[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0693235B1 - Dezimationsfilter - Google Patents

Dezimationsfilter Download PDF

Info

Publication number
EP0693235B1
EP0693235B1 EP94911197A EP94911197A EP0693235B1 EP 0693235 B1 EP0693235 B1 EP 0693235B1 EP 94911197 A EP94911197 A EP 94911197A EP 94911197 A EP94911197 A EP 94911197A EP 0693235 B1 EP0693235 B1 EP 0693235B1
Authority
EP
European Patent Office
Prior art keywords
decimation
stage
delay
decimation filter
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94911197A
Other languages
English (en)
French (fr)
Other versions
EP0693235A1 (de
Inventor
Tapio SARAMÄKI
Ville Eerola
Timo Husu
Eero Pajarre
Seppo Ingalsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tritech Microelectronics Ltd
Original Assignee
Tritech Microelectronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tritech Microelectronics Ltd filed Critical Tritech Microelectronics Ltd
Publication of EP0693235A1 publication Critical patent/EP0693235A1/de
Application granted granted Critical
Publication of EP0693235B1 publication Critical patent/EP0693235B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/065Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being integer
    • H03H17/0664Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being integer where the output-delivery frequency is lower than the input sampling frequency, i.e. decimation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/0671Cascaded integrator-comb [CIC] filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/0685Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being rational

