[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0743128B1 - Process and device for marking products of transparent (solid) material with a laser - Google Patents

Process and device for marking products of transparent (solid) material with a laser Download PDF

Info

Publication number
EP0743128B1
EP0743128B1 EP96106863A EP96106863A EP0743128B1 EP 0743128 B1 EP0743128 B1 EP 0743128B1 EP 96106863 A EP96106863 A EP 96106863A EP 96106863 A EP96106863 A EP 96106863A EP 0743128 B1 EP0743128 B1 EP 0743128B1
Authority
EP
European Patent Office
Prior art keywords
laser
intensity
pulses
region
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96106863A
Other languages
German (de)
French (fr)
Other versions
EP0743128A1 (en
Inventor
Stanislovas Balickas
Jonas Gulbinas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAICOTEC GmbH
Original Assignee
NAICOTEC GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAICOTEC GmbH filed Critical NAICOTEC GmbH
Publication of EP0743128A1 publication Critical patent/EP0743128A1/en
Application granted granted Critical
Publication of EP0743128B1 publication Critical patent/EP0743128B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44BMACHINES, APPARATUS OR TOOLS FOR ARTISTIC WORK, e.g. FOR SCULPTURING, GUILLOCHING, CARVING, BRANDING, INLAYING
    • B44B7/00Machines, apparatus or hand tools for branding, e.g. using radiant energy such as laser beams

Definitions

  • the present invention relates to an internal method and apparatus Labeling of products made of solid materials using lasers, which for the Labeling transparent materials can be used, which makes a good visible, abrasion-resistant identification symbol inside the product.
  • WO 92/03297 is a laser marking method described that the selection of the identification point inside the product to be labeled, the concentration of the product material not absorbed bundle of laser beams at the intended location, the destruction of the Product material in the concentration range under the influence of a radiation beam High energy laser and when changing the position of the concentration range inside the Product during the introduction of the marking.
  • a device which for Realization of the above labeling process is provided, consisting of a laser that generates a bundle of high-energy light beams and has a wavelength which is not absorbed by the material of the product to be labeled, from a Focusing device that the bundle of laser beams in the selected area inside the
  • Concentrated product and a device that the location of the to be concentrated Radiation area inside the product changes accordingly to the label in to be able to produce the intended shape.
  • the disadvantage of the known method and the device is that, with a certain probability, the marking generated can be fuzzy and deformed, since during the destruction of the material inside the product, the material is exposed to the radiation beam of the high-energy laser, in the cross-section of which the energy density is uniform is distributed, suspended.
  • the maximum energy density of the bundle in the entire focusing range must not be less than 10 J / cm 2 , the power must not be less than 10 7 W / cm 2 and the pulse duration must not be less than 10 -6 s.
  • a bundle of rays with such energy cannot only do the mechanical properties of the material in the focusing area, with the help of the opacity of the destroyed material arises and the symbol becomes visible, change, but this influence can also internal Generate tensions that in turn are uncontrollable cracks around the focusing area or thread-like punctures penetrating to the surface, causing the Symbol sharpness is reduced and the shape of the symbol is distorted.
  • WO 94/14567 is a laser marking method for internal labeling of products made of solid materials described that the selection of the marking point inside the to be marked Product, the concentration of the bundle of not absorbed by the product material Laser beams at the intended location, the destruction of the product material in the Concentration range under the influence of high-power pulses from a laser beam and the change in the location of the concentration range inside the product form provided during the introduction of the marking.
  • a device which for Realization of the above labeling process is provided, consisting of a pulse laser, which generates the pulses of the bundle of high-energy light beams a focusing device that the bundle of laser beams in the selected area in the Inside the product is concentrated and a device that determines the location of the concentration range the rays inside the product change accordingly to a mark to be able to produce the intended shape.
  • the disadvantage of the known method and the device is that, with a certain probability, the marking generated can be blurred and deformed, since during the destruction of the material inside the product under the action of the pulses of the laser beam of high power and equal intensity over the entire bundle cross section (pulse energy - 50 mJ, pulse duration - 10 -9 s and pulse frequency - 1 Hz) not only the mechanical properties of the destroyed material can be changed, which creates the opacity of the destroyed material and the symbol becomes visible, but this influence can also generate internal tensions, which in turn create uncontrollable cracks around the concentration area and thread-like punctures penetrating to the surface, making the creation of a destroyed circular area of small dimensions impossible, which makes the Symbo Reduces sharpness and distorts the shape of the symbol. It is therefore not possible to use this method and this device to generate identification symbols of very small dimensions, to carry out internal identification in very thin components and to achieve high-contrast inscriptions.
  • the object of the invention is to provide a laser marking method and a device for Develop transparent materials that enable very high-contrast identification symbols to produce very small dimensions inside a transparent material and in particular to carry out the marking in thin walls of a product.
  • This task is done in a process for labeling products from transparent Materials using a laser, the selection of the marking point inside the Product, the concentration of the laser beam not absorbed by the product material at the intended location, the destruction of the product material in the Concentration range under the influence of pulses of the laser beam and the Formation of the identification symbol by changing the position of the concentration range inside the product, solved according to the invention in that the Condition of the destroyed material in the concentration range due to the effect on the Material is achieved in two stages, with the two stages of action by Effect on the material from at least two laser pulses of different parameters be achieved at the selected location and that the first or some of the first pulses of The first stage is material resistance to laser radiation in the concentration range change and the following or some subsequent impulses of the second stage Destroy material in the named area.
  • the first group of which is resistance of the material changed compared to laser beams and the following pulse group the Destruction of the material in the concentration range
  • Energy density of both pulse groups to decrease significantly to one destroyed by the destroyed material structure to create visible material area.
  • Due to the reduced crack size Possibility to close circular areas of smaller dimensions of the destroyed material generate, shape them closer together and thus high-contrast identification symbols to achieve inside the product.
  • the laser beam can be shaped to increase the intensity is the largest and the smallest in the center, i.e. the distribution of intensity is ring-shaped in the bundle.
  • the mentioned effect is further increased if the shortest wavelength of the laser beam or its harmonics for which the product material is transparent.
  • One of the variants of the proposed method is the intensity of one or some first laser pulses to choose so that the laser beam in its concentration range the resistance of the material to laser radiation changes, and the intensity of one or some of the following impulses is less than that of the one or some of the first Impulse is chosen, however, so that it is the material in the area in which because of Effect of the first (the first) impulse the resistance of the material to the Laser radiation decreased, destroy.
  • the present invention also relates to a device for labeling products made of transparent materials using a laser, consisting of a pulsed laser, which is a light beam generated such a wavelength that is not absorbed by the product material is, from a focusing device, the laser beam at the selected location inside of the product and a device that forms the label, by changing the location of the concentration range inside the product.
  • a laser consisting of a pulsed laser, which is a light beam generated such a wavelength that is not absorbed by the product material is, from a focusing device, the laser beam at the selected location inside of the product and a device that forms the label, by changing the location of the concentration range inside the product.
  • this device is an adjusting device has, which is capable of at least one parameter of the laser pulses that are on the selected area are focused, the setting device is designed to that in a first stage the material resistance to laser radiation in the concentration range is changed with the help of laser pulses with certain parameters and in one second stage with the destruction of materials in the area mentioned with the help of laser pulses changed parameters compared to the first stage.
  • the adjusting device for adjusting the first and second stages is a converter
  • the assessment of the first (At least one) impulses achieved a reduction in the degree of resistance of the material Parameters of the following pulses, i. H. the energy density of the impulses (intensity), the number of impulses, the pulse duration and the pulse frequency can be selected.
  • Such a case occurs when the one caused by the first or some first impulses Reduction of the degree of resistance of the material according to the strength (intensity) of the determined from the concentration range of the laser beam propagating acoustic wave becomes.
  • the decrease caused by the first or some first pulses the degree of resistance of the material according to the light intensity of the concentration range of the laser beam is determined.
  • the shape of the destroyed material area is also changed accordingly the number, the intensity, the duration and the repetition frequency of the laser pulses are controlled.
  • a Pulse laser which generates the beam with a wavelength that is not from the product material is absorbed by a focusing device that the laser beam in Concentrated inside the material at the selected location, and a device that the Location of the concentration range of the rays inside the product changes to one To be able to create a marking symbol inside the product was a problem controllable converter of the laser pulse parameters, which the pulse parameters depending on changes in the material parameters in the concentration range of the laser pulses, introduced.
  • the proposed device has a beam that distributes the intensity of the beam Formation system, which is located on the path of the beam between the Pulse laser and the focusing device is located and the distribution of the intensity of the Laser beam forms in such a way that the greatest intensity is at the edges of the beam and the least can be found in its center.
  • the proposed device has a pulse laser, which is a beam with the shortest possible wavelength from the area in which the product material is transparent is generated or with a wavelength of the corresponding harmonic.
  • the system for forming the Intensity of the beam from a telescope which is the small laser beam widened, as well as from a non-transparent disc-shaped screen, which the The central part of the widened bundle is covered.
  • the system for formation exists the intensity of the beam of rays from two identical conical optical parts, which with their cone base are arranged to each other.
  • controllable converter is the Laser pulse parameters a photo converter, which allows the glow of the plasma in the concentration range of the laser beam registered and the electrical signal representing the laser pulse parameters controls depending on the light intensity, leads to the control block.
  • controllable converter is the Laser pulse parameters an acoustic transducer that is out of the concentration range of the Laser beam propagating acoustic wave registered and the electrical signal that controls the laser pulse parameters depending on the intensity of the acoustic wave to Control block directs.
  • a control block which measures the energy density (Intensity), the duration, the number, the repetition frequency of the laser pulses depending on regulates the material parameters in the concentration range of the laser beam.
  • FIG. 1 One of the variants of the device that implements the proposed method is in the figure 1 outlined.
  • This device consists of the pulse laser 1, one on the line thereof Focusing device 3 located on the beam 2 for concentrating the laser beam 2 in the selected concentration range 4, which is located inside the transparent, for the intended product material 5 is located.
  • the device has a movable platform 6 on which the product 5 is fastened and whereby its position can be changed together with the platform 6.
  • a controller 7 is connected to their Functions to coordinate accordingly with the aim of the flag icon to achieve the desired shape.
  • the device has a controllable converter 8 Impulse parameter, which can be a photo converter, for example. This photo converter responds on the glowing of the material in the concentration range 4 and is through the control block 9 connected to the pulse laser 1.
  • the transducer 8 can also be an acoustic transducer be that of the acoustic waves propagating from the material in the concentration range 4 reacts and is connected to the pulse laser 1 by the control block 9.
  • the product 5 made of transparent material selected for labeling can be made from transparent or colored glass, made of optical crystal or organic glass.
  • the product material must not absorb the laser beam.
  • Laser 1 can, for example, be a solid-state pulse laser, e.g. Nd-YAG laser or one frequency multiplied xenon fluoride eximer laser.
  • the laser output energy must be approximately 50 mJ, the pulse frequency 1 Hz, the pulse duration 10 -9 s.
  • the wavelength of the laser beam or its harmonics in the interval is selected in which the product material is transparent, in the best case this is Interval selected the shortest wavelength.
  • the concentration range is made by means of the focusing device 3 and the movable platform 6 4 of the laser beam selected. It will be one or a few first Laser pulses emitted, and their effect on the material in the concentration range 4 for example by means of an optical converter 8 is registered. If at the exit of the optical converter 8, no signal is recorded, the intensity of the first laser pulses increased until the material changes occur in the concentration range, however the material has not yet been destroyed. The one created at the output of the optical converter electrical signal is then forwarded to the control block, which in turn controls the parameters of the next impulses determined so that by the action of the first impulses the material in Concentration range is destroyed, i.e. that opacity, ascertainable as light dispersing area being shaped. In the event that the controllable parameter of the Laser pulse is the pulse intensity, the intensity of the following pulses is less than that of the first impulses.
  • the head Controller 7 After the destruction of the material in the concentration range, the head Controller 7 passes the signal to the movable platform 6, and the concentration range of the laser beam is thus at a different location in the product according to the Directional flag icon. Destruction then takes place analogously to the case described of the material in the new concentration range.
  • FIG. 2 shows another variant of the device, which has the same device details like the device shown in Figure 2, but additionally has a formation system 10 which is used for the distribution of the intensity of the laser pulses is provided and located on the path of the beam 2 between the pulse laser 1 and the focusing device 3. This is responsible for the distribution of the intensity Forming system 10 distributes the intensity of the laser beams in the beam in such a way that the greatest intensity is at the edges of the bundle and the lowest at its center located.
  • a formation system 10 which is used for the distribution of the intensity of the laser pulses is provided and located on the path of the beam 2 between the pulse laser 1 and the focusing device 3. This is responsible for the distribution of the intensity Forming system 10 distributes the intensity of the laser beams in the beam in such a way that the greatest intensity is at the edges of the bundle and the lowest at its center located.
  • this is on the lens of the focusing device falling laser beam ring-shaped, and at a concentration of such a shaped Bundles in the selected product area as well as in the implementation of the above Material destruction in two stages becomes an even greater contrast and less Dimensions of the marking symbol achieved because of the first or more first impulses the resistance of the material to the laser beams in the concentration range change and the following or several following impulses the material in the mentioned Destroy area.
  • the formation system that is intended for the distribution of the intensity of the laser pulses is shown in Figure 3.
  • the small, not widened laser beam 2 enters widening telescope 11, inside of which is represented by the box 12 optical Components are arranged. It is preferably a biconcave and a biconvex lens. Downstream is a non-transparent, the central part of the widened Bundle 2 'concealing, disc-shaped screen 13. Behind it is like the other embodiments, a focusing device 3, which preferably consists of a biconvex and a plano-convex lens. Through this the widened Beams 2 'focused in the concentration range.
  • the telescope 11 of Figure 3 can also be replaced by another embodiment.
  • this formation system generally designated 10
  • Such a formation system does not require the screen 13.
  • FIG 4 Another variant of the device is shown in Figure 4, in which the same Parts have the same reference numerals as used in Figures 1 and 2.
  • the change in the location of the concentration range provided facility is only here for the x-direction a movable platform 6.
  • y and z serves a movable mirror system, which is shown in the housing 18.
  • the bundle of rays 2 meets a flat, hundred percent level after leaving the formation system 10 19 in the z direction.
  • the mirror 19 is set at 45 ° and thereby directs the beam in the y direction, perpendicular to the z direction on a second, also flat hundred percent mirror 20.
  • This mirror 20 is also set at 45 ° to the ⁇ direction and directs it Beams in the z direction again. From there the beam of rays passes through the Focusing device 3 to the concentration range 4 as in the other embodiments.
  • the concentration range 4 also shifts in the z direction by the same amount (to the right in Figure 4). If the second mirror 20 is moved in the y direction (without further Displacement of the first mirror 19 but with simultaneous displacement of the focusing device), then you move the concentration range 4 by the same amount up in the y direction.
  • the third x coordinate can be seen through the movable platform 6 adjust. In the embodiment shown in FIG. 4, this becomes linearly perpendicular to Paper plane shifted in the direction of view or in the opposite x-direction. This has a three-dimensional labeling option.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Laser Beam Printer (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Dot-Matrix Printers And Others (AREA)

