EP0690932B1 - Blow-off device - Google Patents
Blow-off device Download PDFInfo
- Publication number
- EP0690932B1 EP0690932B1 EP94909070A EP94909070A EP0690932B1 EP 0690932 B1 EP0690932 B1 EP 0690932B1 EP 94909070 A EP94909070 A EP 94909070A EP 94909070 A EP94909070 A EP 94909070A EP 0690932 B1 EP0690932 B1 EP 0690932B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strip
- measuring
- metal strip
- nozzle
- measuring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002184 metal Substances 0.000 claims abstract description 101
- 229910052751 metal Inorganic materials 0.000 claims abstract description 101
- 230000003287 optical effect Effects 0.000 claims abstract description 28
- 239000011248 coating agent Substances 0.000 claims abstract description 21
- 238000000576 coating method Methods 0.000 claims abstract description 18
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 11
- 239000010959 steel Substances 0.000 claims abstract description 11
- 238000007664 blowing Methods 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 9
- 230000007704 transition Effects 0.000 claims description 8
- 238000005246 galvanizing Methods 0.000 claims description 4
- 230000000717 retained effect Effects 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract 1
- 229910052725 zinc Inorganic materials 0.000 abstract 1
- 239000011701 zinc Substances 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011982 device technology Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/16—Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
- C23C2/18—Removing excess of molten coatings from elongated material
- C23C2/20—Strips; Plates
Definitions
- the invention relates to a device and a method for blowing off superfluous coating material during the continuous coating of metal strip, in particular when galvanizing steel strip, the metal strip being located between two opposite nozzle bodies which can be acted upon by a blow-off medium and at a distance from the respective nozzle gaps which extend transversely to the strip running direction Nozzle body is guided.
- the strip In the continuous coating of metal strip, for example in the galvanizing of steel strip, the strip is guided out of the coating agent bath with roller guides in such a way that it runs as centrally as possible between the stationary nozzle bodies opposite one another, each of the blow-off nozzles arranged on a metal strip side. If this central course is disturbed, there are inhomogeneities in the pressure profile in the blow-off nozzles and this leads to uneven layer thicknesses.
- a device of the type mentioned is known from European Patent 0 249 234.
- the nozzle gap is formed by two mutually adjustable nozzle lips, so that the pressure of the blow-off medium acting on the metal strip surface can be adjusted.
- sensors are provided for measuring the layer thickness of the support on the metal strip, which sensors are connected to a computer, by means of whose output control valves are controlled over which the amount of the blow-off medium with which the nozzle gap is acted upon can be varied.
- the coating thickness can be set to a desired setpoint. If there are deviations in the course of the strip from the central position in this device, the coating medium is subjected to inhomogeneities in the coating due to the uneven loading of the strip surface along the strip.
- nozzle body is designed as a row of nozzles in such a way that a plurality of sub-nozzles which are sealed against one another and can be acted upon separately by the blow-off medium are provided along the direction of the nozzle gap.
- unevenness of the strip to be coated can be corrected, since the pressure conditions along the width of the nozzle gap are variable due to the division into the sub-nozzles.
- JP-A-4-163 146 discloses a control device for the passage position of a steel strip, in which the distance between the steel strip and the stripping nozzles is determined by means of a video camera.
- the steel strip itself serves as a reflector and the virtual image of the wiping nozzle obtained from the reflection signal is compared with its real image simultaneously.
- JP-A-55-141 556 a device and a method for measuring the distance between stripping nozzles and steel strip is known, which is carried out by means of an optical distance measuring device.
- JP-A-62-30 865 discloses a method and a device for controlling transverse distortions in the coating of steel strips by means of a contactless sensor system above and in the immediate vicinity of one of the stripping nozzles.
- the invention has for its object to develop a device or a method of the type mentioned in such a way that the central guidance of the metal strip between the nozzle bodies is improved.
- At least one of the two nozzle bodies that are adjustable relative to the metal strip carries at least one optical measuring device that can be moved parallel to the nozzle gap within the edges of the metal strip and at least over the area of one edge of the metal strip, and that the opposite nozzle body has a reflector which is designed so that the measuring beam of the measuring device in its position outside the metal strip edges is directed directly at the reflector, the measuring device being followed by an evaluation device which assigns the measuring signal to the current position on the travel axis and at least to a control circuit for the adjusting device passes on a nozzle body, the evaluation device containing a discriminator for deciding between the measurement signal reflected by the metal strip and the reflector.