Definitions

  • the present invention relates to a decimation filter comprising a cascade arrangement of the following elements in the given order:
  • a decimation filter is a digital filter where-with the sampling frequency of a signal is decreased (decimated) by a number K (normally an integer) which is called the decimation ratio.
  • a decimation filter is typically used in connection with an oversampling A/D or D/A converter (e.g. sigma-delta converter) to decrease the output sampling frequency of the converter.
  • Decimation can in principle be performed in one stage comprising a low-pass filter and a unit taking every K:th sample from the output of the low-pass filter, K being the decimation ratio.
  • the filtering response of the low-pass filter must be such that the information carried by the output signal of the filter fits into the band according to the new sampling frequency.
  • a problem attendant the decimation carried out in one stage will be that a low-pass filter having a very steep and narrow-band frequency response is needed. This problem has traditionally been overcome by performing the filtering and decimation in several stages, so that the product of the decimation ratios K 1 , K 2 ,...K n of the different decimation stages is the requisite decimation ratio K stated above.
  • the requirements on the characteristics of the low-pass filters required in the individual stages are relieved and their number of order is decreased so that the overall number of order in the low-pass filters of the different stages is only a fraction of that of a corresponding single-stage implementation. This is particularly the case when the decimation ratio M is high, e.g. > 50.
  • the design and structure of such a filter have been described for instance in the article E.B. Hogenauer, "An economical class of digital filters for decimation and interpolation", in IEEE Trans. Acoust. Speech Signal Processing, pp. 155-162, vol. ASSP-29, April 1981.
  • One known decimator structure satisfying the transfer function according to equation 1 is shown in Figure 1.
  • FIG. 1 shows a scaling element 12 and a decimation block 13 forwarding only every K:th sample. It should be noted that if 1's or 2's complement arithmetic (or modulo arithmetic in general) and the worst-case scaling are used, the output values of a filter H(z) implemented as shown in Figure 1 are correct even though internal overflows were to occur in the feedback loops realizing the term 1/(1 - z -1 ). Furthermore, under the above conditions the effect of temporary miscalculations vanishes from the output in finite time and initial resetting is not necessarily needed.
  • the scaling constant 2 -P has to satisfy the condition 2 -P ⁇ (1/K) M .
  • F s is the input sampling frequency.
  • the prior art structure shown in Figure 1 is attended by the disadvantage that the zeros produced by the transfer function thereof are located at frequencies F s /K,2*F s /K,3*F s /K,...,(K-1)*F s /K , and the integer M can only increase their number, i.e. the number of order of the filter.
  • the number of structural elements in the prior art filter stage is unnecessarily high for the required attenuation at frequencies [ F s /2(2r/K-1/D),F s /2(2r/K+1/D) ].
  • a high number of structural elements increases the number of additions and delays required in the implementation.
  • the major disadvantage is the increase of the gain of the filter when the number of order increases, and thus the number of additional bits required in the structure increases.
  • the required number of additional bits is the smallest integer which is higher than log 2 K M .
  • the object of the present invention is a filter structure in which the number of structural elements can be considerably reduced in comparison with prior art structures having the same attenuations at frequencies [ F s (2(2r/K-1/D),F s /2(2r/K+1/D) ].
  • the necessary attenuation can be achieved with lower-order structures than was previously possible, on account of the better location of the attenuation zeros.
  • the present invention provides a decimation filter as set out in accompanying claim 1 or claim 5.
  • the decimation filter structure according to the invention comprises additional branches for shifting the location of the attenuation zeros of the decimation filter and thereby reducing the order M and the number of structural elements M of the required filter.
  • D 64 when a 120-dB attenuation is desired.
  • the scaling factors a 1 , a 2 of the branches can be quantized to be integers which may in some cases be selected from powers of two.
  • decimation filter of the invention is realized as an integrated circuit
  • Such a prior art filter would further require a higher internal wordlength (8 bits more, i.e. more than 30% in excess of that of the exemplified pre-filter stage of the sigma-delta modulator which has six terms), and the number of delay elements and adders would be higher.
  • the estimated saving in silicon area occupation achieved with the invention over the corresponding known solution is about 30% for the case where these filters are used as first filter stages in the decimation of a one-bit data stream from a sigma-delta modulator.
