[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0693864B1 - Circuit for operating one or more lour pressure discharge lamps - Google Patents

Circuit for operating one or more lour pressure discharge lamps Download PDF

Info

Publication number
EP0693864B1
EP0693864B1 EP95110851A EP95110851A EP0693864B1 EP 0693864 B1 EP0693864 B1 EP 0693864B1 EP 95110851 A EP95110851 A EP 95110851A EP 95110851 A EP95110851 A EP 95110851A EP 0693864 B1 EP0693864 B1 EP 0693864B1
Authority
EP
European Patent Office
Prior art keywords
circuit arrangement
circuit
voltage
lamp
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95110851A
Other languages
German (de)
French (fr)
Other versions
EP0693864A3 (en
EP0693864A2 (en
Inventor
Bernd Rudolph
Alwin Veser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0693864A2 publication Critical patent/EP0693864A2/en
Publication of EP0693864A3 publication Critical patent/EP0693864A3/en
Application granted granted Critical
Publication of EP0693864B1 publication Critical patent/EP0693864B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps

Definitions

  • the invention relates to a circuit arrangement for operating one or more Low-pressure discharge lamps according to the preamble of patent claim 1.
  • Such a circuit arrangement corresponding to the preamble of claim 1 is, for example, in the PCT application with the international publication number WO 93/12631 discloses.
  • This circuit arrangement has one Inverters with a downstream resonant circuit for operating one or more Low-pressure discharge lamps with preheated lamp electrodes.
  • the preheating phase the lamp electrodes are terminated by a relay or a semiconductor switch, that receives its control signal from a threshold or time switch in turn, during the preheating phase, the voltage drop across the electrode filaments evaluates the lamp.
  • the electrode coils already relatively small tolerances comparatively large scatter of their ohmic Resistance, so that even with electrodes of the same type that are connected to the Heating voltages applied to the electrode filaments are subjected to correspondingly large variations is.
  • the circuit arrangement according to the first embodiment has a a half-bridge inverter connected to a DC voltage source, consisting of two switching transistors Q1, Q2 and a control unit A for these switching transistors.
  • a series resonance circuit at the center tap V1 of the half-bridge inverter connected to a resonance inductor L, a resonance capacitor C2 and two low-pressure discharge lamps LP1 connected in series with one another, LP2 with an electrical power consumption of 58 W each.
  • the sequence start capacitor C1 is parallel to the lamp LP1 and the resonance capacitor C2 arranged parallel to the series connection of both lamps LP1, LP2.
  • the circuit also has two Heating circuits for preheating the lamp electrodes E1, E2, E3, E4.
  • the first heating circuit is operated by the electrode coils E1, E4, the bridge rectifier GL, the primary winding of the transformer TR, the ohmic resistance Z and the drain-source path of the field effect transistor Q3. It serves for Heating the lamp electrodes E1 and E4.
  • the ohmic resistance Z and the drain-source path are in series and between the DC voltage connections of the Bridge rectifier GL switched so that they are in the low-resistance state of the heating circuit or the field effect transistor Q3 flows through the electrode heating current become.
  • Parallel to the series connection of resistor Z and drain-source path of the Field effect transistor Q3 is connected to a voltage divider R1, R2, whose center tap M with the gate electrode of the field effect transistor Q3 and with the collector a bipolar transistor Q4 is connected.
  • the collector-emitter path of the transistor Q4 is connected in parallel to the resistor R2 of the voltage divider. Parallel to Voltage divider R1, R2 is also arranged an RC element R3, C5, via its time constant the duration of the preheating phase can be set. Hangs in particular the duration of the preheating phase does not depend on the temperature-dependent course of the electrode coil resistance from.
  • the base-emitter path of transistor Q4 is together with a basic series resistor R4 and a Zener diode D1, parallel to Capacitor C5 of the RC element switched. One between the resistors Z and R1 arranged rectifier diode D2 prevents the discharge current of the capacitor C5 flows over the switching path of the field effect transistor Q3.
  • the second heating element is coupled to the first and consists of the electrode coils E2, E3, the resistor R5 and the secondary winding of the transformer arranged in parallel with the resistor R5 TR.
  • the inverter After commissioning the circuit arrangement, the inverter generates Q1, Q2, A a high-frequency (approx. 50 KHz) alternating voltage between taps V1, V2.
  • the field effect transistor Q3 is switched on via the voltage divider R1, R2, whereby the resistor Z ensures that in the low-resistance state of the field effect transistor Q3 a sufficiently high DC voltage of approx. 10 V at the voltage divider R1, R2 is available to control the gate electrode via resistor R2, so that a high-frequency heating current through the lamp electrodes E1, E4 can flow.
  • a heating current is generated in the second heating circuit via the transformer TR induced for the lamp electrodes E2, E3.
  • the battery charges during the preheating phase Capacitor C5 through resistor R3.
  • the Zener diode D1 becomes conductive and switches through the bipolar transistor Q4, so that the now conductive collector-emitter path of transistor Q4 bridges resistor R2. This will make the gate electrode the field effect transistor Q3 withdrawn the control signal, so that its drain-source path and thus the first heating circuit also becomes high-resistance. About the transformative Coupling also blocks the second heating circuit.
  • the electrode preheating phase has ended and the resonance capacitor C2 builds up for the low-pressure discharge lamps LP1, LP2 required ignition voltage.
  • the capacitor C5 charges after the ignition of the lamps LP1, LP2 about the operating voltage of the lamps to a DC voltage, which via the resistor R4 and the Zener diode D1 to safe switching of the transistor Q4 and thus to block the field effect transistor Q3 is sufficient in lamp operation.
  • FIG. 2 shows a second embodiment of the circuit arrangement according to the invention.
  • the circuit arrangement has one fed by a direct current source Half-bridge inverter, consisting of the two switching transistors Q1 ', Q2' and the control device A '.
  • a direct current source Half-bridge inverter consisting of the two switching transistors Q1 ', Q2' and the control device A '.
  • the lamp choke L ' At the center tap V1 'of the inverter a series resonance circuit is connected, the lamp choke L ', a coupling capacitor C3 'and a resonance capacitor C2' contains.
  • the resonance capacitor C2 ' is connected to the negative pole of the DC voltage source.
  • Parallel to Resonance capacitor C2 ' is a low-pressure discharge lamp LP' with preheatable Electrodes coiled E1 ', E2' switched.
  • Both lamp electrodes are also in one Integrated electrode heating circuit, which as a further essential components Capacitor Z ', a bridge rectifier GL' and a field effect transistor Q3 ' having.
  • Capacitor Z ' a bridge rectifier GL' and a field effect transistor Q3 ' having.
  • the drain-source path of the field effect transistor Q3 ' is between the DC voltage connections of the bridge rectifier GL 'integrated during the Capacitor Z 'in series with the AC connections of the bridge rectifier GL 'is arranged so that the capacitor Z' in series with the drain-source path of the field effect transistor Q3 'is connected.
  • the control of the field effect transistor Q3 ' takes place via a rectifier diode connected to a tap V3' in the heating circuit D2 'and a voltage divider R1', R2 ', whose center tap M' to the gate electrode of the field effect transistor Q3 'is connected.
  • Parallel to the voltage divider R1 ', R2' is also, as already described in the first embodiment RC element, consisting of the ohmic resistor R3 'and the capacitor C5', connected.
  • the circuit arrangement has a further switching transistor Q4 ', whose base connection via a Zener diode D1' and a series resistor R4 ', the are both arranged in parallel to the capacitor C5 'is controlled.
  • the emitter of the transistor Q4 ' is connected to the negative pole of the capacitor C5' and to the Bridge rectifier GL 'connected while the collector of transistor Q4' over the center tap M 'of the voltage divider R1', R2 'to the gate electrode of the field effect transistor Q3 'is connected.
  • a lamp voltage monitoring element consisting from the one connected in parallel to the drain-source path of the field effect transistor Q3 ' Voltage divider R6, R7 and the one arranged parallel to the resistor R7 Series connection of rectifier diode D3 and capacitor C6.
  • the inverter After commissioning the circuit arrangement, the inverter generates Q1 ', Q2', A 'in the series resonant circuit a high-frequency (approx. 50 KHz) AC voltage.
  • the Field effect transistor Q3 ' is via the rectifier diode D2' and the voltage divider R1 ', R2' switched on, the capacitor Z 'ensuring that the low-resistance State of the field effect transistor Q3 'a sufficiently high voltage (for example 10 V) is available at the voltage divider R1 ', R2', via the resistor R2 ' to drive the gate electrode, so that a high-frequency heating current through the Lamp electrodes E1 ', E2' flows.
  • a sufficiently high voltage for example 10 V
  • this control voltage is here by means of in the AC circuit of the Bridge rectifier GL 'integrated capacitor Z' generated.
  • the capacitor C5 ' is preheated via the rectifier diode D2' and the ohmic resistor R3 'charged.
  • the electrode preheating phase has ended and the resonance capacitor C2 'builds up for the low-pressure discharge lamp LP 'required ignition voltage.
  • the capacitor C5 'recharges the ignition of the lamp LP 'via the operating voltage of the lamp to a DC voltage on, via the resistor R4 'and the Zener diode D1' for safe Turning on the transistor Q4 'and thus to block the field effect transistor Q3 'is sufficient in lamp operation. So far is the principle of operation of this circuit largely identical to that of the first embodiment.
  • the additional at second embodiment installed lamp voltage monitoring element R6, R7, D3, C6 monitors the ignition and operating voltage on the low-pressure discharge lamp LP '.
  • the voltage drop across capacitor C6 is from a shutdown device evaluated, here for the sake of clarity with the control device A 'is summarized.
  • Low pressure discharge lamps age in the course their operating time, d. that is, they exhibit an increase in ignition voltage and often also asymmetrical burned electrodes. The latter can lead to DC operation of the low pressure discharge lamp.
  • An increase in the ignition or operating voltage on the lamp LP ' is the voltage drop across the capacitor C6 of the shutdown device communicated.
  • the shutdown device usually deprives one of the Switching transistors Q1 or Q2 of the half-bridge inverter have the base signal and thus shuts down the inverter.
  • a description of such a shutdown device can be found, for example, in utility model DE-U 91 14 204.
  • FIG. 3 shows a third exemplary embodiment of the circuit arrangement according to the invention shown.
  • the circuit arrangement has one from a direct current source fed half-bridge inverter, consisting of the two switching transistors Q1 ", Q2" and the control device A ".
  • To the center tap V1" of the Inverter is connected to a series resonance circuit, which is a lamp choke L ", a coupling capacitor C3" and a resonance capacitor C2 "contains.
  • the resonance capacitor C2 is connected to the negative pole of the DC voltage source.
  • a low-pressure discharge lamp is parallel to the resonance capacitor C2 " LP "with preheatable electrode filaments E1", E2 "switched.
  • Both lamp electrodes E1 “, E2” are also integrated in an electrode heating circuit, which acts as another essential components a capacitor Z "and a field effect transistor Q3" having.
  • the capacitor Z " is in series with the drain-source path of the field effect transistor Q3 "is switched on.
  • the field effect transistor Q3" is activated via a rectifier diode D2 connected to a tap V3 "in the heating circuit and one Voltage divider R1 ", R2", the center tap M “to the gate electrode of the Field effect transistor Q3 "is connected.
  • an RC element from the ohmic resistor R3 "and the capacitor C5" In parallel to the voltage divider R1", R2 " furthermore, as already described in the first exemplary embodiment, an RC element from the ohmic resistor R3 "and the capacitor C5".
  • the circuit arrangement has a further switching transistor Q4 ", the Base connection via a Zener diode D1 "and a series resistor R4", both are arranged in parallel to the capacitor C5 "is driven.
  • the emitter of the Transistor Q4 " is with the negative pole of the capacitor C5" and with the lamp electrode E1 "connected while the collector of transistor Q4" through the center tap M “of the voltage divider R1", R2 "to the gate electrode of the field effect transistor Q3 "is connected.
  • the operation of the third embodiment differs slightly from that of the previously explained exemplary embodiments.
  • the third embodiment is the field effect transistor Q3, as in the first two embodiments described, integrated in the DC circuit of a bridge rectifier GL, GL ', but directly into the one with high-frequency alternating current Heating circuit switched.
  • the electrode preheater works here also without rectifier GL or GL '.
  • the inverter After commissioning the circuit arrangement, the inverter generates Q1 ", Q2", A "in the series resonance circuit a high frequency (approx. 50 KHz) AC voltage Field effect transistor Q3 "is via the rectifier diode D2" and the voltage divider R1 “, R2” turned on, the capacitor Z "ensures that in the low-resistance State of the field effect transistor Q3 "a sufficiently high voltage (for example 10 V) on the voltage divider R1 ", R2" is available to switch over the Resistor R2 "to drive the gate electrode, so that a high-frequency heating current flows through the lamp electrodes E1 ", E2". Unlike the previous ones In both exemplary embodiments, the field effect transistor Q3 sees an alternating current here.
  • a sufficiently high voltage for example 10 V
  • the positive half-wave of the heating current over the drain-source path of the field effect transistor Q3 passesed during the negative half-wave of the heating current via the parallel to the drain-source path, in the Field effect transistor Q3 "integrated free-wheeling diode (shown in broken lines in FIG. 3) flows.
  • the capacitor C5 is also on the Rectifier diode D2 "and the ohmic resistor R3" charged.
  • the electrode preheating phase has now ended and is being built on the resonance capacitor C2 " the ignition voltage required for the low-pressure discharge lamp LP ".
  • the capacitor C5 discharges after the lamp LP has been ignited” via the operating voltage the lamp to a DC voltage which is connected via the resistor R4 "and the Zener diode D1 "for safely switching on the transistor Q4" and thus for Blocking the field effect transistor Q3 "in lamp operation is sufficient.
  • the preheating phase is created with the help of the freewheeling diode on the drain-source path of the field effect transistor Q3 "a reverse voltage, which is approximately the ignition or operating voltage corresponds to the lamp LP ". Therefore, when selecting the field effect transistor Q3 "to ensure that this has sufficient dielectric strength has.
  • the voltage loading of the field effect transistor Q3 can also with the help of an additional capacitor connected in parallel to the drain-source path C "(shown in dashed lines in Figure 3), so that it with the capacitor Z" one capacitive voltage divider forms can be reduced.
  • the RC element R3, C5 can also take on the function of the lamp voltage monitoring unit R6, R7, C6, D3 in addition to its function described above, with suitable dimensions.
  • the switch-off device monitors the voltage drop across capacitor C5.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

