[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0765438B1 - Process and device for controlling an electromagnetic consumer - Google Patents

Process and device for controlling an electromagnetic consumer Download PDF

Info

Publication number
EP0765438B1
EP0765438B1 EP96909039A EP96909039A EP0765438B1 EP 0765438 B1 EP0765438 B1 EP 0765438B1 EP 96909039 A EP96909039 A EP 96909039A EP 96909039 A EP96909039 A EP 96909039A EP 0765438 B1 EP0765438 B1 EP 0765438B1
Authority
EP
European Patent Office
Prior art keywords
time
current
switching
signal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96909039A
Other languages
German (de)
French (fr)
Other versions
EP0765438A1 (en
Inventor
Jürgen GRAS
Hans-Peter STRÖBELE
Rainer Kienzler
Alfred Konrad
Wolfgang Schmauder
Volker Gandert
Matthias Kretzschmar
Franz Thömmes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0765438A1 publication Critical patent/EP0765438A1/en
Application granted granted Critical
Publication of EP0765438B1 publication Critical patent/EP0765438B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2031Control of the current by means of delays or monostable multivibrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Definitions

  • the invention relates to a method and a device to control an electromagnetic consumer.
  • Out DE-O 44 15 361 is a method and an apparatus known for controlling an electromagnetic consumer.
  • Such electromagnetic consumers serve in particular for controlling the fuel metering in internal combustion engines.
  • a solenoid valve sets the injection duration firmly.
  • solenoid valves In solenoid valves, it usually passes between the Control time and the response of the solenoid valve one certain period of time. This period is usually called Switching time of the valve. This switching time depends depending on various parameters, such as the coil temperature and the current flowing through the coil. A variable switching time of the solenoid valve in turn has one variable injection duration and thus a changing injected Amount of fuel.
  • No. 4,448,171 describes a method and an apparatus to control an internal combustion engine, in which the Valve closing time when controlling the Fuel injectors is taken into account.
  • the invention has for its object in a method and a device for controlling the injected Amount of fuel to increase accuracy. This task is characterized by that in the independent claims Features resolved.
  • FIG. 1 shows 2 shows a block diagram of the device according to the invention
  • FIG. 2 a detailed block diagram of an embodiment and Figures 3 and 4 different plotted over time Signals.
  • the invention is described below using the example of a device to control the amount of fuel to be injected described in an internal combustion engine. But it is not limited to this application. It can always be used be when the drive duration of an electromagnetic Is to be controlled by the consumer. This is particularly so then the case when the drive duration is a quantity, such as the volume flow flowing through the solenoid valve of a medium.
  • a solenoid valve 100 denotes a solenoid valve.
  • a first connection the coil of the solenoid valve 100 is at a supply voltage Ubat in connection.
  • a second connection of the coil of the solenoid valve is via a switching means 110 and Current measuring means 120 connected to ground.
  • the switching device is preferably implemented as a transistor. With the current measuring device it is preferably an ohmic Resistance, where the voltage drop across the ohmic resistor is evaluated for current measurement.
  • a switching signal A is applied to the switching means 110. As long as the control signal A assumes a high level, the switching means 110 closes and thus releases the current flow through the consumer.
  • the control signal A is provided by an OR gate 130.
  • the OR gate 130 combines the output signal B of a control unit 140 and the output signal t V of a time extension 150.
  • the output B of the control unit 140 and the output signal of a current determination 160 are fed to the time extension 150.
  • the current determination 160 evaluates the voltage drop across the resistor 120.
  • the control unit 140 calculates on the basis of signals not shown Control signal B to act on the switching means 110. If the signal B assumes a high level, the signal assumes A also indicates a high level, which gives switching means 110 the flow of current through the consumer 100 freely. After the Current flows through the solenoid valve 100, gives the solenoid valve the fuel metering in the internal combustion engine freely.
  • the signal B drops to its low level and lies there is no signal from the time extension 150, so that happens Signal A also drops to the low level, resulting in a Opening the switching means 110 and an interruption of the Current flow leads. As a result, the solenoid valve 100 closes again and the fuel metering ends.
  • the switch-off behavior of the solenoid valve 100 becomes decisive determined by the magnetic force at the time of switching off. Different sizes have an influence on this magnetic force. This is the voltage, tolerances of the inductance, the coil resistance and temperature influences.
  • the Switching time essentially depends on the current value I1 when switching off, i.e. when signal A drops low level. Large current values result in longer ones Switching times than with small current values.
  • the current is usually not a constant variable.
  • the current depends on the resistance of the coil and therefore on the Temperature of the coil.
  • Current regulation can also be provided be where the current is between two current values sways back and forth.
  • the current increases with inductors after switching on according to an exponential function. It it can happen that the time at which the valve is turned off at a time when the Electricity has not yet reached its final value. In these cases the switching time deviates from its specified value.
  • the current value I1 is recorded at the time of the switch-off time T1 specified by the control unit, which corresponds to the activation end.
  • the time extension 150 corrects the actual stop time T2 such that a time is set as the effective activation duration of the solenoid valve, which time is obtained when the current end value I max is reached when it is switched off.
  • a correction time ⁇ t is determined as a function of the current value I1 at the time of switching off.
  • the time extension 150 emits a signal t v with a high level. The result of this is that the output signal A of the OR operation 130 remains at a high level for this period of time .DELTA.t and the actuation period of the solenoid valve is thus extended by this time .DELTA.t.
  • Process for measuring the flow through the consumer Electricity can be used.
  • the use is also a so-called Sensefet possible. This is what it is about is a field effect transistor that acts as an output variable a current proportional to the current flowing through the consumer Provides partial flow.
  • FIG. 2 shows a possible embodiment of the time extension 150 in more detail. Elements already described in FIG. 1 are identified by corresponding reference symbols.
  • the voltage present at the current measuring resistor 120 reaches an operational amplifier 210 via a switching means 200.