  • the structure now disclosed has the further advantage of lower amplitude distortion within the passband, thus facilitating error correction.
  • the calculation accuracy of the prior art structure becomes too high, and thus either the speed of the circuit configurations or the clock signals in the system preclude the use of the prior art structure.
  • FIG. 2 illustrating a decimation filter stage according to the invention.
  • This decimation filter stage decreases the sampling frequency F s of a signal applied to the input IN, said signal preferably being a one-bit data stream from a sigma-delta modulator, so that the sampling frequency of the data stream at the output OUT of the filter is F s /K.
  • Factor K is called the decimation ratio.
  • a scaling element 21 having a scaling factor 2 -P is first provided.
  • an integration block comprising in series configuration M 1 integration stages E(z) as shown in Figure 2A is connected in series.
  • the integration stage E(z) comprises a series connection of adder 200 and delay means 201.
  • the input signal of the integration stage is applied to one input of the adder 201, and the output signal of the delay means 201, which at the same time provides the output signal of the entire integration stage, is fed back to the second input of the adder 200.
  • the added signal obtained at the output of the adder 200 is applied to the delay means 201.
  • a series connection of M2 second order integration blocks E(z) 2 is provided subsequent to the integration block.
  • Each of these blocks comprises in series configuration two integration stages as shown in Figure 2A.
  • a decimation block 24 is connected which forwards every K:th sample from the output of the integration stage
  • M 2 second order derivation blocks F(z) 2 are connected in series.
  • Each second order derivation block F(z) 2 comprises in a series connection a pair of derivation stages F(z) shown in Figure 2B.
  • a series connection of adders is provided ahead of the next second order block.
  • the derivation stage F(z) of Figure 2B comprises a series connection of delay means 202 and subtractor 203.
  • the input signal is applied to adder 203 both directly and via delay means 202 having a delay of one clock cycle, and the differential signal is applied to the output of the stage.
  • an outgoing feedforward signal processing branch comprising a delay means 28 2 having a delay z -2 of two clock cycles at clock rate Fs, a decimation stage 29, a delay means 30 2 having a delay z -2 of two clock cycles at clock rate F s /K, and a scaling element 31 2 having a scaling factor A 2 .
  • the output of each scaling element is coupled to the second input of the corresponding adder
  • FIG. 3 Another alternative filter structure for realizing the above transfer function is shown in Figure 3.
  • the arrangement comprises - starting from the input IN and in the following sequence - a series connection of a scaling element 21, an M1-stage integration block 22, M2 second order integration blocks and a decimation block 24.
  • a derivation block 25' is connected comprising in a series connection M2 derivation blocks F(z) as shown in Figure 2B, a derivation block 27 comprising in a series connection M1 derivation stages F(z), and an adder 33.
  • an outgoing feedforward signal processing branch comprising a delay means 28 2 having a delay of two clock cycles at clock rate Fs, a decimation stage 29, a delay means 30 2 having a delay of two clock cycles at clock rate F s /K, a derivation block 32 2 comprising (M-4) derivation stages F(z), and a scaling element 31 2 having a scaling factor A 2 .
  • the filter structure of Figure 2 can be used when the scaling factors a i can be quantized to be integers.
  • the filter structure of Figure 3 can also be used with decimal factors (fractions) a i .
  • the circuit is generally executed on silicon using parallel arithmetic in the integrator part and serial arithmetic in the derivation blocks.
  • the parallel part takes up about 3/4 of the area, owing mainly to the arithmetic (parallel adders).
  • the proportion of the delay in the parallel part is about 15%.
  • the integration in the decimation circuit is performed between the derivation blocks by control and a parallel/series register which is very uncomplicated.
  • the area of the serial derivation part is mostly taken up by the delays, since the arithmetic (the adder is only one-bit adder, yet the delay of one sample is equal in parallel and series configurations) is one-bit arithmetic.
  • the delays (delay elements) ahead of the decimation as well as the actual decimation can be realized by means of a parallel/series register and control. Only the additional delays after decimation have to be realized; mathematically all delays are present in accordance with the block diagrams. This affords considerable saving in silicon area occupation.
  • the scaling factors can be realized with an accuracy of a few bits.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Complex Calculations (AREA)
  • Color Television Systems (AREA)

Claims (8)

  1. Dezimierungsfilter, der eine Kaskadenanordnung der folgenden Elemente in gegebener Ordnung aufweist:
    einen Block (22) von M1 digitalen Integrationsstufen erster Ordnung, die je eine Taktgeberrate Fs und eine Verzögerung um einen Taktzyklus haben,
    M2 digitale Integrationsstufen (231...23M2) zweiter Ordnung, die eine Taktgeberrate F1S und eine Verzögerung um zwei Taktzyklen haben,
    eine Dezimierungsstufe (24) zum Vermindern der Abtastfrequenz des Ausgangssignals von der letzten Integrationsstufe mittels eines vorausbestimmten Dezimierungsverhältnisses K,
    M2 digitale Derivationsstufen (251...25M2) zweiter Ordnung mit je einer Taktgeberrate Fs/K, die je ein Paar Derivationsstufen aufweisen, die je eine Verzögerungselementstufe zur Verzögerung des Eingangssignals um einen Taktzyklus und eine Subtraktionselementstufe zur Subtraktion des Ausgangssignals des Verzögerungselements von dem Eingangssignal aufweisen,
    einen Block (27) von M1 Derivationsstufen, die je eine Taktgeberrate Fs/K und eine Verzögerung um einen Taktabtastwert haben,
    dadurch gekennzeichnet, dass der Dezimierungsfilter weiter M2 Signalverarbeitungszweige aufweist, so dass zwischen dem Eingang des i:ten Integrators zweiter Ordnung nach dem Integrator der M1-Stufe und dem Ausgang der i:ten Derivationsstufe zweiter Ordnung nach dem Dezimierungsblock des Hauptzweiges ein Signalverarbeitungszweig geschaltet ist, der in Serienschaltung ein erstes Verzögerungselement (281...28M2) mit einer Verzögerung um i Taktzyklen bei Abtastfrequenz Fs, eine Dezimierungsstufe (29) zum Vermindern der Abtastfrequenz des ersten Verzögerungselements mittels eines vorausbestimmten Dezimierungsverhältnisses K, ein zweites Verzögerungselement (301...30M2) mit einer Verzögerung um i Taktzyklen bei Abtastfrequenz Fs/K und ein Skalierungselement (311...31M2) mit einem Skalierungsfaktor ai, wo i = 1, 2, 3,..., M2 , aufweist.
  2. Dezimierungsfilter nach Patentanspruch 1, dadurch gekennzeichnet, dass am Eingang des Dezimierungsfilters ein Skalierungselement zum Skalieren des Eingangsignals mit einem Faktor 2-P vorgesehen ist.
  3. Dezimierungsfilter nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass M1 = M2 = 2.
  4. Dezimierungsfilter nach Patentanspruch 3, dadurch gekennzeichnet, dass die Skalierungsfaktoren aMi Ganzzahlen sind.
  5. Dezimierungsfilter, der eine Kaskadenanordnung der folgenden Elemente in gegebener Ordnung aufweist:
    einen Block (22) von M1 digitalen Integrationsstufen erster Ordnung, die je eine Taktgeberrate Fs und eine Verzögerung um einen Taktzyklus haben,
    M2 digitale Integrationsstufen (231...23M2), die eine Taktgeberrate Fs und eine Verzögerung um zwei Taktzyklen haben,
    eine Dezimierungsstufe (24) zum Vermindern der Abtastfrequenz des Ausgangssignals von der letzten Integrationsstufe mittels eines vorausbestimmten Dezimierungsverhältnisses K,
    M2 digitale Derivationsstufen (251...25M2) zweiter Ordnung mit einer Taktgeberrate Fs/K, die je ein Paar Derivationsstufen aufweisen, die je eine Verzögerungselementstufe zur Verzögerung des Eingangssignals um einen Taktzyklus und eine Subtraktionselementstufe zur Subtraktion des Ausgangssignals des Verzögerungselements von dem Eingangssignal aufweisen,
    einen Block (27) von M1 Derivationsstufen, die je eine Taktgeberrate Fs/K und eine Verzögerung um einen Taktabtastwert haben,
    dadurch gekennzeichnet, dass der Dezimierungsfilter weiter M2 Signalverarbeitungszweige aufweist, so dass zwischen dem Eingang des i:ten Integrators zweiter Ordnung nach dem Integrator der M1-Stufe und dem Ausgang des Hauptzweiges ein Signalverarbeitungszweig geschaltet ist, der in Serienschaltung ein erstes Verzögerungselement (281...28M2) mit einer Verzögerung um i Taktzyklen bei Abtastfrequenz Fs, eine Dezimierungsstufe (29) zum Vermindern der Abtastfrequenz des ersten Verzögerungselements mittels eines vorausbestimmten Dezimierungsverhältnisses K, ein zweites Verzögerungselement (301...30M2) mit einer Verzögerung um i Taktzyklen bei Abtastfrequenz Fs/K, einen Derivationsblock (321...32M2) der (M1 + 2 (M2 - i))-Stufe und ein Skalierungselement (311...31M2) mit einem Skalierungsfaktor ai, wo i = 1, 2, 3,..., M2, aufweist.
  6. Dezimierungsfilter nach Patentanspruch 5, dadurch gekennzeichnet, dass am Eingang des Dezimierungsfilters ein Skalierungselement zum Skalieren des Eingangssignals mit einem Faktor 2-P vorgesehen ist.
  7. Dezimierungsfilter nach Patentanspruch 5 oder 6, dadurch gekennzeichnet, dass M1 = M2 = 2.
  8. Dezimierungsfilter nach Patentanspruch 7, dadurch gekennzeichnet, dass die Skalierungsfaktoren mit einer Genauigkeit von nur einigen Bits verwirklicht werden.
EP94911197A 1993-04-05 1994-03-31 Dezimationsfilter Expired - Lifetime EP0693235B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI931531 1993-04-05
FI931531A FI96255C (fi) 1993-04-05 1993-04-05 Desimointisuodatin
PCT/FI1994/000125 WO1994023492A1 (en) 1993-04-05 1994-03-31 Decimation filter

Publications (2)

Publication Number Publication Date
EP0693235A1 EP0693235A1 (de) 1996-01-24
EP0693235B1 true EP0693235B1 (de) 2000-07-19