Die Erfindung betrifft eine Schaltungsanordnung zum Betrieb einer oder mehrerer Niederdruckentladungslampen gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a circuit arrangement for operating one or more Low-pressure discharge lamps according to the preamble of patent claim 1.

Eine derartige, dem Oberbegriff des Patentanspruchs 1 entsprechende Schaltungsanordnung ist beispielsweise in der PCT-Anmeldung mit der internationalen Veröffentlichungsnummer WO 93/12631 offenbart. Diese Schaltungsanordnung besitzt einen Wechselrichter mit nachgeschaltetem Resonanzkreis zum Betrieb einer oder mehrerer Niederdruckentladungslampen mit vorgeheizten Lampenelektroden. Die Vorheizphase der Lampenelektroden wird durch ein Relais oder einen Halbleiterschalter beendet, das bzw. der sein Steuersignal von einem Schwellwert- oder Zeitschalter erhält, der seinerseits, während der Vorheizphase, den Spannungsabfall über den Elektrodenwendeln der Lampe auswertet. Bei der Herstellung der Elektrodenwendeln verursachen bereits relativ geringe Toleranzen vergleichsweise große Streuungen ihres ohmschen Widerstandes, so daß auch, selbst bei Elektroden des gleichen Typs, die an den Elektrodenwendeln anliegende Heizspannung entsprechend großen Streuungen unterworfen ist. Diese Streuungen können nun dazu führen, daß manche Niederdruckentladungslampen mit kalten Lampenelektroden, also ohne ausreichende Elektrodenvorheizung, zünden. Lange Zuleitungen zu den Lampen können ebenfalls eine ungenügende Elektrodenvorheizung verursachen. Werden lange Zuleitungen zu den Lampen verwendet, so kann, insbesondere bei niederohmigen Elektrodenwendeln, deren Impedanz warme Lampenelektroden vortäuschen, weil sich die Zuleitungsimpedanzen zum Widerstand der Elektrodenwendeln addieren.Such a circuit arrangement corresponding to the preamble of claim 1 is, for example, in the PCT application with the international publication number WO 93/12631 discloses. This circuit arrangement has one Inverters with a downstream resonant circuit for operating one or more Low-pressure discharge lamps with preheated lamp electrodes. The preheating phase the lamp electrodes are terminated by a relay or a semiconductor switch, that receives its control signal from a threshold or time switch in turn, during the preheating phase, the voltage drop across the electrode filaments evaluates the lamp. When producing the electrode coils already relatively small tolerances comparatively large scatter of their ohmic Resistance, so that even with electrodes of the same type that are connected to the Heating voltages applied to the electrode filaments are subjected to correspondingly large variations is. This scatter can now lead to some low-pressure discharge lamps with cold lamp electrodes, i.e. without sufficient electrode preheating, ignite. Long leads to the lamps can also be a cause insufficient electrode preheating. Are long leads to the If lamps are used, especially with low-resistance electrode filaments, whose impedance feign warm lamp electrodes because the lead impedances add to the resistance of the electrode coils.

