EP0753571A1 - Process for making granular detergent composition - Google Patents
Process for making granular detergent composition Download PDFInfo
- Publication number
- EP0753571A1 EP0753571A1 EP95304794A EP95304794A EP0753571A1 EP 0753571 A1 EP0753571 A1 EP 0753571A1 EP 95304794 A EP95304794 A EP 95304794A EP 95304794 A EP95304794 A EP 95304794A EP 0753571 A1 EP0753571 A1 EP 0753571A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acid
- granular detergent
- weight
- powder
- hcl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003599 detergent Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000000203 mixture Substances 0.000 title claims description 22
- 239000000843 powder Substances 0.000 claims abstract description 42
- 239000002253 acid Substances 0.000 claims abstract description 31
- -1 choline ester Chemical class 0.000 claims abstract description 29
- 229960001231 choline Drugs 0.000 claims abstract description 22
- 239000003093 cationic surfactant Substances 0.000 claims abstract description 18
- 238000001035 drying Methods 0.000 claims abstract description 7
- 239000007864 aqueous solution Substances 0.000 claims abstract description 5
- 238000002360 preparation method Methods 0.000 claims abstract description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 27
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 15
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 11
- 238000001694 spray drying Methods 0.000 claims description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 5
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 5
- 239000004927 clay Substances 0.000 claims description 4
- 229910021653 sulphate ion Inorganic materials 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 36
- 239000010457 zeolite Substances 0.000 description 16
- 229910021536 Zeolite Inorganic materials 0.000 description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000001993 wax Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 229920005646 polycarboxylate Polymers 0.000 description 10
- 238000005054 agglomeration Methods 0.000 description 9
- 230000002776 aggregation Effects 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 238000005056 compaction Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 5
- 125000002091 cationic group Chemical group 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 150000004760 silicates Chemical class 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 5
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000004200 microcrystalline wax Substances 0.000 description 4
- 235000019808 microcrystalline wax Nutrition 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 229940055076 parasympathomimetics choline ester Drugs 0.000 description 3
- 150000003248 quinolines Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical compound OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 2
- YLAXZGYLWOGCBF-UHFFFAOYSA-N 2-dodecylbutanedioic acid Chemical compound CCCCCCCCCCCCC(C(O)=O)CC(O)=O YLAXZGYLWOGCBF-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 150000007942 carboxylates Chemical group 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 229910009112 xH2O Inorganic materials 0.000 description 2
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- ILAPVZVYHKSGFM-UHFFFAOYSA-N 1-(carboxymethoxy)ethane-1,1,2-tricarboxylic acid Chemical class OC(=O)COC(C(O)=O)(C(O)=O)CC(O)=O ILAPVZVYHKSGFM-UHFFFAOYSA-N 0.000 description 1
- VJSWLXWONORKLD-UHFFFAOYSA-N 2,4,6-trihydroxybenzene-1,3,5-trisulfonic acid Chemical compound OC1=C(S(O)(=O)=O)C(O)=C(S(O)(=O)=O)C(O)=C1S(O)(=O)=O VJSWLXWONORKLD-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-VAWYXSNFSA-N 2-[(e)-dodec-1-enyl]butanedioic acid Chemical group CCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-VAWYXSNFSA-N 0.000 description 1
- FNZYCBRVAITBPH-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;2-(carboxymethoxy)butanedioic acid Chemical compound OC(=O)COC(C(O)=O)CC(O)=O.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O FNZYCBRVAITBPH-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-UHFFFAOYSA-N 2-dodec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCC=CC(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-UHFFFAOYSA-N 0.000 description 1
- GCVQVCAAUXFNGJ-UHFFFAOYSA-N 2-hexadecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)CC(O)=O GCVQVCAAUXFNGJ-UHFFFAOYSA-N 0.000 description 1
- PSZAEHPBBUYICS-UHFFFAOYSA-N 2-methylidenepropanedioic acid Chemical compound OC(=O)C(=C)C(O)=O PSZAEHPBBUYICS-UHFFFAOYSA-N 0.000 description 1
- DXPLEDYRQHTBDJ-UHFFFAOYSA-N 2-pentadec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCCCCC=CC(C(O)=O)CC(O)=O DXPLEDYRQHTBDJ-UHFFFAOYSA-N 0.000 description 1
- MWTDCUHMQIAYDT-UHFFFAOYSA-N 2-tetradecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCC(C(O)=O)CC(O)=O MWTDCUHMQIAYDT-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 125000006538 C11 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000180278 Copernicia prunifera Species 0.000 description 1
- 235000010919 Copernicia prunifera Nutrition 0.000 description 1
- 235000014466 Douglas bleu Nutrition 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241001553290 Euphorbia antisyphilitica Species 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 240000001416 Pseudotsuga menziesii Species 0.000 description 1
- 235000005386 Pseudotsuga menziesii var menziesii Nutrition 0.000 description 1
- 244000044822 Simmondsia californica Species 0.000 description 1
- 235000004433 Simmondsia californica Nutrition 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- OURRXQUGYQRVML-AREMUKBSSA-N [4-[(2s)-3-amino-1-(isoquinolin-6-ylamino)-1-oxopropan-2-yl]phenyl]methyl 2,4-dimethylbenzoate Chemical compound CC1=CC(C)=CC=C1C(=O)OCC1=CC=C([C@@H](CN)C(=O)NC=2C=C3C=CN=CC3=CC=2)C=C1 OURRXQUGYQRVML-AREMUKBSSA-N 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001334 alicyclic compounds Chemical class 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001450 anions Chemical group 0.000 description 1
- HJJPJSXJAXAIPN-UHFFFAOYSA-N arecholine Natural products COC(=O)C1=CCCN(C)C1 HJJPJSXJAXAIPN-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012179 bayberry wax Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 238000002036 drum drying Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000001257 hydrogen Chemical group 0.000 description 1
- 229910052739 hydrogen Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000012182 japan wax Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000012184 mineral wax Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- 239000012168 ouricury wax Substances 0.000 description 1
- 238000000643 oven drying Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012187 peat wax Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000004170 rice bran wax Substances 0.000 description 1
- 235000019384 rice bran wax Nutrition 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000019351 sodium silicates Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/046—Salts
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/02—Preparation in the form of powder by spray drying
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/042—Acids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/10—Carbonates ; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/1253—Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
- C11D3/126—Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in solid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/128—Aluminium silicates, e.g. zeolites
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2086—Hydroxy carboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3757—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
- C11D3/3761—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions
Definitions
- the present invention concerns a process for the preparation of a granular detergent component and also concerns granular detergent components comprising cationic surfactant, in particular hydrolysable cationic surfactants such as choline ester.