Family

ID=8537686

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94911197A Expired - Lifetime EP0693235B1 (de) 1993-04-05 1994-03-31 Dezimationsfilter

Country Status (8)

Country Link
US (1) US5689449A (de)
EP (1) EP0693235B1 (de)
JP (1) JPH08508374A (de)
KR (1) KR100302156B1 (de)
AT (1) ATE194895T1 (de)
DE (1) DE69425322D1 (de)
FI (1) FI96255C (de)
WO (1) WO1994023492A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3210219B2 (ja) * 1995-09-08 2001-09-17 松下電器産業株式会社 櫛形フィルタとそれを用いた送受信装置
US5808924A (en) * 1996-07-08 1998-09-15 Boeing North American, Inc. Decimating IIR filter
FI101915B (fi) * 1996-12-04 1998-09-15 Nokia Telecommunications Oy Desimointimenetelmä ja desimointisuodatin
WO1999038257A2 (en) * 1998-01-26 1999-07-29 Koninklijke Philips Electronics N.V. Time discrete filter
AUPP271998A0 (en) * 1998-03-31 1998-04-23 Lake Dsp Pty Limited Lookahead sigma-delta modulator
US6087969A (en) * 1998-04-27 2000-07-11 Motorola, Inc. Sigma-delta modulator and method for digitizing a signal
US6161118A (en) * 1998-06-12 2000-12-12 Oak Technology, Inc. Digital comb filter having a cascaded integrator stage with adjustable gain
US6233594B1 (en) * 1998-09-23 2001-05-15 Globespan, Inc. Decimation filter for oversampling analog-to digital converter
DE19919575C1 (de) * 1999-04-29 2001-01-11 Siemens Ag Kammfilteranordnung zur Dezimation einer Folge von digitalen Eingangswerten in eine Folge von digitalen Ausgangswerten um einen nicht ganzzahligen Faktor
GB9911750D0 (en) * 1999-05-21 1999-07-21 Hewlett Packard Co Method and apparatus for measuring parameters of an electrical system
US6470365B1 (en) * 1999-08-23 2002-10-22 Motorola, Inc. Method and architecture for complex datapath decimation and channel filtering
FI109383B (fi) 2000-11-03 2002-07-15 Nokia Corp Suodatusmenetelmä ja suodatin
ES2186536B1 (es) * 2001-05-07 2004-02-01 Univ Sevilla Modulador sigma-delta en cascada multifrecuencia.
US6507300B1 (en) * 2001-06-27 2003-01-14 Intel Corporation Variable rate decimator
US20030130751A1 (en) * 2002-01-09 2003-07-10 Freesystems Pte.,Ltd. New filter bank for graphics equalizer implementation
US7685217B2 (en) * 2005-07-26 2010-03-23 Broadcom Corporation Channel-select decimation filter with programmable bandwidth
CN103475335A (zh) * 2013-09-04 2013-12-25 苏州苏尔达信息科技有限公司 一种多相数字降采样滤波器
RU2684190C1 (ru) * 2018-05-18 2019-04-04 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" (ФГУП "ГосНИИАС") Многоскоростной цифровой экстраполятор

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL180895C (nl) * 1978-11-30 1987-05-04 Philips Nv Analoog-digitaal-omzetter.
US4509037A (en) * 1981-06-12 1985-04-02 Gould Inc. Enhanced delta modulation encoder
US4680810A (en) * 1985-06-28 1987-07-14 American Telephone And Telegraph Company, At&T Bell Labs Means for controlling a semiconductor device and communication system comprising the means
EP0320517B1 (de) * 1987-12-12 1992-08-12 Deutsche ITT Industries GmbH Digitales Dezimationsfilter
US4972356A (en) * 1989-05-01 1990-11-20 Motorola, Inc. Systolic IIR decimation filter
US5012244A (en) * 1989-10-27 1991-04-30 Crystal Semiconductor Corporation Delta-sigma modulator with oscillation detect and reset circuit
US4999798A (en) * 1990-03-01 1991-03-12 Motorola, Inc. Transient free interpolating decimator
US5148167A (en) * 1990-04-06 1992-09-15 General Electric Company Sigma-delta oversampled analog-to-digital converter network with chopper stabilization
US5070310A (en) * 1990-08-31 1991-12-03 Motorola, Inc. Multiple latched accumulator fractional N synthesis
NL9100379A (nl) * 1991-03-01 1992-10-01 Philips Nv Sigma-deltamodulator.
US5208594A (en) * 1991-05-02 1993-05-04 Ricoh Company, Ltd. Signal processor that uses a delta-sigma modulation
US5166642A (en) * 1992-02-18 1992-11-24 Motorola, Inc. Multiple accumulator fractional N synthesis with series recombination
JPH05259813A (ja) * 1992-03-03 1993-10-08 Nec Corp ディジタルフィルタ

