[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0770824A2 - Method and circuit for controlling a gas burner - Google Patents

Method and circuit for controlling a gas burner Download PDF

Info

Publication number
EP0770824A2
EP0770824A2 EP96115721A EP96115721A EP0770824A2 EP 0770824 A2 EP0770824 A2 EP 0770824A2 EP 96115721 A EP96115721 A EP 96115721A EP 96115721 A EP96115721 A EP 96115721A EP 0770824 A2 EP0770824 A2 EP 0770824A2
Authority
EP
European Patent Office
Prior art keywords
value
lambda
gas
setpoint
ionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96115721A
Other languages
German (de)
French (fr)
Other versions
EP0770824A3 (en
EP0770824B1 (en
Inventor
Hubert Nolte
Martin Herrs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stiebel Eltron GmbH and Co KG
Original Assignee
Stiebel Eltron GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19539568A external-priority patent/DE19539568C1/en
Priority claimed from DE19618573A external-priority patent/DE19618573C1/en
Application filed by Stiebel Eltron GmbH and Co KG filed Critical Stiebel Eltron GmbH and Co KG
Publication of EP0770824A2 publication Critical patent/EP0770824A2/en
Publication of EP0770824A3 publication Critical patent/EP0770824A3/en
Application granted granted Critical
Publication of EP0770824B1 publication Critical patent/EP0770824B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/30Representation of working time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves

Definitions

  • the invention relates to a method for controlling a gas burner, in particular a gas fan burner, with a measuring electrode, in particular an ionization electrode, which applies an electrical variable derived from the combustion temperature or the actual lambda value to a control circuit which compares this variable with a selected electrical setpoint and sets the gas-air ratio (lambda) to a corresponding lambda setpoint.
  • the invention further relates to a corresponding control circuit.
  • the thermal coupling between the ionization electrode and the gas burner can change, for example due to bending, wear and contamination of the ionization electrode or sooting of the burner. It was found that this leads to the fact that the ionization current and thus the measured variable derived therefrom change despite the lambda value remaining the same.
  • the proportionality factor therefore changes between the lambda value and the electrical variable derived therefrom. Since this changed measuring voltage is applied to the comparator of the control circuit, on which the - unchanged - setpoint also acts, the control circuit will adjust the gas-air mixture, i.e. the lambda value, causing a deviation of the actual lambda value from the lambda Setpoint comes, which is undesirable.
  • the object of the invention is to propose a method and a circuit of the type mentioned at the outset with which the influence of a change in the proportionality between the lambda value and that derived therefrom electrical measured variable on the control is compensated in such a way that the desired gas-air ratio (lambda setpoint) is maintained.
  • the above object is achieved in a method of the type mentioned at the outset by the features of claim 1 and with respect to the circuit by the features of claim 6.
  • the control is switched off for a short time and a calibration cycle is carried out.
  • the gas-air mixture is forcibly enriched, i.e. the lambda value is reduced from> 1.
  • Such an adjustment is avoided by the invention, so that the desired lambda setpoint is also controlled when the proportionality factor existing between the combustion temperature and the electrical measured variable has changed.
  • the system switches back to "control". If the deviation lies outside a "window”, an interference signal is triggered and / or the burner is forcibly switched off.
  • a gas burner (1) has a speed-adjustable fan (2) which conveys combustion air. It is provided with a gas supply (3) in which a gas solenoid valve (3 ') is arranged.
  • An ionization electrode (4) is arranged as the measuring electrode in the flame area of the gas burner (1). This measuring electrode (4) is common in gas burners. However, it is usually only used for flame monitoring. The measuring electrode (4) detects the ionization current which occurs in the respective combustion state. According to Richardson's equation, this depends on the electrode temperature and thus also on the respective lambda value of the respective gas-air mixture.
  • An AC voltage in this case simply the AC mains voltage, is applied to the measuring electrode (4) via a capacitive coupling element (5).
  • the coupling element (5) is connected to earth via a resistor (6), so that the ionization path (flame area) is electrically connected in parallel to the resistor (6).
  • a low-pass filter (8) is connected to the measuring electrode (4) via a voltage-impedance converter (7) and is connected on the output side to a control circuit (9).
  • the control circuit (9) according to FIG. 1 has a comparator (10) to which a setpoint generator (11) is placed. At the Setpoint generator (11) can be set to an electrical setpoint corresponding to the desired lambda value, for example 1.15 to 1.3.
  • the output direct voltage of the low-pass filter (8) is applied to the comparator (10) and is proportional to the respective lambda value.
  • an automatic start (15) is integrated, which controls the changeover switch (13).
  • a setpoint generator (16) for a starting speed is located on the changeover switch (13).
  • a memory (17) is also provided for the current speed value and / or the current setting value of the gas solenoid valve (3 ').
  • a Schmitt trigger (18) is also connected to the output of the low pass (8) and is used for flame monitoring.
  • the automatic start (15) switches to the setpoint device (16).
  • the fan (2) thus runs via the power driver (14) at a starting speed which results in a mixture which can be ignited safely.
  • the automatic start switches the changeover switch (13) to the voltage / current converter (12).
  • the ionization current detected by the ionization electrode (4) leads to a direct voltage being superimposed on the alternating voltage. This is proportional to the ionization in the flame area. It is proportional to the respective excess air (lambda). In practice, it is between 0 V and 200 V. For further processing, the voltage is reduced and a DC voltage between 0 V and 10 V occurs at the output of the low pass (8) in the example.
  • the voltage (ionization voltage Ui) embodying the excess air of the respective gas-air mixture is compared in the comparator (10) with a desired value.
  • the difference between the two values is converted into a current that changes the state of charge of the storage capacitor (17), which corresponds to the instantaneous speed value, and thus controls the speed of the fan (2) accordingly until the respective excess air (actual lambda value ) is the same as the Lambda setpoint.
  • the speed of the fan (2) or the gas supply (3) is regulated.
  • the control circuit (9) can also be constructed as a digital circuit with a microprocessor.
  • An activation circuit (21) is also provided. This counts the starting processes triggered by the automatic start (15) or records the operating hours of the gas burner (1).
  • a ramp generator (22) is connected to the activation circuit (21) and is connected to a third Switch position of the switch (13) is connected.
  • a detection circuit (23) which is also connected to the activation circuit (21) and which is followed by a storage circuit (24).
  • the memory circuit (24) is connected to the setpoint generator (11).
  • the activation circuit (21) brings the changeover switch (13) into its third switching position and activates the ramp generator (22). The control described above is switched off.
  • the ramp generator (22) now controls the blower (2) or the gas solenoid valve (3 ') in such a way that the gas-air mixture is "enriched", ie the gas content increases.
  • the lambda value is continuously reduced from a value> 1, for example 1.3, to a value below 1.
  • Which of the curves occurs depends on the state of the ionization electrode (4) or the gas burner (1); So it depends on how the ionization electrode (4) lies in the connection area of the burner flames. For example, if the ionization electrode (4) is bent, worn or sooty, a different voltage profile is produced than in the "good" condition.
  • the detection circuit (23) detects the respective voltage maximum A, B, C, for example by evaluating the slope of the curve I, II or III.
  • the respective maximum voltage is stored in the memory circuit (24).
  • the memory circuit (24) sets the basic value (100%) of the setpoint generator (11) to this value.
  • the setpoint generator (11) has been set in this way that it was set to 90% of its basic value (100%) (cf. a in Fig. 2, where Fig. 2 is not to scale).
  • this voltage value (B) is stored in the memory circuit (24) as the basic value for the setpoint generator ( 11) saved.
  • the setpoint generator (11) remains set to 90% of a basic value, which b shows in Fig.2. From Fig. 2 it can be seen that at voltage (b) (90% of maximum voltage B) via comparator (10), when the control is switched on again after the calibration cycle by means of the switch (13), a control to the lambda Setpoint of 1.2.
  • control circuit (9) always depends on the respective state of the ionization electrode (4) is readjusted in such a way that the control circuit (9) regulates the actual lambda value to the desired lambda setpoint during control operation. Operational changes in the state of the ionization electrode (4) or the gas burner (1) are thus balanced.
  • the calibration cycles are very short compared to the times in which the gas burner (1) operates in normal control mode, so that the combustion occurring during the calibration cycles with a lambda value that deviates from the lambda setpoint can be accepted.
  • the combustion improves in each of the regular operations following a calibration process.
  • the described control function is switched off during calibration.
  • the calibration is preferably carried out when the speed of the fan (2) does not change in order to suppress the influence of the fan (2) on the combustion. It is expedient to carry out the calibration at a medium speed so that the calibration signal does not hit the modulation limits of the control signal (J) which is applied to the gas solenoid valve (3 ').
  • the calibration can also be done during of switching the blower (2) from one power level to the other power level because the speed change compared to the calibration process is slow, so that the speed during the calibration process is quasi constant.
  • the calibration process is started at time (t1) (see Fig. 3) by the event or operating hours counter during the transition from the full load stage to the partial load stage of the blower (2) when the decreasing modulation current (J) reaches a low value (Jk).
  • the modulation current (J) and thus the gas supply via the gas solenoid valve (3 ') is then increased by the control circuit (9), as a result of which the ionization voltage (Ui) increases accordingly.
  • the ionization voltage (Ui) reaches a predetermined value, for example 0.9 Uimax.
  • the time period (t1 to t2) serves to start the preheating of the ionization electrode (4). From time (t2) up to time (t3) the modulation current (J) is kept constant. During this period (t2 to t3), the ionization electrode (4) heats up to a stable temperature and thus ensures reproducible measured values.
  • the modulation current (J) is increased by the control circuit (9) so that the maximum value (Uimax) of the ionization voltage (Ui) is exceeded.
  • This - new - maximum value (Uimax) and / or the measured values resulting in the time period (t3 to t4) is / are stored for further processing in the calibration process.
  • the modulation current (J) is increased further until the ionization voltage (Ui) is again approximately 10% below the Uimax value, which is the case in FIG. 3 at time (t4).
  • the lambda value of the combustion itself is unfavorable, but this is not important since this period lasts at most a few seconds.
  • control circuit (9) switches back to the control process described above. This starts when the ionization voltage (Ui), the modulation current (J) and the gas pressure (p) have stabilized at time (t5).
  • the control circuit (9) derives a correspondingly adapted new setpoint for the ionization voltage from the stored - new - maximum value of the ionization voltage or from the measurement values obtained in the period (t3 to t4).
  • an average can be formed between the new measurement series and the measurement series of previous calibration processes.
  • the first transfer criterion detects a sudden change in all components of the control loop. It is fulfilled if the deviation of the new calibration value from the previous calibration values is sufficiently small.
  • the second transfer criterion detects a "creeping drift" of the system (burner control), which is sufficiently small in the event of a deviation from the values provided by the manufacturer.
  • the burner operation will only continue with the recalibration if both transfer criteria are met. If one of the transfer criteria is not met, the burner operation is first interrupted by a control shutdown and after repeated repetition by a lockout.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