- choline esters are readily hydrolised, especially in alkaline conditions. Consequently such powders are unsuitable for use by dry mixing directly into commercial granular detergent compositions which are usually alkaline.
- the object of the invention is to provide a granular detergent components which comprise hydrolysable cationic surfactant and which are stable in commercial detergent compositions.
- this object is achieved by a process for the preparation of a granular detergent component comprising the steps of :
- the powder of step (i) is formed by spray drying and comprises at least 20%, preferably at least 50% by weight of choline ester.
- the powder is densified by compaction in the presence of other detergent powders.
- the powder is densified by agglomeration in the presence of other detergent powders.
- Preferred detergent powders are aluminosilicate, carbonate, bicarbonate, silicate, sulphate, citrate, clay or mixtures thereof.
- Preferred acids are citric, sulphuric, hydrochloric, polycarboxylic acid, or mixtures thereof.
- the invention also relates to granular detergent components having a bulk density of at least 500 g/l comprising: at least 20% by weight of cationic surfactant (preferably choline ester), and from 1% to 60% by weight of an acid (preferably from 10% to 60% by weight of an acid selected from the group consisting of citric, sulphuric, hydrochloric, polycarboxylic acid, or mixtures thereof), and optionally, up to 79% by weight of a detergent powder (preferably from 5% to 70% by weight of detergent powders selected from the group consisting of aluminosilicate, carbonate, bicarbonate, silicate, sulphate, citrate, clay or mixtures thereof), wherein the granular detergent component has a reserve acidity of at least 1.0 g HCl/100g.
- cationic surfactant preferably choline ester
- an acid preferably from 10% to 60% by weight of an acid selected from the group consisting of citric, sulphuric, hydrochloric, polycarboxylic acid
- Preferred cationic surfactant are choline ester derivatives such as those having the following formula : wherein R is a C 5 to C 30 straight chain or branched chain alkyl or alkenyl, group and X is an anion, which makes the compound at least water-dispersible, preferably selected from the group consisting of halide, methyl sulfate, sulfate, and nitrate, preferably methyl sulfate, chloride, bromide or iodide, as well as those wherein the ester linkage in the above formula is replaced with a reverse ester, amide or reverse amide linkage.
- Additional preferred cationic components of the choline ester variety are given by the structural formulas below, wherein p may be from 0 to 20.
- the preferred choline-derivative cationic substances may be prepared by the direct esterification of a fatty acid of the desired chain length with dimethylaminoethanol, in the presence of an acid catalyst. The reaction product is then quaternized with a methyl halide, forming the desired cationic material.
- the choline-derived cationic materials may also be prepared by the direct esterification of a long chain fatty acid of the desired chain length together with 2-haloethanol, in the presence of an acid catalyst material. The reaction product is then used to quaternize. Trimethylamine, forming the desired cationic component.
- Other suitable choline esters for use herein have the formula: wherein t is 0 or 1, y is from 1 to 20, and R and X are as defined above.
- Suitable acids include carboxylic and polycarboxylic acids such as fatty acids (C12-C18 monocarboxylic acids), mellitic acid, citric acid, succinic acid, oxydisuccinic acid, carboxymethyloxysuccinic acid ethylene diamine tetraacetic acid, nitrilotriacetic acid, as well as acrylic acid, maleic acid, fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid, methylenemalonic acid and polymers and copolymers thereof.
- Polymeric polycarboxylate builders are also described in US-A 3 308 067, Diehl, issued March 7th 1967. Further acids suitable for use in the present invention are sulphuric and hydrochloric acid. Most preferred is citric acid
- Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates.
- non-phosphate builders are required in some locales.
- compositions herein function surprisingly well even in the presence of the so-called "weak” builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt” situation that may occur with zeolite or layered silicate builders.
- silicate builders are the alkali metal silicates, particularly those having a SiO 2 :Na 2 O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck.
- NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6").
- Na SKS-6 silicate builder does not contain aluminum.
- NaSKS-6 has the delta-Na 2 SiO 5 morphology form of layered silicate. It can be prepared by methods such as those described in German DE-A-3,417,649 and DE-A-3,742,043.
- SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSi x O 2x+1 ⁇ yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein.
- layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms.
- the delta-Na 2 SiO 5 (NaSKS-6 form) is most preferred for use herein.
- Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
- Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973. Aluminosilicate builders are useful in the present invention.
- Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations.
- Aluminosilicate builders include those having the empirical formula: M z (zAlO 2 ) y ] ⁇ xH 2 O wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
- Useful aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived.
- aluminosilicate ion exchange materials A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976.
- Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X.
- the crystalline aluminosilicate ion exchange material has the formula: Na 12 [(AlO 2 ) 12 (SiO 2 ) 12 ] ⁇ xH 2 O) wherein x is from about 20 to about 30, especially about 27. This material is known as Zeolite A.
- the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
- Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds.
- polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
- Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
- polycarboxylate builders include a variety of categories of useful materials.
- One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987.
- Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S.
- Other useful detergency builders include the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
- Citrates can also be used, especially in combination with zeolite and/or layered silicate builders.
- Oxydisuccinates are also especially useful in such compositions and combinations.
- Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-1,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986.
- Useful succinic acid builders include the C 5 -C 20 alkyl and alkenyl succinic acids and salts thereof. A particularly preferred compound of this type is dodecenylsuccinic acid.
- succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like.
- Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
- Other suitable polycarboxylates are disclosed in U.S. Patent 4,144,226, Crutchfield et al, issued March 13, 1979 and in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. See also Diehl U.S. Patent 3,723,322.
- hydrophobic substances such as wax and oil.
- Waxes are hydrocarbons which are typically derived from petroleum. Three types of wax may be distinguished (see Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Edition, Wiley,Vol. 24, pages 473 and 474): paraffin wax, microcrystalline wax and semicrystalline wax.
- Paraffin wax consists principally of normal alkanes. It is composed of 40-90% normal paraffins and the remainder is C18-C36 isoalkanes and cycloalkanes. The melting point of the wax determines the actual grade and it varies between about 46°C and 71°C. Average molecular weight is between about 350 and 420.
- a suitable paraffin wax for use in the present invention is BDH Pastillated Paraffin Wax, having a melting point of 51-55 °C
- Microcrystalline and microcrystalline waxes contain substantial proportions of hydrocarbons other than normal alkanes.
- Microcrystalline waxes typically have a melting point between 60°C and 93°C. Average molecular weight is between about 600 and 800.