Es ist die Aufgabe der Erfindung, eine Schaltungsanordnung zum Betrieb einer oder mehrerer Niederdruckentladungslampen bereitzustellen, die eine ausreichende Vorheizung der Lampenelektroden bei geringem Schaltungsaufwand gewährleistet.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Weitere vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen beschrieben.
It is the object of the invention to provide a circuit arrangement for operating one or more low-pressure discharge lamps, which ensures adequate preheating of the lamp electrodes with little circuit complexity.
This object is achieved by the characterizing features of claim 1. Further advantageous embodiments of the invention are described in the subclaims.

Die erfindungsgemäße Schaltungsanordnung besitzt einen Wechselrichter mit nachgeschaltetem Serienresonanzkreis, der mindestens eine Niederdruckentladungslampe mit vorheizbaren Elektrodenwendeln betreibt. Die Lampenelektroden sind in einen oder mehreren Heizkreisen integriert. Einer der Heizkreise enthält einen Halbleiterschalter, der diesen Heizkreis unmittelbar über seine Schaltstrecke und die anderen Heizkreise durch transformatorische Kopplung am Ende der Elektrodenvorheizphase zum Zünden der Niederdruckendadungslampen vom niederohmigen in den hochohmigen Zustand umschaltet. In Serie zur Schaltstrecke dieses Halbleiterschalters ist ein Widerstandselement geschaltet, dessen Widerstandswert derart gewählt ist, daß über der Serienschaltung aus diesem Widerstandselement und der Halbleiterschaltstrecke im niederohmigen Zustand der Schaltstrecke eine zur Steuerung des Halbleiterschalters, d. h., eine zum Durchschalten des Halbleiterschalters ausreichende Spannung abfällt. Der Halbleiterschalter ist, aufgrund der Spannungsbelastung beim Zünden der Niederdruckendadungslampe, zweckmäßigerweise in den Gleichstromzweig eines Brükkengleichrichters geschaltet, wie weiter unten im Text anhand der ersten beiden Ausführungsbeispiele erläutert. Allerdings läßt sich der Halbleiterschalter auch direkt, ohne Brückengleichrichter, in den Heizkreis einfügen, wie das dritte Ausführungsbeispiel zeigt. Das Widerstandselement kann im Gleichstrom- oder im Wechselstromkreis des Brückengleichrichters integriert sein. Vorteilhafterweise werden als Halbleiterschalter ein Feldeffekttransistor und als Widerstandselement ein ohmscher Widerstand oder ein Kondensator verwendet, der in Serie zur Drain-Source-Strecke des Feldeffekttransistors geschaltet ist. Die Impedanz des Widerstandselementes wird derart gewählt, daß der Spannungsabfall über der Serienschaltung aus Widerstandselement und Drain-Source-Strecke im niederohmigen Zustand ca. 10 V beträgt. Durch diese Wahl wird beim Einschalten der Schaltungsanordnung bzw. der Lampen ein sicheres Durchschalten des Feldeffekttransistors in den niederohmigen Zustand gewährleistet und ein Kaltstart der Niederdruckendadungslampen verhindert. Besonders vorteilhaft, da kostengünstig und mit geringen Verlustleistungen arbeitend, läßt sich diese Schaltungsanordnung bei mehreren in Serie zueinander geschalteten Niedeidruckentladungslampen verwenden.
Nachstehend wird die erfindungsgemäße Schaltungsanordnung anhand mehrerer bevorzugter Ausführungsbeispiele näher erläutert. Es zeigen:

Figur 1
Die Schaltungsanordnung gemäß des ersten Ausführungsbeispiels zum Betrieb zweier in Serie geschalteter Niederdruckentladungslampen
Figur 2
Die Schaltungsanordnung gemäß des zweiten Ausführungsbeispiels zum Betrieb einer Niederdruckentladungslampe
Figur 3
Die Schaltungsanordnung gemäß des dritten Ausführungsbeispiels zum Betrieb einer Niederdruckentladungslampe
The circuit arrangement according to the invention has an inverter with a series resonant circuit connected downstream, which operates at least one low-pressure discharge lamp with preheatable electrode filaments. The lamp electrodes are integrated in one or more heating circuits. One of the heating circuits contains a semiconductor switch that switches this heating circuit directly from its low-resistance to the high-resistance state via its switching path and the other heating circuits by means of transformer coupling at the end of the electrode preheating phase in order to ignite the low-pressure discharge lamps. A resistance element is connected in series with the switching path of this semiconductor switch, the resistance value of which is selected such that a voltage which is sufficient to control the semiconductor switch, that is to say a voltage which is sufficient to switch the semiconductor switch, drops across the series circuit comprising this resistance element and the semiconductor switching path in the low-resistance state of the switching path. Due to the voltage load when the low-pressure discharge lamp is ignited, the semiconductor switch is expediently connected to the direct current branch of a bridge rectifier, as explained further below in the text using the first two exemplary embodiments. However, the semiconductor switch can also be inserted directly into the heating circuit without a bridge rectifier, as the third exemplary embodiment shows. The resistance element can be integrated in the direct current or alternating current circuit of the bridge rectifier. A field effect transistor is advantageously used as the semiconductor switch and an ohmic resistor or a capacitor is used as the resistance element, which is connected in series with the drain-source path of the field effect transistor. The impedance of the resistance element is selected such that the voltage drop across the series circuit comprising the resistance element and the drain-source path is approximately 10 V in the low-resistance state. This choice ensures that the field-effect transistor is reliably switched through to the low-resistance state when the circuit arrangement or the lamps are switched on, and a cold start of the low-pressure discharge lamps is prevented. This circuit arrangement can be used with several low-pressure discharge lamps connected in series with one another in a particularly advantageous manner, since it is inexpensive and operates with low power losses.
The circuit arrangement according to the invention is explained in more detail below on the basis of several preferred exemplary embodiments. Show it:
Figure 1
The circuit arrangement according to the first exemplary embodiment for operating two low-pressure discharge lamps connected in series
Figure 2
The circuit arrangement according to the second exemplary embodiment for operating a low-pressure discharge lamp
Figure 3
The circuit arrangement according to the third exemplary embodiment for operating a low-pressure discharge lamp

Die Schaltungsanordnung gemäß des ersten Ausführungsbeispiels besitzt einen mit einer Gleichspannungsquelle verbundenen Halbbrückenwechselrichter, bestehend aus zwei Schalttransistoren Q1, Q2 und einer Ansteuerungseinheit A für diese Schalttransistoren. An den Mittenabgriff V1 des Halbbrückenwechselrichters ist ein Serienresonanzkreis angeschlossen, der eine Resonanzinduktivität L, einen Resonanzkondensator C2 und zwei in Serie zueinander geschaltete Niederdruckentladungslampen LP1, LP2 mit einer elektrischen Leistungsaufnahme von jeweils 58 W enthält. Der Sequenzstartkondensator C1 ist parallel zur Lampe LP1 und der Resonanzkondensator C2 parallel zur Serienschaltung beider Lampen LP1, LP2 angeordnet. Über den Kopplungskondensator C3, der an den Pluspol der Gleichspannungsquelle angeschlossen ist, wird der Stromkreis geschlossen. Die Schaltung besitzt ferner zwei Heizkreise zum Vorheizen der Lampenelektroden E1, E2, E3, E4.The circuit arrangement according to the first embodiment has a a half-bridge inverter connected to a DC voltage source, consisting of two switching transistors Q1, Q2 and a control unit A for these switching transistors. There is a series resonance circuit at the center tap V1 of the half-bridge inverter connected to a resonance inductor L, a resonance capacitor C2 and two low-pressure discharge lamps LP1 connected in series with one another, LP2 with an electrical power consumption of 58 W each. The sequence start capacitor C1 is parallel to the lamp LP1 and the resonance capacitor C2 arranged parallel to the series connection of both lamps LP1, LP2. On the Coupling capacitor C3, which is connected to the positive pole of the DC voltage source the circuit is closed. The circuit also has two Heating circuits for preheating the lamp electrodes E1, E2, E3, E4.