The regulation system uses an ionisation electrode (4) providing an ionisation signal dependent in the temp. or lambda value of the combustion, supplied to a regulation circuit (9) for comparison with a reference value, for adjustment of the air/fuel ratio for the burner (1). A calibration cycle is initiated at regular intervals or after a defined operating time, with the lambda value reduced and the corresponding ionisation signal measured. The max. values of the ionisation signal are stored for correction of the required value for the regulation.

Description

Die Erfindung betrifft ein Verfahren zur Regelung eines Gasbrenners, insbesondere Gasgebläsebrenners, mit einer Meßelektrode, insbesondere Ionisations-Elektrode, die eine von der Verbrennungstemperatur bzw. dem Lambda-Istwert abgeleitete elektrische Größe an eine Regelschaltung legt, welche diese Größe mit einem gewählten elektrischen Sollwert vergleicht und das Gas-Luft-Verhältnis (Lambda) auf einen entsprechenden Lambda-Sollwert einstellt. Weiterhin betrifft die Erfindung eine entsprechende Regelschaltung.The invention relates to a method for controlling a gas burner, in particular a gas fan burner, with a measuring electrode, in particular an ionization electrode, which applies an electrical variable derived from the combustion temperature or the actual lambda value to a control circuit which compares this variable with a selected electrical setpoint and sets the gas-air ratio (lambda) to a corresponding lambda setpoint. The invention further relates to a corresponding control circuit.

In der DE 39 37 290 A1 ist eine derartige Regelung beschrieben. Dort liegt die Ionisations-Elektrode in einem Gleichstromkreis. Die Auswertung des Ionisationsstromes ist in der Praxis problematisch, wenn ein proportionaler Zusammenhang zwischen dem Ionisationsstrom und dem Lambda-Wert ermittelt werden soll.Such a regulation is described in DE 39 37 290 A1. There the ionization electrode lies in a direct current circuit. The evaluation of the ionization current is problematic in practice if a proportional relationship between the ionization current and the lambda value is to be determined.

In der älteren Patentanmeldung P 44 33 425 ist eine Regeleinrichtung für einen Gasgebläsebrenner beschrieben. Durch eine Wechselspannungsüberlagerung läßt sich der Ionisationsstrom sicher auswerten. Der jeweilige Luftüberschuß (Lambda-Wert) des jeweiligen Verbrennungszustandes wird über die Ionisations-Elektrode erfaßt und in der Regelschaltung mit einem eingestellten Sollwert verglichen. Die Zusammensetzung des Gas-Verbrennungsluft-Gemisches wird entsprechend nachgeregelt, so daß im Endergebnis immer mit einem gewünschten Lambda-Sollwert gearbeitet wird. Gewünscht ist ein überstöchiometrisches Verhältnis von Luft zu Gas, wobei der Lambda-Sollwert vorzugsweise zwischen 1,15 und 1,3 liegt. Es wird dadurch erreicht, daß bei unterschiedlichen Gasqualitäten, beispielsweise Erdgas und Flüssiggas, sowie bei wechselnden Umgebungsbedingungen eine hinsichtlich der Emissionen und des feuerungstechnischen Wirkungsgrades optimale Verbrennung erfolgt.In the older patent application P 44 33 425 a control device for a gas fan burner is described. Through an alternating voltage superimposition, the Evaluate ionization current safely. The respective excess air (lambda value) of the respective combustion state is recorded via the ionization electrode and compared in the control circuit with a set target value. The composition of the gas-combustion air mixture is adjusted accordingly, so that the end result is always a desired lambda setpoint. An over-stoichiometric ratio of air to gas is desired, the lambda setpoint preferably being between 1.15 and 1.3. It is achieved in that with different gas qualities, for example natural gas and liquid gas, as well as with changing ambient conditions, an optimal combustion takes place in terms of emissions and the efficiency of the combustion technology.

Im Betrieb kann sich die thermische Kopplung zwischen der Ionisations-Elektrode und dem Gasbrenner ändern, beispielsweise durch Verbiegen, Verschleiß und Verschmutzung der Ionisations-Elektrode oder Verrußung des Brenners. Es wurde gefunden, daß dies dazu führt, daß sich trotz an sich gleichbleibenden Lambda-Wert der Ionisationsstrom und damit die daraus abgeleitete Meßgröße ändert. Es ändert sich also der Proportionalitätsfaktor zwischen dem Lambda-Wert und der daraus abgeleiteten elektrischen Größe. Da diese geänderte Meßspannung am Vergleicher der Regelschaltung anliegt, auf den auch der - unveränderte - Sollwert wirkt, wird die Regelschaltung das Gas-Luft-Gemisch, also den Lambda-Wert, verstellen, wodurch es zu einer Abweichung des Lambda-Istwertes vom Lambda-Sollwert kommt, was unerwünscht ist.During operation, the thermal coupling between the ionization electrode and the gas burner can change, for example due to bending, wear and contamination of the ionization electrode or sooting of the burner. It was found that this leads to the fact that the ionization current and thus the measured variable derived therefrom change despite the lambda value remaining the same. The proportionality factor therefore changes between the lambda value and the electrical variable derived therefrom. Since this changed measuring voltage is applied to the comparator of the control circuit, on which the - unchanged - setpoint also acts, the control circuit will adjust the gas-air mixture, i.e. the lambda value, causing a deviation of the actual lambda value from the lambda Setpoint comes, which is undesirable.

Aufgabe der Erfindung ist es, ein Verfahren und eine Schaltung der eingangs genannten Art vorzuschlagen, mit dem/der der Einfluß einer Änderung der Proportionalität zwischen dem Lambda-Wert und der daraus abgeleiteten elektrischen Meßgröße auf die Regelung in der Weise ausgeglichen wird, daß das gewünschte Gas-Luft-Verhältnis (Lambda-Sollwert) aufrechterhalten bleibt.The object of the invention is to propose a method and a circuit of the type mentioned at the outset with which the influence of a change in the proportionality between the lambda value and that derived therefrom electrical measured variable on the control is compensated in such a way that the desired gas-air ratio (lambda setpoint) is maintained.

Erfindungsgemäß ist obige Aufgabe bei einem Verfahren der eingangs genannten Art durch die Merkmale des Anspruchs 1 und hinsichtlich der Schaltung durch die Merkmale des Anspruchs 6 gelöst.According to the invention, the above object is achieved in a method of the type mentioned at the outset by the features of claim 1 and with respect to the circuit by the features of claim 6.

Nach einer gewissen Betriebszeit, die entweder durch einen Betriebsstundenzähler oder durch Zählen der Einschaltvorgänge des Brenners erfaßt werden kann, wird die Regelung für kurze Zeit abgeschaltet und ein Kalibrierungszyklus durchfahren. In diesem wird das Gas-Luft-Gemisch zwangsweise angefettet, also der Lambda-Wert von > 1 ausgehend reduziert. Die erfaßte elektrische Meßgröße durchläuft bei Lambda = 1 ein Maximum. Dieser Wert wird festgehalten. Weicht er vom eingestellten elektrischen Grund-Sollwert ab, dann wird dieser nachjustiert. Eine solche Abweichung stellt sich ein, wenn sich die Ionisations-Elektrode verbogen hat, abgenutzt ist oder verrußt ist, was an sich zu einer unerwünschten Verstellung des Gas-Luft-Verhältnisses führen würde. Durch die Erfindung ist eine solche Verstellung vermieden, so daß auch dann auf den gewünschten Lambda-Sollwert geregelt wird, wenn sich der zwischen der Verbrennungstemperatur und der elektrischen Meßgröße bestehende Proportionalitätsfaktor geändert hat.After a certain operating time, which can be determined either by an operating hours counter or by counting the start-up processes of the burner, the control is switched off for a short time and a calibration cycle is carried out. In this, the gas-air mixture is forcibly enriched, i.e. the lambda value is reduced from> 1. The measured electrical quantity passes through a maximum at lambda = 1. This value is recorded. If it deviates from the set basic electrical setpoint, this is readjusted. Such a deviation occurs when the ionization electrode is bent, worn or sooty, which in itself would lead to an undesirable adjustment of the gas-air ratio. Such an adjustment is avoided by the invention, so that the desired lambda setpoint is also controlled when the proportionality factor existing between the combustion temperature and the electrical measured variable has changed.

Nach dem Kalibrierungszyklus wird, gegebenenfalls nach Auswertung eines oder mehrerer Übergabekriterien, wieder auf "Regelung" umgeschaltet. Wenn die Abweichung außerhalb eines "Fensters" liegt, wird ein Störsignal ausgelöst und/oder der Brenner zwangsweise abgeschaltet.After the calibration cycle, if necessary after evaluating one or more transfer criteria, the system switches back to "control". If the deviation lies outside a "window", an interference signal is triggered and / or the burner is forcibly switched off.

