[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0762529B1 - Iris polarizer for an antenna primary source - Google Patents

Iris polarizer for an antenna primary source Download PDF

Info

Publication number
EP0762529B1
EP0762529B1 EP19960401830 EP96401830A EP0762529B1 EP 0762529 B1 EP0762529 B1 EP 0762529B1 EP 19960401830 EP19960401830 EP 19960401830 EP 96401830 A EP96401830 A EP 96401830A EP 0762529 B1 EP0762529 B1 EP 0762529B1
Authority
EP
European Patent Office
Prior art keywords
waveguide section
polariser
screws
irises
frequency band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19960401830
Other languages
German (de)
French (fr)
Other versions
EP0762529A1 (en
Inventor
Jean-Yves Morineau
Serge Bazzani
Bernard Jamet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0762529A1 publication Critical patent/EP0762529A1/en
Application granted granted Critical
Publication of EP0762529B1 publication Critical patent/EP0762529B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/173Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a conductive element

Definitions

  • the present invention relates to an iris polarizer for primary antenna source.
  • the polarizer is of the iris type, that is to say that it has inside a waveguide section a succession of regularly reactive elements spaced. These reactive elements are often conductive strips symmetrically entering the waveguide section and located in transverse planes, that is to say perpendicular to the longitudinal axis.
  • An object of the invention is therefore a polarizer free of these disadvantages thanks to a simple possibility of adjustment and adaptation to a given frequency band.
  • an iris polarizer for source antenna primary of the type including a waveguide section longitudinal with a succession of regularly reactive elements spaced apart forming irises and acting as capacitive susceptances or inductive according to the direction of the linear polarization of the field electric inside said waveguide section, as defined in the revendications.
  • Figure 1 schematically represents a primary source known antenna such as those mentioned above.
  • This source 1 includes a transition 2 to a section of waveguide 3 of a polarizer.
  • the waveguide can be of section square, rectangular or circular.
  • the simplest solution that has been shown here is the circular section.
  • This waveguide section 3 comprises a succession of reactive elements 5 which are irises. We prefer often use irises although screw solutions or quartz blades by example can be used.
  • the iris solution is more efficient, better suited to large powers and above all requires fewer elements than the other reactive element solutions because an iris can have both capacitive and inductive susceptibility, hence a greater simplicity.
  • An iris may consist of two conductive flaps penetrating at inside the guide symmetrically to the longitudinal axis of the guide and arranged in a transverse plane perpendicular to this axis.
  • the waveguide section 3 can be rotated by a geared motor assembly 4 (hence the advantage of a circular guide) of so that it rotates 45 °.
  • Section 3 is followed by a transformer 6 then a phase shifter 7 connected to a horn 8.
  • Figures 2a and 2b show the equivalent diagram of an iris 5 for a square or circular guide depending on the polarization direction of the field electric.
  • the iris comprises two conducting flaps 51 and 52 in a plane transverse to guide 3 and entering the guide of a given height h.
  • susceptance B VS is capacitive.
  • the susceptance B L is inductive.
  • guide section 3 is rotated 45 ° by compared to the electric field having the direction of figure 2a or 2b, one can consider the incident wave as decomposable into two components orthogonal of the same amplitude, one of which is parallel to the edges of the iris and the other perpendicular to these same edges. If the polarizer requires these two components a 90 ° differential phase shift, we obtain at output a wave with circular polarization.
  • the dimensions of the guide (side d of a square guide for example) and sinking h of the irises are provided.
  • a sinking law for the different irises which can be a law in cosine or according to a distribution of Tchebychev and which allows to minimize the TOS in the operating band.
  • Figure 3 shows the variations in capacitive susceptances (BC curve) and inductive (BL curve) of all the irises as a function of the frequency.
  • the capacitive susceptance is inversely proportional to the wavelength in the guide.
  • This value is proportional to the wavelength in the guide.
  • the first term depends on the size of the guide and the depth of the iris; the second term depends on the size of the guide and the frequency.
  • FIG. 6 represents the diagram of a polarizer according to the invention.
  • This polarizer comprises a waveguide section (3), circular in the example described, of diameter d determined approximately.
  • irises 5 are placed whose sinking h n is determined from d : the sinking h n of the irises obeys a law which can be a Chebyshev distribution to obtain the best possible TOS in the band. The whole is adjusted to also obtain a differential phase shift substantially equal to 90 °.
  • the screws for example inside the guide are arranged towards one end of the guide 3, where the irises are the least depressed, so to guarantee the best power handling.
  • the screws have been arranged in the median plane P of the irises containing the axis 32, that is to say the plane of the figure for the longitudinal section.
  • the traces of plane P and the orthogonal plane P 'passing through the longitudinal axis 32 have been shown on the cross section passing through the screws 30 of FIG. 6.
  • FIGS. 10 to 12 illustrate the case where the section of the waveguide 3 and therefore the dimension d are too large.
  • the solid lines correspond to the results in the absence of screws.
  • We end up here with a shift towards the low frequencies.
  • curves BC and BL of FIG. 10 a dispersion towards the high frequencies of the capacitive and inductive suceptances due to the irises and a lower slope for the inductive susceptance.
  • the invention is in no way limited to the examples of realization described.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Waveguide Aerials (AREA)
  • Polarising Elements (AREA)

