EP0603411B1 - Ceramic heating/cooling device - Google Patents
Ceramic heating/cooling device Download PDFInfo
- Publication number
- EP0603411B1 EP0603411B1 EP93913596A EP93913596A EP0603411B1 EP 0603411 B1 EP0603411 B1 EP 0603411B1 EP 93913596 A EP93913596 A EP 93913596A EP 93913596 A EP93913596 A EP 93913596A EP 0603411 B1 EP0603411 B1 EP 0603411B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heating
- sintered body
- ceramics
- cooling apparatus
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 165
- 238000010438 heat treatment Methods 0.000 title claims description 149
- 239000000919 ceramic Substances 0.000 title claims description 96
- 239000002826 coolant Substances 0.000 claims description 21
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 21
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 11
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 239000011733 molybdenum Substances 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 4
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 claims description 4
- 229910021344 molybdenum silicide Inorganic materials 0.000 claims description 4
- 229910052702 rhenium Inorganic materials 0.000 claims description 4
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 238000009826 distribution Methods 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 4
- 239000003814 drug Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000011056 performance test Methods 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 238000012360 testing method Methods 0.000 description 16
- 239000000112 cooling gas Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/22—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
- H05B3/28—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
- H05B3/283—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/04—Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
Definitions
- the present invention relates to a heating/cooling apparatus made of a ceramics, which permits a rapid heating and a rapid cooling of various samples in such fields as biotechnology, chemistry, medicine and bioengineering, and achievement of a precise temperature control of the sample and a uniform temperature distribution in the sample.
- a heating/cooling apparatus of any of these types, a receptacle made of a metal such as aluminum or the like for receiving an object to be heated or cooled, i.e., a sample, and a heating means are configured as two separate components. This results in a poorer heat transfer coefficiency from the heating means to the receptacle for the sample, makes it difficult to rapidly heat the sample, and furthermore, leads to a non-uniform temperature distribution in the sample. It is therefore difficult to achieve a desired heating pattern.
- the available cooling means of the sample include, on the other hand, a spontaneous cooling, a forced cooling with the use of a coolant such as a gas or a liquid, and a combination thereof. It is however difficult to precisely control a cooling rate by such a cooling means alone. It is thus conceivable to control the cooling rate by using any of the above-mentioned cooling means while supplying a prescribed heat quantity from the heating means to the sample. In this manner of cooling, however, the heat supplied by the heating means cannot be efficiently transferred to the receptacle for the sample. It is therefore difficult to rapidly decrease the sample temperature to a desired temperature, and moreover, the temperature distribution in the sample is non-uniform, resulting in difficulty in achieving a desired cooling pattern.
- An object of the present invention is therefore to provide a heating/cooling apparatus made of a ceramics, which solves the above-mentioned problems, and permits a rapid heating and a rapid cooling of various samples, allows a precise temperature control of the sample, thereby enabling a temperature control of the sample in accordance with a predetermined temperature pattern, and achieving a uniform temperature distribution in the sample.
- At least one of a face, at least one hole, at least one recess and at least one groove, the shape of which coincides with that of an object to be heated or cooled, i.e., a sample, for receiving the sample, to increase a contact area with the sample, is formed at an arbitrary position on a sintered body comprising an electrically insulating ceramics having a thermal conductivity of at least 10 W/(m ⁇ k).
- An electrically conductive resistance-heating element comprising a metal, an electrically conductive ceramics or carbon is buried into the sintered body.
- the whole of the above-mentioned sintered body may comprise an electrically conductive ceramics, thereby the sintered body itself forming a resistance-heating element as a heating means.
- the heating/cooling apparatus made of a ceramics of the present invention further comprises a cooling means.
- the cooling means comprises a coolant feeder, provided outside the sintered body, for feeding a coolant such as a gas or a liquid to the sintered body, on the one hand, and at least one of part of a surface of the sintered body, a rugged portion formed on part of a surface of the sintered body, at least one cooling through-hole, through which the coolant passes, formed in the sintered body, a heat-radiating plate having fins, provided on the sintered body, and a heat-radiating plate having a honeycomb structure, provided on the sintered body, each for effecting a heat exchange, on the other hand.
- the heat-radiating plate comprises any one of a metal and a ceramics.
- the sample is in contact with the face, at least one hole, at least one recess or at least one groove, each for receiving the sample, provided on the sintered body having a satisfactory thermal conductivity, so that the temperature of the sample rapidly becomes equal to the temperature of the sintered body, thus permitting a precise temperature control during the heating and the cooling of the sample.
- Fig. 1 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramics of a first embodiment of the present invention, which comprises a sintered body made of a ceramics comprising aluminum nitride.
- Fig. 2 is a schematic sectional view of Fig. 1 cut along the line A-A'.
- Fig. 3 is a schematic exploded perspective view illustrating a manufacturing process of the heating/cooling apparatus made of a ceramics of the first embodiment of the present invention shown in Fig. 1.