Abstract

Method of marking products made of transparent materials involves (i) concentration of a laser beam (2) in the material (5), which does not absorb the beam, at a predetermined location (4), (ii) destruction of the material by laser pulses and (iii) formation of the marking symbol by displacement of the laser beam. Destruction of the material at that location takes place in two stages. In the first stage, the resistance of the material to laser radiation is altered, while, in the second stage, destruction of the material takes place at that location. Also claimed is an appts. for implementation of the method.

Description

. Die vorliegende Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur inneren Kennzeichnung von Erzeugnissen aus festen Werkstoffen mittels Laser, welche für die Kennzeichnung transparenter Werkstoffe verwendet werden können, wodurch man ein gut sichtbares, abriebfestes Kennzeichnungssymbol im Inneren des Erzeugnisses erhalten kann., The present invention relates to an internal method and apparatus Labeling of products made of solid materials using lasers, which for the Labeling transparent materials can be used, which makes a good visible, abrasion-resistant identification symbol inside the product.

Gattungsgemäße Verfahren und Vorrichtung sind aus der WO-A-94 14567 bekannt.Generic methods and devices are known from WO-A-94 14567.

In der Erfindung gemäß der internationalen Anmeldung WO 92/03297 ist ein Laserkennzeichnungsverfahren beschrieben, das die Auswahl der Kennzeichnungsstelle im Inneren des zu kennzeichnenden Erzeugnisses, die Konzentration des vom Erzeugniswerkstoff nicht absorbierten Bündels von Laserstrahlen an der vorgesehenen Stelle, die Zerstörung des Erzeugniswerkstoffes im Konzentrationsbereich unter Einwirkung eines Strahlenbündels eines Hochenergielasers sowie bei Veränderung der Lage des Konzentrationsbereiches im Inneren des Erzeugnisses während der Einbringung der Kennzeichnung vorgesehener Form umfaßt.In the invention according to the international application WO 92/03297 is a laser marking method described that the selection of the identification point inside the product to be labeled, the concentration of the product material not absorbed bundle of laser beams at the intended location, the destruction of the Product material in the concentration range under the influence of a radiation beam High energy laser and when changing the position of the concentration range inside the Product during the introduction of the marking.

In der genannten Erfindung ist ebenfalls eine Vorrichtung beschrieben, welche für die Realisierung des oben genannten Kennzeichnungsverfahrens vorgesehen ist, bestehend aus einem Laser, der ein Bündel von Hochenergielichtstrahlen erzeugt und eine Wellenlänge hat, die nicht vom Werkstoff des zu kennzeichnenden Erzeugnisses absorbiert wird, aus einer Fokussiereinrichtung, die das Bündel von Laserstrahlen im ausgewählten Bereich im Inneren des In the mentioned invention, a device is also described, which for Realization of the above labeling process is provided, consisting of a laser that generates a bundle of high-energy light beams and has a wavelength which is not absorbed by the material of the product to be labeled, from a Focusing device that the bundle of laser beams in the selected area inside the

Erzeugnisses konzentriert, und einer Einrichtung, die die Lage des zu konzentrierenden Strahlenbereiches im Inneren des Erzeugnisses entsprechend ändert, um das Kennzeichen in vorgesehener Form erzeugen zu können.Concentrated product, and a device that the location of the to be concentrated Radiation area inside the product changes accordingly to the label in to be able to produce the intended shape.