- a particularly preferred microcrystalline wax for use in the present invention is MMP ® , supplied by Shell.
- waxes suitable for use in the present invention are : Beeswax; Vegetable Wax, including Candelilla; Carnauba; Japan Wax; Ouricury Wax; Douglas-Fir Bark Wax; Rice Bran Wax; Jojoba; Castor Wax; Bayberry Wax; Mineral Wax, including Montan Wax and Peat Waxes; Synthetic Wax, including Polyethylene Waxes; Fischer-Tropsch Waxes (polymethylene) (45-106 °C); Chemically Modified Hydrocarbon Waxes (86-125 °C) and Substituted Amide Waxes (very high melting point ca 140 °C)
- the amount of wax and/or oil used in the granular detergent component should be from 0.005% to 20% by weight, preferably from 0.5% to 10% by weight and most preferably from 1% to 5% by weight of the granular detergent component.
- the process of drying as referred to herein means any process step in which water is removed. Suitable drying processes include drum drying, vacuum drying, flaking, oven drying and spray drying. Spray drying is most preferred.
- the process of densification as referred to herein means any treatment of powder which results in an increase in bulk density of at least 100 g/l, and prefereably of at least 200 g/l.
- Highly preferred densification processes are agglomeration and compaction.
- Alternative densification processes include extruding, pressing, milling and pelletizing. Final sizing can then be achieved by grinding and screening.
- powdered cationic surfactant is fed into a high shear mixer, such as a Loedige CB®.
- a high shear mixer such as a Loedige CB®.
- detergent powder and liquid binder are fed into the mixer; the two components being intimately mixed.
- the acid maybe introduced into the agglomeration process as a component of the powdered cationic surfactant, as a component of the detergent powder, as a components of the liquid binder, or a combination of any or all of these.
- the agglomeration process is completed in a second mixer, such as a Loedige KM® into which a powdered flow aid such as zeolite A may be added.
- the agglomerated product is preferably dried to the required finished product moisture level
- a highly preferred compaction process is described in detail in EP-A 0 220 024, (P&G), published on 29th April 1987.
- base granules are prepared by drying an aqueous slurry comprising, in the process of the present invention, cationic surfactant.
- the base granules are then mixed with detergent builder material and compacted at a pressure of preferably from 140 kPa to 2 MPa.
- An example of suitable compaction equipment is the chilsonator.
- Polycarboxylic acid in this example was a co-polymer of maleic and acrylic acid with a molecular weight of about 60 000.
- the choline ester powder (100%) was prepared in lab scale drying apparatus and subsequently treated by the following agglomeration process.
- the powders of choline ester citric acid and zeolite are added to a Braun food mixer.
- the polycarboxylic acid is poured slowly onto the powder mix as the blade is turning.
- a dusting of zeolite is added and then the agglomerates are dried in a lab scale fluid bed dryer at 80°C to remove all the free moisture.
- the resulting granular detergent component (the agglomerate) had a reserve acidity of 9.1 g HCl/100g
- Polycarboxylic acid in this example was a co-polymer of maleic and acrylic acid with a molecular weight of about 60 000.
- the choline ester powder was prepared by spray drying and subsequently treated by the same agglomeration process as in example 1.
- the resulting granular component (the agglomerate) has a reserve acidity of 9.1 g HCl/100g.
- the choline ester powder was spray-dried and subsequently treated by the following compaction process .
- the powder from the spray drying process is dry mixed with powdered citric acid.
- the mix is then added to the die of a Ward Forsyth batch tabletting press and pressed for a few seconds at a pressure of around 2 MPa.
- the subsequent tablet is ground up in a coffee grinder to form granules which are then dusted with zeolite.
- the resulting granular detergent component has a reserve alkalinity of 2.3 g G HCl/100 g.
- Citric acid was added to aqueous solution of choline ester during its synthesis. Powdered zeolite was then added to the solution and this product was then dried in an oven to remove all the free water and then ground up in a Moulinex coffee grinder. This powder was then compacted in the same manner as in example 3
- the resulting granular detergent component had a reserve alkalinity of 2.3g HCl/100g.
- Polycarboxylic acid in this example was a co-polymer of maleic and acrylic acid with a molecular weight of about 60 000.
- Citric acid was added to aqueous solution of choline ester during its synthesis. Powdered zeolite and additional powdered citric acid were then added to the solution. This product was then dried in an oven to remove all the free water and then ground up in a Moulinex coffee grinder. This powder was then treated by the same agglomeration process as in example 1.
- the resulting granular detergent component had a reserve alkalinity of 9.1 g HCl/100g.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
Abstract
The invention relates to a process for the preparation of a granular detergent component comprising the steps of :
- (i) forming the granular detergent component by drying an aqueous solution of a cationic surfactant to form a powder ;
- (ii) optionally, densifying the powder ;
The invention also relates to granular detergent components having a bulk density of at least 500 g/l comprising:
at least 20% by weight of cationic surfactant (preferably choline ester), and
from 1% to 60% by weight of an acid,
and optionally, up to 79% by weight of a detergent powder wherein the granular detergent component has a reserve acidity of at least 1.0 g HCl/100g.
at least 20% by weight of cationic surfactant (preferably choline ester), and
from 1% to 60% by weight of an acid,
and optionally, up to 79% by weight of a detergent powder wherein the granular detergent component has a reserve acidity of at least 1.0 g HCl/100g.
Description
- The present invention concerns a process for the preparation of a granular detergent component and also concerns granular detergent components comprising cationic surfactant, in particular hydrolysable cationic surfactants such as choline ester.
- It is known to prepare detergent powders by spray-drying cationic surfactants optionally together with other surfactants and builders.
- US-A 4 347 168, issued on August 31st, 1982 discloses spray-drying of alkaline crutcher mixes comprising cationic surfactants. It is stated that suitable cationic surfactants include various choline ester quaternary ammonium halides.
- However, choline esters are readily hydrolised, especially in alkaline conditions. Consequently such powders are unsuitable for use by dry mixing directly into commercial granular detergent compositions which are usually alkaline.
- The object of the invention is to provide a granular detergent components which comprise hydrolysable cationic surfactant and which are stable in commercial detergent compositions.
- According to the invention this object is achieved by a process for the preparation of a granular detergent component comprising the steps of :
- (i) drying an aqueous solution of a cationic surfactant to form a powder ;
- (ii) optionally, densifying the powder ;
- Preferably the powder of step (i) is formed by spray drying and comprises at least 20%, preferably at least 50% by weight of choline ester.