Weitere Ausgestaltungen ergeben sich aus den Unteransprüchen und der folgenden Beschreibung eines Ausführungsbeispiels In der Zeichnung zeigen:

  • Figur 1 ein Blockschaltbild einer Regelschaltung bei einem Gasgebläsebrenner,
  • Figur 2 ein Kennliniendiagramm und
  • Figur 3 ein Zeitdiagramm beim Start eines Kalibrierungsvorgangs.
Further refinements result from the subclaims and the following description of a Exemplary embodiment In the drawing:
  • FIG. 1 shows a block diagram of a control circuit in a gas fan burner,
  • Figure 2 is a characteristic diagram and
  • Figure 3 is a timing diagram at the start of a calibration process.

Ein Gasbrenner(1) weist ein drehzahlregelbares Gebläse(2) auf, das Verbrennungsluft fördert. Er ist mit einer Gaszuführung(3), in der ein Gasmagnetventil(3') angeordnet ist, versehen. Im Flammenbereich des Gasbrenners(1) ist eine Ionisations-Elektrode(4) als Meßelektrode angeordnet. Diese Meßelektrode(4) ist bei Gasbrennern üblich. Gewöhnlich dient sie jedoch nur der Flammenüberwachung. Die Meßelektrode(4) erfaßt den sich beim jeweiligen Verbrennungszustand einstellenden Ionisationsstrom. Dieser hängt nach der Richardson'schen Gleichung von der Elektrodentemperatur und damit auh vom jeweiligen Lambda-Wert des jeweiligen Gas-Luft-Gemisches ab.A gas burner (1) has a speed-adjustable fan (2) which conveys combustion air. It is provided with a gas supply (3) in which a gas solenoid valve (3 ') is arranged. An ionization electrode (4) is arranged as the measuring electrode in the flame area of the gas burner (1). This measuring electrode (4) is common in gas burners. However, it is usually only used for flame monitoring. The measuring electrode (4) detects the ionization current which occurs in the respective combustion state. According to Richardson's equation, this depends on the electrode temperature and thus also on the respective lambda value of the respective gas-air mixture.

Auf die Meßelektrode(4) ist über ein kapazitives Koppelglied(5) eine Wechselspannung, im Beispielsfalle einfach die Netzwechselspannung, aufgeschaltet. Das Koppelglied(5) ist über einen Widerstand(6) an Erde gelegt, so daß die Ionisationsstrecke (Flammenbereich) elektrisch parallel zum Widerstand(6) geschaltet ist.An AC voltage, in this case simply the AC mains voltage, is applied to the measuring electrode (4) via a capacitive coupling element (5). The coupling element (5) is connected to earth via a resistor (6), so that the ionization path (flame area) is electrically connected in parallel to the resistor (6).

An der Meßelektrode(4) liegt über einen Spannungs-Impedanzwandler(7) ein Tiefpaß(8), der ausgangsseitig an eine Regelschaltung(9) angeschlossen ist.A low-pass filter (8) is connected to the measuring electrode (4) via a voltage-impedance converter (7) and is connected on the output side to a control circuit (9).

Die Regelschaltung(9) nach Fig. 1 weist einen Vergleicher (10) auf, an den ein Sollwertgeber(11) gelegt ist. Am Sollwertgeber(11) ist eine dem gewünschten Lambda-Wert, beispielsweise 1,15 bis 1,3, entsprechender elektrischer Sollwert einstellbar. An den Vergleicher(10) ist die Ausgangs-Gleichspannung des Tiefpasses(8) gelegt, die dem jeweiligen Lambda-Wert proportional ist. Ausgangsseitig liegt am Vergleicher(10) ein Spannungs/Stromwandler(12), welcher über einen Umschalter(13) an einen Leistungstreiber(14) angeschlossen ist, der die Drehzahl des Gebläses(2) und/oder die Stellung des Gasmagnetventils(3') steuert.The control circuit (9) according to FIG. 1 has a comparator (10) to which a setpoint generator (11) is placed. At the Setpoint generator (11) can be set to an electrical setpoint corresponding to the desired lambda value, for example 1.15 to 1.3. The output direct voltage of the low-pass filter (8) is applied to the comparator (10) and is proportional to the respective lambda value. On the output side there is a voltage / current converter (12) on the comparator (10), which is connected via a changeover switch (13) to a power driver (14) which controls the speed of the fan (2) and / or the position of the gas solenoid valve (3 ') controls.

In die Regelschaltung(9) ist eine Startautomatik(15) integriert, welche den Umschalter(13) steuert. Am Umschalter(13) liegt ein Sollwertgeber(16) für eine Startdrehzahl. Außerdem ist ein Speicher(17) für den momentanen Drehzahlwert und/oder den momentanen Einstellwert des Gasmagnetventils(3') vorgesehen.In the control circuit (9) an automatic start (15) is integrated, which controls the changeover switch (13). A setpoint generator (16) for a starting speed is located on the changeover switch (13). A memory (17) is also provided for the current speed value and / or the current setting value of the gas solenoid valve (3 ').

An den Ausgang des Tiefpasses(8) ist weiterhin ein Schmitt-Trigger(18) geschaltet, der der Flammenüberwachung dient.A Schmitt trigger (18) is also connected to the output of the low pass (8) and is used for flame monitoring.

Die Funktionsweise der soweit beschriebenen Regelschaltung ist etwa folgende:The control circuit described so far works as follows:

Beim Start des Gasbrenners(1) schaltet die Startautomatik (15) auf den Sollwertgeber(16). Über den Leistungstreiber (14) läuft das Gebläse(2) dadurch mit einer Startdrehzahl, die ein sicher zündfähiges Gemisch ergibt.When the gas burner (1) starts, the automatic start (15) switches to the setpoint device (16). The fan (2) thus runs via the power driver (14) at a starting speed which results in a mixture which can be ignited safely.

Nach dem Zünden und erfolgreicher Flammenbildung schaltet die Startautomatik(15) den Umschalter(13) auf den Spannungs/Stromwandler(12). Der von der Ionisations-Elektrode(4) erfaßte Ionisationsstrom führt dazu, daß sich der Wechselspannung eine Gleichspannung überlagert. Diese ist proportional der Ionisation im Flammenbereich. Sie ist proportional dem jeweiligen Luftüberschuß(lambda). In der Praxis liegt sie zwischen 0 V und 200 V. Zur Weiterverarbeitung wird die Spannung herabgesetzt und am Ausgang des Tiefpasses(8) tritt im Beispielsfalle eine Gleichspannung zwischen 0 V und 10 V auf.After ignition and successful flame formation, the automatic start (15) switches the changeover switch (13) to the voltage / current converter (12). The ionization current detected by the ionization electrode (4) leads to a direct voltage being superimposed on the alternating voltage. This is proportional to the ionization in the flame area. It is proportional to the respective excess air (lambda). In practice, it is between 0 V and 200 V. For further processing, the voltage is reduced and a DC voltage between 0 V and 10 V occurs at the output of the low pass (8) in the example.

Die den Luftüberschuß des jeweiligen Gas-Luft-Gemisches verkörpernde Spannung (Ionisationsspannung Ui) wird im Vergleicher(10) mit einem Sollwert verglichen. Die Differenz zwischen den beiden Werten wird in einen Strom gewandelt, der den Ladezustand des Speicherkondensators(17), welcher dem Drehzahl-Momentanwert entspricht, solange ändert und damit die Drehzahl des Gebläses(2) entsprechend steuert, bis der jeweilige Luftüberschuß (Lambda-Istwert) dem Lambda-Sollwert gleich ist.The voltage (ionization voltage Ui) embodying the excess air of the respective gas-air mixture is compared in the comparator (10) with a desired value. The difference between the two values is converted into a current that changes the state of charge of the storage capacitor (17), which corresponds to the instantaneous speed value, and thus controls the speed of the fan (2) accordingly until the respective excess air (actual lambda value ) is the same as the Lambda setpoint.

Erfolgt danach eine Veränderung der Verbrennungsbedingungen, beispielsweise Änderung der Gasart, Änderung des Gasdrucks, Änderung der Umgebungstemperaturen o.ä., und weicht dadurch der Lambda-Istwert vom Lambda-Sollwert ab, dann werden diese Störungen in der beschriebenen Weise ausgeregelt.If there is a change in the combustion conditions afterwards, for example a change in the gas type, a change in the gas pressure, a change in the ambient temperatures or the like, and if the actual lambda value deviates from the target lambda value, these faults are corrected in the manner described.

Wenn die Flamme erlischt, wird über den Schmitt-Trigger (18) die Gaszufuhr(3) mittels des Gasmagnetventils(3') gesperrt.When the flame goes out, the gas supply (3) is blocked by the gas solenoid valve (3 ') via the Schmitt trigger (18).

Zur Einstellung des Luftüberschusses wird die Drehzahl des Gebläses(2) oder die Gaszufuhr(3) geregelt.To adjust the excess air, the speed of the fan (2) or the gas supply (3) is regulated.

Die Regelschaltung(9) kann auch als digitale Schaltung mit einem Mikroprozessor aufgebaut sein.The control circuit (9) can also be constructed as a digital circuit with a microprocessor.

Weiterhin ist eine Aktivierungsschaltung(21) vorgesehen. Diese zählt die von der Startautomatik(15) ausgelösten Startvorgänge oder erfaßt die Betriebsstunden des Gasbrenners(1). Mit der Aktivierungsschaltung(21) ist ein Rampengenerator(22) verbunden, der an eine dritte Schaltposition des Umschalters(13) angeschlossen ist.An activation circuit (21) is also provided. This counts the starting processes triggered by the automatic start (15) or records the operating hours of the gas burner (1). A ramp generator (22) is connected to the activation circuit (21) and is connected to a third Switch position of the switch (13) is connected.

