[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0741267B1 - Method and furnace for incinerating waste - Google Patents

Method and furnace for incinerating waste Download PDF

Info

Publication number
EP0741267B1
EP0741267B1 EP95106788A EP95106788A EP0741267B1 EP 0741267 B1 EP0741267 B1 EP 0741267B1 EP 95106788 A EP95106788 A EP 95106788A EP 95106788 A EP95106788 A EP 95106788A EP 0741267 B1 EP0741267 B1 EP 0741267B1
Authority
EP
European Patent Office
Prior art keywords
secondary air
channel
nozzles
grate
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95106788A
Other languages
German (de)
French (fr)
Other versions
EP0741267A1 (en
Inventor
Arvid Christmann
Bernd Rütten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Inova Steinmueller GmbH
Original Assignee
BBP Environment GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES95106788T priority Critical patent/ES2161798T3/en
Application filed by BBP Environment GmbH filed Critical BBP Environment GmbH
Priority to AT95106788T priority patent/ATE203809T1/en
Priority to DE59509469T priority patent/DE59509469D1/en
Priority to EP95106788A priority patent/EP0741267B1/en
Priority to PCT/EP1996/001254 priority patent/WO1996035081A1/en
Priority to KR1019970707819A priority patent/KR100446348B1/en
Priority to US08/964,188 priority patent/US6138587A/en
Priority to JP08523097A priority patent/JP2000513796A/en
Priority to PL96323139A priority patent/PL323139A1/en
Priority to TW085103698A priority patent/TW319816B/zh
Publication of EP0741267A1 publication Critical patent/EP0741267A1/en
Application granted granted Critical
Publication of EP0741267B1 publication Critical patent/EP0741267B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/106Combustion in two or more stages with recirculation of unburned solid or gaseous matter into combustion chamber

Definitions

  • the invention relates to a method according to the preamble of claim 1 and a Furnace according to the preamble of claim 10.
  • the flue gas flow is particularly on the lower edge of the failure side Roof surface strongly deflected.
  • the flue gas flue is in the second DC combustion continuously vertical. At the transition between the combustion chamber and the flue gas flue an equally pronounced, if somewhat less, redirection can be seen.
  • waste incineration in a grate furnace this is done via a loading shaft supplied waste in the front area of the grate is first dried and preheated. In addition to the evaporation of the water, this also results in outgassing flammable Ingredients of the waste. Furthermore, they run from lower temperatures to about 500 ° C marked zone also pyrolytic processes. For a low overall The pollutant content of the exhaust gases from such grate combustion is therefore of decisive importance Meaning that the gaseous and particulate substances in the drying and Ignition area of the grate pass into the flue gas due to an energetic turbulent Mixing with the high temperature exhaust gas streams from the actual combustion area of the grate are brought into intimate contact. With sufficient oxygen content is the temperature and turbulence of the flow field Dwell time in areas of high temperature and high turbulence for the degree of destruction organic ingredients vital.
  • a rotary tube furnace is known from EP 0 579 987 A1, in which at least two primary air nozzles are so directed towards each other and towards the fuel bed that two opposing Vortexes are generated in the rotary tube whose axes of rotation are essentially parallel to the axis of the rotary tube and which rotate about these axes of rotation so that the thermally induced Support the movement of the fuel gases.
  • the invention has for its object a method according to the preamble of the claim 1 and to improve a furnace according to the preamble of claim 10, that each sub-volume of the flue gas changes during a prescribed dwell time is at a sufficiently high temperature level.
  • the direct current firing shown in FIG. 1 has a firebox 1, a loading shaft 2, a chute 3 and a grate 4, which extends from the loading shaft 2 extends to the chute 3. It is designed as a roller grate and comprises a total six rollers 5, the axes of which are inclined in a direction towards the chute 3 inclined plane are arranged parallel to each other.
  • the combustion chamber 1 is through at the top a roof-shaped firebox ceiling 6 completed.
  • the failure-side roof edge 7 is located itself over the end region of the grate 4.
  • Under the grate 4 are devices 8 for Primary air supply provided. Secondary air nozzles 9 penetrate several Place the combustion chamber ceiling 6. They are directed towards the main combustion zone, which is in one wide area is located in the middle of the grate 4.
  • the firebox 1 Through an opening 10 over the chute 3 and the adjacent end area of the grate 4 is the firebox 1 with a flue gas duct 11 in connection.
  • the lower section of the flue gas duct 11 is designed as an inclined pull 12. It is towards the loading chute 2 inclined backwards. Its lower boundary wall is the roof surface on the dropout side the combustion chamber ceiling 6.
  • FIG. 1 Approximately at the height of the mouth opening 10 are in a cross-sectional plane, which is shown in FIG is symbolized by a broken line, 14 additional nozzles on the rear wall 15.1 to 15.6 attached. They are illustrated in Figure 2 by pulse vectors.
  • the direction of the pulse vector coincides with the blowing direction, the length is a measure of the size of the pulse with which the secondary air flow is injected. The length should also be a measure of the size of the nozzle.
  • the pulse vectors are of equal length. This is meant to be symbolic are shown that all nozzles 15.1 to 15.6 are the same size.
  • the nozzle arrangement is mirror-symmetrical with respect to the vertical center plane 16, which the flue gas duct in divided two channel halves, which in Figure 2, the two cross-sectional halves 10a and 10b correspond.
  • the middle level 16 is an imaginary level, not a material level Partition wall.
  • Figure 2 shows the horizontal components of the individual pulse vectors.
  • the horizontal pulse components are aligned tangentially to circles 17.1 to 17.6 inscribed in the center of the cross-sectional halves. They therefore define a direction of rotation with respect to their center points Ma, Mb, symbolized by arrows 18a, 18b.
  • the direction of rotation in cross-section half 10a is opposite to the direction of rotation in cross-section half 10b.
  • the circles 17.1 to 17.3 or 17.4 to 17.6, which are assigned to the individual nozzles have different diameters.
  • nozzles of a cross-sectional half tangentially are between approximately 0.15b and 0.4b.
  • b is the width of the flue gas duct 11.
  • the horizontal component points away from the central plane 16.
  • the associated horizontal component is oriented at right angles to the rear wall 14, ie parallel to the side wall 19a. The same naturally applies to the nozzle 15.6.
  • the distances can deviate up to approximately ⁇ 30%, the angles up to approximately ⁇ 20% from the specified data.
  • the nozzles 15.1 to 15.6 are inclined to the horizontal.
  • the angle of inclination ⁇ 3 of the nozzle 15.3 is the angle between the pulse vector and its projection into the horizontal cross-sectional plane of the orifice 10.
  • the angle of inclination of the other nozzles which are not shown in FIG. 3 for the sake of clarity, has to be imagined accordingly.
  • the angle of inclination ⁇ for all nozzles is between -20 ° and + 50 °.
  • the negative sign indicates a downward slope.
  • the waste is placed on the grate 4 in the usual way, by rotation the rollers 5 on the grate 4 moved forward and burned. At the end of the grate the combustion residues fail.
  • Primary air is supplied to the grate from below. Secondary air is blown into combustion chamber 1 from above.
  • a flue gas flow occurs in the combustion chamber 1, which is shown in FIG. 1 by the streamlines 20, 21, 22 is illustrated.
  • the partial stream symbolized by streamline 20 rises from the front area of the grate 4. It contains solid and gaseous flammable ones Components. This partial flow is the characteristic of direct current combustion Way through the main combustion zone. There are the flammable Components at high temperature already largely through targeted secondary air supply burned.
  • the partial flow 21 escaping from the middle area has a very high high temperature, the partial flow 22 from the end region of the grate 4 still has a relative high oxygen content.
  • the entire flue gas flow is reduced on the outlet side deflected at the top and passes through the opening 10 into the inclined pull 12 the flammable components that are still carried are completely burned out. This is in addition to an adequate supply of oxygen, intensive mixing of the strands required that form the flue gas flow.
  • the mouth opening 10 in the region of the mouth opening 10, they are symmetrical to the central plane 16 secondary air jets blown in.
  • the direction of the secondary air jets is like this chosen so that each beam has an angular momentum with respect to the central axis of the channel half.
  • the direction of rotation is correct for all jets that are blown into one channel half. match. Because of the mirror symmetry, there is a sense of rotation in the cross-sectional half 10a, which is opposite to the direction of rotation in the cross-sectional half 10b.
  • the secondary air is blown into the flue gas flow at a speed of 70 to 100 m / s.
  • the Share of the secondary air blown in in the area of the mouth opening 10 of the total secondary air is around 25 to 35%.
  • the secondary air is blown into the flue gas duct 11 and in particular in the oblique draft 12 which forms the afterburning chamber, one to the central plane 16 symmetrical double vortex configuration created. That from the firebox 1 escaping flue gas is shaped by the arrangement and alignment of the nozzles two oppositely rotating vertebrae introduced obliquely upwards into the oblique pull 12. It has been shown that the separation vortex observed in the prior art is completely suppressed or at most on a harmless small detachment bubble directly on the Roof edge 7 is reduced. In the double vortex flow there is an extensive Homogenization in terms of temperature and material composition. Thereby the burnout of flammable components carried along is considerably improved and the Pollutant content in the exhaust gases significantly reduced.
  • Figure 4 shows a furnace, which is essentially compared to the furnace described so far has two differences: The one difference is that the flue gas duct 11 is designed as a continuous vertical train. The second difference is in the different configuration of the nozzles, which are at the level of the orifice 10 in the flue gas duct 11 are directed. This arrangement is shown symbolically in FIG.
  • the nozzles 24.1, 24.2 and 25.1 to 25.5 are not only attached to the rear wall 14, but also to the side walls 19a, 19b and the front wall 26 of the flue gas duct 11 over the edge 7.
  • the nozzles 24.1, 24.2 are significantly larger than the nozzles 25.1 to 25.5.
  • the nozzles 24.1, 24.2 are aligned tangentially to an inner circle 27, the smaller nozzles 25.1 to 25.5 tangentially to a larger circle 28.
  • the angle of inclination ⁇ 24, which is not visible in FIG. 5, of the nozzles 24.1, 24.2 is different from the angle of inclination ⁇ 25 of the nozzles 25.1 to 25.5.
  • the nozzles 25.1 to 25.5 generate secondary air with a significantly lower pulse blown in.
  • the quantity of secondary air introduced through the nozzles 24.1, 24.2 is preferred greater than the amount of secondary air introduced through nozzles 25.1 to 25.5, at least the same size.
  • the quantitative ratio is between 4: 1 and 1: 1. It is possible to replace all or part of the secondary air with recirculated flue gas.
  • an inner vortex is formed in each channel half, which is fanned in particular by the nozzles 24.1, 24.2, and an outer vortex which is fanned by the nozzles 25.1 to 25.5.
  • the vortices have different tangential speeds and, because of the different angles of inclination ⁇ 24 , ⁇ 25, also different axial speeds. This creates a shear layer between the two vertebrae. This leads to the formation of medium and fine-scale turbulence, which contributes to homogenization and improves the reaction kinetics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Air Supply (AREA)