- Fig. 4 is a schematic descriptive view illustrating a combination of the heating/cooling apparatus made of a ceramics of the first embodiment of the present invention shown in Fig. 1, and a coolant feeder.
- Fig. 5 is a graph illustrating a predetermined temperature pattern in a performance test of a heating/cooling apparatus made of a ceramics.
- Fig. 6 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramics of a second embodiment of the present invention, which comprises a sintered body made of a ceramics comprising aluminum nitride.
- Fig. 7 is a schematic sectional view of Fig. 6 cut along the line A-A'.
- Fig. 8 is a schematic perspective view illustrating two green blocks for the heating/cooling apparatus made of a ceramics of the second embodiment of the present invention shown in Fig. 6.
- Fig. 9 is a schematic perspective view illustrating the state in which a resistance-heating element is attached onto one of the two green blocks shown in Fig. 8.
- Fig. 10 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramics of a third embodiment of the present invention, which comprises a sintered body made of a ceramics comprising aluminum nitride, and a heat-radiating plate having fins, as a cooling means.
- Fig. 11 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramics of a fourth embodiment of the present invention, which comprises a sintered body made of a ceramics comprising aluminum nitride, and at least one cooling through-hole as a cooling means, formed in the sintered body.
- Fig. 12 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramics of a fifth embodiment of the present invention, which comprises a sintered body made of a ceramics comprising silicon carbide.
- Fig. 13 is a schematic perspective view illustrating a green block for the heating/cooling apparatus made of a ceramics of the fifth embodiment of the present invention shown in Fig. 12.
- Fig. 14 is a schematic perspective view illustrating a green block having holes formed therein for receiving objects to be heated or cooled, i.e., samples, for the heating/cooling apparatus made of a ceramics of the fifth embodiment of the present invention shown in Fig. 12.
- Fig. 15 is a schematic descriptive view illustrating a combination of the heating/cooling apparatus made of a ceramics of the fifth embodiment of the present invention shown in Fig. 12, and a coolant feeder.
- Fig. 16 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramics of a sixth embodiment of the present invention, which comprises a sintered body made of a ceramics comprising aluminum nitride, provided with at least one peephole.
- Fig. 17 is a schematic sectional view of Fig. 16 cut along the line A-A'.
- Fig. 18 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramics of a seventh embodiment of the present invention, which comprises a sintered body made of a ceramics comprising aluminum nitride.
- Fig. 19 is a schematic sectional view of Fig. 18 cut along the line A-A'.
- Fig. 20 is a schematic sectional view of Fig. 18 cut along the line B-B', illustrating the heating/cooling apparatus made of a ceramics of the seventh embodiment of the present invention shown in Fig. 18, which is attached with a sample receptacle.
- Fig. 1 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramics of a first embodiment of the present invention, which comprises a sintered body made of a ceramics comprising aluminum nitride
- Fig. 2 is a schematic sectional view of Fig. 1 cut along the line A-A'.
- the heating/cooling apparatus made of a ceramics of the first embodiment of the present invention is manufactured as follows. As shown in Fig. 3, holes 2 and 3 for receiving samples are formed in each of green sheets 7, 8 and 10 made of a ceramics comprising aluminum nitride.
- a resistance-heating element 5 is formed on the surface of the green sheet 8 by a method such as a screen printing. Then, the green sheets 7, 8 and 10 are piled one upon another, and a sintered body 1 is formed by sintering these green sheets 7, 8 and 10 thus piled up.
- the sintered body 1 thus formed has a shape as shown in Fig. 1, and the side surfaces opposite to each other have electrodes 4 and 4', respectively, connected to the resistance-heating element 5.
- FIG. 4 is a schematic descriptive view illustrating a combination of the above-mentioned heating/cooling apparatus of the first embodiment of the present invention, and a coolant feeder.
- a cooling gas was supplied to the heating/cooling apparatus by means of a blower 11 as the coolant feeder.
- test tubes having a thermocouple received therein was inserted into each of the holes 2 and 3 to investigate the performance of the heating/cooling apparatus.
- Temperature of each test tube was subjected to a PID (abbreviation of proportional-plus-integral-plus-derivative) control on the basis of the temperature measured by the thermocouple, so that the temperature of the test tube coincided with a target temperature.
- Electric power of the resistance-heating element 5 was controlled with the use of a thyristor.
- the performance test was carried out as follows. Two test tubes filled with objects to be heated or cooled, i.e., samples, were inserted respectively into the holes 2 and 3 for receiving samples of the heating/cooling apparatus, and the samples were heated or cooled with the use of the above-mentioned heating/cooling apparatus in accordance with a predetermined temperature pattern as shown in Fig. 5, thereby precisely controlling the temperature of the samples. More specifically, the test tubes each receiving 1.5 ml of pure water were inserted respectively into the holes 2 and 3, each having an inside diameter agreeing with the outside diameter of the test tubes, of the heating/cooling apparatus shown in Fig. 1. A thermocouple for measuring temperature was immersed into the middle of pure water received in each of the test tubes. Pure water in each of the two test tubes showed an initial temperature of 17 °C, as measured by the thermocouple.