- In a first embodiment of the invention the powder is densified by compaction in the presence of other detergent powders. In a second embodiment of the invention the powder is densified by agglomeration in the presence of other detergent powders. Preferred detergent powders are aluminosilicate, carbonate, bicarbonate, silicate, sulphate, citrate, clay or mixtures thereof. Preferred acids are citric, sulphuric, hydrochloric, polycarboxylic acid, or mixtures thereof.
- The invention also relates to granular detergent components having a bulk density of at least 500 g/l comprising: at least 20% by weight of cationic surfactant (preferably choline ester), and
from 1% to 60% by weight of an acid (preferably from 10% to 60% by weight of an acid selected from the group consisting of citric, sulphuric, hydrochloric, polycarboxylic acid, or mixtures thereof),
and optionally, up to 79% by weight of a detergent powder (preferably from 5% to 70% by weight of detergent powders selected from the group consisting of aluminosilicate, carbonate, bicarbonate, silicate, sulphate, citrate, clay or mixtures thereof),
wherein the granular detergent component has a reserve acidity of at least 1.0 g HCl/100g. - Preferred cationic surfactant are choline ester derivatives such as those having the following formula :
- Particularly preferred examples of this type of cationic surfactant include stearoyl choline ester quaternary ammonium halides (R1=C17 alkyl), palmitoyl choline ester quaternary ammonium halides (R1=C15 alkyl), mystiroyl choline ester quaternary ammonium halides (R1=C13 alkyl), lauroyl choline ester ammonium halides (R1=C11 alkyl), as well as coconut and tallow choline ester quaternary ammonium halides (R1=C15-C17 alkyl and C19-C13 alkyl, respectively).
Additional preferred cationic components of the choline ester variety are given by the structural formulas below, wherein p may be from 0 to 20. - The preferred choline-derivative cationic substances, discussed above, may be prepared by the direct esterification of a fatty acid of the desired chain length with dimethylaminoethanol, in the presence of an acid catalyst. The reaction product is then quaternized with a methyl halide, forming the desired cationic material.
The choline-derived cationic materials may also be prepared by the direct esterification of a long chain fatty acid of the desired chain length together with 2-haloethanol, in the presence of an acid catalyst material. The reaction product is then used to quaternize.
Trimethylamine, forming the desired cationic component. Other suitable choline esters for use herein have the formula: - Suitable acids include carboxylic and polycarboxylic acids such as fatty acids (C12-C18 monocarboxylic acids), mellitic acid, citric acid, succinic acid, oxydisuccinic acid, carboxymethyloxysuccinic acid ethylene diamine tetraacetic acid, nitrilotriacetic acid, as well as acrylic acid, maleic acid, fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid, methylenemalonic acid and polymers and copolymers thereof. Polymeric polycarboxylate builders are also described in US-A 3 308 067, Diehl, issued March 7th 1967. Further acids suitable for use in the present invention are sulphuric and hydrochloric acid.
Most preferred is citric acid - Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates. However, non-phosphate builders are required in some locales. Importantly, the compositions herein function surprisingly well even in the presence of the so-called "weak" builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt" situation that may occur with zeolite or layered silicate builders.
Examples of silicate builders are the alkali metal silicates, particularly those having a SiO2:Na2O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck. NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6"). - Unlike zeolite builders, the Na SKS-6 silicate builder does not contain aluminum. NaSKS-6 has the delta-Na2SiO5 morphology form of layered silicate. It can be prepared by methods such as those described in German DE-A-3,417,649 and DE-A-3,742,043. SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSixO2x+1·yH2O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein. Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms. As noted above, the delta-Na2SiO5 (NaSKS-6 form) is most preferred for use herein. Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems. Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973. Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula:
Mz(zAlO2)y]·xH2O
wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
Useful aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula:
Na12[(AlO2)12(SiO2)12]·xH2O)
wherein x is from about 20 to about 30, especially about 27. This material is known as Zeolite A. Dehydrated zeolites (x = 0 - 10) may also be used herein. Preferably, the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds. As used herein, "polycarboxylate" refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates. Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
Included among the polycarboxylate builders are a variety of categories of useful materials. One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987. Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
Other useful detergency builders include the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof. Citrates can also be used, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-1,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986. Useful succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof. A particularly preferred compound of this type is dodecenylsuccinic acid. Specific examples of succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986. Other suitable polycarboxylates are disclosed in U.S. Patent 4,144,226, Crutchfield et al, issued March 13, 1979 and in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. See also Diehl U.S. Patent 3,723,322. - Other optional additives to the granular detergent component of the present invention include hydrophobic substances such as wax and oil. Waxes are hydrocarbons which are typically derived from petroleum. Three types of wax may be distinguished (see Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Edition, Wiley,Vol. 24, pages 473 and 474): paraffin wax, microcrystalline wax and semicrystalline wax.
- Paraffin wax consists principally of normal alkanes. It is composed of 40-90% normal paraffins and the remainder is C18-C36 isoalkanes and cycloalkanes. The melting point of the wax determines the actual grade and it varies between about 46°C and 71°C. Average molecular weight is between about 350 and 420. A suitable paraffin wax for use in the present invention is BDH Pastillated Paraffin Wax, having a melting point of 51-55 °C
- Semicrystalline and microcrystalline waxes contain substantial proportions of hydrocarbons other than normal alkanes. Microcrystalline waxes typically have a melting point between 60°C and 93°C. Average molecular weight is between about 600 and 800.
- A particularly preferred microcrystalline wax for use in the present invention is MMP ® , supplied by Shell.
- Other waxes suitable for use in the present invention are :
Beeswax;
Vegetable Wax, including Candelilla; Carnauba; Japan Wax; Ouricury Wax; Douglas-Fir Bark Wax; Rice Bran Wax; Jojoba; Castor Wax; Bayberry Wax;
Mineral Wax, including Montan Wax and Peat Waxes; Synthetic Wax, including Polyethylene Waxes; Fischer-Tropsch Waxes (polymethylene) (45-106 °C); Chemically Modified Hydrocarbon Waxes (86-125 °C) and Substituted Amide Waxes (very high melting point ca 140 °C)
The amount of wax and/or oil used in the granular detergent component should be from 0.005% to 20% by weight, preferably from 0.5% to 10% by weight and most preferably from 1% to 5% by weight of the granular detergent component. - The process of drying as referred to herein means any process step in which water is removed. Suitable drying processes include drum drying, vacuum drying, flaking, oven drying and spray drying. Spray drying is most preferred.