Der erste Heizkreis wird von den Elektrodenwendeln E1, E4, dem Brückengleichrichter GL, der Primärwicklung des Transformators TR, dem ohmschen Widerstand Z und der Drain-Source-Strecke des Feldeffekttransistors Q3 gebildet. Er dient zum Heizen der Lampenelektroden E1 und E4. Der ohmsche Widerstand Z und die Drain-Source-Strecke sind in Reihe und zwischen die Gleichspannungsanschlüsse des Brückengleichrichters GL geschaltet, so daß sie im niederohmigen Zustand des Heizkreises bzw. des Feldeffekttransistors Q3 vom Elektrodenheizstrom durchflossen werden. Parallel zur Serienschaltung aus Widerstand Z und Drain-Source-Strecke des Feldeffekttransistors Q3 ist ein Spannungsteiler R1, R2 geschaltet, dessen Mittenabgriff M mit der Gate-Elektrode des Feldeffekttransistors Q3 und mit dem Kollektor eines Bipolartransistors Q4 verbunden ist. Die Kollektor-Emitter-Strecke des Transistors Q4 ist parallel zum Widerstand R2 des Spannungsteilers geschaltet. Parallel zum Spannungsteiler R1, R2 ist ferner ein RC-Glied R3, C5 angeordnet, über dessen Zeitkonstante die Dauer der Vorheizphase eingestellt werden kann. Insbesondere hängt die Dauer der Vorheizphase hier nicht vom temperaturabhängigen Verlauf des Elektrodenwendelwiderstandes ab. Die Basis-Emitter-Strecke des Transistors Q4 ist, zusammen mit einem Basisvorwiderstand R4 und einer Zenerdiode D1, parallel zum Kondensator C5 des RC-Gliedes geschaltet. Eine zwischen den Widerständen Z und R1 angeordnete Gleichrichterdiode D2 verhindert, daß der Entladestrom des Kondensators C5 über die Schaltstrecke des Feldeffekttransistors Q3 fließt.The first heating circuit is operated by the electrode coils E1, E4, the bridge rectifier GL, the primary winding of the transformer TR, the ohmic resistance Z and the drain-source path of the field effect transistor Q3. It serves for Heating the lamp electrodes E1 and E4. The ohmic resistance Z and the drain-source path are in series and between the DC voltage connections of the Bridge rectifier GL switched so that they are in the low-resistance state of the heating circuit or the field effect transistor Q3 flows through the electrode heating current become. Parallel to the series connection of resistor Z and drain-source path of the Field effect transistor Q3 is connected to a voltage divider R1, R2, whose center tap M with the gate electrode of the field effect transistor Q3 and with the collector a bipolar transistor Q4 is connected. The collector-emitter path of the transistor Q4 is connected in parallel to the resistor R2 of the voltage divider. Parallel to Voltage divider R1, R2 is also arranged an RC element R3, C5, via its time constant the duration of the preheating phase can be set. Hangs in particular the duration of the preheating phase does not depend on the temperature-dependent course of the electrode coil resistance from. The base-emitter path of transistor Q4 is together with a basic series resistor R4 and a Zener diode D1, parallel to Capacitor C5 of the RC element switched. One between the resistors Z and R1 arranged rectifier diode D2 prevents the discharge current of the capacitor C5 flows over the switching path of the field effect transistor Q3.

Der zweite Heizbeis ist transformatorisch an den ersten gekoppelt und besteht aus den Elektrodenwendeln E2, E3, dem dazu in Serie geschalteten Widerstand R5 und der parallel zum Widerstand R5 angeordneten Sekundärwicklung des Transformators TR.The second heating element is coupled to the first and consists of the electrode coils E2, E3, the resistor R5 and the secondary winding of the transformer arranged in parallel with the resistor R5 TR.

Nach Inbetriebnahme der Schaltungsanordnung erzeugt der Wechselrichter Q1, Q2, A zwischen den Abgriffen V1, V2 eine hochfrequente (ca. 50 KHz) Wechselspannung. Der Feldeffekttransistor Q3 wird über den Spannungsteiler R1, R2 eingeschaltet, wobei der Widerstand Z gewährleistet, daß im niederohmigen Zustand des Feldeffekttransistors Q3 eine ausreichend hohe Gleichspannung von ca. 10 V am Spannungsteiler R1, R2 zur Verfügung steht, um über den Widerstand R2 die Gate-Elektrode anzusteuern, so daß ein hochfrequenter Heizstrom durch die Lampenelektroden E1, E4 fließen kann. Über den Transformator TR wird im zweiten Heizkreis ein Heizstrom für die Lampenelektroden E2, E3 induziert. Während der Vorheizphase lädt sich der Kondensator C5 über den Widerstand R3 auf. Überschreitet die Spannung am Kondensator C5 einen kritischen Wert, so wird die Zenerdiode D1 leitend und schaltet den Bipolartransistor Q4 durch, so daß die nun leitfähige Kollektor-Emitter-Strecke des Transistors Q4 den Widerstand R2 überbrückt. Dadurch wird der Gate-Elektrode des Feldeffekttransistors Q3 das Steuersignal entzogen, so daß seine Drain-Source-Strecke und damit auch der erste Heizkreis hochohmig wird. Über die transformatorische Kopplung wird auch der zweite Heizkreis gesperrt. Die Elektrodenvorheizphase ist beendet und am Resonanzkondensator C2 baut sich die für die Niederdruckentladungslampen LP1, LP2 erforderliche Zündspannung auf. Der Kondensator C5 lädt sich nach dem Zünden der Lampen LP1, LP2 über die Betriebsspannung der Lampen auf eine Gleichspannung auf, die über den Widerstand R4 und die Zenerdiode D1 zum sicheren Durchschalten des Transistors Q4 und damit zum Sperren des Feldeffekttransistors Q3 im Lampenbetrieb ausreicht.After commissioning the circuit arrangement, the inverter generates Q1, Q2, A a high-frequency (approx. 50 KHz) alternating voltage between taps V1, V2. The field effect transistor Q3 is switched on via the voltage divider R1, R2, whereby the resistor Z ensures that in the low-resistance state of the field effect transistor Q3 a sufficiently high DC voltage of approx. 10 V at the voltage divider R1, R2 is available to control the gate electrode via resistor R2, so that a high-frequency heating current through the lamp electrodes E1, E4 can flow. A heating current is generated in the second heating circuit via the transformer TR induced for the lamp electrodes E2, E3. The battery charges during the preheating phase Capacitor C5 through resistor R3. Exceeds the voltage on the capacitor C5 a critical value, the Zener diode D1 becomes conductive and switches through the bipolar transistor Q4, so that the now conductive collector-emitter path of transistor Q4 bridges resistor R2. This will make the gate electrode the field effect transistor Q3 withdrawn the control signal, so that its drain-source path and thus the first heating circuit also becomes high-resistance. About the transformative Coupling also blocks the second heating circuit. The electrode preheating phase has ended and the resonance capacitor C2 builds up for the low-pressure discharge lamps LP1, LP2 required ignition voltage. The capacitor C5 charges after the ignition of the lamps LP1, LP2 about the operating voltage of the lamps to a DC voltage, which via the resistor R4 and the Zener diode D1 to safe switching of the transistor Q4 and thus to block the field effect transistor Q3 is sufficient in lamp operation.

Einzelheiten über die Funktionsweise des Halbbrückenwechselrichters Q1, Q2, A sollen hier nicht erläutert werden. Diese findet man beispielsweise in dem Buch "Elektronikschaltungen" von W. Hirschmann (Siemens AG) auf den Seiten 147-148 und in der EP-OS 276 460. Details about the operation of the half-bridge inverter Q1, Q2, A should not explained here. You can find these in the book, for example "Electronic circuits" by W. Hirschmann (Siemens AG) on pages 147-148 and in EP-OS 276 460.

Eine Dimensionierung der in diesem Ausführungsbeispiel verwendeten elektrischen Bauteile ist in Tabelle 1 angegeben.A dimensioning of the electrical used in this embodiment Components are given in Table 1.