Abstract

The method involves delivering waste onto a grid, moving it forward and burning it with the exhaust gas deflected through an opening into an exhaust channel. Near the opening, secondary air jets are blown into the two channel halves which are separated by the central plane of the exhaust channel. The jets have a torsion impulse relative to the centre axis of the channel cross-section. The sense of rotation of all the secondary air jets blown into one channel half is the same but the sense of rotation in one half is opposite that in the other half. The jets can be blown mirror-symmetrically relative to the central plane. For each channel half, one secondary air jet has a higher impulse and one jet a lower impulse.

Description

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 und eine Feuerung gemäß dem Oberbegriff des Anspruchs 10.The invention relates to a method according to the preamble of claim 1 and a Furnace according to the preamble of claim 10.

In der DE-Z "Die Industriefeuerung", Vulkan-Verlag Dr. W. Classen, Essen 1986, Seiten 23 bis 32, werden in einem Artikel von D. O. Reimann unter der Überschrift "Verfahrenstechnik der Müllverbrennung" verschiedene Feuerraumgestaltungen dargestellt und diskutiert: Gleichstrom-, Gegenstrom- und Mittelstromfeuerung. Zwei verschiedene Gleichstromfeuerungen sind durch Zeichnungen schematisch dargestellt. Die Feuerraumdecke ist in beiden Fällen dachartig ausgebildet. Über der Ausbrandzone des Rostes und dem daran anschließenden Ausfallschacht geht der Feuerraum in den Rauchgaszug über. Dessen unterer Teil, die Nachbrennzone, ist bei der einen Gleichstromfeuerung als Schrägzug ausgebildet, wobei die ausfallseitige Dachfläche der Feuerraumdecke die untere Begrenzungswand bildet. An den Schrägzug schließt sich oben ein senkrechter Zug an. Der Rauchgasstrom wird bei dieser Anordnung insbesondere an der unteren Kante der ausfallseitigen Dachfläche stark umgelenkt. Bei der zweiten Gleichstromfeuerung ist der Rauchgaszug durchgehend senkrecht. Am Übergang zwischen Feuerraum und Rauchgaszug ist eine ebenfalls ausgeprägte, wenn auch etwas geringere Umlenkung zu erkennen.In the DE-Z "Die Industriefeerung", Vulkan-Verlag Dr. W. Classen, Essen 1986, pages 23 to 32, are featured in an article by D. O. Reimann under the heading "Process engineering of waste incineration" shown different furnace designs and discussed: co-current, counter-current and medium-current firing. Two different DC furnaces are shown schematically by drawings. The firebox ceiling is roof-like in both cases. Over the burnout area of the grate and the subsequent chute connects the combustion chamber to the flue gas duct. The lower part, the afterburning zone, is used as a direct current firing Inclined pull, the failure-side roof surface of the firebox ceiling the lower Boundary wall forms. At the top of the diagonal pull is a vertical pull. The In this arrangement, the flue gas flow is particularly on the lower edge of the failure side Roof surface strongly deflected. The flue gas flue is in the second DC combustion continuously vertical. At the transition between the combustion chamber and the flue gas flue an equally pronounced, if somewhat less, redirection can be seen.

Besonderes Augenmerk wird in dem Artikel auf den kalten Rauchgasteilstrom gerichtet, der vom vorderen, dem Beschickungsschacht benachbarten Rostbereich ausgeht. Aus Zeichnungen, in denen die verschiedenen Feuerungen einander gegenüber gestellt werden, ist deutlich zu erkennen, daß bei der Gleichstromfeuerung der kalte Teilstrom auf einem vergleichsweise langen Weg durch die heißeste Verbrennungszone hindurch geführt wird (siehe auch das Dokument DE-A-3 125 429).In the article, special attention is paid to the cold flue gas flow, that starts from the front grate area adjacent to the loading chute. Out Drawings in which the different firings are compared, it can be clearly seen that with the direct current firing the cold partial flow on one comparatively long way through the hottest combustion zone (see also document DE-A-3 125 429).