Description

La présente invention se rapporte à un polariseur à iris pour source primaire d'antenne.The present invention relates to an iris polarizer for primary antenna source.

Dans de nombreux cas, on souhaite pouvoir disposer d'une antenne pouvant fonctionner soit en polarisation linéaire, soit en polarisation circulaire. C'est notamment le cas des antennes utilisées dans le contrôle du trafic aérien. Comme on le sait, l'utilisation d'une polarisation circulaire permet plus particulièrement de s'affranchir, dans une large mesure, des perturbations dues à la pluie. Un élément essentiel de l'antenne est alors le polariseur utilisé dans la source primaire, qui permet de commuter d'une polarisation à l'autre en assurant, dans le cas de la polarisation circulaire, un déphasage différentiel sensiblement de 90° entre les composantes du champ électrique.In many cases, we would like to have a antenna that can operate either in linear polarization or in polarization circular. This is particularly the case of the antennas used in monitoring the air traffic. As we know, the use of circular polarization allows in particular to overcome, to a large extent, disturbances due to rain. An essential element of the antenna is then the polarizer used in the primary source, which allows switching from a polarization to the other ensuring, in the case of circular polarization, a differential phase shift of substantially 90 ° between the components of the electric field.

Généralement et notamment pour les puissances importantes, le polariseur est du type à iris, c'est-à-dire qu'il comporte à l'intérieur d'une section de guide d'ondes une succession d'éléments réactifs régulièrement espacés. Ces éléments réactifs sont souvent des bandes conductrices pénétrant symétriquement dans la section de guide d'ondes et situées dans des plans transversaux c'est-à-dire perpendiculaires à l'axe longitudinal.Generally and in particular for large powers, the polarizer is of the iris type, that is to say that it has inside a waveguide section a succession of regularly reactive elements spaced. These reactive elements are often conductive strips symmetrically entering the waveguide section and located in transverse planes, that is to say perpendicular to the longitudinal axis.

Suivant l'orientation du champ électrique par rapport aux iris, ceux-ci peuvent présenter une susceptance capacitive ou inductive. Lorsque le champ électrique est à 45° par rapport aux iris, on peut décomposer celui-ci en deux composantes orthogonales égales en amplitude. En prévoyant convenablement la disposition des iris, leur nombre et les dimensions du guide, on peut obtenir un déphasage différentiel entre ces deux composantes égal à 90° d'où une onde à polarisation circulaire en sortie du polariseur. Un déphasage différentiel optimisé sur une bande de fréquence de fonctionnement peut être obtenu en définissant de manière très précise les paramètres du polariseur. Or certains de ceux-ci sont très difficiles à définir par le calcul, ce qui entraíne des réalisations successives de polariseur pour mettre au point et optimiser celui-ci de manière expérimentale. Ceci est bien entendu long et coûteux. De plus, les procédés de réalisation étant complexes, on éprouve des difficultés à tenir les tolérances de fabrication lors des fabrications en série d'où une dégradation des performances.Depending on the orientation of the electric field with respect to the irises, these can present a capacitive or inductive susceptance. When the electric field is at 45 ° relative to the irises, we can decompose it into two orthogonal components equal in amplitude. By planning the arrangement of the irises, their number and the dimensions of the guide, we can get a differential phase shift between these two components equal to 90 ° whence a wave with circular polarization at the output of the polarizer. Optimized differential phase shift on a frequency band can be obtained by defining very precisely the polarizer settings. Now some of these are very difficult to define by calculation, which results in successive realizations of polarizer to develop and optimize it so Experimental. This is of course long and costly. In addition, the processes being complex, it is difficult to keep the manufacturing tolerances during mass production resulting in degradation performs.