Der Nachteil des bekannten Verfahrens und der Vorrichtung besteht darin, daß mit einer gewissen Wahrscheinlichkeit die erzeugte Kennzeichnung unscharf und deformiert sein kann, da während der Zerstörung des Werkstoffes im Inneren des Erzeugnisses der Werkstoff der Einwirkung des Strahlenbündels des Hochenergielasers, in dessen Querschnitt die Energiedichte gleichmäßig verteilt ist, ausgesetzt wird. (Die maximale Energiedichte des Bündels im gesamten Fokussierbereich darf nicht weniger als 10 J/cm2 betragen, die Leistung darf nicht kleiner als 107 W/cm2 und die Impulsdauer darf nicht kürzer als 10-6s sein.)The disadvantage of the known method and the device is that, with a certain probability, the marking generated can be fuzzy and deformed, since during the destruction of the material inside the product, the material is exposed to the radiation beam of the high-energy laser, in the cross-section of which the energy density is uniform is distributed, suspended. (The maximum energy density of the bundle in the entire focusing range must not be less than 10 J / cm 2 , the power must not be less than 10 7 W / cm 2 and the pulse duration must not be less than 10 -6 s.)

Ein Strahlenbündel mit solcher Energie kann nicht nur die mechanischen Werkstoffeigenschaften im Fokussierbereich, mit deren Hilfe die Undurchsichtigkeit des zerstörten Werkstoffes entsteht und das Symbol sichtbar wird, verändern, sondern diese Einwirkung kann auch innere Spannungen erzeugen, die ihrerseits nicht kontrollierbare Risse um den Fokussierbereich oder fadenförmige, auf die Oberfläche vordringende Durchschläge entstehen lassen, wodurch die Symbolschärfe vermindert wird und die Form des Symboles verzerrt wird.A bundle of rays with such energy cannot only do the mechanical properties of the material in the focusing area, with the help of the opacity of the destroyed material arises and the symbol becomes visible, change, but this influence can also internal Generate tensions that in turn are uncontrollable cracks around the focusing area or thread-like punctures penetrating to the surface, causing the Symbol sharpness is reduced and the shape of the symbol is distorted.

In der Erfindung gemäß der internationalen Anmeldung WO 94/14567 ist ein Laserkennzeichnungsverfahren zur inneren Kennzeichnung von Erzeugnissen aus festen Werkstoffen beschrieben, das die Auswahl der Kennzeichnungsstelle im Inneren des zu kennzeichnenden Erzeugnisses, die Konzentration des vom Erzeugniswerkstoff nicht absorbierten Bündels von Laserstrahlen an der vorgesehenen Stelle, die Zerstörung des Erzeugniswerkstoffes im Konzentrationsbereich unter Einwirkung von Hochleistungsimpulsen eines Laserstrahlenbündels sowie die Veränderung der Lage des Konzentrationsbereiches im Inneren des Erzeugnisses während der Einbringung der Kennzeichnung vorgesehener Form umfaßt.In the invention according to the international application WO 94/14567 is a laser marking method for internal labeling of products made of solid materials described that the selection of the marking point inside the to be marked Product, the concentration of the bundle of not absorbed by the product material Laser beams at the intended location, the destruction of the product material in the Concentration range under the influence of high-power pulses from a laser beam and the change in the location of the concentration range inside the product form provided during the introduction of the marking.

In der genannten Erfindung ist ebenfalls eine Vorrichtung beschrieben, welche für die Realisierung des oben genannten Kennzeichnungsverfahrens vorgesehen ist, bestehend aus einem Impulslaser, welcher die Impulse des Bündels von Hochenergielichtstrahlen erzeugt, aus einer Fokussiereinrichtung, die das Bündel von Laserstrahlen im ausgewählten Bereich im Inneren des Erzeugnisses konzentriert und einer Einrichtung, die die Lage des Konzentrationsbereiches der Strahlen im Inneren des Erzeugnisses entsprechend ändert, um ein Kennzeichen vorgesehener Form erzeugen zu können. In the mentioned invention, a device is also described, which for Realization of the above labeling process is provided, consisting of a pulse laser, which generates the pulses of the bundle of high-energy light beams a focusing device that the bundle of laser beams in the selected area in the Inside the product is concentrated and a device that determines the location of the concentration range the rays inside the product change accordingly to a mark to be able to produce the intended shape.

Der Nachteil des bekannten Verfahrens und der Vorrichtung besteht darin, daß mit einer gewissen Wahrscheinlichkeit die erzeugte Kennzeichnung unscharf und deformiert sein kann, da während der Zerstörung des Werkstoffes im Inneren des Erzeugnisses unter der Einwirkung der Impulse des Laserstrahlenbündels von hoher Leistung und gleicher Intensität über den gesamten Bündelquerschnitt (Impulsenergie - 50 mJ, Impulsdauer - 10-9s und Impulsfrequenz - 1 Hz) nicht nur die mechanischen Eigenschaften des zerstörten Werkstoffes verändert werden können, wodurch die Undurchsichtigkeit des zerstörten Werkstoffes entsteht und das Symbol sichtbar wird, sondern diese Einwirkung kann auch innere Spannungen erzeugen, die ihrerseits nicht kontrollierbare Risse um den Konzentrationsbereich und fadenförmige, auf die Oberfläche vordringende Durchschläge entstehen lassen, wodurch die Erzeugung eines zerstörten kreisförmigen Bereiches kleiner Abmessungen unmöglich gemacht wird, was die Symbolschärfe mindert und die Form des Symbols verzerrt. Deshalb ist es nicht möglich, mittels dieses Verfahrens und dieser Vorrichtung Kennzeichnungssymbole sehr geringer Abmessungen zu erzeugen, innere Kennzeichnungen in sehr dünnen Bauteilen durchzuführen sowie kontrastreiche Beschriftungen zu erzielen.The disadvantage of the known method and the device is that, with a certain probability, the marking generated can be blurred and deformed, since during the destruction of the material inside the product under the action of the pulses of the laser beam of high power and equal intensity over the entire bundle cross section (pulse energy - 50 mJ, pulse duration - 10 -9 s and pulse frequency - 1 Hz) not only the mechanical properties of the destroyed material can be changed, which creates the opacity of the destroyed material and the symbol becomes visible, but this influence can also generate internal tensions, which in turn create uncontrollable cracks around the concentration area and thread-like punctures penetrating to the surface, making the creation of a destroyed circular area of small dimensions impossible, which makes the Symbo Reduces sharpness and distorts the shape of the symbol. It is therefore not possible to use this method and this device to generate identification symbols of very small dimensions, to carry out internal identification in very thin components and to achieve high-contrast inscriptions.

Die Aufgabe der Erfindung ist es, ein Laserkennzeichnungsverfahren und eine Vorrichtung für transparente Werkstoffe zu entwickeln, die ermöglichen, sehr kontrastreiche Kennzeichnungssymbole sehr geringer Abmessungen im Inneren eines transparenten Werkstoffes zu erzeugen sowie insbesondere die Kennzeichnung in dünnen Wänden eines Erzeugnisses durchzuführen.The object of the invention is to provide a laser marking method and a device for Develop transparent materials that enable very high-contrast identification symbols to produce very small dimensions inside a transparent material and in particular to carry out the marking in thin walls of a product.

Diese Aufgabe wird bei einem Verfahren zur Kennzeichnung von Erzeugnissen aus transparenten Werkstoffen mittels Laser, das die Auswahl der Kennzeichnungsstelle im Inneren des Erzeugnisses, die Konzentration des nicht vom Erzeugniswerkstoff absorbierten Laserstrahlenbündels an der vorgesehenen Stelle, die Zerstörung des Erzeugniswerkstoffes im Konzentrationsbereich unter Einwirkung von Impulsen des Laserstrahlenbündels und die Formierung des Kennzeichnungssymbols durch Veränderung der Lage des Konzentrationsbereiches im Inneren des Erzeugnisses umfaßt, erfindungsgemäß dadurch gelöst, daß der Zustand des zerstörten Werkstoffes im Konzentrationsbereich durch Einwirkung auf den Werkstoff in zwei Etappen erreicht wird, wobei die beiden Einwirkungsetappen durch Einwirkung auf den Werkstoff von mindestens zwei Laserimpulsen unterschiedlicher Parameter an der ausgewählten Stelle erzielt werden, und daß der erste oder einige der ersten Impulse der ersten Etappe die Werkstoffbeständigkeit gegenüber der Laserstrahlung im Konzentrationsbereich verändern und der folgende oder einige folgende Impulse der zweiten Etappe den Werkstoff im genannten Bereich zerstören. This task is done in a process for labeling products from transparent Materials using a laser, the selection of the marking point inside the Product, the concentration of the laser beam not absorbed by the product material at the intended location, the destruction of the product material in the Concentration range under the influence of pulses of the laser beam and the Formation of the identification symbol by changing the position of the concentration range inside the product, solved according to the invention in that the Condition of the destroyed material in the concentration range due to the effect on the Material is achieved in two stages, with the two stages of action by Effect on the material from at least two laser pulses of different parameters be achieved at the selected location and that the first or some of the first pulses of The first stage is material resistance to laser radiation in the concentration range change and the following or some subsequent impulses of the second stage Destroy material in the named area.