Bei der Abfallverbrennung in einer Rostfeuerung wird der über einen Beschickungsschacht zugeführte Abfall im vorderen Bereich des Rostes zunächst getrocknet und vorgewärmt. Dabei kommt es neben der Verdampfung des Wassers auch zu einem Ausgasen brennbarer Inhaltsstoffe des Abfalls. Ferner laufen in dieser von tieferen Temperaturen bis etwa 500°C gekennzeichneten Zone auch pyrolytische Prozesse ab. Für einen insgesamt geringen Schadstoffgehalt der Abgase einer derartigen Rostfeuerung ist es daher von entscheidender Bedeutung, daß die gas- und partikelförmigen Stoffe, die im Trocknungs- und Zündbereich des Rostes in das Rauchgas übergehen, durch eine energiereiche turbulente Vermischung mit den Abgasströmen hoher Temperatur aus dem eigentlichen Verbrennungsbereich des Rostes in innigen Kontakt gebracht werden. Bei ausreichendem Sauerstoffgehalt ist neben der Temperatur und der Turbulenz des Strömungsfeldes auch die Verweilzeit in Bereichen hoher Temperatur und hoher Turbulenz für den Grad der Zerstörung organischer Inhaltsstoffe von entscheidender Bedeutung.In the case of waste incineration in a grate furnace, this is done via a loading shaft supplied waste in the front area of the grate is first dried and preheated. In addition to the evaporation of the water, this also results in outgassing flammable Ingredients of the waste. Furthermore, they run from lower temperatures to about 500 ° C marked zone also pyrolytic processes. For a low overall The pollutant content of the exhaust gases from such grate combustion is therefore of decisive importance Meaning that the gaseous and particulate substances in the drying and Ignition area of the grate pass into the flue gas due to an energetic turbulent Mixing with the high temperature exhaust gas streams from the actual combustion area of the grate are brought into intimate contact. With sufficient oxygen content is the temperature and turbulence of the flow field Dwell time in areas of high temperature and high turbulence for the degree of destruction organic ingredients vital.

Durch die EP 0 579 987 A1 ist ein Drehrohrofen bekannt, bei dem mindestens zwei Primärluftdüsen so zueinander und zum Brennstoffbett gerichtet sind, daß zwei gegenläufige Wirbel im Drehrohr erzeugt werden, deren Drehachsen im wesentlichen parallel zur Achse des Drehrohres verlaufen und die um diese Drehachsen so drehen, daß sie die thermikinduzierte Bewegung der Brenngase unterstützen. In einer Nachbrennkammer sind Zusatzbrenner oder Mischluftdüsen angeordnet und so ausgerichtet, daß die aus dem Drehrohr auslaufenden beiden gegenläufigen Wirbel verstärkt werden.A rotary tube furnace is known from EP 0 579 987 A1, in which at least two primary air nozzles are so directed towards each other and towards the fuel bed that two opposing Vortexes are generated in the rotary tube whose axes of rotation are essentially parallel to the axis of the rotary tube and which rotate about these axes of rotation so that the thermally induced Support the movement of the fuel gases. There are additional burners in an afterburner or mixed air nozzles arranged and aligned so that the from the rotary tube outgoing two opposing vertebrae are strengthened.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 und eine Feuerung gemäß dem Oberbegriff des Anspruchs 10 so zu verbessern, daß jedes Teilvolumen des Rauchgases sich während einer vorgeschriebenen Verweilzeit auf einem ausreichend hohen Temperaturniveau befindet.The invention has for its object a method according to the preamble of the claim 1 and to improve a furnace according to the preamble of claim 10, that each sub-volume of the flue gas changes during a prescribed dwell time is at a sufficiently high temperature level.

Diese Aufgabe wird durch die kennzeichnenden Merkmale der Ansprüche 1 bzw. 10 gelöst.This object is solved by the characterizing features of claims 1 and 10, respectively.

Weitere vorteilhafte Merkmale der Erfindung sind Gegenstand der Unteransprüche.Further advantageous features of the invention are the subject of the dependent claims.

Die Zeichnung dient zur Erläuterung der Erfindung anhand von schematisch dargestellten Ausführungsbeispielen.

  • Figur 1 zeigt eine Gleichstromfeuerung im Längsschnitt
  • Figur 2 zeigt einen Querschnitt durch den Rauchgaskanal etwa in Höhe der Mündungsöffnung
  • Figur 3 verdeutlicht in perspektivischer Darstellung die Anordnung einer Düse
  • Figur 4 zeigt eine andere Gleichstromfeuerung im Längsschnitt
  • Figur 5 zeigt für die Feuerung gemäß Figur 4 einen Querschnitt durch den Rauchgaskanal etwa in Höhe der Mündungsöffnung.
  • The drawing serves to explain the invention using schematically illustrated exemplary embodiments.
  • Figure 1 shows a direct current firing in longitudinal section
  • Figure 2 shows a cross section through the flue gas duct approximately at the level of the mouth opening
  • Figure 3 illustrates the arrangement of a nozzle in a perspective view
  • Figure 4 shows another direct current firing in longitudinal section
  • FIG. 5 shows a cross section through the flue gas duct approximately at the level of the mouth opening for the furnace according to FIG. 4.
  • Die in Figur 1 dargestellte Gleichstromfeuerung hat einen Feuerraum 1, einen Beschickungsschacht 2, einen Ausfallschacht 3 und einen Rost 4, der sich vom Beschickungsschacht 2 zum Ausfallschacht 3 erstreckt. Er ist als Walzenrost ausgebildet und umfaßt insgesamt sechs Walzen 5, deren Achsen in einer schiefen, in Richtung auf den Ausfallschacht 3 geneigten Ebene parallel zu einander angeordnet sind. Der Feuerraum 1 ist oben durch eine dachförmige Feuerraumdecke 6 abgeschlossen. Die ausfallseitige Dachkannte 7 befindet sich über dem Endbereich des Rostes 4. Unter dem Rost 4 sind Einrichtungen 8 zum Zuführen von Primärluft vorgesehen. Sekundärluftdüsen 9 durchdringen an mehreren Stellen die Feuerraumdecke 6. Sie sind in die Hauptbrennzone gerichtet, die sich in einem breiten Bereich in der Mitte des Rostes 4 befindet. Durch eine Mündungsöffnung 10 über dem Ausfallschacht 3 und dem benachbarten Endbereich des Rostes 4 steht der Feuerraum 1 mit einem Rauchgaskanal 11 in Verbindung. Der untere Teilabschnitt des Rauchgaskanals 11 ist als Schrägzug 12 ausgebildet. Er ist in Richtung auf den Beschickungsschacht 2 rückwärts geneigt. Seine untere Begrenzungswand ist die ausfallseitige Dachfläche der Feuerraumdecke 6. An den Schrägzug 12 schließt sich oben ein senkrechter Zug 13 an. Insoweit entspricht die Feuerung dem Stand der Technik.The direct current firing shown in FIG. 1 has a firebox 1, a loading shaft 2, a chute 3 and a grate 4, which extends from the loading shaft 2 extends to the chute 3. It is designed as a roller grate and comprises a total six rollers 5, the axes of which are inclined in a direction towards the chute 3 inclined plane are arranged parallel to each other. The combustion chamber 1 is through at the top a roof-shaped firebox ceiling 6 completed. The failure-side roof edge 7 is located itself over the end region of the grate 4. Under the grate 4 are devices 8 for Primary air supply provided. Secondary air nozzles 9 penetrate several Place the combustion chamber ceiling 6. They are directed towards the main combustion zone, which is in one wide area is located in the middle of the grate 4. Through an opening 10 over the chute 3 and the adjacent end area of the grate 4 is the firebox 1 with a flue gas duct 11 in connection. The lower section of the flue gas duct 11 is designed as an inclined pull 12. It is towards the loading chute 2 inclined backwards. Its lower boundary wall is the roof surface on the dropout side the combustion chamber ceiling 6. At the top of the inclined cable 12 there is a vertical cable 13 on. In this respect, the firing corresponds to the state of the art.