  • the switching means 200 is switched depending on the signal B from the control unit.
  • a resistor 220 and a capacitor 230 are connected to ground between the switching means 200 and the operational amplifier 210.
  • the second input of operational amplifier 210 is connected to the center tap of a voltage divider consisting of resistors 240 and 245.
  • the voltage divider consisting of resistors 240 and 245 is connected between ground and a voltage source VCC.
  • the output of operational amplifier 210 is fed back to its second input via a resistor 250.
  • the signal t V is present at the output of the operational amplifier and is led to the OR gate 130.
  • the time extension 150 comprises a map in which the relationship between the instantaneous value I 1 of the current at the time t 1 of the drop in the signal B and the time period ⁇ t by which the activation is extended is stored. Furthermore, this variable can be calculated on the basis of the current value I 1 according to a predetermined function f (I 1 ).
  • the characteristic diagram or the function f (I 1 ) are chosen such that a long time period ⁇ t results for small current values I 1 and a short time period ⁇ t results for large current values I 1 .
  • the switching time TS of the valve depends on the current I 1 that flows at the time of switching off. This relationship can be determined by theoretical considerations or by measurements.
  • Each current value I 1 can be assigned to a correction value At, so that in good approximation, the switching time is independent of the current value I 1, and thus fluctuations of the supply voltage, but depends only on the driving time.
  • FIG. 3 shows the conditions that exist when the switch-off, that is to say the fall of signal B to a low signal level, takes place when the current through the consumer has reached its end value I max .
  • the drive signal B and the drive signal A are plotted in FIG. 3a.
  • FIG. 3b shows the current I flowing through the valve and the state of the solenoid valve in FIG. 3c.
  • control signal B is at a high level, the current I flowing through the solenoid valve assumes its maximum value I max .
  • the solenoid valve is in its open position.
  • control unit 140 withdraws control signal B. This causes the current I to drop to 0.
  • the solenoid valve remains in its open position for another time. Only after the delay time at time t off has elapsed does the solenoid valve assume its new position and close.
  • the delay time between the time t1 and the time t off is referred to as the switching time TS.
  • FIG. 4 shows the situation in the event that the switch-off takes place at a time t1 at which the current value I1 has not yet reached the maximum value I max at the time t 1 . If the switch-off takes place at the same time, the switching time is significantly shorter and the metering is correspondingly shortened, which results in a lower fuel quantity.
  • FIG. 4a the signal B from the control unit 140 is again plotted, in FIG. 4b the signal B with which the switching means 110 is applied, in FIG. 4c the current I and in FIG. 4d the state of the solenoid valve is plotted.
  • signal A and signal B assume their high level.
  • the solenoid valve is in its open state.
  • control unit 140 takes signal B back from its high to its low signal level.
  • the instantaneous current value I1 at time t 1 is less than the current value I max .
  • the switching time would be shorter than in the shutdown process shown in FIG. 3.
  • the time extension 150 In order to correct the activation duration accordingly, the time extension 150 generates a signal t v which is present for the duration ⁇ t. This in turn has the effect that the output signal A, which is applied to the switching means 110, is present until the time t 2 . This has the effect that the current continues to rise and does not drop until time t2.
  • the solenoid valve only blocks the flow of fuel from time t off .
  • the signal t v or the delay time ⁇ t is specified so that the valve closes after the fall of the signal B after a fixed switching time TS.
  • the switching time TS is preferably determined at a specific current value I max and taken into account by the control unit when determining the signal B. In one embodiment of the invention it can also be provided that the current value I max is an arbitrary current value.
  • control unit 140 outputs a signal B, which drops to its low level by switching time TS before time t off .
  • the time extension 150 corrects the control signal A by a time period ⁇ t, which depends on the current value I1 at the time of switching off.
  • the time period ⁇ t is preferably predetermined as a function of the difference between the current value I1 when signal B drops and the current value I max at which the expected switching time TS was determined. If the two current values I1 and I max are equal, the time period ⁇ t becomes 0. If the current value I1 is less than the current value I max , the control is extended, the value ⁇ t by which the control is extended in the event of large deviations both values is larger than for small deviations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A process for controlling an electromagnetic consumer, especially a magnetic valve, which affects the quantity of fuel to be injected into an internal combustion engine, wherein the duration of the control of the magnetic valve can be corrected by a delay, where the delay can be predetermined dependently upon the momentary value of the current to the desired switch-off process.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung eines elektromagnetischen Verbrauchers. Aus der DE-O 44 15 361 ist ein Verfahren und eine Vorrichtung zur Steuerung eines elektromagnetischen Verbrauchers bekannt. Solche elektromagnetischen Verbraucher dienen insbesondere zur Steuerung der Kraftstoffzumessung bei Brennkraftmaschinen. Hierbei legt ein Magnetventil die Einspritzdauer fest.The invention relates to a method and a device to control an electromagnetic consumer. Out DE-O 44 15 361 is a method and an apparatus known for controlling an electromagnetic consumer. Such electromagnetic consumers serve in particular for controlling the fuel metering in internal combustion engines. A solenoid valve sets the injection duration firmly.

Bei Magnetventilen verstreicht üblicherweise zwischen dem Ansteuerzeitpunkt und der Reaktion des Magnetventils eine gewisse Zeitspanne. Diese Zeitspanne wird üblicherweise als Schaltzeit des Ventils bezeichnet. Diese Schaltzeit hängt von verschiedenen Parametern ab, wie beispielsweise der Spulentemperatur und von dem durch die Spule fließenden Strom. Eine variable Schaltzeit des Magnetventils hat wiederum eine variable Einspritzdauer und damit eine sich ändernde eingespritzte Kraftstoffmenge zur Folge.In solenoid valves, it usually passes between the Control time and the response of the solenoid valve one certain period of time. This period is usually called Switching time of the valve. This switching time depends depending on various parameters, such as the coil temperature and the current flowing through the coil. A variable switching time of the solenoid valve in turn has one variable injection duration and thus a changing injected Amount of fuel.