Bei entsprechender Auswahl der Laserimpulsparameter, deren erste Gruppe die Beständigkeit des Werkstoffes gegenüber Laserstrahlen verändert und deren folgende Impulsgruppe die Zerstörung des Werkstoffes im Konzentrationsbereich durchführt, besteht die Möglichkeit, die Energiedichte beider Impulsgruppen bedeutend zu verringern, um einen zerstörten, durch die zerstörte Werkstoffstruktur sichtbaren Werkstoffbereich zu erzeugen. Da die Größe der infolge der inneren Spannungen um den Konzentrationsbereich entstandenen Risse direkt proportional der Energiegröße des Laserimpulses ist, verringert sich somit bei Verringerung der Energiegröße dieser Impulse auch die Größe der erwähnten Risse. Durch die verringerte Rißgröße besteht die Möglichkeit, kreisförmige Bereiche kleinerer Abmessungen des zerstörten Werkstoffes zu erzeugen, sie näher beieinander zu formen und somit kontrastreiche Kennzeichnungssymbole im Inneren des Erzeugnisses zu erzielen.With appropriate selection of the laser pulse parameters, the first group of which is resistance of the material changed compared to laser beams and the following pulse group the Destruction of the material in the concentration range, there is a possibility that Energy density of both pulse groups to decrease significantly to one destroyed by the destroyed material structure to create visible material area. Because the size of the result of the internal stresses around the concentration cracks created directly proportional the energy size of the laser pulse is reduced when the energy size is reduced of these impulses also the size of the cracks mentioned. Due to the reduced crack size Possibility to close circular areas of smaller dimensions of the destroyed material generate, shape them closer together and thus high-contrast identification symbols to achieve inside the product.

Es ist möglich, die Abmessungen des Kennzeichnungssymbols weiter zu verringern und den Kontrast zu vergrößern, wenn das Laserbündel so geformt werden kann, daß die Intensität an seinen Rändern am größten und im Zentrum am geringsten ist, d.h. die Verteilung der Intensität im Bündel ringförmig ist.It is possible to further reduce the dimensions of the identification symbol and the Contrast increase when the laser beam can be shaped to increase the intensity is the largest and the smallest in the center, i.e. the distribution of intensity is ring-shaped in the bundle.

Der erwähnte Effekt wird noch weiter erhöht, wenn die kürzeste Wellenlänge des Laserstrahles oder seiner Harmonischen, für die der Erzeugniswerkstoff transparent ist, gewählt wird.The mentioned effect is further increased if the shortest wavelength of the laser beam or its harmonics for which the product material is transparent.

Somit ist es möglich, mittels des vorgeschlagenen Laserkennzeichnungsverfahrens:

  • verschiedene Kennzeichnungssymbole kleiner Abmessungen zu erzeugen (es ist möglich, die Bereiche des zerstörten Werkstoffes und die Zwischenräume zwischen ihnen in der Größenordnung einiger Zehner Mikrometer zu erzielen),
  • die Kennzeichnungssymbole in dünnen Bauteilen, deren Dicke beispielsweise 0,5 mm nicht überschreitet, zu erzeugen,
  • die Kennzeichnungssymbole in einer dünnen Schicht unter der Oberfläche zu erzeugen, zum Beispiel getempertes Glas zu kennzeichnen,
  • kontrastreiche Kennzeichnungssymbole zu erzielen.
It is therefore possible, using the proposed laser marking method:
  • generate various small-sized identification symbols (it is possible to achieve the areas of the destroyed material and the spaces between them on the order of a few tens of micrometers),
  • generate the identification symbols in thin components, the thickness of which, for example, does not exceed 0.5 mm,
  • generate the marking symbols in a thin layer below the surface, for example to mark tempered glass,
  • to achieve high-contrast identification symbols.

Eine der Varianten des vorgeschlagenen Verfahrens besteht darin, die Intensität eines oder einiger erster Laserimpulse so zu wählen, daß das Laserstrahlenbündel in seinem Konzentrationsbereich die Beständigkeit des Werkstoffes gegenüber der Laserstrahlung verändert, und die Intensität eines oder einiger folgender Impulse kleiner als die des einen oder einiger erster Impulse gewählt wird, jedoch so, daß sie den Werkstoff in dem Bereich, in dem wegen der Einwirkung des ersten (der ersten) Impulses die Beständigkeit des Werkstoffes gegenüber der Laserstrahlung sich verringerte, zerstören.One of the variants of the proposed method is the intensity of one or some first laser pulses to choose so that the laser beam in its concentration range the resistance of the material to laser radiation changes, and the intensity of one or some of the following impulses is less than that of the one or some of the first Impulse is chosen, however, so that it is the material in the area in which because of Effect of the first (the first) impulse the resistance of the material to the Laser radiation decreased, destroy.

Die vorliegende Erfindung betrifft ebenfalls eine Vorrichtung zur Kennzeichnung von Erzeugnissen aus transparenten Werkstoffen mittels Laser, bestehend aus einem Impulslaser, der ein Lichtstrahlenbündel solcher Wellenlänge generiert, welches nicht vom Erzeugniswerkstoff absorbiert wird, aus einer Fokussiereinrichtung, die das Laserstrahlenbündel an der gewählten Stelle im Inneren des Erzeugnisses konzentriert und einer Einrichtung, die das Kennzeichnungssymbol formt, indem sie die Lage des Konzentrationsbereiches im Inneren des Erzeugnisses verändert. Die obige Aufgabe wird erfindungsgemäß für diese Vorrichtung dadurch gelöst, daß diese eine Einstellvorrichtung aufweist, die in der Lage ist, zumindest einen Parameter der Laserimpulse, die auf den ausgewählten Bereich fokussiert sind, zu ändern, wobei die Einstellvorrichtung dafür ausgelegt ist, daß in einer ersten Etappe die Werkstoffbeständigkeit gegenüber der Laserstrahlung im Konzentrationsbereich mit Hilfe von Laserimpulsen mit bestimmten Parametern verändert wird und in einer zweiten Etappe die Werkstoffzerstörung im genannten Bereich mit Hilfe von Laserimpulsen mit gegenüber der ersten Etappe veränderten Parametern erreicht wird.The present invention also relates to a device for labeling products made of transparent materials using a laser, consisting of a pulsed laser, which is a light beam generated such a wavelength that is not absorbed by the product material is, from a focusing device, the laser beam at the selected location inside of the product and a device that forms the label, by changing the location of the concentration range inside the product. The above The object is achieved for this device in that it is an adjusting device has, which is capable of at least one parameter of the laser pulses that are on the selected area are focused, the setting device is designed to that in a first stage the material resistance to laser radiation in the concentration range is changed with the help of laser pulses with certain parameters and in one second stage with the destruction of materials in the area mentioned with the help of laser pulses changed parameters compared to the first stage.

Bei einer bevorzugten Ausführungsform, bei welcher die Einstellvorrichtung zur Einstellung der ersten und der zweiten Etappe ein Wandler ist, können nach Einschätzung der durch die ersten (mindestens eines) Impulse erzielten Verringerung des Beständigkeitsgrades des Werkstoffes die Parameter der folgenden Impulse, d. h. die Energiedichte der Impulse (Intensität), die Impulsanzahl, die Impulsdauer und die Impulsfrequenz gewählt werden.In a preferred embodiment, in which the adjusting device for adjusting the first and second stages is a converter, according to the assessment of the first (At least one) impulses achieved a reduction in the degree of resistance of the material Parameters of the following pulses, i. H. the energy density of the impulses (intensity), the number of impulses, the pulse duration and the pulse frequency can be selected.

Ein derartiger Fall tritt dann auf, wenn die durch den ersten oder einige erste Impulse hervorgerufene Verringerung des Beständigkeitsgrades des Werkstoffes nach der Stärke (Intensität) der sich aus dem Konzentrationsbereich des Laserstrahlenbündels ausbreitenden akustischen Welle bestimmt wird.Such a case occurs when the one caused by the first or some first impulses Reduction of the degree of resistance of the material according to the strength (intensity) of the determined from the concentration range of the laser beam propagating acoustic wave becomes.

In einem anderen Fall wird die durch den ersten oder einige erste Impulse hervorgerufene Verringerung des Beständigkeitsgrades des Werkstoffes nach der Leuchtintensität des Konzentrationsbereiches des Laserstrahlenbündels bestimmt.In another case, the decrease caused by the first or some first pulses the degree of resistance of the material according to the light intensity of the concentration range of the laser beam is determined.