    Etwa in der Höhe der Mündungsöffnung 10 sind in einer Querschnittsebene, die in Figur 1 durch eine unterbrochene Linie symbolisiert ist, an der Rückwand 14 zusätzliche Düsen 15.1 bis 15.6 angebracht. Sie sind in Figur 2 durch Impulsvektoren veranschaulicht. Die Richtung des Impulsvektors stimmt mit der Blasrichtung überein, die Länge ist ein Maß für die Größe des Impulses, mit dem der Sekundärluftstrom eingeblasen wird. Die Länge soll auch ein Maß für die Größe der Düse sein. Bei dem in den Figuren 1 und 2 veranschaulichten Ausführungsbeispiel sind die Impulsvektoren gleich lang. Dadurch soll symbolisch dargestellt werden, daß alle Düsen 15.1 bis 15.6 gleich groß sind. Die Düsenanordnung ist spiegelsymmetrisch in bezug auf die senkrechte Mittelebene 16, die den Rauchgaskanal in zwei Kanalhälften unterteilt, denen in Figur 2 die beiden Querschnittshälften 10a und 10b entsprechen. Die Mittelebene 16 ist eine gedachte Ebene, nicht etwa eine materielle Trennwand.Approximately at the height of the mouth opening 10 are in a cross-sectional plane, which is shown in FIG is symbolized by a broken line, 14 additional nozzles on the rear wall 15.1 to 15.6 attached. They are illustrated in Figure 2 by pulse vectors. The The direction of the pulse vector coincides with the blowing direction, the length is a measure of the size of the pulse with which the secondary air flow is injected. The length should also be a measure of the size of the nozzle. In the illustrated in Figures 1 and 2 In the exemplary embodiment, the pulse vectors are of equal length. This is meant to be symbolic are shown that all nozzles 15.1 to 15.6 are the same size. The nozzle arrangement is mirror-symmetrical with respect to the vertical center plane 16, which the flue gas duct in divided two channel halves, which in Figure 2, the two cross-sectional halves 10a and 10b correspond. The middle level 16 is an imaginary level, not a material level Partition wall.

    Figur 2 zeigt die horizontalen Komponenten der einzelnen Impulsvektoren. In jeder der beiden Querschnittshälften 10a, 10b sind die horizontalen Impulskomponenten tangential zu mittig in die Querschnittshälften eingeschriebenen Kreisen 17.1 bis 17.6 ausgerichtet. Sie definieren daher in bezug auf deren Mittelpunkte Ma, Mb einen Drehsinn, symbolisiert durch Pfeile 18a, 18b. Wegen der spiegelsymmetrischen Düsenanordnung ist der Drehsinn in der Querschnittshälfte 10a dem Drehsinn in der Querschnittshälfte 10b entgegengesetzt. Bei dem in Figur 2 veranschaulichten Ausführungsbeispiel haben die Kreise 17.1 bis 17.3 bzw. 17.4 bis 17.6, die den einzelnen Düsen zugeordnet sind, unterschiedliche Durchmesser. Es ist aber auch möglich, mehrere Düsen einer Querschnittshälfte zu einem einzigen Kreis tangential auszurichten. Die Durchmesser der Kreise 17.1 bis 17.6 liegen zwischen etwa 0,15b und 0,4b. Dabei ist b die Breite des Rauchgaskanals 11. Bei den Düsen 15.2 bis 15.5, deren Abstand von der Mittelebene 16 kleiner bzw. nicht viel größer als b/4 ist, weist die horizontale Komponente von der Mittelebene 16 weg. Bei der Düse 15.1, die in einem Abstand a1 = 0,4b von der Mittelebene 16 sitzt, ist die zugehörige horizontale Komponente rechtwinklig zur Rückwand 14 ausgerichtet, d.h. parallel zur Seitenwand 19a. Entsprechendes gilt natürlich für die Düse 15.6. Bei der Düse 15.2, die im Abstand a2 = 0,25b von der Mittellinie angeordnet ist, schließt die horizontale Komponente mit der Rückwand 14 einen Winkel α2 = 70° ein. Für die Düse 15.3 betragen die entsprechenden Daten a3 = 0,08b und α3 = 50°. Die Abstände können bis zu etwa ± 30%, die Winkel bis zu etwa ± 20% von den angegebenen Daten abweichen.Figure 2 shows the horizontal components of the individual pulse vectors. In each of the two cross-sectional halves 10a, 10b, the horizontal pulse components are aligned tangentially to circles 17.1 to 17.6 inscribed in the center of the cross-sectional halves. They therefore define a direction of rotation with respect to their center points Ma, Mb, symbolized by arrows 18a, 18b. Because of the mirror-symmetrical nozzle arrangement, the direction of rotation in cross-section half 10a is opposite to the direction of rotation in cross-section half 10b. In the exemplary embodiment illustrated in FIG. 2, the circles 17.1 to 17.3 or 17.4 to 17.6, which are assigned to the individual nozzles, have different diameters. However, it is also possible to align several nozzles of a cross-sectional half tangentially to a single circle. The diameters of the circles 17.1 to 17.6 are between approximately 0.15b and 0.4b. Here, b is the width of the flue gas duct 11. In the case of the nozzles 15.2 to 15.5, the distance from the central plane 16 of which is smaller or not much larger than b / 4, the horizontal component points away from the central plane 16. In the case of the nozzle 15.1, which is located at a distance a 1 = 0.4b from the central plane 16, the associated horizontal component is oriented at right angles to the rear wall 14, ie parallel to the side wall 19a. The same naturally applies to the nozzle 15.6. In the case of the nozzle 15.2, which is arranged at a distance a 2 = 0.25 b from the center line, the horizontal component forms an angle α 2 = 70 ° with the rear wall 14. For the nozzle 15.3, the corresponding data are a 3 = 0.08b and α 3 = 50 °. The distances can deviate up to approximately ± 30%, the angles up to approximately ± 20% from the specified data.

    Die Düsen 15.1 bis 15.6 sind gegen die Horizontale geneigt. Der Neigungswinkel β3 der Düse 15.3 ist gemäß Figur 3 der Winkel zwischen dem Impulsvektor und seiner Projektion in die horizontale Querschnittsebene der Mündungsöffnung 10. Die Neigungswinkel der übrigen Düsen, die der Übersichtlichkeit halber in Figur 3 nicht dargestellt sind, hat man sich entsprechend vorzustellen. Im allgemeinen liegt der Neigungswinkel β für alle Düsen zwischen -20° und +50°. Dabei weist das negative Vorzeichen auf eine nach unten gerichtete Neigung hin. Bei dem Ausführungsbeispiel gemäß Figur 2 werden die Neigungswinkel für die einzelnen Düsen vorzugsweise wie folgt gewählt: β1 = -10° ± 20° β2 = +10° ± 20° β3 = +20° ± 30°. The nozzles 15.1 to 15.6 are inclined to the horizontal. According to FIG. 3, the angle of inclination β 3 of the nozzle 15.3 is the angle between the pulse vector and its projection into the horizontal cross-sectional plane of the orifice 10. The angle of inclination of the other nozzles, which are not shown in FIG. 3 for the sake of clarity, has to be imagined accordingly. In general, the angle of inclination β for all nozzles is between -20 ° and + 50 °. The negative sign indicates a downward slope. In the exemplary embodiment according to FIG. 2, the inclination angles for the individual nozzles are preferably selected as follows: β 1 = -10 ° ± 20 ° β 2 = + 10 ° ± 20 ° β 3rd = + 20 ° ± 30 °.