Figur 2 zeigt ein zweites Ausführungsbeispiel der erfindungsgemäßen Schaltungsanordnung. Für funktionsgleiche Bauteile wurden ähnliche Bezugszeichen wie in Figur 1 gewählt. Die Schaltungsanordnung besitzt einen von einer Gleichstromquelle gespeisten Halbbrückenwechselrichter, bestehend aus den beiden Schalttransistoren Q1', Q2' und der Ansteuerungsvorrichtung A'. An den Mittenabgriff V1' des Wechselrichters ist ein Serienresonanzkreis angeschlossen, der eine Lampendrossel L', einen Koppelkondensator C3' und einen Resonanzkondensator C2' enthält. Der Resonanzkondensator C2' ist mit dem Minuspol der Gleichspannungsquelle verbunden. Parallel zum Resonanzkondensator C2' ist eine Niederdruckentladungslampe LP' mit vorheizbaren Elektroden wendeln E1', E2' geschaltet. Beide Lampenelektroden sind außerdem in einen Elektrodenheizkreis integriert, der als weitere wesentliche Bestandteile einen Kondensator Z', einen Brückengleichrichter GL' und einen Feldeffekttransistor Q3' aufweist. Die Drain-Source-Strecke des Feldeffekttransistors Q3' ist zwischen die Gleichspannungsanschlüsse des Brückengleichrichters GL' integriert, während der Kondensator Z' in Reihe zu den Wechselspannungsanschlüssen des Brückengleichrichters GL' angeordnet ist, so daß der Kondensator Z' in Serie zur Drain-Source-Strecke des Feldeffekttransistors Q3' geschaltet ist. Die Ansteuerung des Feldeffekttransistors Q3' erfolgt über eine, mit einem Abgriff V3' im Heizkreis verbundene Gleichrichterdiode D2' und einen Spannungsteiler R1', R2', dessen Mittenabgriff M' an die Gate-Elektrode des Feldeffekttranssitors Q3' angeschlossen ist. Parallel zum Spannungsteiler R1', R2' ist ferner, wie bereits beim ersten Ausführungsbeispiel beschrieben, ein RC-Glied, bestehend aus dem ohmschen Widerstand R3' und dem Kondensator C5', geschaltet. Außerdem besitzt die Schaltungsanordnung einen weiteren Schalttransistor Q4', dessen Basisanschluß über eine Zenerdiode D1' und einen Vorwiderstand R4', die beide parallel zum Kondensator C5' angeordnet sind, angesteuert wird. Der Emitter des Transistors Q4' ist mit dem Minuspol des Kondensators C5' und mit dem Brückengleichrichter GL' verbunden, während der Kollektor des Transistors Q4' über den Mittenabgriff M' des Spannungsteilers R1', R2' an die Gate-Elektrode des Feldeffekttransistors Q3' angeschlossen ist. Zusätzlich besitzt die Schaltungsanordnung gemäß des zweiten Ausführungsbeispiels ein Lampenspannungsüberwachungsglied, bestehend aus dem parallel zur Drain-Source-Strecke des Feldeffekttransistors Q3' geschalteten Spannungsteiler R6, R7 und der parallel zum Widerstand R7 angeordneten Reihenschaltung aus Gleichrichterdiode D3 und Kondensator C6.Figure 2 shows a second embodiment of the circuit arrangement according to the invention. For components with the same function, similar reference numerals were used as in FIG. 1 selected. The circuit arrangement has one fed by a direct current source Half-bridge inverter, consisting of the two switching transistors Q1 ', Q2' and the control device A '. At the center tap V1 'of the inverter a series resonance circuit is connected, the lamp choke L ', a coupling capacitor C3 'and a resonance capacitor C2' contains. The resonance capacitor C2 'is connected to the negative pole of the DC voltage source. Parallel to Resonance capacitor C2 'is a low-pressure discharge lamp LP' with preheatable Electrodes coiled E1 ', E2' switched. Both lamp electrodes are also in one Integrated electrode heating circuit, which as a further essential components Capacitor Z ', a bridge rectifier GL' and a field effect transistor Q3 ' having. The drain-source path of the field effect transistor Q3 'is between the DC voltage connections of the bridge rectifier GL 'integrated during the Capacitor Z 'in series with the AC connections of the bridge rectifier GL 'is arranged so that the capacitor Z' in series with the drain-source path of the field effect transistor Q3 'is connected. The control of the field effect transistor Q3 'takes place via a rectifier diode connected to a tap V3' in the heating circuit D2 'and a voltage divider R1', R2 ', whose center tap M' to the gate electrode of the field effect transistor Q3 'is connected. Parallel to the voltage divider R1 ', R2' is also, as already described in the first embodiment RC element, consisting of the ohmic resistor R3 'and the capacitor C5', connected. In addition, the circuit arrangement has a further switching transistor Q4 ', whose base connection via a Zener diode D1' and a series resistor R4 ', the are both arranged in parallel to the capacitor C5 'is controlled. The emitter of the transistor Q4 'is connected to the negative pole of the capacitor C5' and to the Bridge rectifier GL 'connected while the collector of transistor Q4' over the center tap M 'of the voltage divider R1', R2 'to the gate electrode of the field effect transistor Q3 'is connected. In addition, the circuit arrangement according to of the second embodiment, a lamp voltage monitoring element, consisting from the one connected in parallel to the drain-source path of the field effect transistor Q3 ' Voltage divider R6, R7 and the one arranged parallel to the resistor R7 Series connection of rectifier diode D3 and capacitor C6.

Nach Inbetriebnahme der Schaltungsanordnung erzeugt der Wechselrichter Q1', Q2', A' im Serienresonanzkreis eine hochfrequente (ca. 50 KHz) Wechselspannung. Der Feldeffekttransistor Q3' wird über die Gleichrichteriode D2' und den Spannungsteiler R1', R2' eingeschaltet, wobei der Kondensator Z' gewährleistet, daß im niederohmigen Zustand des Feldeffekttransistors Q3' eine ausreichend hohe Spannung (beispielsweise 10 V) am Spannungsteiler R1', R2' zur Verfügung steht, um über den Widerstand R2' die Gate-Elektrode anzusteuern, so daß ein hochfrequenter Heizstrom durch die Lampenelektroden E1', E2' fließt. Im Unterschied zum ersten Ausführungsbeispiel, bei dem der in den Gleichstromkreis des Brückengleichrichters GL integrierte ohmsche Widerstand Z eine ausreichende Steuerspannung für den Feldeffekttransistor Q3 erzeugte, wird diese Steuerspannung hier mittels des in den Wechselstromkreis des Brückengleichrichters GL' integrierten Kondensators Z' erzeugt. Während der Vorheizphase wird der Kondensator C5' über die Gleichrichterdiode D2' und den ohmschen Widerstand R3' aufgeladen. Überschreitet die Spannung am Kondensator C5' einen kritischen Wert, so wird die Zenerdiode D1' leitend und schaltet den Bipolartransistor Q4' durch, so daß die nun leitfähige Kollektor-Emitter-Strecke des Transistors Q4' den Widerstand R2' überbrückt. Dadurch wird der Gate-Elektrode des Feldeffekttransistors Q3' das Steuersignal entzogen, so daß seine Drain-Source-Strecke und damit auch der Heizkreis hochohmig wird. Die Elektrodenvorheizphase ist beendet und am Resonanzkondensator C2' baut sich die für die Niederdruckentladungslampe LP' erforderliche Zündspannung auf. Der Kondensator C5' lädt sich nach dem Zünden der Lampe LP' über die Betriebsspannung der Lampe auf eine Gleichspannung auf, die über den Widerstand R4' und die Zenerdiode D1' zum sicheren Durchschalten des Transistors Q4' und damit zum Sperren des Feldeffekttransistors Q3' im Lampenbetrieb ausreicht. Insoweit ist das Funktionsprinzip dieser Schaltung weitestgehend identisch zu der des ersten Ausführungsbeispiels. Das zusätzlich beim zweiten Ausführungsbeispiel installierte Lampenspannungsüberwachungsglied R6, R7, D3, C6 überwacht die Zünd- und Beoriebsspannung an der Niederdruckentladungslampe LP'. Der Spannungsabfall am Kondensator C6 wird von einer Abschaltungs-Vorrichtung ausgewertet, die hier der Übersichtlichkeit halber mit der Ansteuerungsvorrichtung A' zusammengefaßt ist. Niederdruckentladungslampen altern im Verlauf ihrer Betriebszeit, d. h., sie weisen einen Anstieg der Zündspannung und oft auch unsymmetrisch abgebrannte Elektroden auf. Letzteres kann zu einem Gleichstrombetrieb der Niederdruckentladungslampe führen. Ein Anstieg der Zünd- oder Betriebsspannung an der Lampe LP' wird über den Spannungsabfall am Kondensator C6 der Abschaltungsvorrichtung mitgeteilt. Überschreitet der Spannungsabfall am Kondensator C6 einen bestimmten Wert, so schaltet die Abschaltungsvorrichtung den Wechselrichter Q1', Q2' ab. Die Abschaltungsvorrichtung entzieht üblicherweise einem der Schalttransistoren Q1 oder Q2 des Halbbrückenwechselrichters das Basissignal und legt so den Wechselrichter still. Eine Beschreibung einer derartigen Abschaltungsvorrichtung findet man beispielsweise in dem Gebrauchsmuster DE-U 91 14 204.After commissioning the circuit arrangement, the inverter generates Q1 ', Q2', A 'in the series resonant circuit a high-frequency (approx. 50 KHz) AC voltage. The Field effect transistor Q3 'is via the rectifier diode D2' and the voltage divider R1 ', R2' switched on, the capacitor Z 'ensuring that the low-resistance State of the field effect transistor Q3 'a sufficiently high voltage (for example 10 V) is available at the voltage divider R1 ', R2', via the resistor R2 ' to drive the gate electrode, so that a high-frequency heating current through the Lamp electrodes E1 ', E2' flows. In contrast to the first embodiment, at which is the ohmic integrated in the DC circuit of the bridge rectifier GL Resistor Z is a sufficient control voltage for the field effect transistor Q3 generated, this control voltage is here by means of in the AC circuit of the Bridge rectifier GL 'integrated capacitor Z' generated. During the The capacitor C5 'is preheated via the rectifier diode D2' and the ohmic resistor R3 'charged. Exceeds the voltage on the capacitor C5 'has a critical value, the zener diode D1' becomes conductive and switches the bipolar transistor Q4 'through, so that the now conductive collector-emitter path of the transistor Q4 'bridges resistor R2'. This will cause the gate of the Field effect transistor Q3 'deprived of the control signal, so that its drain-source path and thus the heating circuit also has a high resistance. The electrode preheating phase has ended and the resonance capacitor C2 'builds up for the low-pressure discharge lamp LP 'required ignition voltage. The capacitor C5 'recharges the ignition of the lamp LP 'via the operating voltage of the lamp to a DC voltage on, via the resistor R4 'and the Zener diode D1' for safe Turning on the transistor Q4 'and thus to block the field effect transistor Q3 'is sufficient in lamp operation. So far is the principle of operation of this circuit largely identical to that of the first embodiment. The additional at second embodiment installed lamp voltage monitoring element R6, R7, D3, C6 monitors the ignition and operating voltage on the low-pressure discharge lamp LP '. The voltage drop across capacitor C6 is from a shutdown device evaluated, here for the sake of clarity with the control device A 'is summarized. Low pressure discharge lamps age in the course their operating time, d. that is, they exhibit an increase in ignition voltage and often also asymmetrical burned electrodes. The latter can lead to DC operation of the low pressure discharge lamp. An increase in the ignition or operating voltage on the lamp LP 'is the voltage drop across the capacitor C6 of the shutdown device communicated. Exceeds the voltage drop across the capacitor C6 a certain value, the shutdown device switches the inverter Q1 ', Q2'. The shutdown device usually deprives one of the Switching transistors Q1 or Q2 of the half-bridge inverter have the base signal and thus shuts down the inverter. A description of such a shutdown device can be found, for example, in utility model DE-U 91 14 204.