Die Form des zerstörten Werkstoffbereiches wird außerdem auch durch entsprechende Veränderung der Anzahl, der Intensität, der Dauer und der Wiederholfrequenz der Laserimpulse gesteuert.The shape of the destroyed material area is also changed accordingly the number, the intensity, the duration and the repetition frequency of the laser pulses are controlled.

Um die erwähnte Aufgabe in der vorgeschlagenen Vorrichtung, bestehend aus einem Impulslaser, der das Strahlenbündel mit solcher Wellenlänge generiert, die nicht vom Erzeugniswerkstoff absorbiert wird, aus einer Fokussiereinrichtung, die das Laserstrahlenbündel im Inneren des Werkstoffes an der ausgewählten Stelle konzentriert, und einer Einrichtung, die die Lage des Konzentrationsbereiches der Strahlen im Inneren des Erzeugnisses ändert, um ein Kennzeichnungssymbol im Inneren des Erzeugnisses erzeugen zu können, zu lösen, wurde ein steuerbarer Wandler der Laserimpulsparameter, der die Impulsparameter in Abhängigkeit von der Veränderung der Werkstoffparameter im Konzentrationsbereich der Laserimpulse verändert, eingeführt.To accomplish the aforementioned task in the proposed device, consisting of a Pulse laser, which generates the beam with a wavelength that is not from the product material is absorbed by a focusing device that the laser beam in Concentrated inside the material at the selected location, and a device that the Location of the concentration range of the rays inside the product changes to one To be able to create a marking symbol inside the product was a problem controllable converter of the laser pulse parameters, which the pulse parameters depending on changes in the material parameters in the concentration range of the laser pulses, introduced.

Die vorgeschlagene Vorrichtung besitzt ein die Intensität des Strahlenbündels verteilendes Formierungssytem, welches sich auf der Strecke des Strahlenbündels zwischen dem Impulslaser und der Fokussiereinrichtung befindet und die Verteilung der Intensität des Laserstrahlenbündels in der Weise formt, daß die größte Intensität an den Rändern des Bündels und die geringste in seinem Zentrum zu finden ist.The proposed device has a beam that distributes the intensity of the beam Formation system, which is located on the path of the beam between the Pulse laser and the focusing device is located and the distribution of the intensity of the Laser beam forms in such a way that the greatest intensity is at the edges of the beam and the least can be found in its center.

Die vorgeschlagene Vorrichtung besitzt einen Impulslaser, der ein Strahlenbündel mit der kürzesten möglichen Wellenlänge aus dem Bereich, in dem der Erzeugniswerkstoff transparent ist, oder mit einer Wellenlänge der entsprechenden Harmonischen generiert.The proposed device has a pulse laser, which is a beam with the shortest possible wavelength from the area in which the product material is transparent is generated or with a wavelength of the corresponding harmonic.

In einer der Varianten der vorgeschlagenen Vorrichtung besteht das System zur Formierung der Intensität des Strahlenbündels aus einem Teleskop, das das kleine Laserstrahlenbündel verbreitert, sowie aus einem nicht transparenten scheibenförmigen Schirm, welcher den Zentralteil des verbreiterten Bündels verdeckt.In one of the variants of the proposed device, the system for forming the Intensity of the beam from a telescope, which is the small laser beam widened, as well as from a non-transparent disc-shaped screen, which the The central part of the widened bundle is covered.

In einer anderen Variante der vorgeschlagenen Vorrichtung besteht das System zur Formierung der Intensität des Strahlenbündels aus zwei gleichen kegelförmigen optischen Teilen, die mit ihrer Kegelgrundfläche zueinander angeordnet sind.In another variant of the proposed device, the system for formation exists the intensity of the beam of rays from two identical conical optical parts, which with their cone base are arranged to each other.

In einer der Varianten der vorgeschlagenen Vorrichtung ist der steuerbare Wandler der Laserimpulsparameter ein Photowandler, der das Leuchten des Plasmas im Konzentrationsbereich des Laserstrahlenbündels registriert und das elektrische Signal, das die Laserimpulsparameter in Abhängigkeit von der Leuchtintensität steuert, zum Steuerblock leitet.In one of the variants of the proposed device, the controllable converter is the Laser pulse parameters a photo converter, which allows the glow of the plasma in the concentration range of the laser beam registered and the electrical signal representing the laser pulse parameters controls depending on the light intensity, leads to the control block.

In einer anderen Variante der vorgeschlagenen Vorrichtung ist der steuerbare Wandler der Laserimpulsparameter ein akustischer Wandler, der die sich aus dem Konzentrationsbereich des Laserstrahlenbündels ausbreitende akustische Welle registriert und das elektrische Signal, das die Laserimpulsparameter in Abhängigkeit von der Intensität der akustischen Welle steuert, zum Steuerblock leitet.In another variant of the proposed device, the controllable converter is the Laser pulse parameters an acoustic transducer that is out of the concentration range of the Laser beam propagating acoustic wave registered and the electrical signal that controls the laser pulse parameters depending on the intensity of the acoustic wave to Control block directs.

In einer weiteren Variante der Vorrichtung ist ein Steuerblock vorhanden, der die Energiedichte (Intensität), die Dauer, die Anzahl, die Wiederholfrequenz der Laserimpulse in Abhängigkeit von den Werkstoffparametern im Konzentrationsbereich des Laserstrahlenbündels regelt.In a further variant of the device, a control block is present which measures the energy density (Intensity), the duration, the number, the repetition frequency of the laser pulses depending on regulates the material parameters in the concentration range of the laser beam.

Die Erfindung wird durch die Zeichnungen näher erläutert, in denen die Skizzen der Vorrichtung dargelegt sind.

Figur 1
Skizze der ersten Variante der vorgeschlagenen Kennzeichnungsvorrichtung mittels Laser,
Figur 2
Skizze der zweiten Variante der vorgeschlagenen Kennzeichnungsvorrichtung mittels Laser,
Figur 3
Formierungssystem, das die Intensität des Laserstrahlenbündels verteilt,
Figur 4
Skizze der dritten Variante der vorgeschlagenen Kennzeichnungsvorrichtung mittels Laser.
The invention is explained in more detail by the drawings, in which the sketches of the device are set out.
Figure 1
Sketch of the first variant of the proposed marking device using a laser,
Figure 2
Sketch of the second variant of the proposed marking device using a laser,
Figure 3
Formation system that distributes the intensity of the laser beam,
Figure 4
Sketch of the third variant of the proposed marking device using a laser.

Eine der Varianten der Vorrichtung, die das vorgeschlagene Verfahren realisiert, ist in der Figur 1 skizziert. Diese Vorrichtung besteht aus dem Impulslaser 1, einer sich auf der Strecke dessen Strahlenbündels 2 befindenden Fokussiereinrichtung 3 zur Konzentration des Laserstrahlenbündels 2 im ausgewählten Konzentrationsbereich 4, der sich im Inneren des transparenten, für die Kennzeichnung vorgesehenen Erzeugniswerkstoffes 5 befindet.One of the variants of the device that implements the proposed method is in the figure 1 outlined. This device consists of the pulse laser 1, one on the line thereof Focusing device 3 located on the beam 2 for concentrating the laser beam 2 in the selected concentration range 4, which is located inside the transparent, for the intended product material 5 is located.

Die Vorrichtung besitzt eine bewegliche Plattform 6, auf der das Erzeugnis 5 befestigt wird und wodurch seine Position gemeinsam mit der Plattform 6 verändert werden kann. Mit der beweglichen Plattform 6 und dem Impulslaser 1 ist ein Controller 7 verbunden, um deren Funktionen entsprechend mit dem Ziel zu koordinieren, das Kennzeichnungssymbol gewünschter Form zu erzielen. Die Vorrichtung besitzt einen steuerbaren Wandler 8 der Impulsparameter, der beispielsweise ein Photowandler sein kann. Dieser Photowandler reagiert auf das Leuchten des Werkstoffes im Konzentrationsbereich 4 und ist durch den Steuerblock 9 mit dem Impulslaser 1 verbunden. Der Wandler 8 kann ebenfalls ein akustischer Wandler sein, der auf die sich von dem Werkstoff ausbreitenden akustischen Wellen im Konzentrationsbereich 4 reagiert und durch den Steuerblock 9 mit dem Impulslaser 1 verbunden ist.The device has a movable platform 6 on which the product 5 is fastened and whereby its position can be changed together with the platform 6. With the movable platform 6 and the pulse laser 1, a controller 7 is connected to their Functions to coordinate accordingly with the aim of the flag icon to achieve the desired shape. The device has a controllable converter 8 Impulse parameter, which can be a photo converter, for example. This photo converter responds on the glowing of the material in the concentration range 4 and is through the control block 9 connected to the pulse laser 1. The transducer 8 can also be an acoustic transducer be that of the acoustic waves propagating from the material in the concentration range 4 reacts and is connected to the pulse laser 1 by the control block 9.

Das zur Kennzeichnung ausgewählte Erzeugnis 5 aus transparentem Werkstoff kann aus transparentem bzw. farbigem Glas, aus optischem Kristall oder aus organischem Glas bestehen.The product 5 made of transparent material selected for labeling can be made from transparent or colored glass, made of optical crystal or organic glass.