    Im Betrieb wird der Abfall im üblicher Weise auf den Rost 4 aufgegeben, durch Rotation der Walzen 5 auf dem Rost 4 vorwärts bewegt und dabei verbrannt. Am Ende des Rostes fallen die Verbrennungsrückstände aus. Von unten wird dem Rost Primärluft zugeführt. Sekundärluft wird von oben in den Feuerraum 1 eingeblasen.In operation, the waste is placed on the grate 4 in the usual way, by rotation the rollers 5 on the grate 4 moved forward and burned. At the end of the grate the combustion residues fail. Primary air is supplied to the grate from below. Secondary air is blown into combustion chamber 1 from above.

    Im Feuerraum 1 stellt sich eine Rauchgasströmung ein, die in Figur 1 durch die Stromlinien 20, 21, 22 veranschaulicht ist. Der durch die Stromlinie 20 symbolisierte Teilstrom steigt aus dem vorderen Bereich des Rostes 4 auf. Er enthält feste und gasförmige brennbare Bestandteile. Dieser Teilstrom wird in der für Gleichstromfeuerungen charakteristischen Weise durch die Hauptverbrennungszone geleitet. Dort werden die brennbaren Bestandteile bei hoher Temperatur durch gezielte Sekundärluftzufuhr schon weitgehend verbrannt. Der aus dem mittleren Bereich entweichende Teilstrom 21 hat eine sehr hohe Temperatur, der Teilstrom 22 aus dem Endbereich des Rostes 4 hat noch einen relativ hohen Sauerstoffgehalt. Der gesamte Rauchgasstrom wird an der Ausfallseite nach oben umgelenkt und gelangt durch die Mündungsöffnung 10 in Schrägzug 12. Dort sollen die noch mitgeführten brennbaren Bestandteile restlos ausgebrannt werden. Hierzu ist neben einer ausreichenden Sauerstoffversorgung eine intensive Durchmischung der Strähnen erforderlich, die den Rauchgasstrom bilden.A flue gas flow occurs in the combustion chamber 1, which is shown in FIG. 1 by the streamlines 20, 21, 22 is illustrated. The partial stream symbolized by streamline 20 rises from the front area of the grate 4. It contains solid and gaseous flammable ones Components. This partial flow is the characteristic of direct current combustion Way through the main combustion zone. There are the flammable Components at high temperature already largely through targeted secondary air supply burned. The partial flow 21 escaping from the middle area has a very high high temperature, the partial flow 22 from the end region of the grate 4 still has a relative high oxygen content. The entire flue gas flow is reduced on the outlet side deflected at the top and passes through the opening 10 into the inclined pull 12 the flammable components that are still carried are completely burned out. This is in addition to an adequate supply of oxygen, intensive mixing of the strands required that form the flue gas flow.

    Erfindungsgemäß werden im Bereich der Mündungsöffnung 10 symmetrisch zur Mittelebene 16 Sekundärluftstrahlen eingeblasen. Die Richtung der Sekundärluftstrahlen ist so gewählt, daß jeder Strahl einen Drehimpuls hat in bezug auf die Mittelachse der Kanalhälfte. Der Drehsinn stimmt für alle Strahlen, die in eine Kanalhälfte eingeblasen werden, überein. Wegen der Spiegelsymmetrie ergibt sich in der Querschnittshälfte 10a ein Drehsinn, der dem Drehsinn in der Querschnittshälfte 10b entgegengesetzt ist. Die Sekundärluft wird mit einer Geschwindigkeit von 70 bis 100 m/s in den Rauchgasstrom eingeblasen. Der Anteil der im Bereich der Mündungsöffnung 10 eingeblasenen Sekundärluft an der Gesamtsekundärluft liegt bei etwa 25 bis 35 %.According to the invention, in the region of the mouth opening 10, they are symmetrical to the central plane 16 secondary air jets blown in. The direction of the secondary air jets is like this chosen so that each beam has an angular momentum with respect to the central axis of the channel half. The direction of rotation is correct for all jets that are blown into one channel half. match. Because of the mirror symmetry, there is a sense of rotation in the cross-sectional half 10a, which is opposite to the direction of rotation in the cross-sectional half 10b. The secondary air is blown into the flue gas flow at a speed of 70 to 100 m / s. The Share of the secondary air blown in in the area of the mouth opening 10 of the total secondary air is around 25 to 35%.

    Durch die erfindungsgemäße Einblasung der Sekundärluft wird in dem Rauchgaskanal 11 und insbesondere in dem Schrägzug 12, der die Nachbrennkammer bildet, eine zur Mittelebene 16 symmetrische Doppelwirbelkonfiguration erzeugt. Das aus dem Feuerraum 1 entweichende Rauchgas wird durch Anordnung und Ausrichtung der Düsen in Gestalt zweier gegensinnig rotierender Wirbel schräg nach oben in den Schrägzug 12 eingeleitet. Es hat sich gezeigt, daß der beim Stand der Technik beobachtete Ablösewirbel völlig unterdrückt oder allenfalls auf eine unschädliche kleine Ablöseblase unmittelbar an der Dachkante 7 reduziert wird. In der Doppelwirbelströmung kommt es zu einer weitgehenden Homogenisierung in bezug auf Temperatur und stoffliche Zusammensetzung. Dadurch wird der Ausbrand mitgeführter brennbarer Bestandteile erheblich verbessert und der Schadstoffgehalt der Abgase deutlich reduziert.The secondary air is blown into the flue gas duct 11 and in particular in the oblique draft 12 which forms the afterburning chamber, one to the central plane 16 symmetrical double vortex configuration created. That from the firebox 1 escaping flue gas is shaped by the arrangement and alignment of the nozzles two oppositely rotating vertebrae introduced obliquely upwards into the oblique pull 12. It has been shown that the separation vortex observed in the prior art is completely suppressed or at most on a harmless small detachment bubble directly on the Roof edge 7 is reduced. In the double vortex flow there is an extensive Homogenization in terms of temperature and material composition. Thereby the burnout of flammable components carried along is considerably improved and the Pollutant content in the exhaust gases significantly reduced.

    Figur 4 zeigt eine Feuerung, die gegenüber der bisher beschriebenen Feuerung im wesentlichen zwei Unterschiede aufweist: Der eine Unterschied besteht darin, daß der Rauchgaskanal 11 als durchgehend senkrechter Zug ausgebildet ist. Der zweite Unterschied besteht in der abweichenden Konfiguration der Düsen, die in Höhe der Mündungsöffnung 10 in den Rauchgaskanal 11 gerichtet sind. Diese Anordnung ist in Figur 5 symbolisch dargestellt.Figure 4 shows a furnace, which is essentially compared to the furnace described so far has two differences: The one difference is that the flue gas duct 11 is designed as a continuous vertical train. The second difference is in the different configuration of the nozzles, which are at the level of the orifice 10 in the flue gas duct 11 are directed. This arrangement is shown symbolically in FIG.