In Figur 3 ist ein drittes Ausführungsbeispiel der erfindungsgemäßen Schaltungsanordnung dargestellt. Die Schaltungsanordnung besitzt einen von einer Gleichstromquelle gespeisten Halbbrückenwechselrichter, bestehend aus den beiden Schalttransistoren Q1", Q2" und der Ansteuerungsvorrichtung A". An den Mittenabgriff V1" des Wechselrichters ist ein Serienresonanzkreis angeschlossen, der eine Lampendrossel L", einen Kopplungskondensator C3" und einen Resonanzkondensator C2" enthält. Der Resonanzkondensator C2" ist mit dem Minuspol der Gleichspannungsquelle verbunden. Parallel zum Resonanzkondensator C2" ist eine Niederdruckentladungslampe LP" mit vorheizbaren Elektrodenwendeln E1", E2" geschaltet. Beide Lampenelektroden E1", E2" sind ausserdem in einen Elektrodenheizkreis integriert, der als weitere wesentliche Bestandteile einen Kondensator Z" und einen Feldeffekttransistor Q3" aufweist. Der Kondensator Z" ist in Serie zur Drain-Source-Strecke des Feldeffekttransistors Q3" geschaltet. Die Ansteuerung des Feldeffekttransistors Q3" erfolgt über eine, mit einem Abgriff V3" im Heizkreis verbundene Gleichrichterdiode D2" und einen Spannungsteiler R1", R2", dessen Mittenabgriff M" an die Gate-Elektrode des Feldeffekttranssitors Q3" angeschlossen ist. Parallel zum Spannungsteiler R1", R2" ist ferner, wie bereits beim ersten Ausführungsbeispiel beschrieben, ein RC-Glied, bestehend aus dem ohmschen Widerstand R3" und dem Kondensator C5", geschaltet. Ausserdem besitzt die Schaltungsanordnung einen weiteren Schalttransistor Q4", dessen Basisanschluß über eine Zenerdiode D1" und einen Vorwiderstand R4", die beide parallel zum Kondensator C5" angeordnet sind, angesteuert wird. Der Emitter des Transistors Q4" ist mit dem Minuspol des Kondensators C5" und mit der Lampenelektrode E1" verbunden, während der Kollektor des Transistors Q4" über den Mittenabgriff M" des Spannungsteilers R1", R2" an die Gate-Elektrode des Feldeffekttransistors Q3" angeschlossen ist. FIG. 3 shows a third exemplary embodiment of the circuit arrangement according to the invention shown. The circuit arrangement has one from a direct current source fed half-bridge inverter, consisting of the two switching transistors Q1 ", Q2" and the control device A ". To the center tap V1" of the Inverter is connected to a series resonance circuit, which is a lamp choke L ", a coupling capacitor C3" and a resonance capacitor C2 "contains. The resonance capacitor C2 "is connected to the negative pole of the DC voltage source. A low-pressure discharge lamp is parallel to the resonance capacitor C2 " LP "with preheatable electrode filaments E1", E2 "switched. Both lamp electrodes E1 ", E2" are also integrated in an electrode heating circuit, which acts as another essential components a capacitor Z "and a field effect transistor Q3" having. The capacitor Z "is in series with the drain-source path of the field effect transistor Q3 "is switched on. The field effect transistor Q3" is activated via a rectifier diode D2 connected to a tap V3 "in the heating circuit and one Voltage divider R1 ", R2", the center tap M "to the gate electrode of the Field effect transistor Q3 "is connected. In parallel to the voltage divider R1", R2 " furthermore, as already described in the first exemplary embodiment, an RC element from the ohmic resistor R3 "and the capacitor C5". Furthermore the circuit arrangement has a further switching transistor Q4 ", the Base connection via a Zener diode D1 "and a series resistor R4", both are arranged in parallel to the capacitor C5 "is driven. The emitter of the Transistor Q4 "is with the negative pole of the capacitor C5" and with the lamp electrode E1 "connected while the collector of transistor Q4" through the center tap M "of the voltage divider R1", R2 "to the gate electrode of the field effect transistor Q3 "is connected.

Die Funktionsweise des dritten Ausführungsbeispiels unterscheidet sich geringfügig von der der vorher erläuterten Ausführungsbeispiele. Beim dritten Ausführungsbeispiel ist der Feldeffekttransistor Q3 nicht, wie bie den ersten beiden Ausführungsbeispielen beschrieben, in den Gleichstromkreis eines Brückengleichrichters GL, GL' integriert, sondern direkt in den mit hochfrequentem Wechselstrom beaufschlagten Heizkreis geschaltet. Überraschenderweise funktioniert die Elektrodenvorheizung hier auch ohne Gleichrichter GL bzw. GL'.The operation of the third embodiment differs slightly from that of the previously explained exemplary embodiments. In the third embodiment is the field effect transistor Q3, as in the first two embodiments described, integrated in the DC circuit of a bridge rectifier GL, GL ', but directly into the one with high-frequency alternating current Heating circuit switched. Surprisingly, the electrode preheater works here also without rectifier GL or GL '.