Un polariseur de ce type où des vis sont utilisées à la place des iris mais où les mêmes problèmes se retrouvent est décrit, par exemple, dans le brevet américain US 4 672 334. Ce brevet décrit un polariseur comportant pour chaque bande de fréquences, dans une section de guide d'ondes, une paire de rangées de vis conductrices diamétralement opposées. L'enfoncement de ces vis peut être réglé pour optimiser seulement certaines grandeurs du polariseur.A polarizer of this type where screws are used in place of iris but where the same problems are found is described, for example, in US patent US 4,672,334. This patent describes a polarizer comprising for each frequency band, in a guide section of waves, a pair of rows of diametrically conductive screws opposed. The insertion of these screws can be adjusted to optimize only certain sizes of the polarizer.

Un polariseur à iris est décrit dans le brevet soviétique XP002003899 où aucun moyen de réglage après fabrication n'est inclu.An iris polarizer is described in the Soviet patent XP002003899 where no adjustment means after manufacture is not included.

Un objet de l'invention est donc un polariseur exempt de ces inconvénients grâce à une possibilité simple de réglage et d'adaptation à une bande de fréquence donnée.An object of the invention is therefore a polarizer free of these disadvantages thanks to a simple possibility of adjustment and adaptation to a given frequency band.

Selon l'invention, il est prévu un polariseur à iris pour source primaire d'antenne du type incluant une section de guide d'ondes longitudinale comportant une succession d'éléments réactifs régulièrement espacés formant des iris et agissant comme des susceptances capacitives ou inductives selon la direction de la polarisation linéaire du champ électrique à l'intérieur de ladite section de guide d'ondes, tel que défini dans les revendications.According to the invention, there is provided an iris polarizer for source antenna primary of the type including a waveguide section longitudinal with a succession of regularly reactive elements spaced apart forming irises and acting as capacitive susceptances or inductive according to the direction of the linear polarization of the field electric inside said waveguide section, as defined in the revendications.

L'invention sera mieux comprise et d'autres caractéristiques et avantages apparaítront à l'aide de la description ci-après et des dessins joints où :

  • la figure 1 est le schéma d'une source primaire d'antenne connue avec un polariseur à iris ;
  • les figures 2a et 2b représentent des diagrammes explicatifs ;
  • les figures 3 à 5 sont des courbes relatives à un polariseur à iris optimisé ;
  • la figure 6 est un schéma en coupe longitudinale et transversale d'un polariseur selon l'invention ;
  • les figures 7 à 9 sont des courbes relatives au polariseur de la figure 6 lorsque le guide d'ondes a une section trop faible ; et
  • les figures 10 à 12 sont des courbes relatives au polariseur de la figure 6 lorsque le guide d'ondes a une section trop grande.
The invention will be better understood and other characteristics and advantages will appear from the following description and the accompanying drawings, in which:
  • Figure 1 is the diagram of a known primary antenna source with an iris polarizer;
  • Figures 2a and 2b show explanatory diagrams;
  • Figures 3 to 5 are curves relating to an optimized iris polarizer;
  • Figure 6 is a diagram in longitudinal and cross section of a polarizer according to the invention;
  • Figures 7 to 9 are curves relating to the polarizer of Figure 6 when the waveguide has a too small section; and
  • Figures 10 to 12 are curves relating to the polarizer of Figure 6 when the waveguide has too large a section.

La figure 1 représente schématiquement une source primaire d'antenne connue telle que celles mentionnées ci-dessus.Figure 1 schematically represents a primary source known antenna such as those mentioned above.

Cette source 1 comprend une transition 2 vers une section de guide d'ondes 3 d'un polariseur. Le guide d'ondes peut être de section carrée, rectangulaire ou circulaire. La plus simple solution qui a été représentée ici est la section circulaire. Cette section de guide d'ondes 3 comporte une succession d'éléments réactifs 5 qui sont des iris. On préfère souvent utiliser des iris bien que des solutions à vis ou lames de quartz par exemple puissent être utilisées. Cependant la solution à iris est plus performante, mieux adaptée aux puissances importantes et surtout nécessite moins d'éléments que les autres solutions à éléments réactifs car un iris peut présenter à la fois des susceptances capacitive et inductive, d'où une plus grande simplicité.This source 1 includes a transition 2 to a section of waveguide 3 of a polarizer. The waveguide can be of section square, rectangular or circular. The simplest solution that has been shown here is the circular section. This waveguide section 3 comprises a succession of reactive elements 5 which are irises. We prefer often use irises although screw solutions or quartz blades by example can be used. However the iris solution is more efficient, better suited to large powers and above all requires fewer elements than the other reactive element solutions because an iris can have both capacitive and inductive susceptibility, hence a greater simplicity.