- a program regarding set temperatures and set periods for heating and cooling pure water was input into a controller for controlling the operation of the heating/cooling apparatus.
- the above-mentioned program comprised, as shown in Fig. 5: increasing the temperature of pure water to 95°C (hereinafter referred to as the "first set temperature”), then keeping this temperature for ten minutes (hereinafter referred to as the "first set period”), then decreasing the temperature of pure water to 4°C (hereinafter referred to as the "second set temperature”), then keeping this temperature for 60 minutes (hereinafter referred to as the "second set period”), then increasing again the temperature of pure water to 25°C (hereinafter referred to as the "third set temperature”), then keeping this temperature for 20 minutes (hereinafter referred to as the "third set period” ), and then discontinuing the operation of the heating/cooling apparatus.
- the heating/cooling apparatus was operated under the control by means of the controller, and actual changes in temperature with time of pure water received in each of the two test tubes, were measured by the thermocouple.
- the results of measurement were as follows. Upon the lapse of eight seconds after the start of operation of the heating/cooling apparatus, the temperature of pure water in each of the test tubes increased to 95 °C which was the first set temperature. Thereafter, during ten minutes which were the first set period, the temperature of pure water in each of the test tubes was kept at a temperature of 95 ⁇ 0.1°C. Then, upon the lapse of 20 seconds after the first set period, the temperature of pure water in each of the test tubes decreased to 4°C which was the second set temperature.
- the temperature of pure water in each of the test tubes was kept at a temperature of 4 ⁇ 0.1°C. Subsequently, upon the lapse of two seconds after the second set period, the temperature of pure water in each of the test tubes increased to 25°C which was the third set temperature. Then, during 20 minutes which were the third set period, the temperature of pure water in each of the test tubes was kept at a temperature of 25 ⁇ 0.1°C, and thereafter, the operation of the heating/cooling apparatus was discontinued.
- the sintered body 1 of the heating/cooling apparatus made of a ceramics of the above-mentioned first embodiment of the present invention has been described above as comprising an electrically insulating ceramics comprising aluminum nitride.
- the sintered body 1 may however comprise an electrically insulating ceramics comprising at least one of silicon carbide, silicon nitride, aluminum oxide and beryllium oxide, other than aluminum nitride.
- the material for forming the resistance-heating element 5 is not limited to at least one metal selected from the group consisting of tungsten, molybdenum and rhenium, but may be carbon, and furthermore, may be at least one electrically conductive ceramics selected from the group consisting of silicon carbide, titanium nitride, molybdenum silicide, zirconium boride, tungsten carbide and tantalum carbide.
- the resistance-heating element 5 is buried in the form of a single layer into the sintered body 1.
- a resistance-heating element comprising a plurality of layers may be buried into the sintered body 1.
- the holes 2 and 3 for receiving the samples may have any shape in any number.
- Fig. 6 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramics of a second embodiment of the present invention, which comprises a sintered body made of a ceramics comprising aluminum nitride
- Fig. 7 is a schematic sectional view of Fig. 6 cut along the line A-A'.
- the heating-cooling apparatus made of a ceramics of the second embodiment of the present invention is manufactured as follows. A powdery raw material comprising aluminum nitride is charged into a metallic mold not shown to form two green blocks 21 and 22 as shown in Fig. 8.
- resistance-heating elements 19 and 20 each comprising a coiled wire made of at least one metal selected from the group consisting of tungsten, molybdenum and rhenium, are arranged on the surface of the green block 22 as shown in Fig. 9.
- the other green block 21 is placed upon the green block 22, and as shown in Figs. 6 and 7, holes 13, 14, 15 and 16 for receiving samples are formed by means of a cutting.
- the two green blocks thus provided with the holes are sintered by a hot press method, thereby preparing a sintered body 12 made of a ceramics comprising aluminum nitride having the resistance-heating elements 19 and 20 buried therein.
- the side surfaces of the sintered body 12 are ground to expose ends of the coiled wires as the resistance-heating elements 19 and 20.
- electrodes 17 and 18 are brazed onto the ends of the coiled wires thus exposed.
- a performance test of the heating/cooling apparatus made of a ceramics of the above-mentioned second embodiment of the present invention was carried out in the same manner as in that of the heating/cooling apparatus made of the ceramics of the first embodiment of the present invention.
- a blower as a coolant feeder was arranged below the heating/cooling apparatus, thereby blowing a cooling gas toward the heating-cooling apparatus to cool same.
- the temperature of the sample was controlled also in the same manner as in the performance test of the heating/cooling apparatus of the first embodiment of the present invention.