Nach Inbetriebnahme der Schaltungsanordnung erzeugt der Wechselrichter Q1", Q2", A" im Serienresonanzkreis eine hochfrequente (ca. 50 KHz) Wechselspannung. Der Feldeffekttransistor Q3" wird über die Gleichrichterdiode D2" und den Spannungsteiler R1", R2" eingeschaltet, wobei der Kondensator Z" gewährleistet, daß im niederohmigen Zustand des Feldeffekttransistors Q3" eine ausreichend hohe Spannung (beispielsweise 10 V) am Spannungsteiler R1", R2" zur Verfügung steht, um über den Widerstand R2" die Gate-Elektrode anzusteuern, so daß ein hochfrequenter Heizstrom durch die Lampenelektroden E1", E2" fließt. Im Unterschied zu den vorherigen beiden Ausführungsbeispielen sieht der Feldeffekttransistor Q3 hier einen Wechselstrom. Im niederohmigen Zustand der Drain-Source-Strecke, d. h. während der Elektrodenvorheizphase, wird die positive Halbwelle des Heizstromes über die Drain-Source-Strecke des Feldeffekttransistors Q3" geleitet, während die negative Halbwelle des Heizstromes über die parallel zur Drain-Source-Strecke geschaltete, in den Feldeffekttransistor Q3" integrierte Freilaufdiode (in Figur 3 gestrichelt abgebildet) fließt. Während der Vorheizphase wird außerdem der Kondensator C5" über die Gleichrichterdiode D2" und den ohmschen Widerstand R3" aufgeladen. Überschreitet die Spannung am Kondensator C5" einen kritischen Wert, so wird die Zenerdiode D1" leitend und schaltet den Bipolartransistor Q4" durch, so daß die nun leitfähige Kollektor-Emitter-Strecke des Transistors Q4" den Widerstand R2" überbrückt. Dadurch wird der Gate-Elektrode des Feldeffekttransistors Q3" das Steuersignal entzogen, so daß seine Drain-Source-Strecke und damit auch der Heizkreis hochohmig wird. Die Elektrodenvorheizphase ist nunmehr beendet und am Resonanzkondensator C2" baut sich die für die Niederdruckentladungslampe LP" erforderliche Zündspannung auf. Der Kondensator C5" lädt sich nach dem Zünden der Lampe LP" über die Betriebsspannung der Lampe auf eine Gleichspannung auf, die über den Widerstand R4" und die Zenerdiode D1" zum sicheren Durchschalten des Transistors Q4" und damit zum Sperren des Feldeffekttransistors Q3" im Lampenbetrieb ausreicht. Nach Beendigung der Vorheizphase entsteht mit Hilfe der Freilaufdiode an der Drain-Source-Strecke des Feldeffekttransistors Q3" eine Sperrspannung, die ungefähr der Zünd- bzw. Betriebsspannung der Lampe LP" entspricht. Daher ist bei der Auswahl des Feldeffekttransistors Q3" darauf zu achten, daß dieser eine ausreichende Spannungsfestigkeit besitzt. Allerdings kann die Spannungsbelastung des Feldeffekttransistors Q3" auch mit Hilfe eines zusätzlichen, parallel zur Drain-Source-Strecke geschalteten Kondensators C" (in Figur 3 gestrichelt abgebildet), so daß er mit dem Kondensator Z" einen kapazitiven Spannungsteiler bildet, verringert werden.After commissioning the circuit arrangement, the inverter generates Q1 ", Q2", A "in the series resonance circuit a high frequency (approx. 50 KHz) AC voltage Field effect transistor Q3 "is via the rectifier diode D2" and the voltage divider R1 ", R2" turned on, the capacitor Z "ensures that in the low-resistance State of the field effect transistor Q3 "a sufficiently high voltage (for example 10 V) on the voltage divider R1 ", R2" is available to switch over the Resistor R2 "to drive the gate electrode, so that a high-frequency heating current flows through the lamp electrodes E1 ", E2". Unlike the previous ones In both exemplary embodiments, the field effect transistor Q3 sees an alternating current here. In the low-resistance state of the drain-source path, i.e. H. during the Electrode preheating phase, the positive half-wave of the heating current over the drain-source path of the field effect transistor Q3 "passed during the negative half-wave of the heating current via the parallel to the drain-source path, in the Field effect transistor Q3 "integrated free-wheeling diode (shown in broken lines in FIG. 3) flows. During the preheating phase, the capacitor C5 "is also on the Rectifier diode D2 "and the ohmic resistor R3" charged. exceeds the voltage across the capacitor C5 "becomes a critical value, the Zener diode D1" conductive and turns on the bipolar transistor Q4 ", so that the now conductive collector-emitter path of the transistor Q4 "bridges the resistor R2". Thereby the control signal is withdrawn from the gate electrode of the field effect transistor Q3 ", so that its drain-source path and thus also the heating circuit becomes high-resistance. The The electrode preheating phase has now ended and is being built on the resonance capacitor C2 " the ignition voltage required for the low-pressure discharge lamp LP ". The capacitor C5 "charges after the lamp LP has been ignited" via the operating voltage the lamp to a DC voltage which is connected via the resistor R4 "and the Zener diode D1 "for safely switching on the transistor Q4" and thus for Blocking the field effect transistor Q3 "in lamp operation is sufficient. After completion The preheating phase is created with the help of the freewheeling diode on the drain-source path of the field effect transistor Q3 "a reverse voltage, which is approximately the ignition or operating voltage corresponds to the lamp LP ". Therefore, when selecting the field effect transistor Q3 "to ensure that this has sufficient dielectric strength has. However, the voltage loading of the field effect transistor Q3 "can also with the help of an additional capacitor connected in parallel to the drain-source path C "(shown in dashed lines in Figure 3), so that it with the capacitor Z" one capacitive voltage divider forms can be reduced.

Die Erfindung beschränkt sich nicht auf die oben näher beschriebenen Ausführungsbeispiele. Beispielsweise kann das RC-Glied R3, C5 zusätzlich zu seiner oben beschriebenen Funktion, bei geeigneter Dimensionierung, auch die Funktion der Lampenspannungsüberwachungeinheit R6, R7, C6, D3 übernehmen. In diesem Fall wird von der Abschaltvorrichtung der Spannungsabfall am Kondensator C5 überwacht. Dimensionierung der elektrischen Bauteile für zwei in Serie geschaltete 58 W-Leuchtstofflampen gemäß des ersten Ausführungsbeispiels Q1, Q2 BUF644 Q3 BUZ80 Q4 BC547B L 1,25 mH C1 100 pF C2 7,5 nF C3 200 nF C5 2,2 µF Z 6,8 Ω R1 240 KΩ R2 1 MΩ R3 480 KΩ R4 10 KΩ R5 2,2 KΩ The invention is not limited to the exemplary embodiments described in more detail above. For example, the RC element R3, C5 can also take on the function of the lamp voltage monitoring unit R6, R7, C6, D3 in addition to its function described above, with suitable dimensions. In this case, the switch-off device monitors the voltage drop across capacitor C5. Dimensioning of the electrical components for two 58 W fluorescent lamps connected in series according to the first exemplary embodiment Q1, Q2 BUF644 Q3 BUZ80 Q4 BC547B L 1.25 mH C1 100 pF C2 7.5 nF C3 200 nF C5 2.2 µF Z 6.8 Ω R1 240 KΩ R2 1 MΩ R3 480 KΩ R4 10 KΩ R5 2.2 KΩ

Claims (10)

  1. Circuit arrangement for operating one or more low-pressure discharge lamps, comprising
    an inverter (Q1, Q2; Q1', Q2'; Q1", Q2'') with a drive device (A; A'; A")
    an d.c. voltage supply for the inverter,
    a resonance circuit, which is connected to the inverter (Q1, Q2; Q1', Q2'; Q1", Q2") and has at least one resonance inductance (L; L'; L") and a resonance capacitor (C2; C2'; C2") and operates at least one low-pressure discharge lamp (LP1, LP2; LP'; LP'') equipped with pre-heatable electrode filaments (E1, E2, E3, E4; E1', E2'; E1'', E2"),
    a heating circuit for pre-heating lamp electrodes (E1, E4; E1', E2'; E1'', E2"),
    a semiconductor switch (Q3; Q3'; Q3''), which switches the heating circuit between a low-impedance and a high-impedance state, and the contact clearance of which is integrated into the heating circuit,
    a resistance element (Z; Z'; Z"), which is integrated into the heating circuit and is connected in series with the contact clearance of the semiconductor switch (Q3; Q3'; Q3''),
    characterized in that the resistance value of the resistance element (Z; Z'; Z") is of such a rating that, in the low-impedance state of the contact clearance at the series connection, comprising the resistance element (Z; Z'; Z'') and the semiconductor contact clearance, there is an electrical voltage which controls the semiconductor switch (Q3; Q3'; Q3'') into the low-impedance state, and the circuit arrangement has an RC element (R3, C5; R3', C5'; R3", C5''), which is arranged parallel to the series connection comprising the resistance element (Z; Z'; Z'') and the semiconductor contact clearance of the semiconductor (Q3; Q3'; Q3'') and by means of the time constant of which the duration of the pre-heating phase is set.
  2. Circuit arrangement according to Claim 1, characterized in that the semiconductor switch (Q3; Q3'; Q3'') is a field-effect transistor, the drain-source path of which is connected in series with the resistance element (Z; Z'; Z").
  3. Circuit arrangement according to Claim 1, characterized in that the resistance element (Z) is an ohmic resistor.
  4. Circuit arrangement according to Claim 1, characterized in that the resistance element (Z'; Z'') is a capacitor.
  5. Circuit arrangement according to Claim 2, characterized in that the voltage drop across the series connection comprising the resistance element (Z; Z'; Z'') and the drain-source path of the field-effect transistor (Q3; Q3'; Q3'') in the low-impedance state of the drain-source path is approximately 10 V.
  6. Circuit arrangement according to Claims 2 and 4, characterized in that the drain-source path of the field-effect transistor (Q3") is integrated directly into the heating circuit supplied with alternating current.
  7. Circuit arrangement according to Claims 2, 4 and 6, characterized in that the circuit arrangement has in parallel with the drain-source path of the field-effect transistor (Q3'') a capacitor (C''), which with the resistance element (Z'') forms a capacitive voltage divider.
  8. Circuit arrangement according to Claim 1, characterized in that a bridge rectifier (GL; GL') is integrated into the heating circuit, the semiconductor switch (Q3; Q3') being connected between the d.c. voltage terminals of the bridge rectifier (GL; GL').
  9. Circuit arrangement according to Claim 1, characterized in that a lamp-voltage monitoring element (R6, R7, C6, D3), which, in conjunction with a switching-off device, switches off the circuit arrangement when there is an excessive lamp-firing or lamp-operating voltage, is integrated into the heating circuit.
  10. Circuit arrangement according to Claim 1, characterized in that the RC element (R3, C5; R3', C5'; R3", C5'') is designed as a lamp-voltage monitoring element which, in conjunction with a switching-off device, switches off the circuit arrangement when there is an excessive lamp-firing or lamp-operating voltage.
EP95110851A 1994-07-21 1995-07-11 Circuit for operating one or more lour pressure discharge lamps Expired - Lifetime EP0693864B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4425859 1994-07-21
DE4425859A DE4425859A1 (en) 1994-07-21 1994-07-21 Circuit arrangement for operating one or more low-pressure discharge lamps