Der Erzeugniswerkstoff darf das Laserstrahlenbündel nicht absorbieren.The product material must not absorb the laser beam.

Laser 1 kann beispielsweise ein Festkörperimpulslaser, wie z.B. Nd-YAG-Laser sein oder ein frequenzvervielfachter Xenon-Fluorid-Eximerlaser.Laser 1 can, for example, be a solid-state pulse laser, e.g. Nd-YAG laser or one frequency multiplied xenon fluoride eximer laser.

Andere Laserparameter werden in Abhängigkeit vom Werkstoff des Erzeugnisses 5 gewählt. Die Laserausgangsenergie muß annähernd 50 mJ, die Impulsfrequenz 1 Hz, die Impulsdauer 10-9 s betragen.Other laser parameters are selected depending on the material of the product 5. The laser output energy must be approximately 50 mJ, the pulse frequency 1 Hz, the pulse duration 10 -9 s.

Des weiteren wird die Wellenlänge des Laserstrahls bzw. seiner Harmonischen in dem Intervall gewählt, in welchem der Erzeugniswerkstoff transparent ist, im günstigsten Fall wird in diesem Intervall die kürzeste Wellenlänge gewählt.Furthermore, the wavelength of the laser beam or its harmonics in the interval is selected in which the product material is transparent, in the best case this is Interval selected the shortest wavelength.

Zuerst wird mittels der Fokussiereinrichtung 3 und der beweglichen Plattform 6 der Konzentrationsbereich 4 des Laserstrahlenbündels gewählt. Es werden ein oder einige erste Laserimpulse abgegeben, und deren Wirkung auf den Werkstoff im Konzentrationsbereich 4 zum Beispiel mittels eines optischen Wandlers 8 wird registriert. Falls am Ausgang des optischen Wandlers 8 kein Signal zu verzeichnen ist, wird die Intensität der ersten Laserimpulse so lange erhöht, bis die Werkstoffveränderungen im Konzentrationsbereich entstehen, jedoch der Werkstoff noch nicht zerstört wird. Das am Ausgang des optischen Wandlers entstandene elektrische Signal wird dann zum Steuerblock weitergeleitet, der seinerseits die Parameter der nächsten Impulse so bestimmt, daß durch die Einwirkung der ersten Impulse der Werkstoff im Konzentrationsbereich zerstört wird, d.h. daß die Undurchsichtigkeit, feststellbar als Licht zerstreuender Bereich, geformt wird. In dem Falle, daß der steuerbare Parameter der Laserimpulse die Impulsintensität ist, ist die Intensität der folgenden Impulse geringer als die der ersten Impulse.First, the concentration range is made by means of the focusing device 3 and the movable platform 6 4 of the laser beam selected. It will be one or a few first Laser pulses emitted, and their effect on the material in the concentration range 4 for example by means of an optical converter 8 is registered. If at the exit of the optical converter 8, no signal is recorded, the intensity of the first laser pulses increased until the material changes occur in the concentration range, however the material has not yet been destroyed. The one created at the output of the optical converter electrical signal is then forwarded to the control block, which in turn controls the parameters of the next impulses determined so that by the action of the first impulses the material in Concentration range is destroyed, i.e. that opacity, ascertainable as light dispersing area being shaped. In the event that the controllable parameter of the Laser pulse is the pulse intensity, the intensity of the following pulses is less than that of the first impulses.

Nachdem die Zerstörung des Werkstoffes im Konzentrationsbereich erfolgt ist, leitet der Controller 7 das Signal an die bewegliche Plattform 6 weiter, und der Konzentrationsbereich des Laserstrahlenbündels wird somit an eine andere Stelle im Erzeugnis entsprechend dem Kennzeichnungssymbol gerichtet. Analog zum beschriebenen Fall erfolgt dann die Zerstörung des Werkstoffes im neuen Konzentrationsbereich.After the destruction of the material in the concentration range, the head Controller 7 passes the signal to the movable platform 6, and the concentration range of the laser beam is thus at a different location in the product according to the Directional flag icon. Destruction then takes place analogously to the case described of the material in the new concentration range.

In der Figur 2 ist eine andere Variante der Vorrichtung dargestellt, die die gleichen Vorrichtungsdetails wie die in der Abbildung 2 dargestellte Vorrichtung besitzt, jedoch zusätzlich ein Formierungssystem 10 aufweist, das für die Verteilung der Intensität der Laserimpulse vorgesehen ist und sich auf der Strecke des Strahlenbündels 2 zwischen dem Impulslaser 1 und der Fokussiereinrichtung 3 befindet. Dieses für die Verteilung der Intensität zuständige Formierungssystem 10 verteilt die Intensität der Laserstrahlen im Strahlenbündel in der Weise, daß sich die größte Intensität an den Rändern des Bündels und die geringste in seinem Zentrum befindet. Bei einer derartigen Intensitätsverteilung ist das auf die Linse der Fokussiereinrichtung fallende Laserstrahlenbündel ringförmig, und bei einer Konzentration eines derartig geformten Bündels im ausgewählten Erzeugnisbereich sowie bei der Durchführung der oben beschriebenen Werkstoffzerstörung in zwei Etappen werden ein noch größerer Kontrast und geringere Abmessungen des Kennzeichnungssymbols erzielt, weil der erste oder mehrere erste Impulse die Beständigkeit des Werkstoffes gegenüber den Laserstrahlen im Konzentrationsbereich verändern und der folgende oder mehrere folgende Impulse den Werkstoff im erwähnten Bereich zerstören.FIG. 2 shows another variant of the device, which has the same device details like the device shown in Figure 2, but additionally has a formation system 10 which is used for the distribution of the intensity of the laser pulses is provided and located on the path of the beam 2 between the pulse laser 1 and the focusing device 3. This is responsible for the distribution of the intensity Forming system 10 distributes the intensity of the laser beams in the beam in such a way that the greatest intensity is at the edges of the bundle and the lowest at its center located. With such an intensity distribution, this is on the lens of the focusing device falling laser beam ring-shaped, and at a concentration of such a shaped Bundles in the selected product area as well as in the implementation of the above Material destruction in two stages becomes an even greater contrast and less Dimensions of the marking symbol achieved because of the first or more first impulses the resistance of the material to the laser beams in the concentration range change and the following or several following impulses the material in the mentioned Destroy area.

Das Formierungssystem, das für die Verteilung der Intensität der Laserimpulse vorgesehen ist, ist in Figur 3 dargesellt. Das kleine, nicht verbreiterte Laserstrahlenbündel 2 gelangt in ein verbreiterndes Teleskop 11, in dessen Innerem durch den kasten 12 dargestellte optische Bauteile angeordnet sind. Vorzugsweise handelt es sich dabei um eine bikonkave und eine bikonvexe Linse. Nachgeschaltet ist ein nicht transparenter, den Zentralteil des verbreiterten Bündels 2' verdeckender, scheibenförmiger Schirm 13. Dahinter befindet sich wie bei den anderen Ausführungsformen eine Fokussiereinrichtung 3, die vorzugsweise aus einer bikonvexen und einer plankonvexen Linse besteht. Durch diese wird das verbreiterte Strahlenbündel 2' in den Konzentrationsbereich fokussiert.The formation system that is intended for the distribution of the intensity of the laser pulses is shown in Figure 3. The small, not widened laser beam 2 enters widening telescope 11, inside of which is represented by the box 12 optical Components are arranged. It is preferably a biconcave and a biconvex lens. Downstream is a non-transparent, the central part of the widened Bundle 2 'concealing, disc-shaped screen 13. Behind it is like the other embodiments, a focusing device 3, which preferably consists of a biconvex and a plano-convex lens. Through this the widened Beams 2 'focused in the concentration range.

Unter dem Strahlengang mit den Laserstrahlenbündeln 2 und 2' sind in Strahlrichtung ein erster Bereich 14 und ein zweiter Bereich 15 gezeigt, in denen sich unterschiedliche Intensitätsverteilungen im Laserstrahl befinden. Trägt man gemäß dem allgemein mit 16 bezeichneten Diagramm über der Intensität I den Strahldurchmesser d auf, dann ergibt sich für den ersten Bereich 14 zwischen dem Impulslaser 1 und dem Schirm 13 eine Intensitätsverteilung im Strahl entsprechend der im Diagramm 16 dargestellten Form. Es handelt sich hier im wesentlichen um eine Art Gaußsche Verteilung. Durch den Schirm 13 wird aus dem Zentrum des verbreiterten Strahlenbündels 2' die Intensitätsspitze herausgenommen, so daß sich im zweiten Bereich 15 die allgemein mit 17 dargestellte Intensitätsverteilung ergibt. Dadurch wird die Intensitätsverteilung des auf die Fokussiereinrichtung 3 fallenden Laserstrahlenbündels 2' ringförmig. Under the beam path with the laser beams 2 and 2 'are a first in the beam direction Area 14 and a second area 15 are shown, in which there are different intensity distributions are in the laser beam. Wears according to the generally designated 16 Diagram over the intensity I the beam diameter d, then results for the first Area 14 between the pulse laser 1 and the screen 13 an intensity distribution in the beam according to the form shown in diagram 16. It is essentially about a kind of Gaussian distribution. Through the screen 13, the center of the widened Beam 2 ', the intensity peak is removed, so that in the second region 15 gives the intensity distribution shown generally at 17. This will make the intensity distribution of the laser beam 2 ′ falling on the focusing device 3 in a ring shape.