- the heating/cooling apparatus of the second embodiment of the present invention there were obtained excellent results of the performance test as in the heating/cooling apparatus of the first embodiment of the present invention. Furthermore, the heating/cooling apparatus of the second embodiment of the present invention was improved by providing a rugged portion or fins by means of a grinding on part of the surface of the sintered body 12, and the same performance test as described above was carried out for each of such improvements. There were obtained excellent results of the performance test as in the heating/cooling apparatus of the second embodiment of the present invention. Particularly within a range of temperature of from 100 to 600°C, there was available a cooling rate higher than that in the heating/cooling apparatus of the first embodiment of the present invention.
- the holes 13, 14, 15 and 16 for receiving samples may be of any shape in any number, and the resistance-heating elements 19 and 20 may be in any number.
- Fig. 10 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramics of a third embodiment of the present invention, which comprises a sintered body made of a ceramics comprising aluminum nitride, and a heat-radiating plate having fins, as a cooling means.
- the heating/cooling apparatus of the third embodiment of the present invention is configured by forming a metallic layer comprising at least one metal of copper, nickel, molybdenum and manganese on the lower surface of the heating/cooling apparatus of the above-mentioned second embodiment of the present invention, and then brazing a metallic heat-radiating plate 30 having fins, as a cooling means, onto the metallic layer.
- 23 is a sintered body; 24, 25, 26 and 27 are holes for receiving samples; and 28 and 29 are electrodes.
- a performance test of the heating/cooling apparatus made of a ceramics of the above-mentioned third embodiment of the present invention was carried out in the same manner as in that of the heating/cooling apparatus made of a ceramics of the first embodiment of the present invention. Also in the performance test of the heating/cooling apparatus of the third embodiment of the present invention, there were obtained excellent results of the performance test as in the heating/cooling apparatus of the first embodiment of the present invention. Particularly within a range of temperature of from 100 to 600°C, there was available a cooling rate higher than that of the heating/cooling apparatus of the first embodiment of the present invention.
- the metallic heat-radiating plate 30 having fins, as a cooling means has been described as being provided on the lower surface of the sintered body 23.
- the above-mentioned heat-radiating plate 30 may be provided on a surface other than the lower surface of the sintered body 23, for example, on a side surface thereof.
- the above-mentioned heat-radiating plate 30 may have a honeycomb structure in place of the fins.
- Fig. 11 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramics of a fourth embodiment of the present invention, which comprises a sintered body made of a ceramics comprising aluminum nitride, and at least one cooling through-hole as a cooling means, formed in the sintered body.
- the heating/cooling apparatus of the fourth embodiment of the present invention is configured by forming cooling through-holes 38 and 39 as cooling means, as shown in Fig. 11, by means of an ultrasonic working, a diamond grinding or the like, in the sintered body of the heating/cooling apparatus of the second embodiment of the present invention.
- 31 is a sintered body; 32, 33, 34 and 35 are holes for receiving samples; and 36 and 37 are electrodes.
- a cooling gas is supplied into the cooling through-holes 38 and 39.
- a performance test of the heating/cooling apparatus made of a ceramics of the above-mentioned fourth embodiment of the present invention was carried out in the same manner as in that of the heating/cooling apparatus made of a ceramics of the first embodiment of the present invention. Also in the performance test of the heating/cooling apparatus of the fourth embodiment of the present invention, there were obtained excellent results of the performance test as in the heating/cooling apparatus of the first embodiment of the present invention. Particularly within a range of temperature of from 100 to 600 °C, there was available a cooling rate higher than that of the heating/cooling apparatus of the first embodiment of the present invention.
- a cooling gas has been described as being supplied into the cooling through-holes 38 and 39 as the cooling means.
- a liquid coolant may be supplied into the cooling through-holes 38 and 39.
- a partition having a honeycomb structure may be provided as required in each of the cooling through-holes 38 and 39.
- Fig. 12 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramics of a fifth embodiment of the present invention, which comprises a sintered body made of a ceramics comprising silicon carbide.
- 40 is a sintered body made of an electrically conductive ceramics comprising silicon carbide; and 41 and 42 are holes for receiving samples.
- the heating/cooling apparatus made of a ceramics of the fifth embodiment of the present invention is manufactured as follows. A powdery raw material comprising an electrically conductive ceramics comprising silicon carbide is charged into a metallic mold not shown to form a green block 45 as shown in Fig. 13. Then, as shown in Fig. 14, holes 41 and 42 for receiving samples are formed in the green block 45 by means of a cutting.
- the green block 45 thus provided with the holes 41 and 42 is sintered under the known sintering conditions.
- metallic layers as electrodes 43 and 44 are attached, as shown in Fig. 12, onto the opposing side surfaces of the resultant sintered body 40, respectively.
- the sintered body 40 itself forms a resistance-heating element serving as a heating means. There is no need therefore to specifically provide resistance-heating element in the sintered body 40.