- the invention is characterized in that an accurate distance measurement is made possible both with respect to the distance of the nozzle bodies from one another and the distance of one nozzle body from the metal surface facing it. It is essential that the optical measuring device comprises two distance ranges, namely those within the metal bandwidth and those outside. While the distance between the nozzle and strip is determined in the area within the metal strip edge, the distance between the nozzle and nozzle results in the area outside the edge. Because of These two measurement signals can now be used to position the nozzle bodies such that both nozzle bodies can be moved to a defined distance with respect to the metal strip, in particular that both nozzle bodies are arranged symmetrically with respect to the strip.
- the reflector is preferably formed by a flat reflecting tape running parallel to the metal tape, the width of which is selected so that at least the edge position of the tape to be coated is covered. If you now want to coat tapes of different widths, the reflective tape must have such a position that it extends from the area of the narrowest edge to the edge of the widest tape in the transverse direction of the tape, so that even with the widest metal tape to be coated, that on the Edge-facing measuring device contains a corresponding reflection signal.
- the positioning of the axis of rotation of the reflector provides a good possibility of adjustment. Since not only the reflector has to be readjusted when the nozzle body rotates, but also the optical measuring device, it is preferably attached to the nozzle body carrying it in such a way that an angular offset can be compensated for by a compensating screw provided for this purpose.
- the optical measuring device is arranged on a crossmember, relative to which the associated nozzle body can be pivoted, the angular position of the measuring device relative to the belt is retained when the nozzle body is pivoted, so that an additional angle compensation can be dispensed with.
- All variants of the invention are preferably suitable for combination with a two- or three-roller system known as such from the prior art, in which the strip which is guided vertically out of the coating agent bath is guided by regulating a guide roller.
- the output signal of the evaluation device acts directly on the drive for the guide roller, whereby even rough misalignments can be compensated for.
- the nozzle bodies can also be readjusted by means of the adjusting devices.
- a first embodiment of the invention provides that two measuring devices are assigned to the one nozzle body, each of which can be moved over non-overlapping areas of at least half the metal bandwidth, each measuring device being able to be moved by a separate drive.
- each of the two measuring devices takes on the function of measuring the distance inside the strip edge and outside the strip edge.
- each of the two measuring devices is moved continuously by separate drives parallel to the nozzle gap, with measurement signals being obtained continuously or in certain time segments.
- FIG. 2 Another variant of the invention (FIG. 2) provides that instead of two individual measuring devices, the one nozzle body does not have two pairs of measuring devices has overlapping travel ranges, the measuring devices of the first pair being movable over less than half the metal strip width and the measuring device of the second pair covering the area of the respective metal strip edge.
- the functions distance measurement nozzle - belt, measurement of the metal strip width or distance measurement nozzle - nozzle are transferred to separate measuring devices, the first measuring devices for the measurement nozzle - belt always in the area of the belt edge and the second pairs of measuring devices always around the area of the belt edge oscillating around and moved by separate drives.
- a further variant (FIG. 7) of the invention provides that the optical measuring device is formed from a first measuring device, which is arranged stationary within the band edges, and a pair of second measuring devices, each of which oscillates around a region that corresponds to the respective one Measuring device includes adjacent strip edges.
- the object on which the invention is based is achieved in a method for blowing off superfluous coating material in the continuous coating of metal strip, in particular in the galvanizing of steel strip, in which the metal strip passes through a coating agent bath and by means of guide and deflection rollers in the region of a blow-off medium arranged above the bath level , in particular compressed air, passes the blow-off nozzle pair, the nozzle gaps of which each extend transversely to the strip running direction, solved by the fact that at least one optical measuring device mounted on at least one of the two nozzle bodies, which is adjustable relative to the metal strip, is moved continuously across the strip running direction beyond the area of one of the strip edges such that the measuring beam of the measuring device in the area within the strip edge from the metal strip surface and outside the strip edge from one on the opposite nozzle body attached reflector is reflected and that the measurement signal obtained within the band edge to correct the the respective distance between the nozzle gap and the metal strip surface and the measurement signal obtained outside the strip card can be used to symmetrize the distance of each of
- the first exemplary embodiment shown in FIG. 1 shows two nozzle bodies 2 arranged on one side of the metal strip 1 to be coated, the nozzle gaps of which are each at a certain distance X from the surface of the metal strip 1.