Un iris peut être constitué de deux volets conducteurs pénétrant à l'intérieur du guide de manière symétrique par rapport à l'axe longitudinal du guide et disposés dans un plan transversal perpendiculaire à cet axe.An iris may consist of two conductive flaps penetrating at inside the guide symmetrically to the longitudinal axis of the guide and arranged in a transverse plane perpendicular to this axis.

La section de guide d'ondes 3 peut être entraínée en rotation par un ensemble moto-réducteur 4 (d'où l'avantage d'un guide circulaire) de façon à la faire tourner de 45°. La section 3 est suivie d'un transformateur 6 puis d'un déphaseur 7 relié à un cornet 8.The waveguide section 3 can be rotated by a geared motor assembly 4 (hence the advantage of a circular guide) of so that it rotates 45 °. Section 3 is followed by a transformer 6 then a phase shifter 7 connected to a horn 8.

Les figures 2a et 2b représentent le schéma équivalent d'un iris 5 pour un guide carré ou circulaire selon la direction de polarisation du champ électrique. L'iris comprend deux volets conducteurs 51 et 52 dans un plan transversal au guide 3 et pénétrant dans le guide d'une hauteur h donnée.Figures 2a and 2b show the equivalent diagram of an iris 5 for a square or circular guide depending on the polarization direction of the field electric. The iris comprises two conducting flaps 51 and 52 in a plane transverse to guide 3 and entering the guide of a given height h.

Dans le cas de la figure 2a, la direction du champ électrique (représenté par une flèche) est perpendiculaire aux bords de l'iris. Dans ce cas, la susceptance B C est capacitive.In the case of FIG. 2a, the direction of the electric field (represented by an arrow) is perpendicular to the edges of the iris. In this case, susceptance B VS is capacitive.

Par contre, dans le cas de la figure 2b où le champ électrique est parallèle aux bords de l'iris, la susceptance BL est inductive.On the other hand, in the case of FIG. 2b where the electric field is parallel to the edges of the iris, the susceptance B L is inductive.

Si maintenant on fait tourner de 45° la section de guide 3 par rapport au champ électrique ayant la direction de la figure 2a ou 2b, on peut considérer l'onde incidente comme décomposable en deux composantes orthogonales de même amplitude dont l'une est parallèle aux bords de l'iris et l'autre perpendiculaire à ces mêmes bords. Si le polariseur impose à ces deux composantes un déphasage différentiel de 90°, on obtient en sortie une onde à polarisation circulaire.If now guide section 3 is rotated 45 ° by compared to the electric field having the direction of figure 2a or 2b, one can consider the incident wave as decomposable into two components orthogonal of the same amplitude, one of which is parallel to the edges of the iris and the other perpendicular to these same edges. If the polarizer requires these two components a 90 ° differential phase shift, we obtain at output a wave with circular polarization.

Pour optimiser le déphasage différentiel sur une bande de fréquences de fonctionnement donnée, on doit définir les dimensions du guide (côté d d'un guide carré par exemple) et l'enfoncement h des iris. En général on prévoit une loi d'enfoncement pour les différents iris qui peut être une loi en cosinus ou selon une distribution de Tchebychev et qui permet de minimiser le TOS dans la bande de fonctionnement.To optimize the differential phase shift on a band of given operating frequencies, the dimensions of the guide (side d of a square guide for example) and sinking h of the irises. In general there is provision for a sinking law for the different irises which can be a law in cosine or according to a distribution of Tchebychev and which allows to minimize the TOS in the operating band.

La figure 3 montre les variations des susceptances capacitive (courbe BC) et inductive (courbe BL) de l'ensemble des iris en fonction de la fréquence.Figure 3 shows the variations in capacitive susceptances (BC curve) and inductive (BL curve) of all the irises as a function of the frequency.

Pour l'iris de rang n dont l'enfoncement est hn, la susceptance capacitive est donnée par : Bcn Yo = K 1 (hn,d) . 1 λg (d, f)    où Bcn est la susceptance capacitive, Yo la susceptance caractéristique du guide, λg la longueur d'onde dans le guide fonction des dimensions du guide et de la fréquence et K1 (hn, d) une constante dépendant des dimensions du guide et de l'enfoncement de l'iris. La susceptance capacitive est inversement proportionnelle à la longueur d'onde dans le guide.For the iris of rank n whose penetration is h n , the capacitive susceptance is given by: B cn Y o = K 1 (h not , d). 1 λg (d, f) where B cn is the capacitive susceptance, Yo the characteristic susceptance of the guide, λg the wavelength in the guide as a function of the dimensions of the guide and the frequency and K 1 (h n, d) a constant depending on the dimensions of the guide and iris depression. The capacitive susceptance is inversely proportional to the wavelength in the guide.