- The process of densification as referred to herein means any treatment of powder which results in an increase in bulk density of at least 100 g/l, and prefereably of at least 200 g/l. Highly preferred densification processes are agglomeration and compaction. Alternative densification processes include extruding, pressing, milling and pelletizing. Final sizing can then be achieved by grinding and screening.
- In a most preferred agglomeration step powdered cationic surfactant is fed into a high shear mixer, such as a Loedige CB®. At the same time detergent powder and liquid binder are fed into the mixer; the two components being intimately mixed. The acid maybe introduced into the agglomeration process as a component of the powdered cationic surfactant, as a component of the detergent powder, as a components of the liquid binder, or a combination of any or all of these. The agglomeration process is completed in a second mixer, such as a Loedige KM® into which a powdered flow aid such as zeolite A may be added. Finally the agglomerated product is preferably dried to the required finished product moisture level
- A highly preferred compaction process is described in detail in EP-A 0 220 024, (P&G), published on 29th April 1987. In this process base granules are prepared by drying an aqueous slurry comprising, in the process of the present invention, cationic surfactant. The base granules are then mixed with detergent builder material and compacted at a pressure of preferably from 140 kPa to 2 MPa. An example of suitable compaction equipment is the chilsonator.
-
- 1. Macerate 10 grams of granular detergent composition comprising cationic surfactant.
- 2. Dissolve in deionised water and make up to 1000 mls using a volumetric flask.
- 3. Calibrate pH meter using buffers, 4.0 and 7.0.
- 4. Take a 50 ml aliquot of solution and note pH.
- 5. Titrate with 0.1 N NaOH until pH = 7.
- 6. Note mls NaOH and apply to the following equation.
-
Spray-dried powder Agglomerate Choline ester 100 30 Zeolite A (hydrated) - 27 Citric Acid - 28 Polycarboxylic acid* - 15 - Polycarboxylic acid in this example was a co-polymer of maleic and acrylic acid with a molecular weight of about 60 000.
- The choline ester powder (100%) was prepared in lab scale drying apparatus and subsequently treated by the following agglomeration process.
The powders of choline ester citric acid and zeolite are added to a Braun food mixer. The polycarboxylic acid is poured slowly onto the powder mix as the blade is turning. When all the liquid binder has been added a dusting of zeolite is added and then the agglomerates are dried in a lab scale fluid bed dryer at 80°C to remove all the free moisture. - The resulting granular detergent component (the agglomerate) had a reserve acidity of 9.1 g HCl/100g
-
Spray-dried powder Agglomerate Choline ester 60 30 Zeolite A (hydrated) 40 27 Citric Acid - 28 Polycarboxylic acid* - 15 - Polycarboxylic acid in this example was a co-polymer of maleic and acrylic acid with a molecular weight of about 60 000.
- The choline ester powder was prepared by spray drying and subsequently treated by the same agglomeration process as in example 1.
- The resulting granular component (the agglomerate) has a reserve acidity of 9.1 g HCl/100g.
-
Spray-dried powder Compact Choline ester 55 42 Zeolite A (hydrated) 44 34 Citric Acid - 24 Free water 1 1 - The choline ester powder was spray-dried and subsequently treated by the following compaction process .
The powder from the spray drying process is dry mixed with powdered citric acid. The mix is then added to the die of a Ward Forsyth batch tabletting press and pressed for a few seconds at a pressure of around 2 MPa. The subsequent tablet is ground up in a coffee grinder to form granules which are then dusted with zeolite. - The resulting granular detergent component has a reserve alkalinity of 2.3 g G HCl/100 g.
-
Aqueous soln Oven dried powder Compact Choline ester 26 42 42 Zeolite A (hydrated) 34 34 Citric Acid 15 24 24 Free water 59 1 1 - Citric acid was added to aqueous solution of choline ester during its synthesis. Powdered zeolite was then added to the solution and this product was then dried in an oven to remove all the free water and then ground up in a Moulinex coffee grinder. This powder was then compacted in the same manner as in example 3
- The resulting granular detergent component had a reserve alkalinity of 2.3g HCl/100g.
-
Aqueous soln Oven dried powder Agglomerate Choline ester 26 36 30 Zeolite A (hydrated) 30 27 Citric Acid 15 34 28 Polycarboxylic acid* - - 15 Water 59 - - - Polycarboxylic acid in this example was a co-polymer of maleic and acrylic acid with a molecular weight of about 60 000.
- Citric acid was added to aqueous solution of choline ester during its synthesis. Powdered zeolite and additional powdered citric acid were then added to the solution. This product was then dried in an oven to remove all the free water and then ground up in a Moulinex coffee grinder. This powder was then treated by the same agglomeration process as in example 1.
- The resulting granular detergent component had a reserve alkalinity of 9.1 g HCl/100g.
and, sample weight = 0.5 g
Claims (10)
- A process for the preparation of a granular detergent component comprising the steps of :(i) forming the granular detergent component by drying an aqueous solution of a cationic surfactant to form a powder ;(ii) optionally, densifying the powder;to
characterised in that the granular detergent component further comprises an acid, wherein the granular detergent component has a reserve acidity of at least 1.0 g HCl/100g. - A process according to claim 1 wherein the granular detergent component has a reserve acidity of at least 3.0 g HCl/100g, and preferably at least 8.0 g HCl/100g.
- A process according to either of claims 1 or 2 wherein the powder of step (i) is formed by spray drying and comprises at least 20%, preferably at least 50%, by weight of choline ester.
- A process according to claim 3 wherein the spray dried powder is densified by compacting with other detergent powders in the presence of the acid.
- A process according to claim 4 wherein the detergent powders are selected from the group consisting of aluminosilicate, carbonate, bicarbonate, silicate, sulphate, citrate, clay or mixtures thereof.
- A process according to any of claims 1 to 5 wherein the acid is selected from the group consisting of citric, sulphuric, hydrochloric, polycarboxylic acid, or mixtures thereof.
- A process according to claim 3 wherein the spray dried powder is densified agglomerating with other detergent powders in the presence of the acid.
- A process according to either of claims 6 or 7 wherein the acid is selected from the group consisting of citric, sulphuric, hydrochloric, polycarboxylic acid, or mixtures thereof.