- the lower nozzle body 2 shown on the right in FIG. 3 carries on its upper side an attachment for a measuring device 4, which is designed as an optical sensor which emits a laser beam along the optical axis denoted by a. This beam strikes the surface of the metal strip 1 approximately perpendicularly.
- the optical measuring device 4 is surrounded on the side on which the light beam emerges with a protective sleeve 7 which is pressurized with compressed air.
- the housing of the measuring device 4 consists of a housing cover 8b and a rear housing part 8a, which can be opened.
- the optical measuring device 4 rests on a guide 12 on which it can be moved along the width of the metal strip 1 in the manner of a carriage.
- the entire unit consisting of guide 12, measuring device 4 and housing 8a, 8b can be adjusted relative to the nozzle body 2 carrying it by means of an angle compensation screw 13 by a certain angle of rotation. Then this is important if the nozzle body 2 rotatable about the pivot point 9 is adjusted and this angle is determined by the electronic angle detection 10.
- Each of the two nozzle bodies 2 can be moved in the normal plane shown in FIG. 1 by means of a drive 5 in the direction perpendicular to the transport direction of the metal strip 1.
- the adjustment drive consists of two linear drives 5, against which the nozzle body 2 is gimbal-mounted.
- the drives of the drives move in the same direction, the nozzle body 2 can be adjusted laterally towards or away from the metal strip, so that the distance between the nozzle gap 3 and the metal strip surface can be changed.
- the nozzle body 2 can be rotated in the normal plane shown.
- two optical measuring devices 4 are provided along the width b of the metal strip, each covering approximately half of the metal strip 1. These are driven continuously by separate drives 6 in such a way that they cover the travel range designated ⁇ in each case.
- reflectors 11 are provided, which cover the band edges designated K in each case.
- Each of the two measuring devices 4 is moved continuously along the guide 12, so that the measuring beam designated by a from the respective measuring device 4 is reflected in the area within the metal strip edge K by the metal strip 1. If the measuring device 4 reaches the area of the metal strip edge K, there is an abrupt transition of the reflection from the metal strip 1 to the reflector 11 abrupt transition enables precise position detection of the strip edge.
- the optical measuring device 4 measures the distance between the defined point on the nozzle body 2 and the metal strip surface. If it appears in the course of the measurement within the travel path within the metal strip edges that the measured distance changes, this indicates that the metal strip is inclined with respect to the nozzle gap. This can then be counteracted by correspondingly controlling the adjusting devices 5 or the guide rollers in the “two- or three-roller system”.
- the measuring device 4 detects a deviation of the measured value from a predetermined value in the area outside the metal strip edges K, this is due to a change in the predetermined distance between the reference points of the two nozzle bodies 2. From the knowledge of both the distance between the reference points on the nozzle bodies 2 and the distance between a nozzle body and the metal strip surface, the balancing can now be carried out by means of the downstream evaluation computer (not shown in more detail).
- the second exemplary embodiment of the invention shown in FIG. 2 differs from that described in that instead of two measuring devices, each covering more than the band half, four measuring devices are provided, of which the two interiors are constantly in the travel range denoted by ⁇ a oscillate, which lies within the band edges K.
- the two outer measuring devices 4b oscillate within the range denoted by ⁇ b around the band edges K, the measuring beam of the measuring devices 4b being reflected either by the metal band or by the reflectors 11. This allows the measurement signals for the distance between the nozzle body - belt or nozzle body - nozzle body and for the bandwidth determine at the same time, which enables a faster evaluation.
- FIGS. 4 and 5 differs from that of FIG. 2 only in that the optical measuring devices 4b oscillating in the edge region are not arranged on the common guide 12 of the lower nozzle body, which also the optical measuring devices 4a directed onto the metal strip wearing. Rather, a further guide 12 is provided on the opposite (upper) nozzle body 2 for the optical measuring devices 4b directed at the edge regions K. Accordingly, the reflector is then provided on the nozzle body 2 which also carries the optical measuring devices 4a.