De même la susceptance inductive BLn de l'iris est donnée par : BLn Yo = K 2 (hn, d) . λg (d, f) Similarly, the inductive susceptibility B Ln of the iris is given by: B Ln Y o = K 2 (h not , d). λg (d, f)

Cette valeur est proportionnelle à la longueur d'onde dans le guide.This value is proportional to the wavelength in the guide.

Les constantes K1 et K2 sont difficiles à déterminer analytiquement.The constants K 1 and K 2 are difficult to determine analytically.

Cependant par approximation dans le cas du guide carré et en supposant que h est très petit par rapport à d et λg, on peut déterminer le déphasage différentiel d'un simple iris par la relation approchée :

Figure 00040001
However by approximation in the case of the square guide and by supposing that h is very small compared to d and λg, one can determine the differential phase shift of a simple iris by the approximate relation:
Figure 00040001

Le premier terme dépend de la dimension du guide et de l'enfoncement des iris ; le deuxième terme dépend de la dimension du guide et de la fréquence. On peut généraliser cette relation et le déphasage différentiel introduit par l'ensemble des N iris s'écrit alors :

Figure 00050001
The first term depends on the size of the guide and the depth of the iris; the second term depends on the size of the guide and the frequency. We can generalize this relation and the differential phase shift introduced by the set of N iris is then written:
Figure 00050001

La variation de ce déphasage avec la fréquence est représentée sur la figure 4 et celle du taux d'ellipticité en décibels est représentée sur la figure 5. Pour optimiser le polariseur, il faut minimiser le taux d'ellipticité dans la bande de fonctionnement (ici entre 2,6 et 3,6 GHz) d'une part en égalant les performances aux deux fréquences extrêmes et d'autre part en ajustant l'enfoncement des iris de façon à centrer la variation du déphasage différentiel T sur 90°.The variation of this phase shift with the frequency is represented in FIG. 4 and that of the ellipticity rate in decibels is represented in FIG. 5. To optimize the polarizer, it is necessary to minimize the ellipticity rate in the operating band (here between 2.6 and 3.6 GHz) on the one hand by equalizing the performance at the two extreme frequencies and on the other hand by adjusting the penetration of the irises so as to center the variation in the differential phase shift  T over 90 °.

La première condition, appliquée au deuxième terme de la relation (1), conduit à la détermination de la dimension d du guide : 2d2 = λgmax.λgmin    où λgmax et λgmin sont les longueurs d'onde dans le guide pour les valeurs extrêmes de fréquence de la bande.The first condition, applied to the second term of relation (1), leads to the determination of the dimension d of the guide: 2d 2 = λgmax.λgmin where λgmax and λgmin are the wavelengths in the guide for the extreme frequency values of the band.

Lorsque l'on veut donc réaliser un polariseur dans une bande de fréquence donnée, il faut d'abord choisir la dimension d selon la relation (2). Mais, comme on l'a vu, cette détermination découlant de celle des constantes K1 et K2 n'est qu'approximative. Seule, une série de réalisations expérimentales permet de préciser ces facteurs, ce qui, comme on l'a déjà dit, accroít les coûts.When we therefore want to make a polarizer in a given frequency band, we must first choose the dimension d according to relation (2). But, as we have seen, this determination arising from that of the constants K 1 and K 2 is only approximate. Only a series of experimental achievements makes it possible to specify these factors, which, as already mentioned, increases the costs.

Pour remédier à cela, la figure 6 représente le schéma d'un polariseur selon l'invention. Ce polariseur comporte une section de guide d'ondes (3), circulaire dans l'exemple décrit, de diamètre d déterminé approximativement. Dans ce guide, sont placés des iris 5 dont l'enfoncement hn est déterminé à partir de d : l'enfoncement hn des iris obéit à une loi qui peut être une distribution de Tchebychev pour obtenir le meilleur TOS possible dans la bande. Le tout est ajusté pour obtenir également un déphasage différentiel sensiblement égal à 90°. To remedy this, FIG. 6 represents the diagram of a polarizer according to the invention. This polarizer comprises a waveguide section (3), circular in the example described, of diameter d determined approximately. In this guide, irises 5 are placed whose sinking h n is determined from d : the sinking h n of the irises obeys a law which can be a Chebyshev distribution to obtain the best possible TOS in the band. The whole is adjusted to also obtain a differential phase shift substantially equal to 90 °.