Publications (3)

Publication Number Publication Date
EP0693864A2 EP0693864A2 (en) 1996-01-24
EP0693864A3 EP0693864A3 (en) 1997-12-03
EP0693864B1 true EP0693864B1 (en) 2002-06-12

Family

ID=6523794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95110851A Expired - Lifetime EP0693864B1 (en) 1994-07-21 1995-07-11 Circuit for operating one or more lour pressure discharge lamps

Country Status (5)

Country Link
US (1) US5589740A (en)
EP (1) EP0693864B1 (en)
JP (1) JPH0855690A (en)
CA (1) CA2153108C (en)
DE (2) DE4425859A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612170A1 (en) * 1996-03-27 1997-10-02 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Circuit arrangement for operating electric lamps and operating methods for electric lamps
GB2326543B (en) * 1997-06-19 1999-12-08 Toshiba Lighting & Technology Lighting apparatus
US5973455A (en) * 1998-05-15 1999-10-26 Energy Savings, Inc. Electronic ballast with filament cut-out
US7592753B2 (en) * 1999-06-21 2009-09-22 Access Business Group International Llc Inductively-powered gas discharge lamp circuit
AU6335400A (en) 1999-07-02 2001-01-22 Fusion Lighting, Inc. High output lamp with high brightness
US6674249B1 (en) * 2000-10-25 2004-01-06 Advanced Lighting Technologies, Inc. Resistively ballasted gaseous discharge lamp circuit and method
DE10100037A1 (en) * 2001-01-03 2002-07-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Circuit for operating electric lamps, comprises start circuit for inverter and system for deactivating start circuit
DE10108138A1 (en) * 2001-02-20 2002-08-29 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Protection circuit for a fluorescent lamp
DE10140723A1 (en) * 2001-08-27 2003-03-20 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Operating circuit for discharge lamp with preheatable electrodes
CN100474997C (en) * 2001-11-23 2009-04-01 皇家飞利浦电子股份有限公司 Circuit arrangement for operating a lamp
DE10300249B4 (en) * 2002-02-18 2010-09-09 Tridonicatco Gmbh & Co. Kg Electronic ballast for several gas discharge lamps
DE10235217A1 (en) * 2002-08-01 2004-02-19 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit device for operating lamp, especially low pressure discharge lamp has current limiter that can drive control electrode of at least one transistor switching unit in inverter to limit current
DE10252836A1 (en) * 2002-11-13 2004-05-27 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Device for operating discharge lamps
ES2299986T3 (en) * 2005-03-09 2008-06-01 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh PROVISION OF PROTECTION AGAINST OVERLOAD FOR ELECTRONIC CONVERTERS, FOR EXAMPLE FOR HALOGEN LAMPS.
US7821208B2 (en) * 2007-01-08 2010-10-26 Access Business Group International Llc Inductively-powered gas discharge lamp circuit
EP2103192B1 (en) 2007-01-17 2013-03-13 OSRAM GmbH Circuit arrangement and method for starting and operating one or more discharge lamps
US8232727B1 (en) 2009-03-05 2012-07-31 Universal Lighting Technologies, Inc. Ballast circuit for a gas-discharge lamp having a filament drive circuit with monostable control
DE102009022072A1 (en) 2009-05-20 2010-11-25 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement for operating a series circuit of at least two low-pressure gas discharge lamps and corresponding method
DE202010013926U1 (en) * 2010-10-06 2012-01-11 Bag Engineering Gmbh Electronic ballast and lighting device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251752A (en) * 1979-05-07 1981-02-17 Synergetics, Inc. Solid state electronic ballast system for fluorescent lamps
DE2924069C2 (en) * 1979-06-15 1982-05-13 Philips Patentverwaltung Gmbh, 2000 Hamburg Circuit arrangement for igniting and operating a gas and / or vapor discharge lamp
IT1121148B (en) * 1979-06-26 1986-03-26 Siliani Pier IGNITION CIRCUIT FOR FLUORESCENT AND SIMILAR PIPES WITH PRELIMINARY HEATING OF THE FILAMENTS
AT396536B (en) * 1983-01-20 1993-10-25 Zumtobel Ag PROTECTIVE CIRCUIT FOR A INVERTER CIRCUIT FOR THE OPERATION OF GAS DISCHARGE LAMPS
DE3623749A1 (en) * 1986-07-14 1988-01-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh CIRCUIT ARRANGEMENT FOR OPERATING LOW-PRESSURE DISCHARGE LAMPS
DE3700421A1 (en) * 1987-01-08 1988-07-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh CIRCUIT ARRANGEMENT FOR OPERATING A LOW-PRESSURE DISCHARGE LAMP
DE3901111A1 (en) * 1989-01-16 1990-07-19 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh CIRCUIT ARRANGEMENT FOR THE OPERATION OF DISCHARGE LAMPS
DE4100349C2 (en) * 1990-01-31 1994-04-28 Siemens Ag Electronic ballast
DE4140557A1 (en) 1991-12-09 1993-06-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh CIRCUIT ARRANGEMENT FOR OPERATING ONE OR MORE LOW-PRESSURE DISCHARGE LAMPS
ATE147926T1 (en) * 1992-09-24 1997-02-15 Knobel Lichttech CIRCUIT ARRANGEMENT FOR OPERATING A FLUORESCENT LAMP AND FOR MEASURING THE LAMP CURRENT
US5434477A (en) * 1993-03-22 1995-07-18 Motorola Lighting, Inc. Circuit for powering a fluorescent lamp having a transistor common to both inverter and the boost converter and method for operating such a circuit
DE4328306A1 (en) * 1993-08-23 1994-03-17 Spindler Bernhard Dipl Ing Circuit for HF operation for low presence discharge lamps - has rectifier and inverter and several opto-couplers, with controlled load circuit

Also Published As

Publication number Publication date
EP0693864A3 (en) 1997-12-03
EP0693864A2 (en) 1996-01-24
DE59510237D1 (en) 2002-07-18
DE4425859A1 (en) 1996-01-25
JPH0855690A (en) 1996-02-27
CA2153108C (en) 2003-06-17
US5589740A (en) 1996-12-31
CA2153108A1 (en) 1996-01-22

Similar Documents

Publication Publication Date Title
EP0693864B1 (en) Circuit for operating one or more lour pressure discharge lamps
EP0616752B1 (en) Circuit for operating one or more low-pressure discharge lamps
EP0800335B1 (en) Circuit for operating electric lamps
EP0798952B1 (en) Circuit arrangement for operating electric lamps and method of operation
EP0239793B1 (en) Circuit arrangement for operating low-pressure discharge lamps
CH657003A5 (en) CONTROL UNIT FOR OPERATING AT LEAST ONE LOW PRESSURE DISCHARGE LAMP.
DE3805510A1 (en) CIRCUIT ARRANGEMENT FOR OPERATING A LOW-PRESSURE DISCHARGE LAMP
EP0378992B1 (en) Circuitry for driving discharge lamps
EP0439240B1 (en) Electronic ballast
EP0917412B1 (en) Self-oscillating circuit with simplified startup circuit
EP0054301B1 (en) Lighting circuit for a low-pressure discharge lamp
EP0655880A1 (en) Low voltage circuit for operating a low pressure discharge lamp
EP0485866A1 (en) Switching circuit for operating a discharge lamp
DE4005776C2 (en) Circuit arrangement for starting and operating a gas discharge lamp
DE69616451T2 (en) switchover
EP0648068B1 (en) Circuit for operating electrical lamps
DE3342010A1 (en) INVERTER SWITCHING
DE3504803A1 (en) COUNTER-GENERATOR
EP0519220A1 (en) Ballast with controlled heating time
DE19734298B4 (en) Ignition circuit for igniting a fluorescent tube with preheatable electrodes
EP0276460A1 (en) Circuit arrangement for operating a low-pressure discharge lamp
EP1860925B1 (en) Electronic lamp cut-in unit with heater switch
EP1377136A2 (en) Device for operating discharge lamps
EP0757420A1 (en) Electric ballast with inrush current limitation and overvoltage protection
DE4325050C2 (en) Circuit arrangement for starting a preheatable discharge lamp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19980107

17Q First examination report despatched

Effective date: 20000414

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 05B 41/295 A

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59510237

Country of ref document: DE

Date of ref document: 20020718

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020816

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060707

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060711

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060717

Year of fee payment: 12

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20070731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070711

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110728

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59510237

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59510237

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59510237

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130722

Year of fee payment: 19

Ref country code: SE

Payment date: 20130719

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130722

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59510237

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59510237

Country of ref document: DE

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140712

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731