Am Ausgang des Tiefpasses(8) liegt eine Erkennungsschaltung(23), die ebenfalls an die Aktivierungsschaltung(21) angeschlossen ist und der eine Speicherschaltung(24) nachgeschaltet ist. Die Speicherschaltung(24) ist mit dem Sollwertgeber(11) verbunden.At the output of the low pass (8) there is a detection circuit (23) which is also connected to the activation circuit (21) and which is followed by a storage circuit (24). The memory circuit (24) is connected to the setpoint generator (11).

Die Funktionsweise der zusätzlichen Schaltung in einem Kalibrierungszyklus ist etwa folgende:The additional circuit functions in a calibration cycle as follows:

Nach einer bestimmten Anzahl von Startvorgängen oder Betriebsstunden, beispielsweise 100 Startvorgängen oder 10 Betriebsstunden, bringt die Aktivierungsschaltung(21) den Umschalter(13) in seine dritte Schaltposition und aktiviert den Rampengenerator(22). Die oben beschriebene Regelung ist dadurch abgeschaltet.After a certain number of starting processes or operating hours, for example 100 starting processes or 10 operating hours, the activation circuit (21) brings the changeover switch (13) into its third switching position and activates the ramp generator (22). The control described above is switched off.

Der Rampengenerator (22) steuert nun das Gebläse(2) oder das Gasmagnetventil(3') in der Weise, daß das Gas-Luft-Gemisch "angefettet" wird, sich also der Gasanteil erhöht. Der Lambda-Wert wird dabei von einem Wert > 1, beispielsweise 1,3, kontinuierlich auf einen Wert unter 1 reduziert. Dabei ergibt sich ein von der Ionisations-Elektrode(4) abgeleiteter Verlauf der Meßspannung (Ionisationsspannung Ui) am Ausgang des Tiefpasses(8), wie er in einer der Kurven I,II,III in Fig. 2 beispielshaft dargestellt ist. Welche der Kurven sich einstellt, hängt vom Zustand der Ionisations-Elektrode(4) bzw. des Gasbrenners(1) ab; also davon ab, wie die Ionisations-Elektrode(4) im Anschlußbereich der Brennerflammen liegt. Beispielsweise stellt sich bei verbogener, verschlissener oder verrußter Ionisations-Elektrode(4) ein anderer Spannungsverlauf ein als im "guten" Zustand.The ramp generator (22) now controls the blower (2) or the gas solenoid valve (3 ') in such a way that the gas-air mixture is "enriched", ie the gas content increases. The lambda value is continuously reduced from a value> 1, for example 1.3, to a value below 1. This results in a curve of the measurement voltage (ionization voltage Ui) derived from the ionization electrode (4) at the output of the low pass (8), as is shown by way of example in one of the curves I, II, III in FIG. 2. Which of the curves occurs depends on the state of the ionization electrode (4) or the gas burner (1); So it depends on how the ionization electrode (4) lies in the connection area of the burner flames. For example, if the ionization electrode (4) is bent, worn or sooty, a different voltage profile is produced than in the "good" condition.

Alle Kurven I,II,III durchlaufen bei Lambda = 1 ein Maximum. Die Maxima der Kurven I,II,III sind in Fig. 2 mit A,B,C bezeichnet.All curves I, II, III run through at lambda = 1 Maximum. The maxima of curves I, II, III are designated A, B, C in FIG.

Die Erkennungsschaltung(23) erfaßt das jeweilige Spannungsmaximum A,B,C, beispielsweise indem sie die Steigung der Kurve I,II bzw. III auswertet. Die jeweilige Maximalspannung wird in der Speicherschaltung(24) abgelegt. Die Speicherschaltung(24) stellt den Grundwert (100%) des Sollwertgebers(11) auf diesen Wert ein.The detection circuit (23) detects the respective voltage maximum A, B, C, for example by evaluating the slope of the curve I, II or III. The respective maximum voltage is stored in the memory circuit (24). The memory circuit (24) sets the basic value (100%) of the setpoint generator (11) to this value.

Geht man beispielsweise davon aus, daß I die Kennlinie eines "guten" Zustandes der Ionisations-Elektrode(4) ist und geht man davon aus, daß der Lambda-Sollwert 1,2 sein soll, dann ist der Sollwertgeber(11) so eingestellt worden, daß er auf 90% seines Grundwertes (100%) gestellt wurde (vgl. a in Fig.2, wobei Fig.2 nicht maßstabsgerecht ist).If one assumes, for example, that I is the characteristic of a "good" condition of the ionization electrode (4) and assumes that the lambda setpoint should be 1.2, then the setpoint generator (11) has been set in this way that it was set to 90% of its basic value (100%) (cf. a in Fig. 2, where Fig. 2 is not to scale).

Solange sich am Zustand der Ionisations-Elektrode(4) bzw. des Gasbrenners(1) nichts ändert, wird auch in den Kalibrierungszyklen an dem Grundwert (100%) des Sollwertgebers(11) nichts geändert.As long as nothing changes in the state of the ionization electrode (4) or the gas burner (1), nothing is changed in the calibration cycles on the basic value (100%) of the setpoint generator (11).

Ergibt sich in einem Kalibrierungszyklus die Kennlinie (II) mit dem Maximalwert(B), was die Folge einer Zustandsänderung der Ionisations-Elektrode(4) ist, dann wird in der Speicherschaltung(24) dieser Spannungswert(B) als Grundwert für den Sollwertgeber(11) gespeichert. Der Sollwertgeber(11) bleibt weiter auf 90% eines Grundwertes eingestellt, was b in Fig.2 zeigt. Aus Fig.2 ist ersichtlich, daß bei der Spannung(b) (90% der Maximalspannung B) über den Vergleicher(10) dann, wenn die Regelung nach dem Kalibrierungszyklus mittels des Umschalters(13) wieder eingeschaltet wird, eine Regelung auf den Lambda-Sollwert von 1,2 erfolgt.If the characteristic curve (II) with the maximum value (B) results in a calibration cycle, which is the result of a change in state of the ionization electrode (4), then this voltage value (B) is stored in the memory circuit (24) as the basic value for the setpoint generator ( 11) saved. The setpoint generator (11) remains set to 90% of a basic value, which b shows in Fig.2. From Fig. 2 it can be seen that at voltage (b) (90% of maximum voltage B) via comparator (10), when the control is switched on again after the calibration cycle by means of the switch (13), a control to the lambda Setpoint of 1.2.

Es ist also erreicht, daß abhängig vom jeweiligen Zustand der Ionisations-Elektrode(4) die Regelschaltung(9) immer so nachgeregelt wird, daß die Regelschaltung(9) im Regelbetrieb den Lambda-Istwert auf den gewünschten Lambda-Sollwert regelt. Betriebsbedingte Zustandsänderungen der Ionisations-Elektrode(4) bzw. des Gasbrenners(1) sind also ausgeglichen.It is thus achieved that the control circuit (9) always depends on the respective state of the ionization electrode (4) is readjusted in such a way that the control circuit (9) regulates the actual lambda value to the desired lambda setpoint during control operation. Operational changes in the state of the ionization electrode (4) or the gas burner (1) are thus balanced.

Für die beschriebene Nachstellung des Sollwertgebers(11) bestehen Grenzen. Diese sind in Fig. 2 durch das Fenster(F) angedeutet. Solange in den Kalibrierungszyklen die Maxima der Spannungsverläufe, wie A,B, innerhalb des Fensters(F) liegen, erfolgt die beschriebene Nachstellung des Sollwertgebers(11). Ergibt sich ein Spannungsmaximum, wie C, das außerhalb des Fensters(F) liegt, dann erkennt dies die Erkennungsschaltung(23) und löst ein Störsignal und/oder eine zwangsweise Abschaltung des Gasbrenners(1) aus.There are limits to the adjustment of the setpoint generator (11) described. These are indicated in Fig. 2 by the window (F). As long as the maxima of the voltage profiles, such as A, B, are within the window (F) in the calibration cycles, the described adjustment of the setpoint generator (11) takes place. If there is a voltage maximum, such as C, which lies outside the window (F), then the detection circuit (23) detects this and triggers an interference signal and / or a forced shutdown of the gas burner (1).

Die Kalibrierungszyklen sind im Vergleich zu den Zeiten, in denen der Gasbrenner(1) im normalen Regelbetrieb arbeitet, sehr kurz, so daß die während den Kalibrierungszyklen mit einem vom Lambda-Sollwert abweichenden Lambda-Wert erfolgende Verbrennung in Kauf genommen werden kann. Im jeweils an einen Kalibrierungsvorgang anschließenden Regelbetrieb verbessert sich die Verbrennung.The calibration cycles are very short compared to the times in which the gas burner (1) operates in normal control mode, so that the combustion occurring during the calibration cycles with a lambda value that deviates from the lambda setpoint can be accepted. The combustion improves in each of the regular operations following a calibration process.

Weiterbildungen der oben beschriebenen Kalibrierungsvorgänge sind im folgenden erläutert.Further developments of the calibration processes described above are explained below.

Während der Kalibrierung ist die beschriebene Regelfunktion abgeschaltet. Die Kalibrierung erfolgt vorzugsweise bei sich nicht ändernder Drehzahl des Gebläses(2), um den Einfluß des Gebläses(2) auf die Verbrennung zu unterdrücken. Günstig ist es, die Kalibrierung bei einer mittleren Drehzahl durchzuführen, um während der Kalibrierung nicht an Modulationsgrenzen des Steuersignals(J), das an das Gasmagnetventil(3') gelegt ist, zu stoßen. Die Kalibrierung kann auch während des Umschaltens des Gebläses(2) von der einen Leistungsstufe auf die andere Leistungsstufe erfolgen, da die Drehzahländerung im Vergleich zum Kalibriervorgang langsam ist, so daß die Drehzahl während des Kalibriervorgangs quasi konstant ist.The described control function is switched off during calibration. The calibration is preferably carried out when the speed of the fan (2) does not change in order to suppress the influence of the fan (2) on the combustion. It is expedient to carry out the calibration at a medium speed so that the calibration signal does not hit the modulation limits of the control signal (J) which is applied to the gas solenoid valve (3 '). The calibration can also be done during of switching the blower (2) from one power level to the other power level because the speed change compared to the calibration process is slow, so that the speed during the calibration process is quasi constant.