- a performance test of the heating/cooling apparatus made of a ceramics of the above-mentioned fifth embodiment of the present invention was carried out in the same manner as in that of the heating/cooling apparatus made of a ceramics of the first embodiment of the present invention.
- a blower 50 as a coolant feeder was arranged, as shown in Fig. 15, below the heating/cooling apparatus, thereby blowing a cooling gas toward the heating/cooling apparatus to cooling same.
- the sintered body 40 of the heating/cooling apparatus of the fifth embodiment of the present invention has been described above as comprising an electrically conductive ceramics comprising silicon carbide, but the sintered body 40 may comprise any one electrically conductive ceramics selected from the group consisting of titanium nitride, a mixture of aluminum nitride and carbon and a mixture of silicon nitride and molybdenum silicide, other than silicon carbide.
- the heating/cooling apparatus of the fifth embodiment of the present invention has been described above as having the two holes 41 and 42 for receiving samples. It is not however limited to this structure, but the holes may be of any shape in any number. It is also possible, as required, to provide the sintered body 40 with a heat-radiating plate having fins, a heat-radiating plate having a honeycomb structure, or at least one cooling through-hole, as a cooling means.
- Fig. 16 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramics of a sixth embodiment of the present invention, which comprises a sintered body made of a ceramics comprising aluminum nitride, provided with at least one peephole.
- 51 is a sintered body
- 52 and 53 are holes for receiving samples
- 54 is an electrode
- 55 and 56 are peepholes for visually or optically observing samples in test tubes, for example
- 57, 58 and 59 are cooling through-holes, as cooling means, through which a coolant passes.
- Fig. 17 is a schematic sectional view of Fig. 16 cut along the line A-A'.
- Fig. 17, 63 is a resistance-heating element.
- the heating/cooling apparatus of the sixth embodiment of the present invention it is possible to observe, through the peepholes 55 and 56, the state of samples while appropriately controlling the temperature of the samples.
- the peepholes 55 and 56 may be of any shape in any number. It is possible to form optical paths for observation by filling the peepholes 55 and 56 with any one of an optically permeable ceramics, an optically permeable glass and an optically permeable resin.
- the heating/cooling apparatus of the sixth embodiment of the present invention there is used a combination of: (1) any one of the several kinds of the chemical composition of the sintered body, and (2) any one of the several kinds of the chemical composition of the resistance-heating element, as described above in relation to the above-mentioned first to fifth embodiments of the present invention.
- the holes 52 and 53 for receiving samples may be of any shape in any number.
- Fig. 18 is a schematic perspective view illustrating a heating/cooling apparatus made of a ceramic of a seventh embodiment of the present invention, which comprises a sintered body made of a ceramics comprising aluminum nitride.
- 60 is a sintered body made of a ceramics comprising aluminum nitride;
- 61 is an electrode;
- 62 are a plurality of cooling through-holes as cooling means, through which a coolant passes.
- Fig. 19 is a schematic sectional view of Fig. 18 cut along the line A-A'.
- 66 is a resistance-heating element comprising tungsten, connected to the electrode 61.
- Fig. 20 is a schematic sectional view of Fig.
- FIG. 18 cut along the line B-B', illustrating the heating/cooling apparatus of the seventh embodiment of the present invention shown in Fig. 18, which is attached with a sample receptacle 64.
- Fig. 20 65 are a plurality of recesses for samples; and 62 is a cooling through-hole as a cooling means.
- a performance test of the heating/cooling apparatus made of a ceramics of the above-mentioned seventh embodiment of the present invention was carried out in the same manner as in that of the heating/cooling apparatus made of a ceramics of the first embodiment of the present invention. Pure water identical with that in the performance test of the heating/cooling apparatus of the first embodiment of the present invention, was poured into each of the recesses for samples 65. Also in the performance test of the heating/cooling apparatus of the seventh embodiment of the present invention, there was employed the same temperature controlling method as that in the performance test of the heating/cooling apparatus of the first embodiment of the present invention.
- control of temperature was effected on the basis of the temperatures of pure water measured by means of the thermocouple immersed into pure water received in each of the recesses for samples 65. Satisfactory results of the performance test were obtained in the performance test of the heating/cooling apparatus of the seventh embodiment of the present invention. An error between the temperature of pure water in each of the recesses for samples 65 and the target temperature was within ⁇ 1°C.
- heating/cooling apparatus of the seventh embodiment of the present invention there may be used a combination of: (1) any one of the several kinds of the chemical composition of the sintered body, (2) any one of the several kinds of the chemical composition of the resistance-heating element, and (3) any one of the several kinds of the cooling means, as described above in relation to the above-mentioned first to fifth embodiments of the present invention.
