittels eines Thermodruckkopfes |
DE1995619100 DE69519100T2 (de) | 1995-11-16 | 1995-11-16 | Verfahren zur Herstellung einer Flachdruckplatte durch bildmässige Erwärmung eines Bildaufnahmeelements mittels eines Thermodruckkopfes |
US08/747,667 US5816162A (en) | 1995-11-16 | 1996-11-12 | Method for making a lithographic printing plate by image-wise heating an imaging element using a thermal head |
JP31875896A JP2938400B2 (ja) | 1995-11-16 | 1996-11-14 | サーマルヘツドを用いた画像形成要素の画像通りの加熱による平版印刷版の作製法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19950203129 EP0774364B1 (de) | 1995-11-16 | 1995-11-16 | Verfahren zur Herstellung einer Flachdruckplatte durch bildmässige Erwärmung eines Bildaufnahmeelements mittels eines Thermodruckkopfes |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0774364A1 true EP0774364A1 (de) | 1997-05-21 |
EP0774364B1 EP0774364B1 (de) | 2000-10-11 |
Family
ID=8220833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19950203129 Expired - Lifetime EP0774364B1 (de) | 1995-11-16 | 1995-11-16 | Verfahren zur Herstellung einer Flachdruckplatte durch bildmässige Erwärmung eines Bildaufnahmeelements mittels eines Thermodruckkopfes |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0774364B1 (de) |
JP (1) | JP2938400B2 (de) |
DE (1) | DE69519100T2 (de) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0945281A2 (de) * | 1998-03-20 | 1999-09-29 | Dainippon Ink And Chemicals, Inc. | Wärmeempfindliche Zusammensetzung, Flachdruckplatte, die diese Zusammensetzung verwendet, und Verfahren zur Herstellung einer Flachdruckplatte |
EP0963841A1 (de) * | 1998-06-12 | 1999-12-15 | Agfa-Gevaert N.V. | Verfahren zur Herstellung aus einer Latex positiv-arbeitenden Druckplatte |
US6124425A (en) * | 1999-03-18 | 2000-09-26 | American Dye Source, Inc. | Thermally reactive near infrared absorption polymer coatings, method of preparing and methods of use |
EP1232859A1 (de) | 2001-02-16 | 2002-08-21 | Agfa-Gevaert | Lithographische Druckplatte mit auf der Druckpresse stattfindender Beschichtung und Entwicklung |
EP1232858A1 (de) | 2001-02-16 | 2002-08-21 | Agfa-Gevaert | Lithographische Druckplatte mit auf der Druckpresse stattfindender Beschichtung und Entwicklung |
EP1243433A1 (de) | 2001-03-22 | 2002-09-25 | Agfa-Gevaert | Lithographisches Druckverfahren mit einer Einzelflüssigkeittinte |
EP1321309A2 (de) | 2001-12-21 | 2003-06-25 | Agfa-Gevaert | Verfahren zur Herstellung einer lithographischen Druckplatte |
US6789481B2 (en) | 2001-02-16 | 2004-09-14 | Agfa-Gevaert | On-press coating and on-press processing of a lithographic material |
US6789480B2 (en) | 2001-02-16 | 2004-09-14 | Agfa-Gevaert | On-press exposure and on-press processing of a lithographic material |
US6815139B2 (en) | 2000-12-07 | 2004-11-09 | Agfa-Gevaert | Method of processing a printing plate material with a single-fluid ink |
EP2065211A1 (de) | 2007-11-30 | 2009-06-03 | Agfa Graphics N.V. | Verfahren zur Behandlung einer Lithografiedruckplatte |
EP2098376A1 (de) | 2008-03-04 | 2009-09-09 | Agfa Graphics N.V. | Verfahren zur Herstellung eines Lithographiedruckplattenträgers |
EP2106924A1 (de) | 2008-03-31 | 2009-10-07 | Agfa Graphics N.V. | Verfahren zur Behandlung einer Lithografischedruckplatte |
US8221960B2 (en) | 2009-06-03 | 2012-07-17 | Eastman Kodak Company | On-press development of imaged elements |
US8419923B2 (en) | 2006-08-03 | 2013-04-16 | Agfa Graphics Nv | Lithographic printing plate support |
EP3032334A1 (de) | 2014-12-08 | 2016-06-15 | Agfa Graphics Nv | System zur Reduzierung von Ablationsrückständen |