Aus der US 4,448,171 ist ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine bekannt, bei der die Ventilschließzeit bei der Ansteuerung der Kraftstoffeinspritzventile berücksichtigt wird. No. 4,448,171 describes a method and an apparatus to control an internal combustion engine, in which the Valve closing time when controlling the Fuel injectors is taken into account.

Aufgabe der ErfindungObject of the invention

Der Erfindung liegt die Aufgabe zugrunde, bei einem Verfahren und einer Vorrichtung zur Steuerung der eingespritzten Kraftstoffmenge die Genauigkeit zu erhöhen. Diese Aufgabe wird durch die in den unabhängigen Ansprüchen gekennzeichneten Merkmale gelöst.The invention has for its object in a method and a device for controlling the injected Amount of fuel to increase accuracy. This task is characterized by that in the independent claims Features resolved.

Mit dem erfindungsgemäßen Verfahren und der erfindungsgemäßen Vorrichtung läßt sich die Genauigkeit der Kraftstoffzumessung wesentlich verbessern. Vorteilhafte und zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.With the inventive method and the inventive Device can be the accuracy of fuel metering improve significantly. Advantageous and functional Refinements and developments of the invention are in marked the subclaims.

Zeichnungdrawing

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert. Es zeigen Figur 1 ein Blockdiagramm der erfindungsgemäßen Vorrichtung, Figur 2 ein detailliertes Blockdiagramm einer Ausführungsform und Figur 3 und 4 verschiedene über der Zeit aufgetragene Signale.The invention is described below with reference to the drawing illustrated embodiments explained. 1 shows 2 shows a block diagram of the device according to the invention, FIG. 2 a detailed block diagram of an embodiment and Figures 3 and 4 different plotted over time Signals.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Die Erfindung wird im folgenden am Beispiel einer Vorrichtung zur Steuerung der einzuspritzenden Kraftstoffmenge in eine Brennkraftmaschine beschrieben. Sie ist aber nicht auf diese Anwendung beschränkt. Sie kann immer dann eingesetzt werden, wenn die Ansteuerdauer eines elektromagnetischen Verbrauchers zu steuern ist. Dies ist insbesondere dann der Fall, wenn die Ansteuerdauer eine Größe, wie beispielsweise den durch das Magnetventil fließenden Volumenstrom eines Mediums, festlegt. The invention is described below using the example of a device to control the amount of fuel to be injected described in an internal combustion engine. But it is not limited to this application. It can always be used be when the drive duration of an electromagnetic Is to be controlled by the consumer. This is particularly so then the case when the drive duration is a quantity, such as the volume flow flowing through the solenoid valve of a medium.

Mit 100 ist ein Magnetventil bezeichnet. Ein erster Anschluß der Spule des Magnetventils 100 steht mit einer Versorgungsspannung Ubat in Verbindung. Ein zweiter Anschluß der Spule des Magnetventils steht über ein Schaltmittel 110 sowie ein Strommeßmittel 120 mit Masse in Verbindung. Das Schaltmittel ist vorzugsweise als Transistor realisiert. Bei dem Strommeßmittel handelt es sich vorzugsweise um einen ohmschen Widerstand, wobei der Spannungsabfall an dem ohmschen Widerstand zur Strommessung ausgewertet wird.100 denotes a solenoid valve. A first connection the coil of the solenoid valve 100 is at a supply voltage Ubat in connection. A second connection of the coil of the solenoid valve is via a switching means 110 and Current measuring means 120 connected to ground. The switching device is preferably implemented as a transistor. With the current measuring device it is preferably an ohmic Resistance, where the voltage drop across the ohmic resistor is evaluated for current measurement.

Das Schaltmittel 110 wird mit einem Ansteuersignal A beaufschlagt. Solange das Ansteuersignal A einen hohen Pegel annimmt, schließt das Schaltmittel 110 und gibt damit den Stromfluß durch den Verbraucher frei. Das Ansteuersignal A wird von einem ODER-Glied 130 bereitgestellt. Das ODER-Glied 130 verknüpft das Ausgangssignal B einer Steuereinheit 140 und das Ausgangssignal tV einer Zeitverlängerung 150. Der Zeitverlängerung 150 wird das Ausgangssignal B der Steuereinheit 140 und das Ausgangssignal einer Stromermittlung 160 zugeleitet. Die Stromermittlung 160 wertet den Spannungsabfall am Widerstand 120 aus.A switching signal A is applied to the switching means 110. As long as the control signal A assumes a high level, the switching means 110 closes and thus releases the current flow through the consumer. The control signal A is provided by an OR gate 130. The OR gate 130 combines the output signal B of a control unit 140 and the output signal t V of a time extension 150. The output B of the control unit 140 and the output signal of a current determination 160 are fed to the time extension 150. The current determination 160 evaluates the voltage drop across the resistor 120.

Diese Einrichtung arbeitet nun wie folgt. Die Steuereinheit 140 berechnet ausgehend von nicht dargestellten Signalen ein Ansteuersignal B zur Beaufschlagung des Schaltmittels 110. Nimmt das Signal B einen hohen Pegel an, so nimmt das Signal A ebenfalls einen hohen Pegel an, das Schaltmittel 110 gibt den Stromfluß durch den Verbraucher 100 frei. Nachdem der Strom durch das Magnetventil 100 fließt, gibt das Magnetventil die Kraftstoffzumessung in die Brennkraftmaschine frei.This facility now works as follows. The control unit 140 calculates on the basis of signals not shown Control signal B to act on the switching means 110. If the signal B assumes a high level, the signal assumes A also indicates a high level, which gives switching means 110 the flow of current through the consumer 100 freely. After the Current flows through the solenoid valve 100, gives the solenoid valve the fuel metering in the internal combustion engine freely.