Der Kalibriervorgang wird zum Zeitpunkt(t1) (vgl. Fig.3) vom Ereignis- oder Betriebsstundenzähler beim Übergang von der Vollaststufe auf die Teillaststufe des Gebläses (2) gestartet, wenn der abnehmende Modulationsstrom(J) einen niedrigen Wert(Jk) erreicht. Es wird dann von der Regelschaltung(9) der Modulationsstrom(J) und damit über das Gasmagnetventil(3') die Gaszufuhr erhöht, wodurch die Ionisationsspannung(Ui) entsprechend ansteigt. Zum Zeitpunkt(t2) erreicht die Ionisationsspannung(Ui) einen vorbestimmten Wert, beispielsweise 0,9 Uimax. Die Zeitspanne(t1 bis t2) dient dem Anfahren der Vorerwärmung der Ionisationselektrode(4). Ab dem Zeitpunkt(t2) wird bis zum Zeitpunkt(t3) der Modulationsstrom(J) konstant gehalten. In dieser Zeitspanne(t2 bis t3) erhitzt sich die Ionisationselektrode(4) auf eine stabile Temperatur und gewährleistet dadurch reproduzierbare Meßwerte.The calibration process is started at time (t1) (see Fig. 3) by the event or operating hours counter during the transition from the full load stage to the partial load stage of the blower (2) when the decreasing modulation current (J) reaches a low value (Jk). The modulation current (J) and thus the gas supply via the gas solenoid valve (3 ') is then increased by the control circuit (9), as a result of which the ionization voltage (Ui) increases accordingly. At time (t2), the ionization voltage (Ui) reaches a predetermined value, for example 0.9 Uimax. The time period (t1 to t2) serves to start the preheating of the ionization electrode (4). From time (t2) up to time (t3) the modulation current (J) is kept constant. During this period (t2 to t3), the ionization electrode (4) heats up to a stable temperature and thus ensures reproducible measured values.

Nach dem Zeitpunkt(t3) wird der Modulationsstrom(J) von der Regelschaltung(9) so weiter erhöht, daß der Maximalwert(Uimax) der Ionisationsspannung(Ui) überfahren wird. Dieser - neue - Maximalwert(Uimax) und/oder die sich in der Zeitspanne(t3 bis t4) ergebenden Meßwerte wird/werden zur Weiterverarbeitung im Kalibriervorgang gespeichert.After the time (t3), the modulation current (J) is increased by the control circuit (9) so that the maximum value (Uimax) of the ionization voltage (Ui) is exceeded. This - new - maximum value (Uimax) and / or the measured values resulting in the time period (t3 to t4) is / are stored for further processing in the calibration process.

Der Modulationsstrom(J) wird weiter erhöht bis die Ionisationsspannung(Ui) wieder um etwa 10% unter dem Uimax-Wert liegt, was in Figur 3 zum Zeitpunkt(t4) der Fall ist. In der Zeitspanne(t3 bis t4) ist der Lambdawert der Verbrennung an sich ungünstig, was jedoch nicht ins Gewicht fällt, da diese Zeitspanne höchstens wenige Sekunden dauert.The modulation current (J) is increased further until the ionization voltage (Ui) is again approximately 10% below the Uimax value, which is the case in FIG. 3 at time (t4). In the period (t3 to t4), the lambda value of the combustion itself is unfavorable, but this is not important since this period lasts at most a few seconds.

Nach dem Zeitpunkt(t4) schaltet die Regelschaltung(9) wieder auf den oben beschriebenen Regelvorgang zurück. Dieser setzt ein, wenn sich beim Zeitpunkt(t5) die Ionisationsspannung(Ui), der Modulationsstrom(J) und der Gasdruck(p) stabilisiert haben.After the time (t4), the control circuit (9) switches back to the control process described above. This starts when the ionization voltage (Ui), the modulation current (J) and the gas pressure (p) have stabilized at time (t5).

Aus dem gespeicherten - neuen - Maximalwert der Ionisationsspannung bzw. aus den in der Zeitspanne(t3 bis t4) gewonnenen Meßwerten leitet die Regelschaltung(9) einen entsprechend angepaßten neuen Sollwert für die Ionisationsspannung ab.The control circuit (9) derives a correspondingly adapted new setpoint for the ionization voltage from the stored - new - maximum value of the ionization voltage or from the measurement values obtained in the period (t3 to t4).

Aufgrund der genannten kurzen Abtastperiode der Regelschaltung(9) wird sich auch in der Zeitspanne(t3 bis t4) eine Serie von Meßwerten ergeben. Gegenüber den übrigen Meßwerten der Serie stark abweichende Meßwerte werden unterdrückt, weil sie auf externen elektrischen Störimpulsen beruhen können.Because of the short sampling period of the control circuit (9), a series of measured values will also result in the time span (t3 to t4). Measured values that differ greatly from the other measured values in the series are suppressed because they can be based on external electrical interference pulses.

Um den Einfluß von nur vorübergehend auftretenden, zwar ungewöhnlichen, aber noch tolerierbaren Kalibrier-Meßwertserien zu vermindern, kann eine Mittelwertbildung zwischen der neuen Meßwertserie und den Meßwertserien vorhergehender Kalibriervorgänge vorgenommen werden.In order to reduce the influence of only temporarily occurring, but unusual, but still tolerable calibration measurement series, an average can be formed between the new measurement series and the measurement series of previous calibration processes.

Bevor mit dem neuen Kalibrierwert, der aus dem neuen Maximalwert der Ionisationsspannung oder aus der Meßwertserie abgeleitet sein kann, tatsächlich eine Neukalibrierung des Sollwertes der Ionisationsspannung vorgenommen wird, werden zwei Übergabekriterien von der Regelschaltung(9) geprüft.Before the new calibration value, which can be derived from the new maximum value of the ionization voltage or from the measured value series, is actually used to recalibrate the target value of the ionization voltage, two transfer criteria are checked by the control circuit (9).

Das erste Übergabekriterium erfaßt eine plötzliche Veränderung aller Komponenten des Regelkreises. Es ist erfüllt, wenn die Abweichung des neuen Kalibrierwertes von den früheren Kalibrierwerten ausreichend klein ist.The first transfer criterion detects a sudden change in all components of the control loop. It is fulfilled if the deviation of the new calibration value from the previous calibration values is sufficiently small.

Das zweite Übergabekriterium erfaßt eine "schleichende Drift" des Systems (Brenner-Regelung), das bei Abweichung von den herstellerseitig vorgesehenen Werten ausreichend klein ist.The second transfer criterion detects a "creeping drift" of the system (burner control), which is sufficiently small in the event of a deviation from the values provided by the manufacturer.

Nur wenn beide Übergabekriterien erfüllt sind, wird der Brennerbetrieb mit der Neukalibrierung fortgesetzt. Ist eines der Übergabekriterien nicht erfüllt, dann wird der Brennerbetrieb zunächst durch eine Regelabschaltung und nach mehrmaliger Wiederholung durch eine Störabschaltung unterbrochen.The burner operation will only continue with the recalibration if both transfer criteria are met. If one of the transfer criteria is not met, the burner operation is first interrupted by a control shutdown and after repeated repetition by a lockout.

Claims (7)