Also Published As

Publication number Publication date
FI96255C (fi) 1996-05-27
EP0693235A1 (de) 1996-01-24
WO1994023492A1 (en) 1994-10-13
ATE194895T1 (de) 2000-08-15
FI96255B (fi) 1996-02-15
JPH08508374A (ja) 1996-09-03
FI931531A (fi) 1994-10-06
US5689449A (en) 1997-11-18
KR100302156B1 (ko) 2001-10-22
KR960702211A (ko) 1996-03-28
FI931531A0 (fi) 1993-04-05
DE69425322D1 (de) 2000-08-24

Similar Documents

Publication Publication Date Title
EP0693235B1 (de) Dezimationsfilter
US8417750B2 (en) Filters for communication systems
US4649507A (en) Segmented transversal filter
KR100799406B1 (ko) 대역 내 신호의 감쇠를 보상하기 위한 디지털 샘플링레이트 변환기
CA1291279C (en) Filter bank
Johansson et al. Linear-phase FIR interpolation, decimation, and mth-band filters utilizing the Farrow structure
US4016410A (en) Signal processor with digital filter and integrating network
US5880687A (en) Cascaded integrator-comb interpolation filter
Saramaki et al. A modified comb filter structure for decimation
EP0512619B1 (de) Abtastfrequenzumsetzer
JPH06244679A (ja) ディジタルフィルタ回路
US5835390A (en) Merged multi-stage comb filter with reduced operational requirements
Babic et al. Discrete-time modeling of polynomial-based interpolation filters in rational sampling rate conversion
US6501406B1 (en) Digital filter
KR100221902B1 (ko) 샘플비 변환기
EP1469601A2 (de) FIR-IIR-Halb-Band digitaler Filter ohne Grenzzyklen
US7693923B2 (en) Digital filter system whose stopband roots lie on unit circle of complex plane and associated method
KR100628941B1 (ko) 보간필터를 구비한 cic 필터 및 그 설계방법
KR102682610B1 (ko) 부분 직렬 구조를 이용한 데시메이션 필터 및 그를 포함하는 장치
Angus One bit digital filtering
Angus Direct DSP on sigma-delta encoded audio signals
EP0970563A1 (de) Zeitdiskretes filter
Johansson Multirate IIR filter structures for arbitrary bandwidths
Dolecek Modified nonrecursive comb decimation structure
Cheung et al. A comparison of decimation filter architectures for sigma-delta A/D converters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT NL

17Q First examination report despatched

Effective date: 19980715

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIC1 Information provided on ipc code assigned before grant

Free format text: 6H 03H 17/00 A, 6G 06F 17/10 -

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRITECH MICROELECTRONICS LTD

RIN1 Information on inventor provided before grant (corrected)

Inventor name: INGALSUO, SEPPO

Inventor name: PAJARRE, EERO

Inventor name: HUSU, TIMO

Inventor name: EEROLA, VILLE

Inventor name: SARAMAEKI, TAPIO

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000719

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20000719

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000719

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000719

REF Corresponds to:

Ref document number: 194895

Country of ref document: AT

Date of ref document: 20000815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69425322

Country of ref document: DE

Date of ref document: 20000824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001020

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010331