    Gemäß Figur 5 sind die Düsen 24.1, 24.2 sowie 25.1 bis 25.5 nicht nur an der Rückwand 14 angebracht, sondern auch an den Seitenwänden 19a, 19b und der Vorderwand 26 des Rauchgaskanals 11 über der Kante 7. Die Düsen 24.1, 24.2 sind wesentlich größer als die Düsen 25.1 bis 25.5. Die Düsen 24.1, 24.2 sind tangential zu einem inneren Kreis 27 ausgerichtet, die kleineren Düsen 25.1 bis 25.5 tangential zu einem größeren Kreis 28. Der in Figur 5 nicht sichtbare Neigungswinkel β24 der Düsen 24.1, 24.2 ist verschieden von dem Neigungswinkel β25 der Düsen 25.1 bis 25.5.According to Figure 5, the nozzles 24.1, 24.2 and 25.1 to 25.5 are not only attached to the rear wall 14, but also to the side walls 19a, 19b and the front wall 26 of the flue gas duct 11 over the edge 7. The nozzles 24.1, 24.2 are significantly larger than the nozzles 25.1 to 25.5. The nozzles 24.1, 24.2 are aligned tangentially to an inner circle 27, the smaller nozzles 25.1 to 25.5 tangentially to a larger circle 28. The angle of inclination β 24, which is not visible in FIG. 5, of the nozzles 24.1, 24.2 is different from the angle of inclination β 25 of the nozzles 25.1 to 25.5.

    Durch die Düsen 24.1, 24.2 wird Sekundärluft mit hohem Impuls, d.h. großer Eindringtiefe, eingeblasen. Durch die Düsen 25.1 bis 25.5 wird Sekundärluft mit deutlich niedrigerem Impuls eingeblasen. Vorzugsweise ist die durch die Düsen 24.1, 24.2 eingebrachte Sekundärluftmenge größer als die durch die Düsen 25.1 bis 25.5 eingebrachte Sekundärluftmenge, mindestens jedoch gleich groß. Das Mengenverhältnis liegt zwischen 4:1 und 1:1. Es ist möglich, die Sekundärluft ganz oder teilweise durch rezirkuliertes Rauchgas zu ersetzen. Secondary air with high momentum, i.e. great depth of penetration, blown in. The nozzles 25.1 to 25.5 generate secondary air with a significantly lower pulse blown in. The quantity of secondary air introduced through the nozzles 24.1, 24.2 is preferred greater than the amount of secondary air introduced through nozzles 25.1 to 25.5, at least the same size. The quantitative ratio is between 4: 1 and 1: 1. It is possible to replace all or part of the secondary air with recirculated flue gas.

    Bei der Düsenanordnung gemäß Figur 5 bildet sich in jeder Kanalhälfte ein innerer Wirbel, der insbesondere durch die Düsen 24.1, 24.2 angefacht wird, und ein äußerer Wirbel, der durch die Düsen 25.1 bis 25.5 angefacht wird. Die Wirbel haben unterschiedliche Tangentialgeschwindigkeiten und wegen der unterschiedlichen Neigungswinkel β24, β25 auch unterschiedliche Axialgeschwindigkeiten. Dadurch entsteht zwischen den beiden Wirbeln eine Scherschicht. Dies führt zur Ausbildung einer mittel- und feinskaligen Turbulenz, die zur Homogenisierung beiträgt und die Reaktionskinetik verbessert.In the nozzle arrangement according to FIG. 5, an inner vortex is formed in each channel half, which is fanned in particular by the nozzles 24.1, 24.2, and an outer vortex which is fanned by the nozzles 25.1 to 25.5. The vortices have different tangential speeds and, because of the different angles of inclination β 24 , β 25, also different axial speeds. This creates a shear layer between the two vertebrae. This leads to the formation of medium and fine-scale turbulence, which contributes to homogenization and improves the reaction kinetics.

    Claims (21)

    1. Method of incineration of waste material in an combustion chamber (1), which is closed at the top by a roof-shaped combustion chamber ceiling, wherein a roof edge (7) at the outlet side is disposed above the end region of the grate, with the following features: the waste material is fed onto a grate (4), moved forwardly on the grate (4) and in that case combusted; combustion residues fall out at the end of the grate (4); primary air is fed from below through the grate (4); secondary air is blown into the combustion chamber (1); the flue gas is led to the end region of the combustion chamber (1) bounded by a rear wall (14), and is deflected and conducted through a communicating opening (10) from the combustion chamber (1) into a flue gas channel (11) which is vertical or inclined rearwardly and is bounded by the rear wall (14) and two side walls (19a, 19b); and solid and gaseous constituents are recombusted after the deflection; characterised in that in the vicinity of the communicating opening (10) at least one respective secondary air jet is injected through the rear wall (14) into the two channel halves (10a, 10b), which are separated by a centre plane (16) of the flue gas channel and are in mirror symmetry to the centre plane (16), the secondary air jet having a angular momentum which has a horizontal component oriented tangentially to a circle (17.1 to 17.6; 27, 28), which is inscribed centrally in the cross-section of the associated channel half (10a, 10b), and therefore defines a rotational sense with respect to the centre point (Ma, Mb) of that circle; that the secondary air jets are blown into the intermediate spaces between the centre points (Ma, Mb) and the associated side walls (19a, 19b) of the flue gas channel; that the rotational sense corresponds in the case of all secondary air jets blown into one channel half (10a, 10b); and that the rotational sense in one channel half (10a) is opposite to the rotational sense in the other channel half (10b), wherein separating eddies are suppressed at the roof edge (7).
    2. Method according to claim 1, characterised in that a proportion of 25 to 35 % of the total secondary air is injected into the region of the communicating opening.
    3. Method according to claim 1 or 2, characterised in that the secondary air jets are injected in a direction which includes an angle of inclination β between -20° and +50° with the horizontal.
    4. Method according to one of claims 1 to 3, characterised in that several secondary air jets are injected in each channel half.
    5. Method according to claim 4, characterised in that at least one secondary air jet with a higher momentum and one secondary air jet with a lower momentum are injected into each channel half.
    6. Method according to claim 5, characterised in that at least one secondary air jet with a lower momentum is injected in between two secondary air jets which are injected in with higher momentum.
    7. Method according to claim 5 or 6, characterised in that a secondary air jet injected in with a higher momentum is injected at a lower angle of inclination β than a secondary air jet injected in with a lower momentum.
    8. Method according to one of claims 5 to 7, characterised in that the ratio between the secondary air quantity injected with higher momentum and the secondary air quantity injected with lower momentum lies between 4:1 and 1:1.
    9. Method according to one of claims 1 to 8, characterised in that recirculated flue gas is admixed to secondary air or used as secondary air.
    10. Furnace for incineration of waste materials in a combustion chamber in accordance with the method according to one of claims 1 to 9, with a feed shaft (2) for the waste material to be incinerated and an outlet shaft (3) for the combustion residues, with a grate (4) which extends from the feed shaft (2) to the outlet shaft (3) and is inclined in direction towards the outlet shaft (3), with a combustion chamber (1), which is disposed above the grate (4) and is bounded in the waste flow direction by a rear wall (14), and a roof-shaped combustion chamber ceiling (6), which extends into the vicinity of the outlet shaft (3), wherein a roof edge (7) at the outlet side is disposed above the end region of the grate (4), with devices for the feed of primary air through the grate (4), with nozzles (9) for the feed of secondary air through the combustion chamber ceiling (6) and with a flue gas channel (11), which is vertical or inclined rearwardly, is bounded by a rear wall (14) and two side walls (19a, 19b) and stands in communication with the combustion chamber (1) by way of a communicating opening (10) disposed above the outlet shaft (3) and the adjacent end region of the grate (4), characterised in that at least one respective nozzle (15.1 to 15.6) is arranged in the vicinity of the communicating opening (10) at the rear wall of the two channel halves separated by a centre plane (16) of the flue gas channel (11), that the nozzle arrangement of one channel half is in mirror symmetry to the nozzle arrangement of the other channel half with respect to the centre plane (16), that the vector momentum of each nozzle has a horizontal component which is oriented tangentially to a circle (17.1 to 17.6; 27, 28), which is inscribed centrally in the cross-section (10a, 10b) of the associated channel half and defines a rotational sense with respect to the centre point (Ma, Mb) of that circle, that the nozzles (15.1 to 15.6) are aimed into the intermediate spaces between the centre points (Ma, Mb) and the associated outer wall (19a, 19b), that the same rotational sense is associated with all nozzles of one channel half (arrow 18a, 18b), and that the rotational sense in one channel half is opposite to the rotational sense in the other channel half, wherein separating eddies are suppressed at the roof edge (7).
    11. Furnace according to claim 10, characterised in that further nozzles (24.2, 25.3 to 25.5) are arranged at the side walls of the flue gas channel.
    12. Furnace according to claim 10 or 11, characterised in that the nozzles (15.1 to 15.6; 24.1, 24.2, 25.1 to 25.5) include an angle of inclination β with the horizontal.
    13. Furnace according to claim 12, characterised in that the angle of inclination β lies between -20° and +50°.
    14. Furnace according to claim 12 or 13, characterised in that the angle of inclination β is of the same size for all nozzles (15.1 to 15.6).
    15. Furnace according to claim 10 or 11, characterised in that the angle α for a nozzle arranged closer to the centre plane (16) is smaller than for a nozzle spaced further from the centre plane.
    16. Furnace according to one of claims 16 to 18, characterised in that three nozzles (15.1 to 15.3; 15.4 to 15.6) are arranged in each of the two channel halves.
    17. Furnace according to claim 16, characterised by the following specification of dimensions:
      a1/b = 0.40 ± 30%
      a2/b = 0.25 ± 30%
      a3/b = 0.08 ± 30%
      α1 = 90° ± 20°
      α2 = 70° ± 15°
      α3 = 50° ± 10°
      β1 = -10° ± 20°
      β2 = 10° ± 20°
      β3 = 20° ± 30°
      wherein b is the width of the flue gas channel (11).
    18. Furnace according to one of claims 10 to 17, characterised in that at least one larger nozzle (24.1, 24.2) and one smaller nozzle (25.1 to 25.5) is arranged in each channel half.
    19. Furnace according to claim 18, characterised in that at least three nozzles are arranged in each channel half and that at least one smaller nozzle (25.1 to 25.4) is arranged between two larger nozzles (24.1, 24.2).
    20. Furnace according to claim 18 or 19, characterised in that the larger nozzles (24.1, 24.2) are oriented tangentially to a smaller circle (27) and the smaller nozzles (25.1 to 25.5) are oriented tangentially to a larger circle (28).
    21. Furnace according to claim 20, characterised in that the larger nozzles (24.1, 24.2) have a different angle of inclination β from the smaller nozzles (25.1 to 25.5).
    EP95106788A 1995-05-05 1995-05-05 Method and furnace for incinerating waste Expired - Lifetime EP0741267B1 (en)