Verfahren zur Regelung eines Gasbrenners, insbesondere Gasgebläsebrenners, mit einer Meßelektrode, insbesondere Ionisations-Elektrode, die eine von der Verbrennungstemperatur bzw. dem Lambda-Wert abgeleitete elektrische Größe (Ionisationssignal) an eine Regelschaltung legt, welche diese Größe mit einem gewählten elektrischen Sollwert vergleicht und das Gas-Luft-Verhältnis (Lambdawert) auf einen entsprechenden Lambda-Sollwert einstellt,
dadurch gekennzeichnet,
daß nach einer gewissen Betriebszeit oder in regelmäßigen Intervallen zwangsweise ein Kalibrierungszyklus durchfahren wird, in dem der Lambda- Wert von einem Wert > 1 reduziert wird und in dem die sich ergebende elektrische Größe (Ionisationssignal) gemessen wird und ihr Maximalwert(A,B,C) gespeichert wird, und daß mit diesem Maximalwert der elektrische Sollwert nachgestellt wird, damit die Regelschaltung auf den gleichen Lambda-Sollwert regelt.
Method for controlling a gas burner, in particular a gas fan burner, with a measuring electrode, in particular an ionization electrode, which applies an electrical variable (ionization signal) derived from the combustion temperature or the lambda value to a control circuit which compares this variable with a selected electrical setpoint and sets the gas-air ratio (lambda value) to a corresponding lambda setpoint,
characterized,
that after a certain operating time or at regular intervals, a calibration cycle is forcibly carried out, in which the lambda value is reduced from a value> 1 and in which the resulting electrical variable (ionization signal) is measured and its maximum value (A, B, C ) is stored and that the electrical setpoint is adjusted with this maximum value so that the control circuit regulates to the same lambda setpoint.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß ein Kalibrierungszyklus jeweils nach einer bestimmten Anzahl von Betriebsstunden oder Einschaltungen des Gasbrenners eingeleitet wird.
Method according to claim 1,
characterized,
that a calibration cycle is initiated after a certain number of operating hours or switch-on of the gas burner.
Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß dann, wenn der Maximalwert (A,B,C) außerhalb eines vorbestimmten Fensters(F) liegt, ein Störungssignal auftritt.
The method of claim 1 or 2,
characterized,
that if the maximum value (A, B, C) is outside a predetermined window (F), a fault signal occurs.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß im Kalibrierungszyklus der Lambda-Wert von einem Wert > 1 bis zu einem Wert unter 1 durchfahren wird.
Method according to one of the preceding claims,
characterized,
that the lambda value is traversed from a value> 1 to a value below 1 in the calibration cycle.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß im Kalibrierungszyklus der Lambda-Wert > 1 wenigstens so groß ist wie der einstellbare Lambda-Sollwert.
Method according to one of the preceding claims,
characterized,
that the lambda value> 1 in the calibration cycle is at least as large as the adjustable lambda setpoint.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß in jedem Kalibrierzyklus das Steuersignal(J) für ein Gasmagnetventil(3') zunächst auf einen für eine Vorerhitzung der Ionisationselektrode(4) geeigneten Wert gebracht wird und danach das Steuersignal(J) erhöht wird, bis der Maximalwert des Ionisationssignals(Ui) durchfahren ist und der sich ergebende Wert zur Kalibrierung ausgewertet wird.
Method according to one of the preceding claims,
characterized,
that in each calibration cycle the control signal (J) for a gas solenoid valve (3 ') is first brought to a value suitable for preheating the ionization electrode (4) and then the control signal (J) is increased until the maximum value of the ionization signal (Ui) passes through and the resulting value is evaluated for calibration.
Schaltung zur Regelung eines Gasbrenners, insbesondere Gasgebläsebrenners mit einer Meßelektrode, insbesondere Ionisations-Elektrode, die eine der Verbrennungstemperatur (Lambda-Wert) entsprechende elektrische Meßgröße (Ionisationssignal) an die Regelschaltung legt, wobei in der Regelschaltung ein Vergleicher die jeweilige elektrische Meßgröße (Ionisationssignal) mit einem Sollwertgeber vergleicht und das Gas-Luft-Verhältnis auf einen Lambda-Sollwert regelt,
dadurch gekennzeichnet,
daß ein Umschalter(13) die Regelung unterbricht und ein Rampengenerator(22) das Gas-Luft-Verhältnis von einem Lambda-Wert > 1 ausgehend reduziert, wobei die elektrische Meßgröße(U) eine Kurve (I,II,III) durchläuft, und daß eine Erkennungs- und Speicherschaltung(23,24) den Wert der Meßgröße im Maximum (A,B,C) der Kurve(I,II,III) erfaßt und speichert und den Sollwertgeber(11) auf diesen Wert als Grundwert justiert.
Circuit for regulating a gas burner, in particular a gas fan burner with a measuring electrode, in particular an ionization electrode, which applies an electrical measured variable (ionization signal) corresponding to the combustion temperature (lambda value) to the control circuit, a comparator in the control circuit comparing the respective electrical measured variable (ionization signal) compares with a setpoint generator and regulates the gas-air ratio to a lambda setpoint,
characterized,
that a changeover switch (13) interrupts the control and a ramp generator (22) reduces the gas-air ratio from a lambda value> 1, the electrical measured variable (U) passing through a curve (I, II, III), and that a detection and storage circuit (23,24) the The value of the measured variable in the maximum (A, B, C) of the curve (I, II, III) is recorded and stored and the setpoint generator (11) is adjusted to this value as the basic value.
EP96115721A 1995-10-25 1996-10-01 Method and circuit for controlling a gas burner Expired - Lifetime EP0770824B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19539568 1995-10-25
DE19539568A DE19539568C1 (en) 1995-10-25 1995-10-25 Gas burner regulation system
DE19618573 1996-05-09
DE19618573A DE19618573C1 (en) 1996-05-09 1996-05-09 Gas burner regulating method controlled by ionisation electrode signal

Publications (3)

Publication Number Publication Date
EP0770824A2 true EP0770824A2 (en) 1997-05-02
EP0770824A3 EP0770824A3 (en) 1998-04-15
EP0770824B1 EP0770824B1 (en) 2000-01-26

Family

ID=26019737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96115721A Expired - Lifetime EP0770824B1 (en) 1995-10-25 1996-10-01 Method and circuit for controlling a gas burner

Country Status (5)

Country Link
US (1) US5924859A (en)
EP (1) EP0770824B1 (en)
AT (1) ATE189301T1 (en)
CA (1) CA2188616C (en)
DE (1) DE59604283D1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916895A3 (en) * 1997-11-17 1999-09-22 Robert Bosch Gmbh Method for controlling an atmospheric gas burner for heaters, especially for water heaters
DE19854824C1 (en) * 1998-11-27 2000-06-29 Stiebel Eltron Gmbh & Co Kg Process and circuit for control of a gas burner uses a lambda sensor to control gas supply
DE10057225A1 (en) * 2000-11-18 2002-06-06 Buderus Heiztechnik Gmbh Regulating and control system for gas burner has ionization detector and lambda sensor following given program after ignition
DE10058417A1 (en) * 2000-11-24 2002-06-20 Buderus Heiztechnik Gmbh Method of operating a gas-burner e.g. for heating appliances, involves safety switch-off when specified threshold value is not attained
EP1002997A3 (en) * 1998-11-20 2003-01-15 G. Kromschröder Aktiengesellschaft Method for controlling a fuel/air ratio of full premix gas burner
EP1293727A1 (en) * 2001-09-13 2003-03-19 Siemens Building Technologies AG Control apparatus for a burner and a method for adjustment
DE10057234C2 (en) * 2000-11-18 2003-04-10 Buderus Heiztechnik Gmbh Method of controlling a gas burner for a heater
DE10057224C2 (en) * 2000-11-18 2003-04-17 Buderus Heiztechnik Gmbh Procedure for automatic function check in a gas / air compound control
DE10111077C2 (en) * 2001-03-08 2003-11-06 Bosch Gmbh Robert Method for regulating a burner of a gas combustion device
DE19839160B4 (en) * 1998-08-28 2004-12-23 Stiebel Eltron Gmbh & Co. Kg Method and circuit for regulating a gas burner
DE10341543A1 (en) * 2003-09-09 2005-04-28 Honeywell Bv Control method for gas burners
WO2006000367A1 (en) * 2004-06-23 2006-01-05 Ebm-Papst Landshut Gmbh Method for adjusting the excess air coefficient on a firing apparatus, and firing apparatus
DE102004055715B4 (en) * 2004-06-23 2007-03-22 Ebm-Papst Landshut Gmbh Method for adjusting the air ratio at a firing device and firing device
EP1811230A2 (en) * 2006-01-19 2007-07-25 Vaillant GmbH Method for controlling the air-fuel ratio of a fuel operated burner
DE102004059494C5 (en) * 2004-12-10 2008-07-24 Baxi Innotech Gmbh Method for determining an air ratio in a burner for a fuel cell heater and fuel cell heater
DE102008027010A1 (en) 2007-06-11 2008-12-18 Vaillant Gmbh Method for checking the ionization electrode signal in burners
EP2405198A1 (en) * 2010-07-08 2012-01-11 Vaillant GmbH Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner
WO2012041777A1 (en) * 2010-09-29 2012-04-05 Robert Bosch Gmbh Method for calibrating, validating and aligning a lambda probe
EP2466204A1 (en) * 2010-12-16 2012-06-20 Siemens Aktiengesellschaft Regulating device for a burner assembly
CN103443547A (en) * 2010-12-21 2013-12-11 罗伯特·博世有限公司 Method for stabilizing an operating behavior of a gas blower burner
EP2685167A1 (en) * 2012-07-13 2014-01-15 Honeywell Technologies Sarl Method and controller for operating a gas burner
EP2685168A1 (en) * 2012-07-13 2014-01-15 Honeywell Technologies Sarl Method and controller for operating a gas burner
CN105987397A (en) * 2015-03-23 2016-10-05 霍尼韦尔技术有限公司 Method for operating a gas burner
EP3182007A1 (en) * 2015-12-18 2017-06-21 Robert Bosch Gmbh Heating device system and method with a heating device system
EP3290798A1 (en) * 2016-09-02 2018-03-07 Robert Bosch GmbH Method for controlling a fuel/air ratio in a heating system and a control unit and a heating system
EP3290802A1 (en) * 2016-09-02 2018-03-07 Robert Bosch GmbH Method for controlling an inspection time in a heating system and a control unit and a heating system
EP3382277A1 (en) 2017-03-27 2018-10-03 Siemens Aktiengesellschaft Detection of a cover
EP3156730B1 (en) * 2015-10-12 2019-03-20 MHG Heiztechnik GmbH Method of calibrating a burner device for liquid fuels and control device for a burner device
WO2019091612A1 (en) * 2017-11-08 2019-05-16 Ebm-Papst Landshut Gmbh Method for controlling a combustion-gas operated heating device
DE102004048986B4 (en) 2003-10-08 2019-08-22 Vaillant Gmbh Method for controlling a gas burner
DE102019100467A1 (en) * 2019-01-10 2020-07-16 Vaillant Gmbh Process for controlling the combustion air ratio on the burner of a heater
EP3290796B1 (en) * 2016-09-02 2021-01-27 Robert Bosch GmbH Method for controlling a fuel/air ratio in a heating system and a control unit and a heating system
US11608984B1 (en) 2017-11-30 2023-03-21 Brunswick Corporation Systems for avoiding harmonic modes of gas burners
US11608983B2 (en) * 2020-12-02 2023-03-21 Brunswick Corporation Gas burner systems and methods for calibrating gas burner systems
WO2023110144A1 (en) * 2021-12-14 2023-06-22 Truma Gerätetechnik GmbH & Co. KG Method for controlling a burner and burner arrangement having a burner
IT202100032360A1 (en) 2021-12-23 2023-06-23 Sit Spa METHOD AND APPARATUS FOR MONITORING AND CONTROL OF COMBUSTION IN FUEL GAS BURNERS
US11940147B2 (en) 2022-06-09 2024-03-26 Brunswick Corporation Blown air heating system

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100024244A1 (en) * 1999-05-20 2010-02-04 Potter Gary J Heater and controls for extraction of moisture and biological organisms from structures
US7568908B2 (en) * 1999-05-20 2009-08-04 Cambridge Engineering, Inc. Low fire start control
DE10003819C1 (en) * 2000-01-28 2001-05-17 Honeywell Bv Gas burner operating process, involving use of ionization signal and comparing differences in its readings
DE10025769A1 (en) * 2000-05-12 2001-11-15 Siemens Building Tech Ag Control device for a burner
DE10030063C2 (en) * 2000-06-19 2003-03-20 Honeywell Bv Control procedures for gas burners
DE10040358B4 (en) * 2000-08-16 2006-03-30 Honeywell B.V. Control method for gas burners
DE10113468A1 (en) * 2000-09-05 2002-03-14 Siemens Building Tech Ag Burner control unit employs sensor for comparative measurement during control interval and produces alarm signal as function of difference
DE10054840A1 (en) * 2000-11-04 2002-08-08 Xcellsis Gmbh Method and device for starting a reactor in a gas generation system
EP1304527B1 (en) * 2001-10-18 2004-12-15 Honeywell B.V. Method for controlling a boiler
AT411189B (en) 2002-01-17 2003-10-27 Vaillant Gmbh METHOD FOR CONTROLLING A GAS BURNER
DE10300602B4 (en) * 2002-01-17 2012-01-05 Vaillant Gmbh Method for controlling a gas burner
ITAN20020038A1 (en) * 2002-08-05 2004-02-06 Merloni Termosanitari Spa Ora Ariston Thermo Spa LAMBDA VIRTUAL SENSOR COMBUSTION CONTROL SYSTEM.
EP1396681B1 (en) * 2002-09-04 2005-12-07 Siemens Schweiz AG Burner controller and method of setting a burner controller
DE102004055716C5 (en) * 2004-06-23 2010-02-11 Ebm-Papst Landshut Gmbh Method for controlling a firing device and firing device (electronic composite I)
ITMO20050204A1 (en) 2005-08-02 2007-02-03 Merloni Termosanitari Spa METHOD OF CONTROL OF COMBUSTION WITH GUIDED SEARCH OF THE SET POINT
AT505442B1 (en) 2007-07-13 2009-07-15 Vaillant Austria Gmbh METHOD FOR FUEL GAS AIR ADJUSTMENT FOR A FUEL-DRIVEN BURNER
EP2359063A1 (en) * 2008-11-25 2011-08-24 UTC Fire & Security Corporation Automated setup process for metered combustion control systems
DE102010008908B4 (en) * 2010-02-23 2018-12-20 Robert Bosch Gmbh A method of operating a burner and the air-frequency controlled modulating a burner power
IT1399076B1 (en) * 2010-03-23 2013-04-05 Idea S R L Ora Idea S P A DEVICE AND METHOD OF CONTROL OF THE COMBUSTIBLE AIR FLOW OF A BURNER IN GENERAL
US8821154B2 (en) * 2010-11-09 2014-09-02 Purpose Company Limited Combustion apparatus and method for combustion control thereof
ITMI20110411A1 (en) * 2011-03-15 2012-09-16 Bertelli & Partners Srl PERFECTED METHOD OF CONTROL OF A GAS APPLIANCE OR BOILER
ITMI20120427A1 (en) 2012-03-19 2013-09-20 Bertelli & Partners Srl PERFECTED METHOD FOR THE ELECTRONIC ADJUSTMENT OF A FUEL MIXTURE, FOR EXAMPLE GAS, SENT TO A BURNER
US8726539B2 (en) 2012-09-18 2014-05-20 Cambridge Engineering, Inc. Heater and controls for extraction of moisture and biological organisms from structures
ITPD20120281A1 (en) * 2012-09-27 2014-03-28 Sit La Precisa S P A Con Socio Uni Co METHOD FOR THE MONITORING AND CONTROL OF COMBUSTION IN COMBUSTIBLE GAS BURNERS AND COMBUSTION CONTROL SYSTEM OPERATING ACCORDING TO THIS METHOD
DE102012023606B4 (en) * 2012-12-04 2019-02-21 Robert Bosch Gmbh Method for controlling combustion in a gas or oil burner
WO2014140687A1 (en) 2013-03-11 2014-09-18 Idea S.P.A. Burner combustion control method and device
DE102013214610A1 (en) * 2013-07-26 2015-01-29 E.On New Build & Technology Gmbh Method and device for determining characteristic values of fuel gases
DE102016123041B4 (en) * 2016-11-29 2023-08-10 Webasto SE Fuel-powered vehicle heater and method of operating a fuel-powered vehicle heater
JP6950564B2 (en) * 2018-02-19 2021-10-13 株式会社ノーリツ Combustion device
US11441772B2 (en) 2018-07-19 2022-09-13 Brunswick Corporation Forced-draft pre-mix burner device
EP3690318B1 (en) 2019-01-29 2021-11-24 Vaillant GmbH Method for regulating a fuel-air mixture in a heating device
DE102019119186A1 (en) 2019-01-29 2020-07-30 Vaillant Gmbh Method and device for controlling a fuel gas-air mixture in a heater
DE102019107367A1 (en) 2019-03-22 2020-09-24 Vaillant Gmbh Procedure for checking the presence of a non-return valve in a heating system
DE102019110977A1 (en) * 2019-04-29 2020-10-29 Ebm-Papst Landshut Gmbh Method for checking a gas mixture sensor in a fuel gas operated heater
DE102019003451A1 (en) 2019-05-16 2020-11-19 Truma Gerätetechnik GmbH & Co. KG Method for monitoring a burner and / or a burning behavior of a burner and burner arrangement
DE102019119214A1 (en) 2019-07-16 2021-01-21 Vaillant Gmbh Method and device for recalibrating a measuring system for regulating a fuel gas-air mixture in a heating device
DE102020104210A1 (en) 2020-02-18 2021-08-19 Vaillant Gmbh Method and device for regulating a fuel gas-air mixture in a heating device with variable power
DE102020127558B4 (en) 2020-10-20 2023-06-29 Viessmann Climate Solutions Se Heating system and method for operating a heating system
DE102020129816A1 (en) 2020-11-12 2022-05-12 Vaillant Gmbh Arrangements and methods for measuring ionization in a combustion chamber of a premix burner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157725A (en) * 1980-05-07 1981-12-05 Hitachi Ltd Proportional combustion device
EP0104586A2 (en) * 1982-09-23 1984-04-04 Honeywell Inc. Gas burner control system
NL8403840A (en) * 1984-12-18 1986-07-16 Tno Control for gas-fired boiler - uses ionisation detector and programmed logic for highest fuel economy
DE4121924A1 (en) * 1990-07-25 1992-02-06 Carrier Corp METHOD AND DEVICE FOR OPTIMIZING THE FUEL-AIR CONDITION IN THE FUEL GAS SUPPLY OF A RADIATION BURNER

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349623A (en) * 1986-08-18 1988-03-02 Matsushita Electric Ind Co Ltd Combustion device
FR2638819A1 (en) * 1988-11-10 1990-05-11 Vaillant Sarl METHOD AND DEVICE FOR PREPARING A COMBUSTIBLE-AIR MIXTURE FOR COMBUSTION
DE4433425C2 (en) * 1994-09-20 1998-04-30 Stiebel Eltron Gmbh & Co Kg Control device for setting a gas-combustion air mixture in a gas burner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157725A (en) * 1980-05-07 1981-12-05 Hitachi Ltd Proportional combustion device
EP0104586A2 (en) * 1982-09-23 1984-04-04 Honeywell Inc. Gas burner control system
NL8403840A (en) * 1984-12-18 1986-07-16 Tno Control for gas-fired boiler - uses ionisation detector and programmed logic for highest fuel economy
DE4121924A1 (en) * 1990-07-25 1992-02-06 Carrier Corp METHOD AND DEVICE FOR OPTIMIZING THE FUEL-AIR CONDITION IN THE FUEL GAS SUPPLY OF A RADIATION BURNER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 006, no. 043 (M-117), 17.März 1982 & JP 56 157725 A (HITACHI LTD), 5.Dezember 1981, *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916895A3 (en) * 1997-11-17 1999-09-22 Robert Bosch Gmbh Method for controlling an atmospheric gas burner for heaters, especially for water heaters
DE19839160B4 (en) * 1998-08-28 2004-12-23 Stiebel Eltron Gmbh & Co. Kg Method and circuit for regulating a gas burner
EP1002997A3 (en) * 1998-11-20 2003-01-15 G. Kromschröder Aktiengesellschaft Method for controlling a fuel/air ratio of full premix gas burner
DE19854824C1 (en) * 1998-11-27 2000-06-29 Stiebel Eltron Gmbh & Co Kg Process and circuit for control of a gas burner uses a lambda sensor to control gas supply
DE10057224C2 (en) * 2000-11-18 2003-04-17 Buderus Heiztechnik Gmbh Procedure for automatic function check in a gas / air compound control
DE10057225A1 (en) * 2000-11-18 2002-06-06 Buderus Heiztechnik Gmbh Regulating and control system for gas burner has ionization detector and lambda sensor following given program after ignition
DE10057225C2 (en) * 2000-11-18 2003-04-17 Buderus Heiztechnik Gmbh Method of operating a gas burner for a heater
DE10057234C2 (en) * 2000-11-18 2003-04-10 Buderus Heiztechnik Gmbh Method of controlling a gas burner for a heater
DE10058417A1 (en) * 2000-11-24 2002-06-20 Buderus Heiztechnik Gmbh Method of operating a gas-burner e.g. for heating appliances, involves safety switch-off when specified threshold value is not attained
DE10058417C2 (en) * 2000-11-24 2003-04-24 Buderus Heiztechnik Gmbh Method of operating a gas burner for a heater
DE10111077C2 (en) * 2001-03-08 2003-11-06 Bosch Gmbh Robert Method for regulating a burner of a gas combustion device
WO2003023283A1 (en) * 2001-09-13 2003-03-20 Siemens Building Technologies Ag Control device for a burner and adjusting method
EP1293727A1 (en) * 2001-09-13 2003-03-19 Siemens Building Technologies AG Control apparatus for a burner and a method for adjustment
DE10341543A1 (en) * 2003-09-09 2005-04-28 Honeywell Bv Control method for gas burners
DE102004048986B4 (en) 2003-10-08 2019-08-22 Vaillant Gmbh Method for controlling a gas burner
WO2006000367A1 (en) * 2004-06-23 2006-01-05 Ebm-Papst Landshut Gmbh Method for adjusting the excess air coefficient on a firing apparatus, and firing apparatus
US7922481B2 (en) 2004-06-23 2011-04-12 EBM—Papst Landshut GmbH Method for setting the air ratio on a firing device and a firing device
DE102004055715B4 (en) * 2004-06-23 2007-03-22 Ebm-Papst Landshut Gmbh Method for adjusting the air ratio at a firing device and firing device
DE102004055715C5 (en) * 2004-06-23 2014-02-06 Ebm-Papst Landshut Gmbh Method for setting operating parameters on a firing device and firing device
DE102004059494C5 (en) * 2004-12-10 2008-07-24 Baxi Innotech Gmbh Method for determining an air ratio in a burner for a fuel cell heater and fuel cell heater
EP1811230A2 (en) * 2006-01-19 2007-07-25 Vaillant GmbH Method for controlling the air-fuel ratio of a fuel operated burner
EP1811230B1 (en) * 2006-01-19 2016-01-06 Vaillant GmbH Method for controlling the air-fuel ratio of a fuel operated burner
DE102008027010A1 (en) 2007-06-11 2008-12-18 Vaillant Gmbh Method for checking the ionization electrode signal in burners
EP2017531A2 (en) 2007-06-11 2009-01-21 Vaillant GmbH Method for monitoring an ionisation electrode signal in burners
AT505244B1 (en) * 2007-06-11 2009-08-15 Vaillant Austria Gmbh METHOD FOR CHECKING IONIZATION ELECTRODE SIGNAL IN BURNERS
EP2017531A3 (en) * 2007-06-11 2013-03-13 Vaillant GmbH Method for monitoring an ionisation electrode signal in burners
EP2405198A1 (en) * 2010-07-08 2012-01-11 Vaillant GmbH Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner
WO2012041777A1 (en) * 2010-09-29 2012-04-05 Robert Bosch Gmbh Method for calibrating, validating and aligning a lambda probe
JP2012127644A (en) * 2010-12-16 2012-07-05 Siemens Ag Control facility for burner system
US9651255B2 (en) 2010-12-16 2017-05-16 Siemens Aktiengesellschaft Control facility for a burner system
EP2466204A1 (en) * 2010-12-16 2012-06-20 Siemens Aktiengesellschaft Regulating device for a burner assembly
CN103443547B (en) * 2010-12-21 2015-11-25 罗伯特·博世有限公司 For the method for the operation action of stable gas blast formula burner
CN103443547A (en) * 2010-12-21 2013-12-11 罗伯特·博世有限公司 Method for stabilizing an operating behavior of a gas blower burner
EP2685168A1 (en) * 2012-07-13 2014-01-15 Honeywell Technologies Sarl Method and controller for operating a gas burner
EP2685167A1 (en) * 2012-07-13 2014-01-15 Honeywell Technologies Sarl Method and controller for operating a gas burner
CN105987397A (en) * 2015-03-23 2016-10-05 霍尼韦尔技术有限公司 Method for operating a gas burner
CN105987397B (en) * 2015-03-23 2019-04-19 霍尼韦尔技术有限公司 Method for operating gas burner
EP3156730B1 (en) * 2015-10-12 2019-03-20 MHG Heiztechnik GmbH Method of calibrating a burner device for liquid fuels and control device for a burner device
EP3182007A1 (en) * 2015-12-18 2017-06-21 Robert Bosch Gmbh Heating device system and method with a heating device system
EP3290798A1 (en) * 2016-09-02 2018-03-07 Robert Bosch GmbH Method for controlling a fuel/air ratio in a heating system and a control unit and a heating system
EP3290802A1 (en) * 2016-09-02 2018-03-07 Robert Bosch GmbH Method for controlling an inspection time in a heating system and a control unit and a heating system
EP3290796B1 (en) * 2016-09-02 2021-01-27 Robert Bosch GmbH Method for controlling a fuel/air ratio in a heating system and a control unit and a heating system
US11231174B2 (en) 2017-03-27 2022-01-25 Siemens Aktiengesellschaft Detecting blockage of a duct of a burner assembly
EP3382277A1 (en) 2017-03-27 2018-10-03 Siemens Aktiengesellschaft Detection of a cover
CN110573800A (en) * 2017-11-08 2019-12-13 依必安派特兰茨胡特有限公司 Method for controlling a gas-operated heating device
WO2019091612A1 (en) * 2017-11-08 2019-05-16 Ebm-Papst Landshut Gmbh Method for controlling a combustion-gas operated heating device
CN110573800B (en) * 2017-11-08 2021-06-15 依必安派特兰茨胡特有限公司 Method for controlling a gas-operated heating device
US11608984B1 (en) 2017-11-30 2023-03-21 Brunswick Corporation Systems for avoiding harmonic modes of gas burners
DE102019100467A1 (en) * 2019-01-10 2020-07-16 Vaillant Gmbh Process for controlling the combustion air ratio on the burner of a heater
US11608983B2 (en) * 2020-12-02 2023-03-21 Brunswick Corporation Gas burner systems and methods for calibrating gas burner systems
WO2023110144A1 (en) * 2021-12-14 2023-06-22 Truma Gerätetechnik GmbH & Co. KG Method for controlling a burner and burner arrangement having a burner
IT202100032360A1 (en) 2021-12-23 2023-06-23 Sit Spa METHOD AND APPARATUS FOR MONITORING AND CONTROL OF COMBUSTION IN FUEL GAS BURNERS
US11940147B2 (en) 2022-06-09 2024-03-26 Brunswick Corporation Blown air heating system

Also Published As

Publication number Publication date
EP0770824A3 (en) 1998-04-15
ATE189301T1 (en) 2000-02-15
DE59604283D1 (en) 2000-03-02
US5924859A (en) 1999-07-20
CA2188616C (en) 2001-01-09
CA2188616A1 (en) 1997-04-26
EP0770824B1 (en) 2000-01-26

Similar Documents

Publication Publication Date Title
EP0770824B1 (en) Method and circuit for controlling a gas burner
EP0806610B1 (en) Method for operating a gas burner
DE19539568C1 (en) Gas burner regulation system
DE19618573C1 (en) Gas burner regulating method controlled by ionisation electrode signal
EP1154202B1 (en) Control device for a burner
EP2594848B1 (en) Method for controlling a firing device and firing device
EP1293727B1 (en) Control apparatus for a burner and a method for adjustment
DE4433425A1 (en) Control appts. for adjusting gas to air mixture in gas burner esp. gas torch burner
EP0030736A2 (en) Device for controlling the combustion mixture of a burner
EP3690318B1 (en) Method for regulating a fuel-air mixture in a heating device
EP3824366B1 (en) Method for the closed-loop control of a gas mixture using a gas sensor, a combustion-gas sensor and a gas-mixture sensor
DE202019100263U1 (en) Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor
EP0833106B1 (en) Method and device for operation optimisation of a gas burner
DE102019119186A1 (en) Method and device for controlling a fuel gas-air mixture in a heater
EP1186831A1 (en) Apparatus controlling the air/fuel ratio of a burner
DE19839160B4 (en) Method and circuit for regulating a gas burner
EP1002997B1 (en) Method for controlling a fuel/air ratio of full premix gas burner
WO2020038919A1 (en) Heating device and method for regulating a fan-operated gas burner
DE19627857C2 (en) Process for operating a gas fan burner
DE19854824C1 (en) Process and circuit for control of a gas burner uses a lambda sensor to control gas supply
EP0615095B1 (en) Burner controller
DE19632983A1 (en) Control system especially for forced draught gas fired burner
EP3767174B1 (en) Method and device for recalibrating a measuring system for regulating a fuel-air mixture in a heating device
EP0614051B1 (en) Burner automat
EP1176364B1 (en) Combustion device and method for controlling a combustion device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 961001;LV PAYMENT 961001;SI PAYMENT 961001

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 961001;LV PAYMENT 961001;SI PAYMENT 961001

17P Request for examination filed

Effective date: 19980429

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990316

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 19961001;LV PAYMENT 19961001;SI PAYMENT 19961001

LTIE Lt: invalidation of european patent or patent extension
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000126

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000126

REF Corresponds to:

Ref document number: 189301

Country of ref document: AT

Date of ref document: 20000215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59604283

Country of ref document: DE

Date of ref document: 20000302

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001001

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 15.06.2001 REAKTIVIERT WORDEN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 59604283

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20151021

Year of fee payment: 20

Ref country code: IT

Payment date: 20151028

Year of fee payment: 20

Ref country code: GB

Payment date: 20151021

Year of fee payment: 20

Ref country code: DE

Payment date: 20151022

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151023

Year of fee payment: 20

Ref country code: AT

Payment date: 20151022

Year of fee payment: 20

Ref country code: BE

Payment date: 20151019

Year of fee payment: 20

Ref country code: NL

Payment date: 20151021

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59604283

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20160930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 189301

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161001