- A granular detergent component having a bulk density of at least 500 g/l comprising:
at least 20% by weight of cationic surfactant, and
from 1% to 60% by weight of an acid,
optionally, up to 79% by weight of a detergent powder characterised in that the granular detergent component has a reserve acidity of at least 1.0 g HCl/100g. - A granular detergent component according to claim 9 comprising:
at least 20% by weight of choline ester,
from 10% to 60% by weight of an acid selected from the group consisting of citric, sulphuric, hydrochloric, polycarboxylic acid, or mixtures thereof, and
from 5% to 70% by weight of detergent powders selected from the group consisting of aluminosilicate, carbonate, bicarbonate, silicate, sulphate, citrate, clay or mixtures thereof.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95304794A EP0753571A1 (en) | 1995-07-10 | 1995-07-10 | Process for making granular detergent composition |
CA 2226568 CA2226568A1 (en) | 1995-07-10 | 1996-07-03 | Process for making granular detergent component |
PCT/US1996/011274 WO1997003154A2 (en) | 1995-07-10 | 1996-07-03 | Process for making granular detergent component |
US08/983,543 US5962397A (en) | 1995-07-10 | 1996-07-03 | Process for making granular detergent component |
BR9609732A BR9609732A (en) | 1995-07-10 | 1996-07-03 | Process for the preparation of granular detergent component |
ARP960103522A AR002800A1 (en) | 1995-07-10 | 1996-07-10 | PROCESS FOR THE PREPARATION OF A GRANULAR DETERGENT COMPONENT THAT INCLUDES A HYDROLYSABLE CATIONIC SURFACTANT, AND A GRANULATED DETERGENT COMPONENT REPAIRED BY SUCH PROCESS. |
MXPA/A/1998/000338A MXPA98000338A (en) | 1995-07-10 | 1998-01-09 | Procedure for manufacturing a granul detergent component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95304794A EP0753571A1 (en) | 1995-07-10 | 1995-07-10 | Process for making granular detergent composition |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0753571A1 true EP0753571A1 (en) | 1997-01-15 |
Family
ID=8221247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95304794A Withdrawn EP0753571A1 (en) | 1995-07-10 | 1995-07-10 | Process for making granular detergent composition |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0753571A1 (en) |
AR (1) | AR002800A1 (en) |
BR (1) | BR9609732A (en) |
CA (1) | CA2226568A1 (en) |
WO (1) | WO1997003154A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0881279A2 (en) † | 1997-05-26 | 1998-12-02 | Henkel Kommanditgesellschaft auf Aktien | Process for making granules containing cationic surfactant |
EP0915960A1 (en) * | 1996-07-31 | 1999-05-19 | The Procter & Gamble Company | A process and composition for detergents |
WO2001081528A1 (en) * | 2000-04-20 | 2001-11-01 | Unilever Plc | Granular detergent component and process for its preparation |
US6573229B2 (en) | 2000-04-12 | 2003-06-03 | Unilever Home & Personal Care Usa Division Of Conopco Inc. | Laundry wash compositions |
WO2003083025A1 (en) * | 2002-03-28 | 2003-10-09 | Unilever Plc | Solid fabric conditioning compositions |
WO2009115380A1 (en) * | 2008-03-19 | 2009-09-24 | Henkel Ag & Co. Kgaa | Spray-dried washing or cleaning products |
WO2011088089A1 (en) | 2010-01-12 | 2011-07-21 | The Procter & Gamble Company | Intermediates and surfactants useful in household cleaning and personal care compositions, and methods of making the same |
WO2012112828A1 (en) | 2011-02-17 | 2012-08-23 | The Procter & Gamble Company | Bio-based linear alkylphenyl sulfonates |
WO2012138423A1 (en) | 2011-02-17 | 2012-10-11 | The Procter & Gamble Company | Compositions comprising mixtures of c10-c13 alkylphenyl sulfonates |
WO2014105296A1 (en) * | 2012-12-28 | 2014-07-03 | The Dial Corporation | Detergent compositions and detergent compositions dispersed in personal care products |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6627596B1 (en) * | 1999-02-01 | 2003-09-30 | The Procter & Gamble Company | Cationic particle and a process for making thereof |
KR101701137B1 (en) | 2009-04-30 | 2017-02-01 | 젤티크 애스세틱스, 인코포레이티드. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
GB201008825D0 (en) | 2010-05-26 | 2010-07-14 | Bripco Bvba | Data centre cooling system |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3128287A (en) | 1963-01-31 | 1964-04-07 | Pfizer & Co C | 2,2'-oxodisuccinic acid, derivatives thereof, and process for preparing |
US3308067A (en) | 1963-04-01 | 1967-03-07 | Procter & Gamble | Polyelectrolyte builders and detergent compositions |
US3635830A (en) | 1968-05-24 | 1972-01-18 | Lever Brothers Ltd | Detergent compositions containing oxydisuccing acid salts as builders |
US3723322A (en) | 1969-02-25 | 1973-03-27 | Procter & Gamble | Detergent compositions containing carboxylated polysaccharide builders |
DE2321001A1 (en) | 1972-04-28 | 1973-11-15 | Procter & Gamble | COMPOSITION WITH CRYSTALLIZATION INOCULATION |
US3835163A (en) | 1973-08-02 | 1974-09-10 | Monsanto Co | Tetrahydrofuran polycarboxylic acids |
US3985669A (en) | 1974-06-17 | 1976-10-12 | The Procter & Gamble Company | Detergent compositions |
US4102903A (en) | 1977-01-05 | 1978-07-25 | Monsanto Company | Tetrahydropyran and 1,4-dioxane polycarboxylate compounds, methods for making such compounds and compositions and methods employing same |
US4120874A (en) | 1977-01-05 | 1978-10-17 | Monsanto Company | Diesters of 6-cyano-2,2-tetrahydropyrandicarboxylates |
US4144226A (en) | 1977-08-22 | 1979-03-13 | Monsanto Company | Polymeric acetal carboxylates |
EP0001315A1 (en) * | 1977-09-26 | 1979-04-04 | THE PROCTER & GAMBLE COMPANY | Antistatic, fabric-softening detergent composition and method for producing same |
FR2409344A1 (en) * | 1977-11-16 | 1979-06-15 | Unilever Nv | SOFTENING COMPOSITION |
US4158635A (en) | 1977-12-05 | 1979-06-19 | Monsanto Company | Detergent formulations containing tetrahydropyran or 1,4-dioxane polycarboxylates and method for using same |