    Priority Applications (10)

    Application Number Priority Date Filing Date Title
    AT95106788T ATE203809T1 (en) 1995-05-05 1995-05-05 METHOD AND FIREPLACE FOR BURNING WASTE
    DE59509469T DE59509469D1 (en) 1995-05-05 1995-05-05 Waste incineration process and furnace
    EP95106788A EP0741267B1 (en) 1995-05-05 1995-05-05 Method and furnace for incinerating waste
    ES95106788T ES2161798T3 (en) 1995-05-05 1995-05-05 COMBUSTION PROCEDURE AND INSTALLATION FOR BURNING GARBAGE.
    KR1019970707819A KR100446348B1 (en) 1995-05-05 1996-03-22 Process and furnace for burning refuse
    US08/964,188 US6138587A (en) 1995-05-05 1996-03-22 Process and furnace for burning refuse
    PCT/EP1996/001254 WO1996035081A1 (en) 1995-05-05 1996-03-22 Process and furnace for burning refuse
    JP08523097A JP2000513796A (en) 1995-05-05 1996-03-22 Garbage incineration method and garbage incinerator
    PL96323139A PL323139A1 (en) 1995-05-05 1996-03-22 Waste incinerating process and oven
    TW085103698A TW319816B (en) 1995-05-05 1996-03-27

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP95106788A EP0741267B1 (en) 1995-05-05 1995-05-05 Method and furnace for incinerating waste

    Publications (2)

    Publication Number Publication Date
    EP0741267A1 EP0741267A1 (en) 1996-11-06
    EP0741267B1 true EP0741267B1 (en) 2001-08-01

    Family

    ID=8219223

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95106788A Expired - Lifetime EP0741267B1 (en) 1995-05-05 1995-05-05 Method and furnace for incinerating waste

    Country Status (10)

    Country Link
    US (1) US6138587A (en)
    EP (1) EP0741267B1 (en)
    JP (1) JP2000513796A (en)
    KR (1) KR100446348B1 (en)
    AT (1) ATE203809T1 (en)
    DE (1) DE59509469D1 (en)
    ES (1) ES2161798T3 (en)
    PL (1) PL323139A1 (en)
    TW (1) TW319816B (en)
    WO (1) WO1996035081A1 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102004045510A1 (en) * 2004-09-14 2006-03-30 Polysius Ag Process and apparatus for incinerating fuel
    CN105423304A (en) * 2015-12-01 2016-03-23 福寿园环保机械制造有限公司 Environment-friendly cinerator

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19817121A1 (en) * 1998-04-17 1999-10-21 Kohlenstaubtechnik Dr Schoppe Method and device for feeding the wind for the combustion of lumpy fuel
    SE513726C2 (en) * 1998-11-17 2000-10-30 Kmw En Ab Fastbränsleugn
    KR100705204B1 (en) * 2003-04-18 2007-04-06 제이에프이 엔지니어링 가부시키가이샤 Method of controlling combustion of waste incinerator and waste incinerator
    US6964237B2 (en) * 2003-06-30 2005-11-15 Mark P. Hepp Grate block for a refuse incineration grate
    EA018777B1 (en) * 2006-12-07 2013-10-30 Вте Вейст Ту Энерджи Канада, Инк. Batch waste gasification process
    US20080163803A1 (en) * 2006-12-22 2008-07-10 Covanta Energy Corporation Method and systems to control municipal solid waste density and higher heating value for improved waste-to-energy boiler operation
    JP6030913B2 (en) * 2012-10-11 2016-11-24 川崎重工業株式会社 Stoker-type incinerator
    JP6326212B2 (en) * 2013-10-01 2018-05-16 日本碍子株式会社 Radioactive waste incinerator
    DE102015003995A1 (en) * 2015-03-30 2016-10-06 Martin GmbH für Umwelt- und Energietechnik Process for combustion management in grate firing and grate firing
    CN106090925B (en) * 2016-07-27 2018-02-06 湖北华程制造有限公司 Incinerator
    CN107339701A (en) * 2017-08-16 2017-11-10 深圳市能源环保有限公司 A kind of waste incinerator of low nitrogen burning
    EP4047271B1 (en) * 2021-02-22 2023-08-02 Doosan Lentjes GmbH Incineration plant
    CN117308092B (en) * 2023-11-28 2024-02-02 西安广泰源科技有限公司 Two-section forward pushing fire grate furnace