- the heating/cooling apparatus made of a ceramics of the present invention it is possible to rapidly heat and cool various samples, to precisely control the temperature of the sample, to keep a uniform temperature distribution in the sample, and to conduct a precise temperature control in accordance with a predetermined complicated temperature program, which was impossible by any of the conventional technologies, thus providing useful effects in such fields as biotechnology, chemistry, medicine and bioengineering, and providing industrially useful effects.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Ceramic Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Thermal Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
- Resistance Heating (AREA)
- Devices For Use In Laboratory Experiments (AREA)
Abstract
Description
Claims (11)
- A heating/cooling apparatus made of a ceramics, which comprises:
a sintered body (1;12;23;31;51;60) having at least one of :a face, at least one hole (2,3;13-16;24-27;32-35;52,53), at least one recess (65) and at least one groove, each for receiving an object to be heated or cooled, said sintered body (1;12;23;31;51;60) comprising an electrically insulating ceramics having a thermal conductivity of at least 10 W/(m•k) ;at least one resistance-heating element (5;19,20;63) serving as a heating means, which is buried into said sintered body (1;12;23;31;51;60); anda cooling means comprising a coolant feeder (11;50), provided outside said sintered body (1;12;23;31;51;60), for feeding a coolant to said sintered body, and at least one of: part of a surface of said sintered body, a rugged portion formed on part of a surface of said sintered body, at least one cooling through-hole (38,39;57-59;62), through which said coolant passes, formed in said sintered body, a heat-radiating plate (30) having fins, provided on said sintered body, and a heat-radiating plate having a honeycomb structure, provided on said sintered body, each for effecting a heat exchange with said fed coolant. - A heating/cooling apparatus made of a ceramics as claimed in claim 1, wherein:said sintered body (1;12;23;31;51;60) comprises said electrically insulating ceramics comprising at least one selected from the group consisting of aluminum nitride, silicon carbide, silicon nitride, aluminum oxide and beryllium oxide.
- A heating/cooling apparatus made of a ceramics as claimed in claim 1 or 2, wherein:said resistance-heating element (5;19,20;63) comprises any one of a metal, an electrically conductive ceramics and carbon.
- A heating/cooling apparatus made of a ceramics as claimed in claim 3, wherein:said resistance-heating element comprises at least one metal selected from the group consisting of tungsten, molybdenum and rhenium.
- A heating/cooling apparatus made of a ceramics as claimed in claim 3, wherein:said resistance-heating element comprises at least one electrically conductive ceramics selected from the group consisting of silicon carbide, titanium nitride, molybdenum silicide, zirconium boride, tungsten carbide and tantalum carbide.
- A heating/cooling apparatus made of a ceramics, which comprises:
a sintered body (40) having at least one of :a face, at least one hole (41,42), at least one recess and at least one groove, each for receiving an object to be heated or cooled, the whole of said sintered body (40) comprising an electrically conductive ceramics, thereby said sintered body (40) itself forming a resistance-heating element serving as a heating means; anda cooling means comprising a coolant feeder (11;50) provided outside said sintered body (40), for feeding a coolant to said sintered body, and at least one of : part of a surface of said sintered body, a rugged portion formed on part of a surface of said sintered body, at least one cooling through-hole (38,39;57-59;62), through which said coolant passes, formed in said sintered body, a heat-radiating plate (30) having fins, provided on said sintered body, and a heat-radiating plate having a honeycomb structure, provided on said sintered body, each for effecting a heat exchange with the fed coolant. - A heating/cooling apparatus made of a ceramics as claimed in claim 6, wherein:said sintered body (40) comprises any one electrically conductive ceramics selected from the group consisting of silicon carbide, titanium nitride, a mixture of aluminum nitride and carbon and a mixture of silicon nitride and molybdenum silicide.
- A heating/cooling apparatus made of a ceramics as claimed in any one of the claims 1 to 7, wherein:said heat-radiating plate comprises any one of a metal and a ceramics.
- A heating/cooling apparatus made of a ceramics as claimed in any one of claims 1 to 7, wherein:said at least one cooling through-hole comprises a plurality of through-holes (57,58,59), and each of said plurality of through-holes has a honeycomb structure.
- A heating/cooling apparatus made of a ceramics as claimed in any one of the preceding claims, wherein:at least one peephole (55,56) for observing said object to be heated or cooled, which communicates with said at least one hole, said at least one recess or said at least one groove of said sintered body (1;12;23;31;40;51;60), for receiving said object to be heated or cooled, is formed in said sinted body (1;12;23;31;40;51;60).
- A heating/cooling apparatus made of a ceramics as claimed in claim 10, wherein:said at least one peephole (55,56) is filled with any one of an optically permeable ceramics, an optically permeable glass and an optically permeable resin.