Fällt das Signal B auf seinen niederen Pegel ab, und liegt kein Signal von der Zeitverlängerung 150 vor, so fällt das Signal A ebenfalls auf den niederen Pegel ab, was zu einem Öffnen des Schaltmittels 110 und zu einer Unterbrechung des Stromflusses führt. Dies hat zur Folge, daß das Magnetventil 100 wieder schließt und die Kraftstoffzumessung endet.The signal B drops to its low level and lies there is no signal from the time extension 150, so that happens Signal A also drops to the low level, resulting in a Opening the switching means 110 and an interruption of the Current flow leads. As a result, the solenoid valve 100 closes again and the fuel metering ends.

Das Abschaltverhalten des Magnetventils 100 wird maßgeblich durch die Magnetkraft zum Zeitpunkt des Abschaltens bestimmt. Auf diese Magnetkraft haben verschiedene Größen Einfluß. Dies ist zum einen die Spannung, Toleranzen der Induktivität, der Spulenwiderstand sowie Temperatureinflüsse. Die Schaltzeit hängt im wesentlichen vom momentanen Stromwert I1 beim Abschalten, das heißt beim Abfall des Signals A auf niederen Pegel ab. Bei großen Stromwerten ergeben sich längere Schaltzeiten als bei kleinen Stromwerten.The switch-off behavior of the solenoid valve 100 becomes decisive determined by the magnetic force at the time of switching off. Different sizes have an influence on this magnetic force. This is the voltage, tolerances of the inductance, the coil resistance and temperature influences. The Switching time essentially depends on the current value I1 when switching off, i.e. when signal A drops low level. Large current values result in longer ones Switching times than with small current values.

Üblicherweise ist der Strom keine konstante Größe. Der Strom hängt zum einen vom Widerstand der Spule und damit von der Temperatur der Spule ab. Ferner kann eine Stromregelung vorgesehen sein, bei der der Strom zwischen zwei Stromwerten hin und her schwankt. Bei Induktivitäten steigt der Strom nach dem Einschalten gemäß einer Exponentialfunktion an. Es kann der Fall eintreten, daß der Zeitpunkt, bei dem das Ventil abgeschaltet wird, zu einem Zeitpunkt erfolgt, wo der Strom noch nicht seinen Endwert erreicht hat. In diesen Fällen weicht die Schaltzeit von ihrem vorgegebenen Wert ab.The current is usually not a constant variable. The current depends on the resistance of the coil and therefore on the Temperature of the coil. Current regulation can also be provided be where the current is between two current values sways back and forth. The current increases with inductors after switching on according to an exponential function. It it can happen that the time at which the valve is turned off at a time when the Electricity has not yet reached its final value. In these cases the switching time deviates from its specified value.

Erfindungsgemäß wird der Stromwert I1 zum Zeitpunkt des von der Steuereinheit vorgegebenen Abschaltzeitpunktes T1, der dem Ansteuerende entspricht, erfaßt. In Abhängigkeit von diesem Stromwert I1 korrigiert die Zeitverlängerung 150 den tatsächlichen Absohaltzeitpunkt T2 so, daß sich als effektive Ansteuerdauer des Magnetventils eine Zeit einstellt, die sich beim Abschalten bei erreichen des Stromendwerts Imax ergibt.According to the invention, the current value I1 is recorded at the time of the switch-off time T1 specified by the control unit, which corresponds to the activation end. Depending on this current value I1, the time extension 150 corrects the actual stop time T2 such that a time is set as the effective activation duration of the solenoid valve, which time is obtained when the current end value I max is reached when it is switched off.

Ausgehend von dem Stromwert I1 zum Zeitpunkt t1, wenn das Signal B auf seinen niederen Pegel abfällt, wird eine Korrekturzeit Δt als Funktion von dem Stromwert I1 zum Abschaltzeitpunkt ermittelt. Für diese Zeitdauer Δt gibt die Zeitverlängerung 150 ein Signal tv mit einem hohen Pegel ab. Dies hat zur Folge, daß das Ausgangssignal A der ODER-Verknüpfung 130 für diese Zeitdauer Δt auf hohem Pegel bleibt und damit die Ansteuerdauer des Magnetventils um diese Zeit Δt verlängert wird.Starting from the current value I1 at the time t 1 when the signal B drops to its low level, a correction time Δt is determined as a function of the current value I1 at the time of switching off. For this period of time Δt, the time extension 150 emits a signal t v with a high level. The result of this is that the output signal A of the OR operation 130 remains at a high level for this period of time .DELTA.t and the actuation period of the solenoid valve is thus extended by this time .DELTA.t.

Alternativ zu dem Strommeßwiderstand 120 können auch andere Verfahren zur Messung des durch den Verbraucher fließenden Stroms verwendet werden. Beispielsweise ist auch die Verwendung eines sogenannten Sensefet möglich. Hierbei handelt es sich um einen Feldeffekttransistor, der als Ausgangsgröße einen dem durch den Verbraucher fließenden Strom proportionalen Teilstrom zur Verfügung stellt.As an alternative to the current measuring resistor 120, others can also be used Process for measuring the flow through the consumer Electricity can be used. For example, the use is also a so-called Sensefet possible. This is what it is about is a field effect transistor that acts as an output variable a current proportional to the current flowing through the consumer Provides partial flow.