US4347168A (en) | 1977-11-17 | 1982-08-31 | The Procter & Gamble Company | Spray-dried granular detergent compositions for improved greasy soil removal |
DE3417649A1 (en) | 1984-05-12 | 1985-11-14 | Hoechst Ag, 6230 Frankfurt | METHOD FOR PRODUCING CRYSTALLINE SODIUM SILICATES |
US4566984A (en) | 1984-11-16 | 1986-01-28 | The Procter & Gamble Company | Ether polycarboxylates |
EP0200263A2 (en) | 1985-05-03 | 1986-11-05 | The Procter & Gamble Company | Homogeneous concentrated liquid detergent compositions containing ternary surfactant system |
EP0220024A2 (en) | 1985-10-09 | 1987-04-29 | The Procter & Gamble Company | Granular detergent compositions having improved solubility |
US4663071A (en) | 1986-01-30 | 1987-05-05 | The Procter & Gamble Company | Ether carboxylate detergent builders and process for their preparation |
US4664839A (en) | 1984-04-11 | 1987-05-12 | Hoechst Aktiengesellschaft | Use of crystalline layered sodium silicates for softening water and a process for softening water |
EP0234082A1 (en) * | 1986-02-18 | 1987-09-02 | Ecolab Inc. | Institutional softener containing cationic surfactant and organic acid |
DE3742043A1 (en) | 1987-12-11 | 1989-06-22 | Hoechst Ag | METHOD FOR PRODUCING CRYSTALLINE SODIUM LAYER SILICATES |
EP0568297A1 (en) * | 1992-04-28 | 1993-11-03 | Unilever Plc | Rinse conditioner |
WO1994004643A1 (en) * | 1992-08-21 | 1994-03-03 | Colgate-Palmolive Company | Rinse cycle fabric softener |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4228044A (en) * | 1978-06-26 | 1980-10-14 | The Procter & Gamble Company | Laundry detergent compositions having enhanced particulate soil removal and antiredeposition performance |
US4203851A (en) * | 1978-06-16 | 1980-05-20 | Colgate-Palmolive Company | Fabric softening compositions and methods for manufacture thereof |
EP0028432B1 (en) * | 1979-11-03 | 1984-01-18 | THE PROCTER & GAMBLE COMPANY | Granular laundry compositions |
US4715979A (en) * | 1985-10-09 | 1987-12-29 | The Procter & Gamble Company | Granular detergent compositions having improved solubility |
US5259964A (en) * | 1991-12-18 | 1993-11-09 | Colgate-Palmolive Co. | Free-flowing powder fabric softening composition and process for its manufacture |
-
1995
- 1995-07-10 EP EP95304794A patent/EP0753571A1/en not_active Withdrawn
-
1996
- 1996-07-03 BR BR9609732A patent/BR9609732A/en not_active Application Discontinuation
- 1996-07-03 CA CA 2226568 patent/CA2226568A1/en not_active Abandoned
- 1996-07-03 WO PCT/US1996/011274 patent/WO1997003154A2/en active Application Filing
- 1996-07-10 AR ARP960103522A patent/AR002800A1/en unknown
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3128287A (en) | 1963-01-31 | 1964-04-07 | Pfizer & Co C | 2,2'-oxodisuccinic acid, derivatives thereof, and process for preparing |
US3308067A (en) | 1963-04-01 | 1967-03-07 | Procter & Gamble | Polyelectrolyte builders and detergent compositions |
US3635830A (en) | 1968-05-24 | 1972-01-18 | Lever Brothers Ltd | Detergent compositions containing oxydisuccing acid salts as builders |
US3723322A (en) | 1969-02-25 | 1973-03-27 | Procter & Gamble | Detergent compositions containing carboxylated polysaccharide builders |
DE2321001A1 (en) | 1972-04-28 | 1973-11-15 | Procter & Gamble | COMPOSITION WITH CRYSTALLIZATION INOCULATION |
US3835163A (en) | 1973-08-02 | 1974-09-10 | Monsanto Co | Tetrahydrofuran polycarboxylic acids |
US3923679A (en) | 1973-08-02 | 1975-12-02 | Monsanto Co | Salts of tetrahydrofuran polycarboxylic acids as detergent builders and complexing agents |
US3985669A (en) | 1974-06-17 | 1976-10-12 | The Procter & Gamble Company | Detergent compositions |
US4102903A (en) | 1977-01-05 | 1978-07-25 | Monsanto Company | Tetrahydropyran and 1,4-dioxane polycarboxylate compounds, methods for making such compounds and compositions and methods employing same |
US4120874A (en) | 1977-01-05 | 1978-10-17 | Monsanto Company | Diesters of 6-cyano-2,2-tetrahydropyrandicarboxylates |
US4144226A (en) | 1977-08-22 | 1979-03-13 | Monsanto Company | Polymeric acetal carboxylates |
EP0001315A1 (en) * | 1977-09-26 | 1979-04-04 | THE PROCTER & GAMBLE COMPANY | Antistatic, fabric-softening detergent composition and method for producing same |
FR2409344A1 (en) * | 1977-11-16 | 1979-06-15 | Unilever Nv | SOFTENING COMPOSITION |
US4347168A (en) | 1977-11-17 | 1982-08-31 | The Procter & Gamble Company | Spray-dried granular detergent compositions for improved greasy soil removal |
US4158635A (en) | 1977-12-05 | 1979-06-19 | Monsanto Company | Detergent formulations containing tetrahydropyran or 1,4-dioxane polycarboxylates and method for using same |
US4664839A (en) | 1984-04-11 | 1987-05-12 | Hoechst Aktiengesellschaft | Use of crystalline layered sodium silicates for softening water and a process for softening water |
DE3417649A1 (en) | 1984-05-12 | 1985-11-14 | Hoechst Ag, 6230 Frankfurt | METHOD FOR PRODUCING CRYSTALLINE SODIUM SILICATES |
US4566984A (en) | 1984-11-16 | 1986-01-28 | The Procter & Gamble Company | Ether polycarboxylates |
EP0200263A2 (en) | 1985-05-03 | 1986-11-05 | The Procter & Gamble Company | Homogeneous concentrated liquid detergent compositions containing ternary surfactant system |
EP0220024A2 (en) | 1985-10-09 | 1987-04-29 | The Procter & Gamble Company | Granular detergent compositions having improved solubility |
US4663071A (en) | 1986-01-30 | 1987-05-05 | The Procter & Gamble Company | Ether carboxylate detergent builders and process for their preparation |
US4663071B1 (en) | 1986-01-30 | 1992-04-07 | Procter & Gamble | |
EP0234082A1 (en) * | 1986-02-18 | 1987-09-02 | Ecolab Inc. | Institutional softener containing cationic surfactant and organic acid |
DE3742043A1 (en) | 1987-12-11 | 1989-06-22 | Hoechst Ag | METHOD FOR PRODUCING CRYSTALLINE SODIUM LAYER SILICATES |
EP0568297A1 (en) * | 1992-04-28 | 1993-11-03 | Unilever Plc | Rinse conditioner |
WO1994004643A1 (en) * | 1992-08-21 | 1994-03-03 | Colgate-Palmolive Company | Rinse cycle fabric softener |