WO2017157575A1 (en) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Method and apparatus for processing a lithographic printing plate |
EP3637188A1 (de) | 2018-10-08 | 2020-04-15 | Agfa Nv | Sprudelnder entwicklervorläufer zur verarbeitung eines lithografischen druckplattenvorläufers |
EP4382306A1 (de) | 2022-12-08 | 2024-06-12 | Eco3 Bv | Make-ready-verfahren für eine lithographische druckmaschine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4588182B2 (ja) * | 2000-08-31 | 2010-11-24 | 株式会社きもと | 平版印刷用刷版および平版印刷用刷版の製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1561957A (de) * | 1966-10-24 | 1969-04-04 | ||
US3476937A (en) * | 1963-12-05 | 1969-11-04 | Agfa Gevaert Nv | Thermographic recording method employing a recording material comprising a uniform layer of discrete hydrophobic thermoplastic polymer particles |
JPS57102394A (en) * | 1980-12-17 | 1982-06-25 | Konishiroku Photo Ind Co Ltd | Heat sensitive recording material |
GB2203438A (en) * | 1987-04-06 | 1988-10-19 | Asahi Chemical Ind | Photosensitive and heat-sensitive polymers, process for producing the same and process for recording information using the same |
JPH0435990A (ja) * | 1990-05-31 | 1992-02-06 | Ricoh Co Ltd | 感熱型平版印刷用原版 |
-
1995
- 1995-11-16 EP EP19950203129 patent/EP0774364B1/de not_active Expired - Lifetime
- 1995-11-16 DE DE1995619100 patent/DE69519100T2/de not_active Expired - Fee Related
-
1996
- 1996-11-14 JP JP31875896A patent/JP2938400B2/ja not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3476937A (en) * | 1963-12-05 | 1969-11-04 | Agfa Gevaert Nv | Thermographic recording method employing a recording material comprising a uniform layer of discrete hydrophobic thermoplastic polymer particles |
FR1561957A (de) * | 1966-10-24 | 1969-04-04 | ||
JPS57102394A (en) * | 1980-12-17 | 1982-06-25 | Konishiroku Photo Ind Co Ltd | Heat sensitive recording material |
GB2203438A (en) * | 1987-04-06 | 1988-10-19 | Asahi Chemical Ind | Photosensitive and heat-sensitive polymers, process for producing the same and process for recording information using the same |
JPH0435990A (ja) * | 1990-05-31 | 1992-02-06 | Ricoh Co Ltd | 感熱型平版印刷用原版 |
Non-Patent Citations (4)
Title |
---|
DATABASE WPI Derwent World Patents Index; AN 92-099465, XP002008747 * |
J.VERMEERSCH: "A lithographic printing plate", RESEARCH DISCLOSURE, no. 33303, January 1992 (1992-01-01), HAVANT GB, pages 2, XP000028114 * |
M.N. VRANCKEN: "A New light-sensitive Material", PHOTOGRAPHIC SCIENCE AND ENGINEERING, vol. 14, no. 5, September 1970 (1970-09-01) - October 1970 (1970-10-01), WASHINGTON US, pages 347 - 355, XP002008746 * |
PATENT ABSTRACTS OF JAPAN vol. 006, no. 196 (M - 161) 5 October 1982 (1982-10-05) * |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6503685B1 (en) | 1998-03-20 | 2003-01-07 | Dianippon Ink And Chemicals, Inc. | Heat sensitive composition, original plate using the same for lithographic printing plate, and process for preparing printing plate |
EP0945281A3 (de) * | 1998-03-20 | 2001-04-04 | Dainippon Ink And Chemicals, Inc. | Wärmeempfindliche Zusammensetzung, Flachdruckplatte, die diese Zusammensetzung verwendet, und Verfahren zur Herstellung einer Flachdruckplatte |
EP0945281A2 (de) * | 1998-03-20 | 1999-09-29 | Dainippon Ink And Chemicals, Inc. | Wärmeempfindliche Zusammensetzung, Flachdruckplatte, die diese Zusammensetzung verwendet, und Verfahren zur Herstellung einer Flachdruckplatte |
EP0963841A1 (de) * | 1998-06-12 | 1999-12-15 | Agfa-Gevaert N.V. | Verfahren zur Herstellung aus einer Latex positiv-arbeitenden Druckplatte |
US6124425A (en) * | 1999-03-18 | 2000-09-26 | American Dye Source, Inc. | Thermally reactive near infrared absorption polymer coatings, method of preparing and methods of use |