    Family Cites Families (24)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CA606772A (en) * 1960-10-11 Yonner Andre Garbage incinerators
    US2577659A (en) * 1947-10-09 1951-12-04 Rainer H Knipping Garbage incinerator
    CH567230A5 (en) * 1973-10-08 1975-09-30 Kuenstler Hans
    US3995568A (en) * 1975-11-12 1976-12-07 Miro Dvirka Incinerator and combustion air system therefor
    DE3125429A1 (en) * 1981-06-27 1983-02-03 Erk Eckrohrkessel Gmbh, 1000 Berlin Device for thorough mixing of gas strands
    JPS5944513A (en) * 1982-09-03 1984-03-13 Hitachi Zosen Corp Nitrogen oxide suppressing operation of incinerator
    JPS59147910A (en) * 1983-02-10 1984-08-24 Maruzen Kk Combustion equipment for granulated matter
    DE3716088A1 (en) * 1987-04-09 1989-02-02 Muellverbrennungsanlage Wupper METHOD FOR BURNING IN PARTICULAR MUELL
    US4917026A (en) * 1989-03-28 1990-04-17 Macmillan Bloedal Limited Debris burner
    US5305698A (en) * 1989-04-04 1994-04-26 Blackwell Brian R Method and apparatus for improving fluid flow and gas mixing in boilers
    SE463576B (en) * 1989-08-04 1990-12-10 Jan Wiklund BURNER MAKES FIXED BRAENLES, EQUIPPED WITH DEVICES FOR AUTHORIZATION OF COMPLETE PRESCRIPTION
    JPH0752002B2 (en) * 1990-02-07 1995-06-05 日本鋼管株式会社 Garbage incinerator
    US5205227A (en) * 1990-02-28 1993-04-27 Institute Of Gas Technology Process and apparatus for emissions reduction from waste incineration
    US5020456A (en) * 1990-02-28 1991-06-04 Institute Of Gas Technology Process and apparatus for emissions reduction from waste incineration
    US5007404A (en) * 1990-06-26 1991-04-16 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Woodstove for heated air forced into a secondary combustion chamber and method of operating same
    DE69124666T2 (en) * 1990-11-22 1997-08-21 Hitachi Shipbuilding Eng Co Waste incineration plant
    DK0607210T3 (en) * 1991-10-08 1996-03-18 Muellkraftwerk Schwandorf Betr Method of combustion of solids
    US5181475A (en) * 1992-02-03 1993-01-26 Consolidated Natural Gas Service Company, Inc. Apparatus and process for control of nitric oxide emissions from combustion devices using vortex rings and the like
    DE4219231C1 (en) * 1992-06-12 1993-10-21 Babcock Anlagen Gmbh Waste incineration process and incinerator
    DE4224571C2 (en) * 1992-07-24 1994-06-16 Babcock Anlagen Gmbh Rotary kiln
    US5341753A (en) * 1993-02-12 1994-08-30 Pyropower Corporation Circulating fluidized bed power plant with improved mixing of sorbents with combustion gases
    US5405537A (en) * 1993-03-26 1995-04-11 Air Products And Chemicals, Inc. Process for combusting dewatered sludge waste in a municipal solid waste incinerator
    US5527984A (en) * 1993-04-29 1996-06-18 The Dow Chemical Company Waste gas incineration
    DE19525106C1 (en) * 1995-06-29 1997-03-13 Richard Kablitz & Mitthof Gmbh Combustion plant

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102004045510A1 (en) * 2004-09-14 2006-03-30 Polysius Ag Process and apparatus for incinerating fuel
    CN105423304A (en) * 2015-12-01 2016-03-23 福寿园环保机械制造有限公司 Environment-friendly cinerator

    Also Published As

    Publication number Publication date
    EP0741267A1 (en) 1996-11-06
    KR100446348B1 (en) 2004-10-14
    US6138587A (en) 2000-10-31
    TW319816B (en) 1997-11-11
    JP2000513796A (en) 2000-10-17
    PL323139A1 (en) 1998-03-16
    WO1996035081A1 (en) 1996-11-07
    DE59509469D1 (en) 2001-09-06
    KR19990008293A (en) 1999-01-25
    ATE203809T1 (en) 2001-08-15
    ES2161798T3 (en) 2001-12-16

    Similar Documents

    Publication Publication Date Title
    EP0741267B1 (en) Method and furnace for incinerating waste
    DE69004328T2 (en) Method and device for combustion with multiple oxidizing jet.
    DE2742505C2 (en) Process and reactor for gasifying pulverized coal
    DE69225555T2 (en) Combustion process with recirculation and plug flow
    EP0286077B1 (en) Method of burning refuse
    DE69730702T3 (en) DEVICE AND METHOD FOR COMBUSING FUEL
    DE69617839T2 (en) Boiler and furnace for recovery using the power process
    EP0204176A2 (en) Combustion chamber for a fluidized-bed combustor
    EP0114062A2 (en) Method and device for the combustion of solid fuels, particularly coal, peat or the like
    DE2621496A1 (en) Eddy current burners for industrial furnaces, such as blast furnaces and the like
    DE69009686T2 (en) Combustion process.
    DE10232373B4 (en) Method for increasing the flame stability in pulverized coal firing and apparatus for carrying out the method
    DE19510874A1 (en) Method and device for melting silicate recycling raw materials
    EP2691701B1 (en) Method for optimising the burnout of exhaust gases of an incinerator
    DE69008832T2 (en) Method and device for the partial combustion of coal.
    DE19806823A1 (en) Device and method for the combustion of fuels containing vanadium
    DE69207802T2 (en) Incinerator
    DE4113412C2 (en) Device for burning liquid or gaseous fuel for a furnace
    DE4402172C2 (en) Process for combusting fuel and plant for carrying out the process
    DE4401821C2 (en) Process for burning substances, in particular waste and biomass, and device for carrying out the process
    EP0611919B1 (en) Method for supplying combustion gas containing oxygen to an incinerator with a grate furnace and apparatus for carrying out the method
    EP2185477B1 (en) Glass melting plant and method for operating it
    DE1930496A1 (en) Methods of disposal of waste materials
    DE3712039C2 (en)
    EP0961905B1 (en) Fuel combustion device and method

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL PT SE

    17P Request for examination filed

    Effective date: 19970415

    17Q First examination report despatched

    Effective date: 19990506

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: BBP ENVIRONMENT GMBH

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL PT SE

    REF Corresponds to:

    Ref document number: 203809

    Country of ref document: AT

    Date of ref document: 20010815

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20010801

    REF Corresponds to:

    Ref document number: 59509469

    Country of ref document: DE

    Date of ref document: 20010906

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011101

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011105

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2161798

    Country of ref document: ES

    Kind code of ref document: T3

    EN Fr: translation not filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    EN Fr: translation not filed

    Free format text: BO 01/52 PAGES: 283, IL Y A LIEU DE SUPPRIMER: LA MENTION DE LA NON REMISE. LA REMISE EST PUBLIEE DANS LE PRESENT BOPI.

    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020505

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020505

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020531

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020531

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    NLS Nl: assignments of ep-patents

    Owner name: FISIA BABCOCK ENVIRONMENT GMBH

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20120514

    Year of fee payment: 18

    Ref country code: NL

    Payment date: 20120531

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20120524

    Year of fee payment: 18

    Ref country code: FR

    Payment date: 20120601

    Year of fee payment: 18

    Ref country code: GB

    Payment date: 20120522

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20120528

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20120521

    Year of fee payment: 18

    BERE Be: lapsed

    Owner name: *FISICA BABCOCK ENVIRONMENT G.M.B.H.

    Effective date: 20130531

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20131201

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20130505

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20131203

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59509469

    Country of ref document: DE

    Effective date: 20131203

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130505

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130531

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20131201

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20140131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130505

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130531

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20140606

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130506