Das Teleskop 11 der Figur 3 kann man auch durch eine andere Ausführungsvariante ersetzen. Bei diesem allgemein mit 10 bezeichneten Formierungssystem besteht vorzugsweise das Teleskop 11 aus zwei gleichen kegelförmigen, mit ihrer Kegelgrundfläche zueinander angeordneten optischen Teilen. Ein solches Formierungssystem benötigt nicht den Schirm 13.The telescope 11 of Figure 3 can also be replaced by another embodiment. In this formation system, generally designated 10, this is preferably the case Telescope 11 made of two identical conical, arranged with their cone base to each other optical parts. Such a formation system does not require the screen 13.

Eine weitere Variante der Vorrichtung ist in Figur 4 dargestellt, bei welcher für die gleichen Teile die gleichen Bezugszahlen wie in den Figuren 1 und 2 verwendet sind. Die für die Veränderung der Lage des Konzentrationsbereiches vorgesehene Einrichtung ist hier aber nur für die x-Richtung eine bewegliche Plattform 6. Für die anderen beiden Richtungen y und z dient ein bewegliches Spiegelsystem, das im Gehäuse 18 dargestellt ist. Das Strahlenbündel 2 trifft nach Verlassen des Formierungssystems 10 auf einen ebenen, Hunderprozentspiegel 19 in z-Richtung. Der Spiegel 19 ist unter 45° angestellt und lenkt das Strahlenbündel dadurch in y-Richtung, senkrecht zur z-Richtung auf einen zweiten, ebenfalls ebenen Hunderprozentspiegel 20. Auch dieser Spiegel 20 ist unter 45° zur γ-Richtung angestellt und lenkt das Strahlenbündel wieder in z-Richtung um. Von dort durchläuft das Strahlenbündel die Fokussiereinrichtung 3 zum Konzentrationsbereich 4 wie bei den anderen Ausführungsformen.Another variant of the device is shown in Figure 4, in which the same Parts have the same reference numerals as used in Figures 1 and 2. The for the The change in the location of the concentration range provided facility is only here for the x-direction a movable platform 6. For the other two directions y and z serves a movable mirror system, which is shown in the housing 18. The bundle of rays 2 meets a flat, hundred percent level after leaving the formation system 10 19 in the z direction. The mirror 19 is set at 45 ° and thereby directs the beam in the y direction, perpendicular to the z direction on a second, also flat hundred percent mirror 20. This mirror 20 is also set at 45 ° to the γ direction and directs it Beams in the z direction again. From there the beam of rays passes through the Focusing device 3 to the concentration range 4 as in the other embodiments.

Wenn der erste Spiegel 19 in z-Richtung, d.h. in Richtung des ursprünglichen Strahlenbündels . verschoben wird, wobei der zweite Spiegel 20 und die Fokussiereinrichtung 3 mitwandern, dann verschiebt sich der Konzentrationsbereich 4 ebenfalls in z-Richtung um denselben Betrag (in Figur 4 nach rechts). Bewegt man den zweiten Spiegel 20 in y-Richtung (ohne weitere Verschiebung des ersten Spiegels 19 aber mit gleichzeitiger Verschiebung der Fokussiereinrichtung), dann bewegt man damit auch den Konzentrationsbereich 4 um denselben Betrag in y-Richtung nach oben. Die dritte x-Koordinate kann man durch die bewegliche Plattform 6 verstellen. Diese wird bei der in Figur 4 gezeigten Ausführungsform linear senkrecht zur Papierebene in Blickrichtung oder in entgegengesetzter x-Richtung verschoben. Dadurch hat man eine dreidimensionale Kennzeichnungsmöglichkeit.If the first mirror 19 in the z direction, i.e. towards the original beam , is shifted, the second mirror 20 and the focusing device 3 moving with it, then the concentration range 4 also shifts in the z direction by the same amount (to the right in Figure 4). If the second mirror 20 is moved in the y direction (without further Displacement of the first mirror 19 but with simultaneous displacement of the focusing device), then you move the concentration range 4 by the same amount up in the y direction. The third x coordinate can be seen through the movable platform 6 adjust. In the embodiment shown in FIG. 4, this becomes linearly perpendicular to Paper plane shifted in the direction of view or in the opposite x-direction. This has a three-dimensional labeling option.

Anstelle der Verwendung der beweglichen Plattform 6 bei der Ausführungsform nach Figur 4 kann man aber auch einen dritten ebenen Hundertprozentspiegel (der nicht dargestellt ist) anstelle der Plattform 6 verwenden. Der Erwähnte dritte Spiegel wäre unter 45° zur y-Richtung und zur x-Richtung angestellt. Bewegt man diesen dritten Spiegel zusammen mit der Fokussiereinrichtung 3 in x-Richtung, d.h. entgegen der Blickrichtung des Betrachters der Figur 4, dann verschiebt sich der Konzentrationsbereich 4 ebenfalls in x-Richtung.Instead of using the movable platform 6 in the embodiment according to FIG. 4 but you can also use a third level hundred percent mirror (which is not shown) use instead of platform 6. The third mirror mentioned would be below 45 ° to the y direction and adjusted to the x direction. If you move this third mirror together with the Focusing device 3 in the x direction, i.e. against the viewing direction of the viewer of the figure 4, then the concentration range 4 also shifts in the x direction.

Claims (17)

  1. A method of identifying products of transparent materials (5) by means of laser (1), which includes
    selecting the identification location (4) in the interior of the product (5),
    concentrating the laser beam which is not absorbed by the material of the product at the intended location,
    destroying the material of the product in the region of concentration under the action of pulses of the laser beam (2), and
    forming the identification symbol by altering the position of the region of concentration in the interior of the product,
       characterised in that
       the condition of the destroyed material in the region of concentration by the action on the material is achieved in two steps, wherein the two steps of action are achieved by the action on the material of at least two laser pulses of different parameters at the selected location and that the first or some of the first pulses of the first step alter the resistance of the material to the laser radiation in the region of concentration and the following or some following pulses of the second step destroy the material in said region.
  2. A method according to claim 1 characterised in that the parameter of the laser pulses is intensity and the intensity of the first or a plurality of first laser pulses is so selected that the laser beam (2) in the region of concentration thereof changes the resistance of the material to the laser radiation and the intensity of the following or a plurality of following pulses is selected to be less than that of the first pulses, but such that destruction of the material occurs in the region of reduced resistance of the material to the laser radiation as a result of the action of the first pulse or pulses.
  3. A method according to one of claims 1 and 2 characterised in that the laser beam is so shaped that the intensity is greatest at the edges thereof and lowest in the central portion.
  4. A method according to one of claims 1 to 3 characterised in that the shortest possible wavelength of the laser beam or its harmonic, in relation to which the material of the product is transparent, is selected.
  5. A method according to one of claims 1 to 4 characterised in that the degree of reduction in the resistance of the material, which is caused by the action of the first at least one pulse, is determined, in accordance with the evaluation of which the parameters of the following pulses, for example number, energy, duration and repetition rate, are selected.
  6. A method according to one of claims 1 to 5 characterised in that the degree of reduction in the resistance of the material is determined after the first step on the basis of the strength of the acoustic wave which propagates from the region of concentration of the laser beam.
  7. A method according to one of claims 1 to 6 characterised in that the degree of reduction in the resistance of the material is determined after the first step on the basis of the light intensity of the region of concentration of the laser beam.
  8. A method according to one of claims 1 to 7 characterised in that the form of the destroyed region of the material is controlled by a suitable variation in the number, intensity, duration and repetition rate of the laser pulses.
  9. Apparatus for identifying products of transparent materials by means of laser, comprising a pulsed laser (1) which generates a light beam (2) of such a wavelength which is not absorbed by the material (5) of the product, a focusing device (3) which concentrates the laser beam (2) at the selected location in the interior of the product (4), and a device (6) which forms the identification symbol by varying the position of the region of concentration in the interior of the product, characterised in that the apparatus has an adjusting device which is capable of altering at least one parameter of the laser pulses which are focussed on to the selected region, wherein the adjusting device is designed in a first step of laser pulses to vary the resistance of the material in relation to the laser radiation in the region of concentration by means of laser pulses of given parameters and in a second step of laser pulses to achieve destruction of the material in said region by means of laser pulses with parameters which are varied in relation to the first step.
  10. Apparatus according to claim 9 characterised in that the adjusting device for carrying out the first and second steps is a controllable converter (9) which varies the parameters of the laser pulses in accordance with the immediately previously ascertained material parameters in the region of concentration.
  11. Apparatus according to claims 9 and 10 characterised in that there is a forming system (10) which distributes the intensity of the beam and which is disposed on the path of the laser beam between the pulsed laser and the focusing device and which so distributes the intensity of the laser beam that the greatest intensity is at the edges of the beam and the lowest intensity is in the central portion thereof.
  12. Apparatus according to claim 11 characterised in that the forming system (10) for distribution of the intensity of the laser pulses is a telescope (12) which broadens the small laser beam and a non-transparent disc-shaped screen (13) which masks the central portion of the broadened beam.
  13. Apparatus according to claim 11 characterised in that the system (10) for forming the intensity of the beam comprises two identical conical optical portions which are arranged with their cone base surface towards each other.
  14. Apparatus according to one of claims 9 to 13 characterised in that it has a pulsed laser (1) which generates a beam (2) of the shortest possible beam or harmonic wavelength in the wavelength range in which the material (5) of the product is transparent.
  15. Apparatus according to claim 10 characterised in that the controllable converter for the laser parameters is a controllable pulse intensity converter (8 and 9) of the laser.
  16. Apparatus according to claim 15 characterised in that the controllable pulse intensity converter of the laser is a photoconverter (8 and 9) which records the lighting of the plasma in the region of concentration of the laser beam and transmits an electrical signal to the control block which controls the intensity of the laser pulses in dependence on the light intensity.
  17. Apparatus according to claim 15 characterised in that the controllable pulse intensity converter of the laser is an acoustic converter (8 and 9) which records an acoustic wave propagating from the region of concentration of the laser beam and transmits the electrical signal to the control block.
EP96106863A 1995-05-12 1996-05-01 Process and device for marking products of transparent (solid) material with a laser Expired - Lifetime EP0743128B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LT9500051 1995-05-12
LT95-051A LT4108B (en) 1995-05-12 1995-05-12 Method and apparatus for laser marking of products from transparent materials