In Figur 2 ist eine mögliche Ausführungsform der Zeitverlängerung 150 detaillierter dargestellt. Bereits in Figur 1 beschriebene Elemente sind mit entsprechenden Bezugszeichen bezeichnet. Das am Strommeßwiderstand 120 anliegende Spannung gelangt über ein Schaltmittel 200 zu einem Operationsverstärker 210. Das Schaltmittel 200 wird abhängig von dem Signal B der Steuereinheit geschaltet. Zwischen dem Schaltmittel 200 und dem Operationsverstärker 210 ist ein Widerstand 220 und ein Kondensator 230 gegen Masse geschaltet. Der zweite Eingang des Operationsverstärkers 210 ist mit dem Mittenabgriff eines Spannungsteilers bestehend aus den Widerständen 240 und 245 verbunden. Der Spannungsteiler bestehend aus den Widerständen 240 und 245 ist zwischen Masse und einer Spannungsquelle VCC geschaltet. Der Ausgang des Operationsverstärkers 210 ist über einen Widerstand 250 auf seinen zweiten Eingang zurückgeführt. Am Ausgang des Operationsverstärkers liegt das Signal tV an, das zum ODER-Glied 130 geführt wird. FIG. 2 shows a possible embodiment of the time extension 150 in more detail. Elements already described in FIG. 1 are identified by corresponding reference symbols. The voltage present at the current measuring resistor 120 reaches an operational amplifier 210 via a switching means 200. The switching means 200 is switched depending on the signal B from the control unit. A resistor 220 and a capacitor 230 are connected to ground between the switching means 200 and the operational amplifier 210. The second input of operational amplifier 210 is connected to the center tap of a voltage divider consisting of resistors 240 and 245. The voltage divider consisting of resistors 240 and 245 is connected between ground and a voltage source VCC. The output of operational amplifier 210 is fed back to its second input via a resistor 250. The signal t V is present at the output of the operational amplifier and is led to the OR gate 130.

Diese Einrichtung arbeitet nun wie folgt. Solange das Signal B einen hohen Pegel annimmt, ist der Schalter 200 in seinem geschlossenen Zustand. Dies hat zur Folge, daß sich der Kondensator auf die am Widerstand 120 abfallenden Spannung auflädt, die proportional zum Strom durch den Verbraucher ist. Das Ausgangssignal tv des Operationsverstärkers 210 nimmt dabei einen hohen Signalpegel an. Fällt das Signal B auf seinen niederen Signalpegel ab, so öffnet der Schalter 200 und der Kondensator 230 wird über den Widerstand 220 nach Masse entladen. Sobald die am Kondensator anliegende Spannung einen vom Spannungsteiler, bestehend aus den Widerständen 240 und 245 vorgebbaren Wert unterschreitet, schaltet der Operationsverstärker durch, was zur Folge hat, daß das Ausgangssignal des Operationsverstärkers auf 0 abfällt. Diese Schaltung bewirkt, daß die Verzögerungszeit, um die die Einschaltdauer verlängert wird, vom Stromwert I1, der durch den Verbraucher 100 fließt, abhängt.This facility now works as follows. As long as signal B is high, switch 200 is in its closed state. As a result, the capacitor charges up to the voltage drop across resistor 120 which is proportional to the current through the consumer. The output signal t v of the operational amplifier 210 assumes a high signal level. If the signal B drops to its low signal level, the switch 200 opens and the capacitor 230 is discharged to ground via the resistor 220. As soon as the voltage across the capacitor falls below a value that can be predetermined by the voltage divider, consisting of resistors 240 and 245, the operational amplifier switches through, with the result that the output signal of the operational amplifier drops to 0. This circuit has the effect that the delay time by which the duty cycle is extended depends on the current value I1 flowing through the load 100.

Bei einer weiteren Ausgestaltung ist vorgesehen, daß die Zeitverlängerung 150 ein Kennfeld umfaßt in dem der Zusammenhang zwischen dem Momentanwert I1 des Stroms zum Zeitpunkt t1 des Abfalls des Signals B und der Zeitspanne Δt um die die Ansteuerung verlängert wird, abgelegt ist. Ferner kann diese Größe ausgehend vom Stromwert I1 gemäß einer vorgegebenen Funktion f(I1) berechnet werden. Das Kennfeld bzw. die Funktion f(I1) sind dabei so gewählt, daß sich bei kleinen Stromwerten I1 eine große Zeitdauer Δt und bei großen Stromwerten I1 eine kleine Zeitdauer Δt ergibt. Die Schaltzeit TS des Ventils hängt vom Strom I1, der zum Zeitpunkt des Abschaltens fließt, ab. Dieser Zusammenhang kann durch theoretische Betrachtungen oder durch Messungen ermittelt werden. Jedem Stromwert I1 kann ein Korrekturwert Δt zugeordnet werden, so daß in guter Näherung die Schaltzeit unabhängig vom Stromwert I1 und damit von Schwankungen der Versorgungsspannung ist, sondern nur noch von der Ansteuerzeit abhängt.In a further embodiment, it is provided that the time extension 150 comprises a map in which the relationship between the instantaneous value I 1 of the current at the time t 1 of the drop in the signal B and the time period Δt by which the activation is extended is stored. Furthermore, this variable can be calculated on the basis of the current value I 1 according to a predetermined function f (I 1 ). The characteristic diagram or the function f (I 1 ) are chosen such that a long time period Δt results for small current values I 1 and a short time period Δt results for large current values I 1 . The switching time TS of the valve depends on the current I 1 that flows at the time of switching off. This relationship can be determined by theoretical considerations or by measurements. Each current value I 1 can be assigned to a correction value At, so that in good approximation, the switching time is independent of the current value I 1, and thus fluctuations of the supply voltage, but depends only on the driving time.