US6177182B1 (en) | 1999-03-18 | 2001-01-23 | American Dye Source, Inc. | Thermally reactive near infrared absorption polymer coatings, method of preparing and methods of use |
US6815139B2 (en) | 2000-12-07 | 2004-11-09 | Agfa-Gevaert | Method of processing a printing plate material with a single-fluid ink |
EP1232858A1 (de) | 2001-02-16 | 2002-08-21 | Agfa-Gevaert | Lithographische Druckplatte mit auf der Druckpresse stattfindender Beschichtung und Entwicklung |
US6789481B2 (en) | 2001-02-16 | 2004-09-14 | Agfa-Gevaert | On-press coating and on-press processing of a lithographic material |
US6789480B2 (en) | 2001-02-16 | 2004-09-14 | Agfa-Gevaert | On-press exposure and on-press processing of a lithographic material |
EP1232859A1 (de) | 2001-02-16 | 2002-08-21 | Agfa-Gevaert | Lithographische Druckplatte mit auf der Druckpresse stattfindender Beschichtung und Entwicklung |
EP1243433A1 (de) | 2001-03-22 | 2002-09-25 | Agfa-Gevaert | Lithographisches Druckverfahren mit einer Einzelflüssigkeittinte |
EP1321309A2 (de) | 2001-12-21 | 2003-06-25 | Agfa-Gevaert | Verfahren zur Herstellung einer lithographischen Druckplatte |
US8419923B2 (en) | 2006-08-03 | 2013-04-16 | Agfa Graphics Nv | Lithographic printing plate support |
EP2065211A1 (de) | 2007-11-30 | 2009-06-03 | Agfa Graphics N.V. | Verfahren zur Behandlung einer Lithografiedruckplatte |
EP2098376A1 (de) | 2008-03-04 | 2009-09-09 | Agfa Graphics N.V. | Verfahren zur Herstellung eines Lithographiedruckplattenträgers |
EP2106924A1 (de) | 2008-03-31 | 2009-10-07 | Agfa Graphics N.V. | Verfahren zur Behandlung einer Lithografischedruckplatte |
US8221960B2 (en) | 2009-06-03 | 2012-07-17 | Eastman Kodak Company | On-press development of imaged elements |
EP3032334A1 (de) | 2014-12-08 | 2016-06-15 | Agfa Graphics Nv | System zur Reduzierung von Ablationsrückständen |
WO2017157571A1 (en) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Method and apparatus for processing a lithographic printing plate |
WO2017157578A1 (en) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Method for processing a lithographic printing plate |
WO2017157572A1 (en) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Apparatus for processing a lithographic printing plate and corresponding method |
WO2017157575A1 (en) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Method and apparatus for processing a lithographic printing plate |
WO2017157576A1 (en) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Method for processing a lithographic printing plate |
WO2017157579A1 (en) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Method for processing a lithographic printing plate |
EP3637188A1 (de) | 2018-10-08 | 2020-04-15 | Agfa Nv | Sprudelnder entwicklervorläufer zur verarbeitung eines lithografischen druckplattenvorläufers |
WO2020074258A1 (en) | 2018-10-08 | 2020-04-16 | Agfa Nv | An effervescent developer precursor for processing a lithographic printing plate precursor |
EP4382306A1 (de) | 2022-12-08 | 2024-06-12 | Eco3 Bv | Make-ready-verfahren für eine lithographische druckmaschine |
WO2024120763A1 (en) | 2022-12-08 | 2024-06-13 | Eco3 Bv | Lithographic printing press make-ready method |
Also Published As
Publication number | Publication date |
---|---|
JPH09141819A (ja) | 1997-06-03 |
DE69519100D1 (de) | 2000-11-16 |
EP0774364B1 (de) | 2000-10-11 |
DE69519100T2 (de) | 2001-05-10 |
JP2938400B2 (ja) | 1999-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0774364B1 (de) | Verfahren zur Herstellung einer Flachdruckplatte durch bildmässige Erwärmung eines Bildaufnahmeelements mittels eines Thermodruckkopfes | |