Publications (2)

Publication Number Publication Date
EP0743128A1 EP0743128A1 (en) 1996-11-20
EP0743128B1 true EP0743128B1 (en) 2002-02-27

Family

ID=19721634

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96106863A Expired - Lifetime EP0743128B1 (en) 1995-05-12 1996-05-01 Process and device for marking products of transparent (solid) material with a laser

Country Status (4)

Country Link
EP (1) EP0743128B1 (en)
AT (1) ATE213681T1 (en)
DE (1) DE59608777D1 (en)
LT (1) LT4108B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541105B2 (en) 2005-08-18 2013-09-24 Oerlikon Trading Ag, Trubbach Transparent substrates with dielectric layer having a marking below the surface of the transparent substrate

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19728766C1 (en) * 1997-07-07 1998-12-17 Schott Rohrglas Gmbh Use of a method for producing a predetermined breaking point in a vitreous body
DE19925801B4 (en) * 1999-06-03 2005-03-10 Fraunhofer Ges Forschung Method and device for the controllable change of the point size in the laser interior engraving
DE10015702A1 (en) * 2000-03-29 2001-10-18 Vitro Laser Gmbh Method for introducing at least one internal engraving into a flat body and device for carrying out the method
US6333486B1 (en) 2000-04-25 2001-12-25 Igor Troitski Method and laser system for creation of laser-induced damages to produce high quality images
US6417485B1 (en) 2000-05-30 2002-07-09 Igor Troitski Method and laser system controlling breakdown process development and space structure of laser radiation for production of high quality laser-induced damage images
US6399914B1 (en) 2000-07-10 2002-06-04 Igor Troitski Method and laser system for production of high quality laser-induced damage images by using material processing made before and during image creation
US6490299B1 (en) 2000-07-20 2002-12-03 Troitski Method and laser system for generating laser radiation of specific temporal shape for production of high quality laser-induced damage images
US6426480B1 (en) 2000-08-30 2002-07-30 Igor Troitski Method and laser system for production of high quality single-layer laser-induced damage portraits inside transparent material
US6509548B1 (en) 2000-10-04 2003-01-21 Igor Troitski Method and laser system for production of high-resolution laser-induced damage images inside transparent materials by generating small etch points
US6768080B2 (en) * 2001-12-17 2004-07-27 Troitski Method for production of laser-induced damage images with special characteristics by creating damages of special space shape
US6727460B2 (en) 2002-02-14 2004-04-27 Troitski System for high-speed production of high quality laser-induced damage images inside transparent materials
US6630644B2 (en) 2002-02-19 2003-10-07 Troitski Method creating damage arrangement for production of 3D laser-induced damage portraits inside transparent materials
US6664501B1 (en) * 2002-06-13 2003-12-16 Igor Troitski Method for creating laser-induced color images within three-dimensional transparent media
US6720523B1 (en) * 2002-09-23 2004-04-13 Igor Troitski Method for production of laser-induced images represented by incomplete data, which are supplemented during production
US6740846B1 (en) 2003-03-27 2004-05-25 Igor Troitski Method for production of 3D laser-induced head image inside transparent material by using several 2D portraits
DE10356223A1 (en) 2003-12-02 2005-06-30 Mtu Aero Engines Gmbh Method, device and test piece for testing a component, and use of the method and the device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2315060A1 (en) * 1975-06-18 1977-01-14 Cibie Projecteurs FIXING AND ADJUSTMENT DEVICE FOR COMPLEMENTARY PROJECTOR
JPH0471792A (en) * 1990-07-10 1992-03-06 Fujitsu Ltd Marking method
IL99170A0 (en) 1990-08-15 1992-07-15 United Distillers Plc Method and apparatus for sub-surface marking
DE4033300C2 (en) * 1990-10-19 1994-06-23 Gao Ges Automation Org Multi-layer, card-shaped data carrier and method for producing the same
AU5872994A (en) 1992-12-18 1994-07-19 Firebird Traders Ltd. Process and apparatus for etching an image within a solid article
JPH0776167A (en) * 1993-09-08 1995-03-20 Miyachi Technos Kk Laser marking method
DE4407547C2 (en) * 1994-03-07 1996-05-30 Swarovski & Co Body made of transparent material with a marking and process for its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541105B2 (en) 2005-08-18 2013-09-24 Oerlikon Trading Ag, Trubbach Transparent substrates with dielectric layer having a marking below the surface of the transparent substrate

Also Published As

Publication number Publication date
LT4108B (en) 1997-01-27
LT95051A (en) 1996-11-25
EP0743128A1 (en) 1996-11-20
DE59608777D1 (en) 2002-04-04
ATE213681T1 (en) 2002-03-15

Similar Documents

Publication Publication Date Title
EP0743128B1 (en) Process and device for marking products of transparent (solid) material with a laser
DE3734656C2 (en) Method and device for producing lenses or similarly shaped objects by means of laser radiation
EP2144728B1 (en) Method for incorporating a structure into a surface of a transparent workpiece
DE112004000581B4 (en) Process for cutting glass
EP0307874B1 (en) Method for producing a mark on a spectacle lens
DE2719275A1 (en) PROCESS AND DEVICE FOR THE MATERIAL-REMOVING PROCESSING OF SEPARATE AREAS ARRANGED IN A PRESET PATTERN ON A CONTINUOUSLY MOVING OBJECT
EP0329787A1 (en) Method and device for laser processing of an object
EP2429755B1 (en) Device and method for machining the circumference of a material strand by means of a laser
DE60111863T2 (en) LASER WELDING
DE102018126381A1 (en) Method and device for inserting a dividing line into a transparent brittle material, as well as according to the method producible, provided with a dividing line element
EP1138516B1 (en) Method for forming an internal engraved image in a flat body and apparatus for performing the method
DE69724331T2 (en) Method for producing a nozzle body and working device
DE69903541T2 (en) DEVICE AND METHOD FOR PERFORATING MICROVIA HOLES IN PACKAGING OF ELECTRICAL CONNECTION POINTS OF ELECTRICAL CIRCUITS
DE19736110A1 (en) Burr-free and melting-free microprocessing method of workpieces
DE2932421C2 (en) Device for the production of a perforation matrix in flat material
EP1260838B1 (en) Process for direct microstructuring of materials
DE102018120011A1 (en) Welding method for connecting a transparent, aluminum oxide-containing first substrate to an opaque second substrate
WO1997043078A1 (en) Process and device for removal of material with a laser beam
DE4219809A1 (en) Material surface layers removal for precision and less complicated system - by successive radiation of parts of surface with optical element system in electromagnetic beam path for constant area cross=section maintenance
DE4131361C2 (en) Device for irradiating the cornea
DE102004050047A1 (en) Method and device for producing holes by means of laser
WO2004005982A2 (en) Microstructuring of an optical waveguides for producing functional optical elements
EP3872041A1 (en) Method of separating a glass element and partial glass element
EP1358036B1 (en) Device for treating substrates by laser irradiation
EP1231627A2 (en) Marking apparatus and process therefor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19970516

17Q First examination report despatched

Effective date: 19981006

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20020227

REF Corresponds to:

Ref document number: 213681

Country of ref document: AT

Date of ref document: 20020315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59608777

Country of ref document: DE

Date of ref document: 20020404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020527

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020527

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021108

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021121

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020527

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

26N No opposition filed

Effective date: 20021128

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202