In Figur 3 sind die Verhältnisse dargestellt, die vorliegen, wenn die Abschaltung, das heißt der Abfall des Signals B auf einen niederen Signalpegel erfolgt, wenn der Strom durch den Verbraucher seinen Endwert Imax erreicht hat. In Figur 3a ist das Ansteuersignal B und das Ansteuersignal A aufgetragen. In Figur 3b ist der Strom I, der durch das Ventil fließt und in Figur 3c der Zustand des Magnetventils aufgetragen.FIG. 3 shows the conditions that exist when the switch-off, that is to say the fall of signal B to a low signal level, takes place when the current through the consumer has reached its end value I max . The drive signal B and the drive signal A are plotted in FIG. 3a. FIG. 3b shows the current I flowing through the valve and the state of the solenoid valve in FIG. 3c.

Zu Beginn liegt das Ansteuersignal B auf hohem Pegel, der Strom I, der durch das Magnetventil fließt, nimmt seinen Maximalwert Imax an. Das Magnetventil befindet sich in seiner geöffneten Position. Zum Zeitpunkt t1 nimmt die Steuereinheit 140 das Ansteuersignal B zurück. Dies bewirkt, daß der Strom I auf 0 abfällt. Das Magnetventil bleibt für eine weitere Zeit in seiner geöffneten Position. Erst nach Ablauf Verzögerungszeit zum Zeitpunkt toff nimmt das Magnetventil seine neue Position ein und schließt. Die Verzögerungszeit zwischen dem Zeitpunkt t1 und dem Zeitpunkt toff wird als Schaltzeit TS bezeichnet.At the beginning, the control signal B is at a high level, the current I flowing through the solenoid valve assumes its maximum value I max . The solenoid valve is in its open position. At time t1, control unit 140 withdraws control signal B. This causes the current I to drop to 0. The solenoid valve remains in its open position for another time. Only after the delay time at time t off has elapsed does the solenoid valve assume its new position and close. The delay time between the time t1 and the time t off is referred to as the switching time TS.

In Figur 4 sind die Verhältnisse dargestellt für den Fall, daß die Abschaltung zu einem Zeitpunkt t1 erfolgt, bei dem der Stromwert I1 zum Zeitpunkt t1 noch nicht den Maximalwert Imax erreicht hat. Erfolgt hier die Abschaltung zum gleichen Zeitpunkt, so ist die Schaltzeit wesentlich kürzer und die Zumessung ist entsprechend verkürzt, was eine geringere Kraftstoffmenge zur Folge hat.FIG. 4 shows the situation in the event that the switch-off takes place at a time t1 at which the current value I1 has not yet reached the maximum value I max at the time t 1 . If the switch-off takes place at the same time, the switching time is significantly shorter and the metering is correspondingly shortened, which results in a lower fuel quantity.

In Figur 4a ist wiederum das Signal B der Steuereinheit 140, in Figur 4b das Signal B mit dem das Schaltmittel 110 beaufschlagt wird, aufgetragen, in Figur 4c ist der Strom I und in Figur 4d der Zustand des Magnetventils aufgetragen. Zu Beginn nehmen das Signal A und das Signal B ihren hohen Pegel an. Dies hat zur Folge, daß das Magnetventil in seinem geöffneten Zustand ist. Zum Zeitpunkt t1 nimmt die Steuereinheit 140 das Signal B von seinem hohen auf seinen niederen Signalpegel zurück. Der momentane Stromwert I1 zum Zeitpunkt t1 ist kleiner als der Stromwert Imax. Dies hat zur Folge, daß die Schaltzeit kürzer als bei dem in Figur 3 dargestellten Abschaltvorgang wäre.In FIG. 4a, the signal B from the control unit 140 is again plotted, in FIG. 4b the signal B with which the switching means 110 is applied, in FIG. 4c the current I and in FIG. 4d the state of the solenoid valve is plotted. At the beginning, signal A and signal B assume their high level. As a result, the solenoid valve is in its open state. At time t 1 , control unit 140 takes signal B back from its high to its low signal level. The instantaneous current value I1 at time t 1 is less than the current value I max . As a result, the switching time would be shorter than in the shutdown process shown in FIG. 3.

Um die Ansteuerdauer entsprechend zu korrigieren erzeugt die Zeitverlängerung 150 ein Signal tv, das für die Zeitdauer Δt anliegt. Dies wiederum bewirkt, daß das Ausgangssignal A, mit dem das Schaltmittel 110 beaufschlagt wird, bis zum Zeitpunkt t2 anliegt. Dies bewirkt, daß der Strom weiterhin ansteigt und erst ab dem Zeitpunkt t2 abfällt. Das Magnetventil sperrt den Kraftstofffluß erst ab dem Zeitpunkt toff.In order to correct the activation duration accordingly, the time extension 150 generates a signal t v which is present for the duration Δt. This in turn has the effect that the output signal A, which is applied to the switching means 110, is present until the time t 2 . This has the effect that the current continues to rise and does not drop until time t2. The solenoid valve only blocks the flow of fuel from time t off .

Das Signal tv bzw. die Verzugszeit Δt wird so vorgeben, daß das Ventil nach dem Abfall des Signals B nach Ablauf einer festen Schaltzeit TS schließt. Vorzugsweise wird die Schaltzeit TS bei einem bestimmten Stromwert Imax ermittelt und von der Steuereinheit bei der Ermittlung des Signals B berücksichtigt. Bei einer Ausgestaltung der Erfindung kann auch vorgesehen sein, daß es sich bei dem Stromwert Imax um einen beliebigen Stromwert handelt. Um zu erreichen, daß das Ventil zum Zeitpunkt toff schließt gibt die Steuereinheit 140 ein Signal B aus, das um die Schaltzeit TS vor dem Zeitpunkt toff auf seinen niederen Pegel abfällt.The signal t v or the delay time Δt is specified so that the valve closes after the fall of the signal B after a fixed switching time TS. The switching time TS is preferably determined at a specific current value I max and taken into account by the control unit when determining the signal B. In one embodiment of the invention it can also be provided that the current value I max is an arbitrary current value. In order to ensure that the valve closes at time t off , control unit 140 outputs a signal B, which drops to its low level by switching time TS before time t off .

Weicht der Stromwert I1, der bei Abfall des Signals B auf den Wert 0 vorliegt von dem Wert Imax ab, so korrigiert die Zeitverlängerung 150 das Ansteuersignal A um eine Zeitdauer Δt, die von dem Stromwert I1 zum Abschaltzeitpunkt abhängt, anliegt. Vorzugsweise wird die Zeitdauer Δt abhängig von der Differenz zwischen dem Stromwert I1 bei Abfall des Signals B und dem Stromwert Imax bei dem die erwartete Schaltzeit TS ermittelt wurde vorgegeben. Sind die beiden Stromwerte I1 und Imax gleich, so wird die Zeitdauer Δt zu 0. Ist der Stromwert I1 kleiner als der Stromwert Imax so wird die Ansteuerung verlängert, wobei der Wert Δt, um den die Ansteuerung verlängert wird, bei großen Abweichungen der beiden Werte größer ist als bei kleinen Abweichungen.If the current value I1, which is present when the signal B drops to the value 0, deviates from the value I max , then the time extension 150 corrects the control signal A by a time period Δt, which depends on the current value I1 at the time of switching off. The time period Δt is preferably predetermined as a function of the difference between the current value I1 when signal B drops and the current value I max at which the expected switching time TS was determined. If the two current values I1 and I max are equal, the time period Δt becomes 0. If the current value I1 is less than the current value I max , the control is extended, the value Δt by which the control is extended in the event of large deviations both values is larger than for small deviations.

Claims (6)

  1. Method for actuating an electromagnetic load, in particular a solenoid valve for influencing the amount of fuel to be injected into an internal combustion engine, in which case the duration of the actuation of the solenoid valve can be corrected by a delay time (Δt), characterized in that the correction can be adjusted as a function of the instantaneous value (I1) of the current at a switching-off time (T1) of a control unit, in such a manner that the electromagnetic load closes once a fixed switching time period has elapsed after the switching-off time (T1).
  2. Method according to Claim 1, characterized in that the delay time (Δt) can be preset as a function of the difference between the instantaneous value of the current (I1) and a current value (Imax).
  3. Method according to Claim 1 or 2, characterized in that the delay time is stored in a characteristics map as a function of the instantaneous value of the current (I1).
  4. Method according to Claim 2 or 3, characterized in that, when the instantaneous value of the current (I1) is low, a high value can be preset for the delay time (Δt).
  5. Method according to one of Claims 2 to 4, characterized in that, when the instantaneous value of the current (I1) is high, a low value can be preset for the delay time (Δt).
  6. Apparatus for actuating an electromagnetic load, in particular a solenoid valve, which influences the amount of fuel to be injected into an internal combustion engine, having means which correct the duration of the actuation of the solenoid value by a delay time (Δt), characterized in that the means adjust the correction as a function of the instantaneous value (I1) of the current at a switching-off time (T1) of a control unit, in such a manner that the electromagnetic load closes once a fixed switching time period has elapsed after the switching-off time (T1).
EP96909039A 1995-04-12 1996-04-12 Process and device for controlling an electromagnetic consumer Expired - Lifetime EP0765438B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19513878A DE19513878A1 (en) 1995-04-12 1995-04-12 Method and device for controlling an electromagnetic consumer
DE19513878 1995-04-12
PCT/DE1996/000642 WO1996032580A1 (en) 1995-04-12 1996-04-12 Process and device for controlling an electromagnetic consumer

Publications (2)

Publication Number Publication Date
EP0765438A1 EP0765438A1 (en) 1997-04-02
EP0765438B1 true EP0765438B1 (en) 2001-09-26

Family

ID=7759554

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96909039A Expired - Lifetime EP0765438B1 (en) 1995-04-12 1996-04-12 Process and device for controlling an electromagnetic consumer

Country Status (7)

Country Link
US (1) US5878722A (en)
EP (1) EP0765438B1 (en)
JP (1) JP4079993B2 (en)
KR (1) KR100413141B1 (en)
CN (1) CN1071406C (en)
DE (2) DE19513878A1 (en)
WO (1) WO1996032580A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3818607B2 (en) * 1997-01-27 2006-09-06 株式会社小松製作所 Control device and control method for cam-driven electronic control unit injector
JP4119116B2 (en) * 2001-08-02 2008-07-16 株式会社ミクニ Fuel injection method
KR100857638B1 (en) 2001-08-16 2008-09-08 로베르트 보쉬 게엠베하 Method and Device for Controlling an Electromagnetic Consumer
JP4067384B2 (en) * 2002-10-30 2008-03-26 株式会社ミクニ Fuel injection method
CN100420842C (en) * 2003-02-03 2008-09-24 株式会社三国 Control method and device for fuel injection
DE102005056210A1 (en) * 2005-11-25 2007-05-31 Robert Bosch Gmbh Electrical current cycle control for electromagnetic actuator to provide safe closing of hydraulic valve in automobile braking system
DE102006059625A1 (en) 2006-12-14 2008-06-19 Robert Bosch Gmbh Device and method for controlling an electromagnetic valve
DE102009027311A1 (en) 2009-06-30 2011-01-05 Robert Bosch Gmbh Method for operating an internal combustion engine
DE102010001261A1 (en) * 2010-01-27 2011-07-28 Robert Bosch GmbH, 70469 Control device for an electromagnetic actuator and method for operating an electromagnetic actuator
AT510837B1 (en) 2011-07-27 2012-07-15 Helmut Dr Buchberger INHALATORKOMPONENTE
EP2672847B1 (en) 2011-02-11 2015-04-22 Batmark Limited Inhaler component
JP5754357B2 (en) * 2011-11-18 2015-07-29 株式会社デンソー Fuel injection control device for internal combustion engine
JP6260501B2 (en) * 2013-10-11 2018-01-17 株式会社デンソー Fuel injection control device for internal combustion engine
JP6156307B2 (en) * 2013-10-11 2017-07-05 株式会社デンソー Fuel injection control device for internal combustion engine
DE102014208837A1 (en) * 2014-05-12 2015-11-12 Robert Bosch Gmbh Method for controlling an opening behavior of injection valves
GB2533135B (en) 2014-12-11 2020-11-11 Nicoventures Holdings Ltd Aerosol provision systems
CN109068735A (en) 2016-04-27 2018-12-21 尼科创业控股有限公司 Electronics aerosol supply system and its evaporator
JP7492654B2 (en) * 2021-05-11 2024-05-29 日立Astemo株式会社 Fuel injection control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448171A (en) * 1981-06-08 1984-05-15 Nippondenso Co., Ltd. Method and apparatus for optimum control of internal combustion engines
EP0306839A1 (en) * 1987-09-07 1989-03-15 Sikora, Gernot, Dipl.-Ing. Method and device for driving solenoids, particularly in injection valves

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521086B2 (en) * 1987-04-06 1996-07-31 株式会社ゼクセル Control device for fuel injection pump
DE3805033A1 (en) * 1988-02-18 1989-08-31 Bosch Gmbh Robert FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
IT1223958B (en) * 1988-11-30 1990-09-29 Marelli Autronica CLOSED RING CONTROL DEVICE FOR IDLE ROTATION SPEED OF AN INTERNAL COMBUSTION ENGINE
DE4020094C2 (en) * 1990-06-23 1998-01-29 Bosch Gmbh Robert Method and device for controlling an electromagnetic consumer
DE4120461C2 (en) * 1991-06-21 2000-09-14 Bosch Gmbh Robert Method and device for controlling a solenoid-controlled fuel metering system
DE4140043A1 (en) * 1991-12-05 1993-06-09 Robert Bosch Gmbh, 7000 Stuttgart, De Inductive load driving system esp. for IC engine control - measures current shortly after switch=on and immediately after switch=off and calculates effective value, e.g. by averaging
JPH05248300A (en) * 1992-03-04 1993-09-24 Zexel Corp Fuel injection device
EP0671557B1 (en) * 1992-03-26 1998-09-02 Zexel Corporation Fuel-injection device
US5325837A (en) * 1992-11-19 1994-07-05 Robert Bosch Gmbh Fuel injection apparatus for internal combustion engines
DE4305488A1 (en) * 1993-02-23 1994-08-25 Bosch Gmbh Robert Control circuit for a solenoid valve
EP0644323B1 (en) * 1993-09-17 1997-12-10 Siemens Aktiengesellschaft Device for detecting an operation condition of an injection pump
DE4415361B4 (en) * 1994-05-02 2005-05-04 Robert Bosch Gmbh Method and device for controlling an electromagnetic consumer
US5646600A (en) * 1995-01-12 1997-07-08 General Electric Company Instrument for detecting potential future failures of valves in critical control systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448171A (en) * 1981-06-08 1984-05-15 Nippondenso Co., Ltd. Method and apparatus for optimum control of internal combustion engines
EP0306839A1 (en) * 1987-09-07 1989-03-15 Sikora, Gernot, Dipl.-Ing. Method and device for driving solenoids, particularly in injection valves

Also Published As

Publication number Publication date
US5878722A (en) 1999-03-09
DE59607756D1 (en) 2001-10-31
JPH10501865A (en) 1998-02-17
CN1150469A (en) 1997-05-21
CN1071406C (en) 2001-09-19
WO1996032580A1 (en) 1996-10-17
DE19513878A1 (en) 1996-10-17
JP4079993B2 (en) 2008-04-23
EP0765438A1 (en) 1997-04-02
KR100413141B1 (en) 2004-04-30

Similar Documents

Publication Publication Date Title
EP0765438B1 (en) Process and device for controlling an electromagnetic consumer
WO1995016118A1 (en) Process and device for driving an electromagnetic consumer
DE19719602A1 (en) Electronic control circuit
EP0764238B1 (en) Method and device for controlling an electromagnetic consumer
DE4322199C2 (en) Method and device for controlling an electromagnetic consumer
EP2102465A1 (en) Device and method for controlling an electromagnetic valve
DE4140043A1 (en) Inductive load driving system esp. for IC engine control - measures current shortly after switch=on and immediately after switch=off and calculates effective value, e.g. by averaging
DE3344662C2 (en)
DE10315282B4 (en) Circuit arrangement and method for driving a bistable solenoid valve
EP1430207B1 (en) Method and device for controlling an electromagnetic consumer
DE19735560B4 (en) Method and device for controlling a consumer
DE4414609B4 (en) Device for controlling a consumer
EP0720770B1 (en) Process and device for driving an electromagnetic consumer
DE10336606B4 (en) Actuation method and actuator for an actuator
EP0889223B1 (en) Process and device for detecting the switching time of an electrovalve
DE19646052A1 (en) Method and device for controlling a consumer
EP1005051B1 (en) Method for driving an electromagnetic consumer
DE4335687A1 (en) Device for regulating a voltage drop across a consumer
DE4222650A1 (en) Method and device for controlling an electromagnetic consumer
DE4415361A1 (en) Method and device for controlling an electromagnetic consumer
DE19750027A1 (en) Method and device for controlling an electromagnetic consumer
WO2016146310A1 (en) Method for controlling fuel metering
DE10134332A1 (en) Controlling load, especially for fuel injection for IC engines, involves determining minimum separation between control process using parameter characterizing flow in load

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

17P Request for examination filed

Effective date: 19970417

17Q First examination report despatched

Effective date: 19990304

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 59607756

Country of ref document: DE

Date of ref document: 20011031

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090626

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100506

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100427

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110412