En complément des iris, sont prévues des vis ajustables disposées par paires 30, 31 symétriques par rapport à l'axe de symétrie longitudinal 32, ceci afin d'éviter la génération de modes supérieurs. L'espacement longitudinal entre deux paires adjacentes est sensiblement égal à (2n+1) λg/4 pour la fréquence centrale de la bande de fonctionnement de façon à obtenir une bonne adaptation, ceci supposant qu'il y a au moins deux paires de vis.In addition to the irises, there are adjustable screws arranged in pairs 30, 31 symmetrical about the axis of symmetry longitudinal 32, this in order to avoid the generation of higher modes. The longitudinal spacing between two adjacent pairs is substantially equal to (2n + 1) λg / 4 for the center frequency of the band functioning in order to obtain a good adaptation, this supposing that there are at least two pairs of screws.

Enfin les vis par exemple à l'intérieur du guide sont disposées vers une extrémité du guide 3, là où les iris sont le moins enfoncés, de façon à garantir la meilleure tenue en puissance. Dans le cas de la figure 6, les vis ont été disposées dans le plan médian P des iris contenant l'axe 32, c'est-à-dire le plan de la figure pour la coupe longitudinale. Les traces du plan P et du plan orthogonal P' passant par l'axe longitudinal 32 ont été représentées sur la coupe transversale passant par les vis 30 de la figure 6.Finally the screws for example inside the guide are arranged towards one end of the guide 3, where the irises are the least depressed, so to guarantee the best power handling. In the case of Figure 6, the screws have been arranged in the median plane P of the irises containing the axis 32, that is to say the plane of the figure for the longitudinal section. The traces of plane P and the orthogonal plane P 'passing through the longitudinal axis 32 have been shown on the cross section passing through the screws 30 of FIG. 6.

On peut supposer que, dans un premier cas, la valeur d du guide 3 est trop faible. Les figures 7 à 9 illustrent ce cas.We can assume that, in a first case, the value d of the guide 3 is too low. Figures 7 to 9 illustrate this case.

En l'absence des vis 30, 31, on obtient les courbes en trait plein. On voit immédiatement qu'on aboutit à un décalage de la bande de fonctionnement vers les fréquences élevées (cf. figure 9 courbe e).In the absence of the screws 30, 31, the curves are obtained in solid lines. We immediately see that we end up with a shift of the operating band towards the high frequencies (cf. figure 9 curve e ).

En observant les courbes BC et BL de la figure 7 qui représentent les variations des susceptances capacitive et inductive, on remarque que le déphasage différentiel dans les basses fréquences est essentiellement dû à l'effet inductif des iris qui présente une grande dispersion. L'adjonction de vis conformément à la figure 6, c'est-à-dire dans le plan P, comme représenté à droite de la figure 7, apporte un effet capacitif qui s'ajoute aux susceptances capacitives des iris. On peut alors diminuer l'enfoncement des iris ce qui réduit l'effet inductif et donc la dispersion (cf les courbes BC' et BL' en pointillé de la figure 7). En jouant sur l'enfoncement des vis et des iris, on obtient une courbe de déphasage différentiel optimisée (courbe Φ' sur la figure 8) et une bande de fréquence de fonctionnement recentrée (courbe e' de la figure 9).By observing the curves BC and BL of figure 7 which represent variations in capacitive and inductive susceptances, we note that the differential phase shift in low frequencies is mainly due to the inductive effect of the irises which has a great dispersion. The addition of screw according to figure 6, i.e. in plane P, as represented on the right of figure 7, brings a capacitive effect which is added to the capacitive susceptibilities of the irises. We can then reduce the sinking of the iris which reduces the inductive effect and therefore the dispersion (see curves BC 'and BL 'in dotted line in Figure 7). By playing on the driving of the screws and iris, we obtain an optimized differential phase shift curve (curve Φ ' in Figure 8) and a re-centered operating frequency band (curve e 'in Figure 9).

De la même façon, les figures 10 à 12 illustrent le cas où la section du guide d'ondes 3 et donc la dimension d sont trop grandes. Les courbes en trait plein correspondent aux résultats en l'absence de vis. On aboutit ici à un décalage vers les fréquences basses. Ici, on observe (courbes BC et BL de la figure 10) une dispersion vers les fréquences hautes des suceptances capacitive et inductive dues aux iris et une pente plus faible pour la susceptance inductive. Pour y remédier on prévoit des vis 30, 31 ajustables disposées dans le plan P' (Fig. 6) comme représenté à droite de la figure 10.In the same way, FIGS. 10 to 12 illustrate the case where the section of the waveguide 3 and therefore the dimension d are too large. The solid lines correspond to the results in the absence of screws. We end up here with a shift towards the low frequencies. Here, we observe (curves BC and BL of FIG. 10) a dispersion towards the high frequencies of the capacitive and inductive suceptances due to the irises and a lower slope for the inductive susceptance. To remedy this, provision is made for adjustable screws 30, 31 arranged in the plane P '(FIG. 6) as shown on the right in FIG. 10.

Les courbes en pointillé des figures 10 à 12 traduisent les résultats obtenus. L'action des vis diminue le déphasage apporté par les susceptances inductives, ce qui permet d'augmenter l'enfoncement des iris pour accroítre la pente de la courbe BL' (figure 10). On peut ainsi optimiser le déphasage différentiel et recentrer la bande de fonctionnement, comme le montre la courbe e' de la figure 12.The dotted curves in Figures 10 to 12 reflect the results obtained. The action of the screws reduces the phase shift provided by the inductive susceptances, which increases the depression of the iris to increase the slope of the curve BL '(Figure 10). We can thus optimize the differential phase shift and re-center the operating band, like the shows the curve e 'in figure 12.

Il est clair que l'invention permet ainsi de réaliser un polariseur pour une bande de fonctionnement donnée sans avoir à rechercher expérimentalement par une succession de fabrications les dimensions optimales du guide.It is clear that the invention thus makes it possible to produce a polarizer for a given operating band without having to search experimentally by a succession of fabrications the dimensions of the guide.

Bien entendu, l'invention n'est nullement limitée aux exemples de réalisation décrits. Notamment, il serait possible de remplacer les vis ajustables par d'autres éléments réactifs, tels que des barreaux, ayant une susceptance essentiellement capacitive ou essentiellement inductive. De même, selon le mode de réalisation envisagé, on peut utiliser différents types de vis et notamment des vis classiques s'il n'y a pas de problèmes liés aux fortes puissances.Of course, the invention is in no way limited to the examples of realization described. In particular, it would be possible to replace the screws adjustable by other reactive elements, such as bars, having a essentially capacitive or essentially inductive susceptance. Of even, depending on the embodiment envisaged, it is possible to use different types of screws and in particular conventional screws if there are no related problems to strong powers.

Claims (7)

  1. Iris polariser for an antenna feed of the type that includes a longitudinal waveguide section (3) comprising a series of regularly spaced reactive elements (5) which form irises and act as capacitive or inductive susceptances according to the direction of the linear polarisation of the electric field inside said waveguide section, characterised in that there is provision for disposing in said waveguide section, as a complement to said irises, adjustable elements (30, 31) exhibiting a susceptance that is essentially of a given type, capacitive or inductive, so as to recentre the operating frequency band of said polariser while keeping the differential phase shift of said polariser substantially equal to 90° within said frequency band, so as to minimise the axial ratio of the wave at the polariser's exit.
  2. Polariser according to claim 1, characterised in that said adjustable elements are constituted by screws or bars having an adjustable depth of penetration into the waveguide section (3).
  3. Polariser according to claim 2, wherein said reactive elements (5) are each constituted by two conducting flaps which symmetrically penetrate the interior of the waveguide section (3) by a given height (hn) in a plane transverse to the longitudinal waveguide section, characterised in that said adjustable elements are constituted by at least two pairs of height-adjustable screws (30, 31), the screws of each pair being disposed symmetrically with respect to the longitudinal axis of symmetry (32) of the waveguide section (3) and the distance between the two pairs along said axis substantially equalling an uneven multiple of one-quarter the wavelength in the waveguide section at the central frequency of said operating frequency band.
  4. Polariser according to claim 3, characterised in that the head of the screws (30, 31) inside the waveguide section is spherical in shape.
  5. Polariser according to either of claims 3 and 4, characterised in that since the transverse dimension (d) of the waveguide section (3) in the median plane (P) of the irises containing said axis of symmetry (32) is smaller than the optimal dimension for the desired operating frequency band, said optimal dimension equalising the axial ratio obtained at the two ends of said frequency band, said screws (30, 31) are disposed in said median plane.
  6. Polariser according to either of claims 3 and 4, characterised in that since the transverse dimension (d) of the waveguide section (3) in the median plane of the irises containing said axis of symmetry is bigger than the optimal dimension for the desired operating band, said optimal dimension equalising the axial ratio obtained at the two ends of said frequency band, said screws (30, 31) are disposed in the plane (P') containing said axis of symmetry and orthogonal to said median plane (P).
  7. Polariser according to any one of claims 1 to 6, characterised in that said adjustable elements (30, 31) are disposed towards one of the ends of said waveguide section (3).
EP19960401830 1995-09-01 1996-08-27 Iris polarizer for an antenna primary source Expired - Lifetime EP0762529B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9510299A FR2738400B1 (en) 1995-09-01 1995-09-01 IRIS POLARIZER FOR PRIMARY ANTENNA SOURCE
FR9510299 1995-09-01