US5816162A (en) | Method for making a lithographic printing plate by image-wise heating an imaging element using a thermal head | |
EP0849091B1 (de) | Wärme-empfindliches Aufzeichnungselement zur Herstellung lithographischer Druckplatten, Polymerteilchen mit spezifischer Teilchengrössenverteilung enthaltend | |
EP0816070B1 (de) | Wärmeempfindliches Aufzeichnungselement und Verfahren zur Herstellung einer lithographischen Druckform damit | |
EP0849090A2 (de) | Thermo-empfindliches Aufzeichnungselement zur Herstellung lithographischer Druckplatten mit verbesserten transportierenden Eigenschaften | |
EP0839647B1 (de) | Verfahren zur Herstellung einer lithographischen Druckplatte mit verbesserten Druckfarbe-Aufnahme | |
US6197478B1 (en) | Method for making a driographic printing plate involving the use of a heat-sensitive imaging element | |
US6300032B1 (en) | Heat-sensitive material with improved sensitivity | |
US6230621B1 (en) | Processless thermal printing plate with well defined nanostructure | |
US6210857B1 (en) | Heat sensitive imaging element for providing a lithographic printing plate | |
US6427595B1 (en) | Heat-sensitive imaging element for making lithographic printing plates comprising polymer particles with a specific particle size | |
EP0832739B1 (de) | Verfahren zur Herstellung einer lithographischen Druckplatte unter Verwendung eines wärme-empfindlichen Materials | |
EP0773113B1 (de) | Wärmeempfindliches Aufzeichnungselement und Verfahren zur Herstellung einer lithographischen Druckform damit | |
US6071369A (en) | Method for making an lithographic printing plate with improved ink-uptake | |
EP0768172B1 (de) | Druckpressentwicklung von lithographischen Diazodruckplatten | |
EP0967077B1 (de) | Wärmeempfindliches Aufzeichnungselement und Verfahren zur Herstellung von Flachdruckformen damit | |
EP0976549B1 (de) | Verarbeitungsfreie thermische Flachdruckplatte mit definierter Nanostruktur | |
US5776654A (en) | On the press development of a diazo based printing plate | |
EP0769724B1 (de) | Entwicklung von lithographischen Diazodruckplatten auf der Druckpresse | |
EP1065049B1 (de) | Wärmeempfindliches Aufzeichnungselement mit einer Deckschicht zur Herstellung lithographischer Druckplatten | |
EP1025990B1 (de) | Wärmeempfindfiches Material, Verfahren zur Herstellung von lithographischen Druckplatten und Druckverfahren, die diese verwenden | |
EP0778499B1 (de) | Auf der Druckpresse entwickelbare Diazodruckplatten | |
US5922511A (en) | On the press development of a diazo based printing plate | |
EP0889364B1 (de) | Verfahren zur Behandlung eines Trägers und Verwendung des Trägers in einer lithographischen Druckplatte | |
US6503684B1 (en) | Processless thermal printing plate with cover layer containing compounds with cationic groups |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19971121 |
|
17Q | First examination report despatched |
Effective date: 19980910 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20001011 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20001011 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20001027 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20001103 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20001108 Year of fee payment: 6 |
|
REF | Corresponds to: |
Ref document number: 69519100 Country of ref document: DE Date of ref document: 20001116 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011116 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020730 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |