EP0767290B1 - Verfahren zum Betrieb einer Kraftwerksanlage - Google Patents
Verfahren zum Betrieb einer Kraftwerksanlage Download PDFInfo
- Publication number
- EP0767290B1 EP0767290B1 EP96810597A EP96810597A EP0767290B1 EP 0767290 B1 EP0767290 B1 EP 0767290B1 EP 96810597 A EP96810597 A EP 96810597A EP 96810597 A EP96810597 A EP 96810597A EP 0767290 B1 EP0767290 B1 EP 0767290B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steam
- heat
- turbine
- stage
- combustion chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
- F01K23/106—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
Definitions
- the present invention relates to a method of operation a power plant according to the preamble of claim 1.
- a power plant which consists of a gas turbine group, a downstream heat recovery steam generator and a subsequent steam circuit
- a maximum efficiency to provide a supercritical steam process in the steam circuit has become known from CH-480 535.
- a mass flow of the gas turbine cycle medium is branched off and used recuperatively in the gas turbine for the purpose of optimal utilization of waste heat from the gas turbine group in the lower temperature range of the waste heat steam generator.
- Both the gas turbine and steam processes have sequential combustion. In the case of modern, preferably single-shaft, gas turbines, however, this configuration leads to an undesirable complication in terms of design.
- the document EP-A1-588 392 discloses a combination system for generating electrical Electricity, which consists of a steam and a gas turbine.
- this system from a combustion unit, an overheating unit, an economizer, a degassing unit various turbines and a humidification system.
- the Temperature in the economizer can be regulated in this way by varying the mass flow be that the temperature of the water is a few degrees below the evaporation temperature is set.
- the big premix burners which perform the function of main burners have the small premix burners that are the pilot burners of this combustion chamber, with respect to those flowing through it Burner air, i.e. the compressed air from the Compressor 1, in a size ratio to each other, that is determined on a case-by-case basis.
- Burner air i.e. the compressed air from the Compressor 1
- the pilot burners work as independent premix burners, whereby the air ratio remains almost constant.
- the Zuoder The main burner is switched off according to certain system-specific Requirements. Because the pilot burners as a whole Load range can be driven with an ideal mixture NOx emissions are very low even at partial load.
- Vortex centers also turn out to be extremely unstable lean operated main burners in the partial load range a very good burnout with low NOx emissions CO and UHC emissions achieved, i.e. the hot whorls of Pilot burners immediately penetrate the small swirls of the main burners on.
- the annular combustion chamber 2 consist of a number of individual tubular combustion chambers, which are also inclined, sometimes also helical, are arranged around the rotor axis. This ring combustion chamber 2, regardless of its design, will and can be geometric arranged so that they match the rotor length has virtually no influence.
- the hot gases 8 from this Annular combustion chamber 2 act on the immediately downstream one first turbine 3, whose caloric relaxing effect on the hot gases is deliberately kept to a minimum, i.e. this Turbine 3 is therefore not more than two rows of blades consist. With such a turbine 3 it will be necessary pressure equalization on the end faces for stabilization of the axial thrust.
- the partially relaxed in the turbine 3 Hot gases 9, which are directly in the second Combustion chamber 4 flow, have a for the reasons stated quite high temperature, preferably it is company-specific to be designed so that it is still around 1000 ° C.
- This second combustion chamber 4 essentially has the Shape of a coherent annular axial or quasi-axial Ring cylinder.
- This combustion chamber 4 can of course also from a number axially, quasi-axially or helically arranged and self-contained Combustion chambers exist.
- Combustion chamber 4 consisting of a single combustion chamber, so these are annular in the circumferential direction and radially Cylinder several not shown in the figure Dispose of fuel lances.
- This combustion chamber 4 has none Burner on: The combustion of one in from the turbine 3 upcoming partially released hot gases 9 injected fuel 13 happens here by self-ignition, as far as of course the temperature level permits such an operating mode.
- combustion chamber 4 with a gaseous Fuel for example natural gas
- a gaseous Fuel for example natural gas
- the turbine 3 still be very high, as set out above 1000 ° C, and of course also at part-load operation, which is a causal role in the design of this turbine 2 plays.
- a combustion chamber designed for self-ignition ensure it is extremely important that the flame front remains locally stable.
- this Combustion chamber 4 preferably on the inner and outer wall in Scheduled circumferential direction, a number of not shown Elements provided, which preferably in the axial direction are placed upstream of the fuel lances.
- the task of these elements is to create vortices which is a backflow zone, analogous to that in the already mentioned premix burners. Since this is Combustion chamber 4, due to the axial arrangement and the overall length, is a high-speed combustion chamber at which the average velocity of the working gases is greater 60 m / s, the vortex-generating elements must conform to the flow be formed. On the inflow side these preferably have a tetrahedral shape with inclined flow Areas exist.
- the vortex producing Elements can either be on the outer surface and / or on the Be placed inside. Of course, the vortex generating Elements also shifted axially to each other his.
- the liquid Auxiliary fuel injected accordingly, meets the Task to act as a kind of fuse, and enables also auto-ignition in the combustion chamber 4 when the partially relaxed hot gases 9 from the first turbine 3 a Temperature below the desired optimal level of Should be 1000 ° C.
- This precaution to ensure fuel oil Providing self-ignition proves of course, it is always particularly appropriate when the Gas turbine group is operated with a greatly reduced load.
- This arrangement also makes a decisive contribution to that the combustion chamber 4 have a minimal axial length can.
- the constant guarantee of autoignition are accordingly responsible for burning very quickly takes place, and the residence time of the fuel in the range of hot flame front remains minimal.
- the second between the outflow plane the first turbine 3 and the inflow level of the second turbine 5 running combustion chamber 4 has a minimum length.
- a gas turbine group can be provided whose Rotor shaft 39 is technically flawless due to its minimized length can be supported on two bearings.
- the power output the turbomachines are done via a compressor side coupled generator 15, which also serve as a starting motor can. After relaxation in the turbine 5, they still flow through with high calorific potential exhaust gases 11 a heat recovery steam generator 15, in which in heat exchange processes steam is generated in various ways, which then becomes the working medium of the downstream steam circuit.
- the calorically used exhaust gases then flow as Flue gases 38 outdoors.
- the feed water 34 which has a temperature of about 60 ° C at a 300 bar, is in A in the heat recovery steam generator 15 initiated and is there to steam of about 540 ° C can be thermally upgraded.
- the one in the economizer 15a 300 ° C heated feed water is divided into two in point B. Split streams.
- the one, here larger, partial water flow of 100% in the following tube bundle 15b supercritical high pressure steam 27 thermally processed. Thereby the exhaust gases 11 between points G and H, which symbolize the effective distance of the said tube bundle 15b, the majority of the heat energy is removed.
- a smaller partial water flow 35 is in the area of point B branched off, and via a throttle element 25 of an evaporation bottle 26 supplied, the pressure level of the saturated steam pressure of Corresponds to 150-200 ° C.
- the resulting steam is 37 fed to the medium pressure steam turbine 17 at a suitable point. That only served as a heat transfer medium for evaporation still hot residual water 36 is passed through another control device 24 passed into a feed water tank and degasser 22 in which in addition to preheating the condensate Another steam 33 is developed, the low-pressure steam turbine 18 is supplied at a suitable point.
- Fig. 2 shows the H / T diagram, i.e. the course and the in Fig. 1 already recognized significant points of the feed water preheating and steam generation and steam reheating a supercritical steam turbine process.
- the following reference symbol list becomes the respective reference symbol circumscribed this figure.
- the feed water is at A with, for example, 60 ° C 300 bar initiated, and it is supposed to F in steam of 540 ° C be thermally upgraded using gas turbine waste heat. to a first stage of expansion in the high pressure steam turbine, which leads up to 300 ° C, an intermediate overheating of D to E, also at 540 ° C.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
Eine solche Schaltung ist aus CH-480 535 bekanntgeworden. In dieser Schaltung wird zum Zweck einer optimalen Abwärmenutzung der Gasturbogruppe im unteren Temperaturbereich des Abhitzedampferzeugers ein Massenstrom des Gasturbinenkreislaufmittels abgezweigt und in der Gasturbine rekuperativ genutzt. Sowohl der Gasturbinen- als auch der Dampfprozess weisen eine sequentielle Verbrennung auf. Diese Konfiguration führt aber im Falle von modernen, vorzugsweise einwellig ausgelegten Gasturbinen zu einer unerwünschten Komplikation im konstruktiver Hinsicht.
- Fig. 1
- eine Schaltung einer Kraftwerksanlage und
- Fig. 2
- ein H/T-Diagramm dieser Schaltung gemäss Fig. 1.
- I.
- Gasturbogruppe
- II.
- Dampferzeugungsstufe
- III.
- Dampfkreislauf
- 1
- Verdichter
- 2
- Erste Brennkammer
- 3
- Erste Turbine
- 4
- Zweite Brennkammer
- 5
- Zweite Turbine
- 6
- Ansaugluft
- 7
- Verdichtete Luft
- 8
- Heissgase
- 9
- Teilenspannte Heissgase
- 10
- Heissgase
- 11
- Abgase
- 12
- Brennstoff
- 13
- Brennstoff
- 14
- Generator
- 15
- Abhitzedampferzeuger
- 15a
- Economizer, im unt. Temp.-Bereich op. Wärmetauschstufe
- 15b
- Rohrbündel für überkritischen Hochdruckdampf
- 15c
- Rohrbündel für zwischenüberhitzten Mitteldruckdampf
- 16
- Hochdruckdampfturbine
- 17
- Mitteldruckdampfturbine
- 18
- Niederdruckdampfturbine
- 19
- Generator
- 20
- Kondensator
- 21
- Förderpumpe
- 22
- Speisewasserbehälter und Entgaser
- 23
- Förderpumpe
- 24
- Regelorgan
- 25
- Regelorgan
- 26
- Ausdampfflasche
- 27
- Ueberkritischer Hochdruckdampf
- 28
- Expandierter Dampf aus 16
- 29
- Zwischenüberhitzter Mitteldruckdampf
- 30
- Abdampf aus 17 in 18
- 31a
- Entspannter Dampf aus 18
- 31b
- Entspannter Dampf aus 18
- 32
- Kondensat
- 33
- Dampf aus 22 in 18
- 34
- Speisewasser
- 35
- Kleiner Teilwasserstrom
- 36
- Heisses Restwasser von 26 in 22
- 37
- Dampf aus 26
- 38
- Rauchgase
- 39
- Rotorwelle
- 40
- Ueberkritische Dampferzeugungskurve
- 41
- Resultante
- 11/38
- Abkühlungskurve
- A
- Speisewasser nach 22
- B
- Entnahmestelle Druckwasser zu 26
- B-C
- Summe von B-F + D-E, Ueberhitzung und Zwischenüberh.
- D-E
- Zwischenüberhitzung in 15c
- F
- Stelle überkritischer Hochdruckdampf
- G
- Eintritt Abgase in 15
- H
- Rauchgastemperatur an Entnahmestelle B
- I
- Austritt Abgase aus 15 = Rauchgase
- J
- Fiktiver Rauchgasendwert ohne Entnahme in B
- A-B
- Allgemein über 100%, im Beispiel 180% Wasserstrom
- B-F
- 100% Wasserstrom
Claims (6)
- Verfahren zum Betrieb einer Kraftwerksanlage, im wesentlichen bestehend aus einer Gasturbogruppe (I), einer der Gasturbogruppe nachgeschalteten Abhitzedampferzeugerger (15) und einem dem Abhitzedampferzeuger (15) nachgeschalteten Dampfkreislauf (III), wobei die Gasturbogruppe (I) aus mindestens einer Verdichtereinheit, (1), mindestens einer Brennkammer (2, 4), mindestens einer Turbine (3, 5) und mindestens einem Generator (14) besteht, wobei die Abgase aus der letztenTurbine (5) den Abhitzedampferzeuger (15) durchströmen, in welchem die Erzeugung mindestens eines Dampfes zum Betreiben mindestens einer Dampfturbine (16, 17, 18) des Dampfkreislaufs vonstatten geht,
wobei in einer im unteren Temperaturbereich operierenden Wärmetauschstufe (15a) des Abhitzedampferzeugers (15) eine über 100% erhöhte Flüssigkeitsmenge zirkuliert,
wobei 100% jene Nennwassermenge fixiert, die in Abhängigkeit zu der von den Abgasen (11) angebotenen Energie steht, wobei der Anteil über 100% dieser Flüssigkeitsmenge am Ende dieser Wärmetauschstufe (15a) abgezweigt und in mindestens einer Druckstufe (26) ausgedampft wird, wobei ein hierin entstandener Dampf (37) einer Dampfturbine (17) an passender Stelle zugeführt wird, wobei eine noch heisse Flüssigkeitsmenge (36) aus der Druckstufe (26) einem Speisewasserbehälter und Entgaser (22) zugeleitet wird, und wobei ein hierin entstandener Dampf (33) einer weiteren Dampfturbine (18) an passender Stelle zugeleitet wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
die Gasturbogruppe (I.) mit einer sequentiellen Verbrennung betrieben wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
die 100%ige Flüssigkeitsmenge in einer unmittelbar der Wärmetauschstufe (15a) im unteren Temperaturbereich folgenden Wärmetauschstufe (15b) zu überkritischem Dampf (27) aufbereitet wird, der eine weitere Dampfturbine (16) beaufschlagt, dass der in dieser Dampfturbine (16) expandierte Dampf (28) in den Abhitzedampferzeuger (15) rückgeführt wird, dergestalt, dass er dort in einer weiteren Wärmetauschstufe (15c) zu zwischenüberhitztem Dampf (29) aufbereitet wird, der anschliessend eine entsprechende Druckstufe einer nachgeschalteten Dampfturbine (17) beaufschlägt. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
der Speisewasserbehälter und Entgaser (22) als alleinige Ausdampfstufe des Dampfkreislaufes (III.) betrieben wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
der Anteil über 100% der Flüssigkeitsmenge in einem separaten Wärmetauschelement parallel und/oder in reihe gegenüber der Wärmetauschstufe (15a) im unteren Temperaturbereich geleitet wird. - Verfahren nach Anspruch 5,
dadurch gekennzeichnet, dass
der Anteil über 100% der Flüssigkeitsmenge sich von dem im Dampfkreislauf (III.) expandierenden Fluid unterscheidet, und dass dessen durch die Wärmetauschung entstandene thermische Energie in einer separaten Arbeitsmaschine genutzt wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19536839 | 1995-10-02 | ||
DE19536839A DE19536839A1 (de) | 1995-10-02 | 1995-10-02 | Verfahren zum Betrieb einer Kraftwerksanlage |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0767290A1 EP0767290A1 (de) | 1997-04-09 |
EP0767290B1 true EP0767290B1 (de) | 2002-05-29 |
Family
ID=7773918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96810597A Expired - Lifetime EP0767290B1 (de) | 1995-10-02 | 1996-09-09 | Verfahren zum Betrieb einer Kraftwerksanlage |
Country Status (4)
Country | Link |
---|---|
US (1) | US5839269A (de) |
EP (1) | EP0767290B1 (de) |
JP (1) | JP3974208B2 (de) |
DE (2) | DE19536839A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102374514A (zh) * | 2011-07-18 | 2012-03-14 | 成都四通新能源技术有限公司 | 烟气余热双压发电系统 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19604664A1 (de) * | 1996-02-09 | 1997-08-14 | Asea Brown Boveri | Verfahren zum Betrieb einer Kraftwerksanlage |
DE59811106D1 (de) | 1998-02-25 | 2004-05-06 | Alstom Technology Ltd Baden | Kraftwerksanlage und Verfahren zum Betrieb einer Kraftwerksanlage mit einem CO2-Prozess |
US6202782B1 (en) * | 1999-05-03 | 2001-03-20 | Takefumi Hatanaka | Vehicle driving method and hybrid vehicle propulsion system |
GB2382848A (en) * | 2001-12-06 | 2003-06-11 | Alstom | Gas turbine wet compression |
GB2382847A (en) * | 2001-12-06 | 2003-06-11 | Alstom | Gas turbine wet compression |
WO2003058047A1 (de) * | 2002-01-07 | 2003-07-17 | Alstom Technology Ltd | Verfahren zum betrieb einer gasturbogruppe |
DE10256193A1 (de) | 2002-12-02 | 2004-06-09 | Alstom Technology Ltd | Verfahren zur Steuerung der Flüssigkeitseinspritzung in einen Zuströmkanal einer Kraft- oder Arbeitsmaschine |
JP4478674B2 (ja) * | 2006-12-26 | 2010-06-09 | カワサキプラントシステムズ株式会社 | セメント焼成プラント廃熱発電システム |
US9581328B2 (en) * | 2007-03-22 | 2017-02-28 | Nooter/Eriksen, Inc. | High efficiency feedwater heater |
US8943836B2 (en) | 2009-07-10 | 2015-02-03 | Nrg Energy, Inc. | Combined cycle power plant |
JP5897302B2 (ja) * | 2011-10-28 | 2016-03-30 | 川崎重工業株式会社 | 蒸気タービン発電システム |
US9429044B2 (en) * | 2012-01-13 | 2016-08-30 | Alstom Technology Ltd | Supercritical heat recovery steam generator reheater and supercritical evaporator arrangement |
CN104254673A (zh) | 2012-03-21 | 2014-12-31 | 阿尔斯通技术有限公司 | 联合循环发电设备 |
FI20210068A1 (fi) * | 2021-11-10 | 2023-05-11 | Loeytty Ari Veli Olavi | Menetelmä ja laitteisto energiatehokkuuden parantamiseksi nykyisissä kaasuturbiini kombilaitoksissa |
US12078084B1 (en) * | 2023-02-10 | 2024-09-03 | Rtx Corporation | Increased water heat absorption capacity for steam injected turbine engine |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH480535A (de) * | 1968-03-06 | 1969-10-31 | Escher Wyss Ag | Wärmekraftanlage für die Ausnützung der in einem Kernreaktor erzeugten Wärme, mit einer kombinierten Gasturbinen- Dampfturbinenanlage |
EP0062932B1 (de) * | 1981-04-03 | 1984-12-05 | BBC Aktiengesellschaft Brown, Boveri & Cie. | Kombiniertes Gas-Dampfturbinen-Kraftwerk |
US4501233A (en) * | 1982-04-24 | 1985-02-26 | Babcock-Hitachi Kabushiki Kaisha | Heat recovery steam generator |
CH674561A5 (de) * | 1987-12-21 | 1990-06-15 | Bbc Brown Boveri & Cie | |
EP0410111B1 (de) * | 1989-07-27 | 1993-01-20 | Siemens Aktiengesellschaft | Abhitzedampferzeuger für ein Gas- und Dampfturbinenkraftwerk |
DE59205640D1 (de) * | 1991-05-27 | 1996-04-18 | Siemens Ag | Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und entsprechende Anlage |
DE4118062A1 (de) * | 1991-06-01 | 1992-12-03 | Asea Brown Boveri | Kombinierte gas/dampf-kraftwerksanlage |
NL9201256A (nl) * | 1992-07-13 | 1994-02-01 | Kema Nv | Steg-inrichting voor het opwekken van elektriciteit met bevochtigd aardgas. |
EP0582898A1 (de) * | 1992-08-10 | 1994-02-16 | Siemens Aktiengesellschaft | Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Gud-Anlage |
DE4237665A1 (de) * | 1992-11-07 | 1994-05-11 | Asea Brown Boveri | Verfahren zum Betrieb einer Kombianlage |
DE4321081A1 (de) * | 1993-06-24 | 1995-01-05 | Siemens Ag | Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-Anlage |
DE4409811C1 (de) * | 1994-03-22 | 1995-05-18 | Siemens Ag | Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger |
-
1995
- 1995-10-02 DE DE19536839A patent/DE19536839A1/de not_active Ceased
-
1996
- 1996-09-09 DE DE59609255T patent/DE59609255D1/de not_active Expired - Lifetime
- 1996-09-09 EP EP96810597A patent/EP0767290B1/de not_active Expired - Lifetime
- 1996-10-02 JP JP26208496A patent/JP3974208B2/ja not_active Expired - Lifetime
-
1997
- 1997-11-26 US US08/978,879 patent/US5839269A/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102374514A (zh) * | 2011-07-18 | 2012-03-14 | 成都四通新能源技术有限公司 | 烟气余热双压发电系统 |
CN102374514B (zh) * | 2011-07-18 | 2013-11-27 | 成都昊特新能源技术股份有限公司 | 烟气余热双压发电系统 |
Also Published As
Publication number | Publication date |
---|---|
JPH09125910A (ja) | 1997-05-13 |
DE19536839A1 (de) | 1997-04-30 |
EP0767290A1 (de) | 1997-04-09 |
US5839269A (en) | 1998-11-24 |
DE59609255D1 (de) | 2002-07-04 |
JP3974208B2 (ja) | 2007-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0915232B1 (de) | Verfahren zum Betrieb einer Kraftwerksanlage | |
EP0731255B1 (de) | Verfahren zum Betrieb einer Kraftwerksanlage | |
EP0795685B1 (de) | Mehrstufige Gasturbine mit Dampfkühlung und -einleitung in die Brennkammer | |
EP0768449B1 (de) | Verfahren zum Betrieb einer Kraftwerksanlage | |
EP0808994B1 (de) | Verfahren zum Betrieb einer Kombianlage | |
EP0620362B1 (de) | Gasturbogruppe | |
EP0767290B1 (de) | Verfahren zum Betrieb einer Kraftwerksanlage | |
EP1432889B1 (de) | Verfahren und vorrichtung zum anfahren von emissionsfreien gasturbinenkraftwerken | |
EP0778397B1 (de) | Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Gasturbogruppe | |
EP0750718B1 (de) | Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage | |
DE10041413B4 (de) | Verfahren zum Betrieb einer Kraftwerksanlage | |
EP0591163B2 (de) | Kombinierte gas- und dampfturbinenanlage | |
EP0789134B1 (de) | Verfahren zum Betrieb einer Kraftwerksanlage | |
EP0674099A1 (de) | Verfahren zur Kühlung von thermische belasteten Komponenten einer Gasturbogruppe | |
EP0773349B1 (de) | Helix-Dampferzeuger für Kraftwerksanlagen | |
DE19535228C2 (de) | Verfahren zum Betrieb einer Kraftwerksanlage | |
EP0978635B1 (de) | Verfahren zur Kühlung der thermisch belasteten Strukturen einer Kraftwerksanlage | |
EP0709561B1 (de) | Kraftwerksanlage | |
DE19900026B4 (de) | Gasturbine mit Dampfeindüsung | |
EP0899438B1 (de) | Gasturbine mit Wärmerückgewinnungserzeuger von überhitztem Dampf zum Einspritzen in die Brennkammer und von Sattdampf zum Kühlen und dann Einspritzen in die Brennkammer | |
EP1050667A1 (de) | Kombianlage mit Zusatzfeuerung | |
DE19961383A1 (de) | Verfahren zum Betrieb einer Kraftwerksanlage | |
EP0887539A2 (de) | Strahltriebwerk | |
DE19961385A1 (de) | Verfahren zum Betrieb einer Kraftwerksanlage | |
EP0770770B1 (de) | Verfahren zum Betrieb einer Gasturbogruppe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19970910 |
|
17Q | First examination report despatched |
Effective date: 20000803 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020529 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59609255 Country of ref document: DE Date of ref document: 20020704 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020725 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030303 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59609255 Country of ref document: DE Representative=s name: RUEGER, BARTHELT & ABEL, DE Effective date: 20120621 Ref country code: DE Ref legal event code: R082 Ref document number: 59609255 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Effective date: 20120621 Ref country code: DE Ref legal event code: R081 Ref document number: 59609255 Country of ref document: DE Owner name: ALSTOM TECHNOLOGY LTD., CH Free format text: FORMER OWNER: ALSTOM, PARIS, FR Effective date: 20120621 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20120802 AND 20120808 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ALSTOM TECHNOLOGY LTD., CH Effective date: 20121008 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150917 Year of fee payment: 20 Ref country code: DE Payment date: 20150922 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150922 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59609255 Country of ref document: DE Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE Ref country code: DE Ref legal event code: R082 Ref document number: 59609255 Country of ref document: DE Representative=s name: RUEGER, BARTHELT & ABEL, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59609255 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20160908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20160908 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: ALSTOM TECHNOLOGY LTD, CH Effective date: 20161124 |