Publications (2)

Publication Number Publication Date
EP0762529A1 EP0762529A1 (en) 1997-03-12
EP0762529B1 true EP0762529B1 (en) 2001-03-14

Family

ID=9482209

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960401830 Expired - Lifetime EP0762529B1 (en) 1995-09-01 1996-08-27 Iris polarizer for an antenna primary source

Country Status (3)

Country Link
EP (1) EP0762529B1 (en)
DE (1) DE69612052T2 (en)
FR (1) FR2738400B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1319925B1 (en) * 2000-02-29 2003-11-12 Cselt Centro Studi Lab Telecom WAVE GUIDE POLARIZATION.
JP2019530307A (en) * 2016-09-06 2019-10-17 パーカー・ハニフィン・コーポレーション Polarizer assembly

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114502A (en) * 1981-12-28 1983-07-07 Nippon Hoso Kyokai <Nhk> Elliptically polarized wave controller
US4672334A (en) * 1984-09-27 1987-06-09 Andrew Corporation Dual-band circular polarizer
SU1596407A1 (en) * 1988-04-25 1990-09-30 Предприятие П/Я А-3141 Waveguide polarizer

Also Published As

Publication number Publication date
FR2738400A1 (en) 1997-03-07
EP0762529A1 (en) 1997-03-12
DE69612052D1 (en) 2001-04-19
FR2738400B1 (en) 1997-10-03
DE69612052T2 (en) 2001-09-20

Similar Documents

Publication Publication Date Title
EP0047203B1 (en) Microwave filter with a dielectric resonator tunable over a large bandwidth
EP0114140B1 (en) Tunable microwave filter with tm010 mode dielectric resonators
EP0014115B1 (en) Tunable high frequency magnetostatic wave oscillator
FR2669776A1 (en) SLOTTED MICROWAVE ANTENNA WITH LOW THICKNESS STRUCTURE.
EP2195877B1 (en) Omt type broadband multiband transmission-reception coupler-separator for rf frequency telecommuncations antennas
EP0315141A1 (en) Excitation arrangement of a circular polarised wave with a patch antenna in a waveguide
FR2704358A1 (en) Waveguide polarisation duplexer
FR2604305A1 (en) COMPOSITE WIDE-BAND TYPE-PLAN COMPOSITE FILTER
EP0467818B1 (en) Transition element between electromagnetic waveguides, especially between a circular waveguide and a coaxial waveguide
FR2994028A1 (en) FREQUENCY TUNING BAND FILTER FOR MICROWAVE WAVE
EP0762529B1 (en) Iris polarizer for an antenna primary source
FR2582449A1 (en) BROADBAND POLARIZATION DIPLEXER DEVICE AND ANTENNA ASSOCIATED WITH RADAR OR COUNTERMEASURE DEVICE COMPRISING SUCH A DEVICE
EP0060174B1 (en) Band-pass filter with dielectric resonators
CA1074878A (en) Hyperfrequency transition
EP0018261B1 (en) Wide-band waveguide with double polarisation
EP0550320B1 (en) Waveguide with non-inclined slots activated by metallic inserts
FR2519475A1 (en) MAGNETOSTATIC VOLUME-TUNABLE TUNABLE DEVICE
EP0022401A1 (en) Broad-band polariser with low ellipticity-ratio and microwave equipment with the same
EP0093058B1 (en) Feeding device for a corrugated conical primary radiating element for two frequency bands
FR2470457A1 (en) SLOT NETWORK ANTENNA WITH AMPLITUDE DISTRIBUTION IN A SMALL CIRCULAR OPENING
EP0045242A1 (en) Microwave pass-band filter in a waveguide
FR2655199A1 (en) BAND REMOVAL FILTER FOR MICROWAVE WAVEGUIDE.
FR2546672A1 (en) MAGNETOSTATIC VOLUME-TUNABLE TUNABLE DEVICE
EP0623970A1 (en) Circular or elliptical sectionned antenna, fixed or rotating, fed by single or multiple microwave generators producing multipolarized waves
EP0757403A1 (en) Magnetic coupling device between a main conductor of a TEM line and a waveguide, forming a gamma/g/2 resonator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19970909

17Q First examination report despatched

Effective date: 19991129

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69612052

Country of ref document: DE

Date of ref document: 20010419

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010410

ITF It: translation for a ep patent filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040810

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040825

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040902

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050827

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050827

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

Ref country code: FR

Ref legal event code: AU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060428