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP211937/92 | 1992-07-01 | ||
JP21193792 | 1992-07-01 | ||
JP21314492 | 1992-07-02 | ||
JP213144/92 | 1992-07-02 | ||
JP213145/92 | 1992-07-02 | ||
JP21314592 | 1992-07-02 | ||
JP19155393A JPH0699085A (en) | 1992-07-01 | 1993-06-23 | Ceramic heater/cooler |
JP191553/93 | 1993-06-23 | ||
PCT/JP1993/000881 WO1994001529A1 (en) | 1992-07-01 | 1993-06-28 | Ceramic heating/cooling device |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0603411A1 EP0603411A1 (en) | 1994-06-29 |
EP0603411A4 EP0603411A4 (en) | 1995-02-22 |
EP0603411B1 true EP0603411B1 (en) | 1998-08-19 |
Family
ID=27475544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93913596A Expired - Lifetime EP0603411B1 (en) | 1992-07-01 | 1993-06-28 | Ceramic heating/cooling device |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0603411B1 (en) |
KR (1) | KR100346861B1 (en) |
CA (1) | CA2115360A1 (en) |
DE (1) | DE69320449T2 (en) |
WO (1) | WO1994001529A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5958349A (en) * | 1997-02-28 | 1999-09-28 | Cepheid | Reaction vessel for heat-exchanging chemical processes |
US6074868A (en) * | 1997-03-03 | 2000-06-13 | Regents Of The University Of Minnesota | Alumina plate method and device for controlling temperature |
US6300124B1 (en) | 1999-11-02 | 2001-10-09 | Regents Of The University Of Minnesota | Device and method to directly control the temperature of microscope slides |
US6307186B1 (en) | 1997-04-24 | 2001-10-23 | Jean-Luc Jouvin | Hydrocolloid processing module |
EP1279973A2 (en) * | 2001-07-21 | 2003-01-29 | Samsung Electronics Co., Ltd. | Integrated heat transfer device for planar light-wave circuit module |
US6565815B1 (en) | 1997-02-28 | 2003-05-20 | Cepheid | Heat exchanging, optically interrogated chemical reaction assembly |
US6602473B1 (en) | 1995-06-20 | 2003-08-05 | The Regents Of The University Of California | Temperature control apparatus |
US6618539B2 (en) | 2000-09-25 | 2003-09-09 | Sumitomo Electric Industries, Ltd. | Heater module and optical waveguide module |
US6635492B2 (en) | 1996-01-25 | 2003-10-21 | Bjs Company Ltd. | Heating specimen carriers |
US6660228B1 (en) | 1998-03-02 | 2003-12-09 | Cepheid | Apparatus for performing heat-exchanging, chemical reactions |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4409436A1 (en) * | 1994-03-19 | 1995-09-21 | Boehringer Mannheim Gmbh | Process for processing nucleic acids |
ES2151241T3 (en) * | 1996-01-25 | 2000-12-16 | Bjs Company Ltd | WARMING UP OF A SAMPLE STAND. |
GB9616540D0 (en) * | 1996-08-06 | 1996-09-25 | Cavendish Kinetics Ltd | Integrated circuit device manufacture |
JPH10117765A (en) * | 1996-10-18 | 1998-05-12 | Ngk Insulators Ltd | Specimen holder and its production |
GB9712439D0 (en) * | 1997-06-17 | 1997-08-13 | Delta Theta Ltd | Heating elements |
US7255833B2 (en) | 2000-07-25 | 2007-08-14 | Cepheid | Apparatus and reaction vessel for controlling the temperature of a sample |
JP2018503217A (en) * | 2014-11-24 | 2018-02-01 | セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH | Thermal management in the field of e-mobility |
CN105536903A (en) * | 2015-12-24 | 2016-05-04 | 青岛顺昕电子科技有限公司 | Method for extending application range of heating device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60256375A (en) * | 1984-05-31 | 1985-12-18 | Shimadzu Corp | Bioreactor |
JPS6418974A (en) * | 1987-07-13 | 1989-01-23 | Ibiden Co Ltd | Production of heat-exchanger made of sintered silicon carbide |
JPH0193472A (en) * | 1987-09-30 | 1989-04-12 | Toshiba Corp | Heat-exchanger |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4865986A (en) * | 1988-10-06 | 1989-09-12 | Coy Corporation | Temperature control apparatus |
US4950608A (en) * | 1989-04-25 | 1990-08-21 | Scinics Co., Ltd. | Temperature regulating container |
JPH033436U (en) * | 1989-05-30 | 1991-01-14 |
-
1993
- 1993-06-28 KR KR1019940700539A patent/KR100346861B1/en not_active IP Right Cessation
- 1993-06-28 WO PCT/JP1993/000881 patent/WO1994001529A1/en active IP Right Grant
- 1993-06-28 CA CA002115360A patent/CA2115360A1/en not_active Abandoned
- 1993-06-28 EP EP93913596A patent/EP0603411B1/en not_active Expired - Lifetime
- 1993-06-28 DE DE69320449T patent/DE69320449T2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60256375A (en) * | 1984-05-31 | 1985-12-18 | Shimadzu Corp | Bioreactor |
JPS6418974A (en) * | 1987-07-13 | 1989-01-23 | Ibiden Co Ltd | Production of heat-exchanger made of sintered silicon carbide |