Non-Patent Citations (1)
Title |
---|
WILEY: "Encyclopedia of Chemical Technology, 3rd Edition", vol. 24, article KIRK-OTHMER, pages: 473 - 474 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0915960A1 (en) * | 1996-07-31 | 1999-05-19 | The Procter & Gamble Company | A process and composition for detergents |
EP0915960A4 (en) * | 1996-07-31 | 2001-09-19 | Procter & Gamble | A process and composition for detergents |
EP0881279B2 (en) † | 1997-05-26 | 2007-04-18 | Cognis IP Management GmbH | Granules containing cationic surfactant |
EP0881279A2 (en) † | 1997-05-26 | 1998-12-02 | Henkel Kommanditgesellschaft auf Aktien | Process for making granules containing cationic surfactant |
US6573229B2 (en) | 2000-04-12 | 2003-06-03 | Unilever Home & Personal Care Usa Division Of Conopco Inc. | Laundry wash compositions |
CN100475944C (en) * | 2000-04-20 | 2009-04-08 | 荷兰联合利华有限公司 | Granular detergent component and process for preparation |
US6596684B2 (en) | 2000-04-20 | 2003-07-22 | Unilever Home & Personal Care Usa Divison Of Conopco, Inc. | Granular detergent component and process for its preparation |
WO2001081528A1 (en) * | 2000-04-20 | 2001-11-01 | Unilever Plc | Granular detergent component and process for its preparation |
US6989361B2 (en) | 2002-03-28 | 2006-01-24 | Unilever Home & Personal Care Usa Division Of Conopco, Inc. | Solid fabric conditioning compositions |
CN1306015C (en) * | 2002-03-28 | 2007-03-21 | 荷兰联合利华有限公司 | Solid fabric conditioning compositions |
WO2003083025A1 (en) * | 2002-03-28 | 2003-10-09 | Unilever Plc | Solid fabric conditioning compositions |
EP2787064A3 (en) * | 2008-03-19 | 2014-10-15 | Henkel AG&Co. KGAA | Spray-dried washing or cleaning agent |
WO2009115380A1 (en) * | 2008-03-19 | 2009-09-24 | Henkel Ag & Co. Kgaa | Spray-dried washing or cleaning products |
WO2011088089A1 (en) | 2010-01-12 | 2011-07-21 | The Procter & Gamble Company | Intermediates and surfactants useful in household cleaning and personal care compositions, and methods of making the same |
WO2012138423A1 (en) | 2011-02-17 | 2012-10-11 | The Procter & Gamble Company | Compositions comprising mixtures of c10-c13 alkylphenyl sulfonates |
WO2012112828A1 (en) | 2011-02-17 | 2012-08-23 | The Procter & Gamble Company | Bio-based linear alkylphenyl sulfonates |
US9193937B2 (en) | 2011-02-17 | 2015-11-24 | The Procter & Gamble Company | Mixtures of C10-C13 alkylphenyl sulfonates |
WO2014105296A1 (en) * | 2012-12-28 | 2014-07-03 | The Dial Corporation | Detergent compositions and detergent compositions dispersed in personal care products |
US8790670B2 (en) | 2012-12-28 | 2014-07-29 | The Dial Corporation | Detergent compositions dispersed in personal care products comprising a sorbent carrier |
EP2938717A4 (en) * | 2012-12-28 | 2016-07-13 | Dial Corp | Detergent compositions and detergent compositions dispersed in personal care products |
Also Published As
Publication number | Publication date |
---|---|
CA2226568A1 (en) | 1997-01-30 |
WO1997003154A2 (en) | 1997-01-30 |
BR9609732A (en) | 1999-07-06 |
AR002800A1 (en) | 1998-04-29 |
WO1997003154A3 (en) | 1997-02-20 |
MX9800338A (en) | 1998-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5576285A (en) | Process for making a low density detergent composition by agglomeration with an inorganic double salt | |
EP0715652B1 (en) | Process for making high density detergent agglomerates | |
DE68924375T2 (en) | Detergent granulate from a cold paste by fine dispersion granulation. | |
US5366652A (en) | Process for making high density detergent agglomerates using an anhydrous powder additive | |
EP0753571A1 (en) | Process for making granular detergent composition | |
MXPA97002099A (en) | Procedure to make a high density detergent composition that includes recirculation currents select | |
EP0425277A2 (en) | Detergent compositions | |
US5668099A (en) | Process for making a low density detergent composition by agglomeration with an inorganic double salt | |
US5554587A (en) | Process for making high density detergent composition using conditioned air | |
DE69225702T2 (en) | Process for the production of compact cleaning agents | |
JPH10505113A (en) | Coagulation method for the production of detergent compositions using a spray drying tower | |
US5565137A (en) | Process for making a high density detergent composition from starting detergent ingredients | |
EP0544365B1 (en) | Detergent compositions and process for preparing them | |
US6258773B1 (en) | Process for making a low density detergent composition by controlling agglomeration via particle size | |
EP1002043B1 (en) | Process for making a low density detergent composition by controlled agglomeration in a fluid bed dryer | |
US5962397A (en) | Process for making granular detergent component | |
US6576599B1 (en) | Coated laundry and/or automatic dishwashing tablets having a chamfered edge for improved structural integrity | |
EP0436240B1 (en) | Process for preparing a high bulk density detergent composition having improved dispensing properties | |
MXPA98000338A (en) | Procedure for manufacturing a granul detergent component | |
DE69709726T3 (en) | PROCESS FOR PREPARING HIGH DENSITY DETERGENT USING A HIGH-ACTIVE TENSID PASTE WITH IMPROVED STABILITY | |
JP3696889B2 (en) | Process for manufacturing high-density detergent | |
US6440342B1 (en) | Process for making a low density detergent composition by controlling nozzle height in a fluid bed dryer | |
JPH11509263A (en) | PROCESS FOR PRODUCING AGENT DETERGENT COMPOSITIONS WITH IMPROVED FLOW | |
JPH09302398A (en) | Production of aggregated detergent composition having improved fluidity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE |
|
17P | Request for examination filed |
Effective date: 19970628 |
|
17Q | First examination report despatched |
Effective date: 19990817 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19991228 |