JPH0193472A (en) * | 1987-09-30 | 1989-04-12 | Toshiba Corp | Heat-exchanger |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6602473B1 (en) | 1995-06-20 | 2003-08-05 | The Regents Of The University Of California | Temperature control apparatus |
US6635492B2 (en) | 1996-01-25 | 2003-10-21 | Bjs Company Ltd. | Heating specimen carriers |
US5958349A (en) * | 1997-02-28 | 1999-09-28 | Cepheid | Reaction vessel for heat-exchanging chemical processes |
US6565815B1 (en) | 1997-02-28 | 2003-05-20 | Cepheid | Heat exchanging, optically interrogated chemical reaction assembly |
US6074868A (en) * | 1997-03-03 | 2000-06-13 | Regents Of The University Of Minnesota | Alumina plate method and device for controlling temperature |
US6228634B1 (en) | 1997-03-03 | 2001-05-08 | Regents Of The University Of Minnesota | Thermal cycling or temperature control device and method using alumina plate |
US6307186B1 (en) | 1997-04-24 | 2001-10-23 | Jean-Luc Jouvin | Hydrocolloid processing module |
US6660228B1 (en) | 1998-03-02 | 2003-12-09 | Cepheid | Apparatus for performing heat-exchanging, chemical reactions |
US6300124B1 (en) | 1999-11-02 | 2001-10-09 | Regents Of The University Of Minnesota | Device and method to directly control the temperature of microscope slides |
US6618539B2 (en) | 2000-09-25 | 2003-09-09 | Sumitomo Electric Industries, Ltd. | Heater module and optical waveguide module |
EP1279973A2 (en) * | 2001-07-21 | 2003-01-29 | Samsung Electronics Co., Ltd. | Integrated heat transfer device for planar light-wave circuit module |
US6757452B2 (en) | 2001-07-21 | 2004-06-29 | Samsung Electronics Co., Ltd. | Integrated heat transfer device for PLC module |
Also Published As
Publication number | Publication date |
---|---|
KR100346861B1 (en) | 2003-01-08 |
DE69320449D1 (en) | 1998-09-24 |
EP0603411A4 (en) | 1995-02-22 |
EP0603411A1 (en) | 1994-06-29 |
CA2115360A1 (en) | 1994-01-20 |
DE69320449T2 (en) | 1999-02-18 |
WO1994001529A1 (en) | 1994-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0603411B1 (en) | Ceramic heating/cooling device | |
DE69201264T2 (en) | Electrostatic ceramic holding plate with thermal cycle. | |
US7361865B2 (en) | Heater for heating a wafer and method for fabricating the same | |
DE69402467T2 (en) | Sealing device and method for semiconductor processing devices useful for bridging materials with different coefficients of thermal expansion | |
US6080970A (en) | Wafer heating apparatus | |
DE102006056812B4 (en) | Heater with improved thermal uniformity, semiconductor process chamber therewith, method of controlling surface temperature therewith and use of the heater | |
EP1122982B1 (en) | Heating apparatus | |
JP5307445B2 (en) | Substrate holder and method for manufacturing the same | |
KR100533471B1 (en) | Ceramic heaters, a method for producing the same and article having metal members | |
US20180092161A1 (en) | Heating device | |
DE60316746T2 (en) | Ceramic susceptor | |
WO1993009486A1 (en) | Reaction temperature control device | |
JP2587233B2 (en) | Branding device | |
US5866883A (en) | Ceramic heater | |
CN1047330C (en) | Heating/cooling apparatus | |
DE69016633T2 (en) | CVD system and method for forming a thin film. | |
AU665657B2 (en) | Ceramic device for heating or cooling | |
JPH11312570A (en) | Ceramic heater | |
JP3152898B2 (en) | Aluminum nitride ceramic heater | |
CN113267683B (en) | In-situ measurement method for metal resistivity at high temperature and high pressure | |
CN110364319B (en) | PTC thermistor element | |
EP1333111A1 (en) | Method for producing crystal thin plate and solar cell comprising crystal thin plate | |
JP2003017377A (en) | Ceramic heater | |
JPH0822886A (en) | Uniform heater | |
JP4688363B2 (en) | Wafer heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI |
|
17P | Request for examination filed |
Effective date: 19940608 |
|
A4 | Supplementary search report drawn up and despatched | ||
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): BE CH DE FR GB IT LI |
|
17Q | First examination report despatched |
Effective date: 19970918 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE FR GB IT LI |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69320449 Country of ref document: DE Date of ref document: 19980924 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: R. A. EGLI & CO. PATENTANWAELTE |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020605 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020617 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020621 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020829 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040101 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040227 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050628 |