- the travel ranges ⁇ a and ⁇ b covered by the respective measuring devices are basically unchanged from those in FIG. 2.
- each of the nozzle bodies 2 is to be rotated about the pivot point 9.
- the rotation of the nozzle body 2 is determined by an electronic angle detector 10. So that the optical axis of each measuring device 4a, 4b is still perpendicular to the metal strip 1, the angular misalignment must be compensated for by an angle compensation screw 13.
- Such an angle correction can also be carried out electronically in which the measurement signal of the angle detection 10 to the position of the Compensating screw 13 is used.
- FIG. 6 shows an alternative to the arrangement as shown in the right half of FIGS. 3 and 5. Accordingly, the measuring device 4 does not rest directly on the Nozzle body 2 but is fastened on a crossmember 16, along which the measuring device 4 can be moved transversely to the strip running direction.
- the cross member 16 is adjustable by means of a cross member drive 17 in relation to the metal strip 1.
- the cross member 16 is mounted in the area of the pivot point 9 for the nozzle body 2.
- the nozzle body 2 is rotatable at the pivot point 9 with respect to the cross member 16, so that when the nozzle body 2 is rotated into the position shown in broken lines in FIG. 6, the cross member 16 and thus the measuring device 4 remain stationary.
- the fifth exemplary embodiment shown in FIG. 7 differs from the previously illustrated exemplary embodiments in that an optical measuring device 4b is provided in each of the two edge regions of the metal strip, each of which covers the region ⁇ of the metal strip 1 which includes the respective strip edge.
- the measuring devices 4b, driven by separate drives 6, can be moved continuously such that they cover the area in an oscillating manner.
- the measuring device 4a provided in the middle region between the strip edges is stationary.
- the measuring devices 4a, 4b each rest on a guide 12 on which they can be moved along the width of the metal strip 1 either by means of the drives 6 (measuring devices 4b) or for setting the stationary position (measuring device 4a).
- reflectors 11 are provided which cover the band edges.
- Each of the two measuring devices 4b is moved along the guide 12, oscillating continuously around the region ⁇ , in such a way that the measuring beam denoted by a from the respective measuring device 4b is reflected in the area within the metal strip edge K by the metal strip 1. If the measuring device 4b reaches the area of the metal strip edge K, there is a sudden transition of the reflection from the metal strip to the reflector 11. This sudden transition enables an exact position detection of the strip edge. This transition is detected precisely in particular because the measuring device 4b has a light beam widened by a certain opening angle. Since a receiver for detecting the intensity of the reflected beam is provided at the same time, the transition can be precisely determined by evaluating certain intensity threshold values.
- the stationary measuring device 4b measures the distance between the defined point on the nozzle body 2 and the metal strip surface. If the course of the measurement from the evaluation of the measured values obtained by the three measuring devices 4a, 4b shows an inclination of the metal strip with respect to the nozzle gap, compensation can be carried out by correspondingly controlling the adjusting device 5 or the guide rollers in the "two or three roller system".
- one of the measuring devices 4b detects a deviation of the measured value from a predetermined value in the area outside the metal strip edges K, this is due to a change in the predetermined distance between the reference points of the two nozzle bodies 2. From the knowledge of both the distance between the reference points on the nozzle body 2 and the distance between a nozzle body and the metal strip surface can now by means of downstream evaluation computer, not shown, the symmetrization.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Coating Apparatus (AREA)
- Spray Control Apparatus (AREA)
- Centrifugal Separators (AREA)
- Endoscopes (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Abblasen von überflüssigem Beschichtungsmaterial beim kontinuierlichen Beschichten von Metallband, insbesondere beim Verzinken von Stahlband, wobei das Metallband zwischen zwei sich gegenüberliegenden, mit einem Abblasmedium beaufschlagbaren Düsenkörpern mit Abstand zu den jeweiligen sich quer zur Bandlaufrichtung erstreckenden Düsenspalten der Düsenkörper geführt ist.The invention relates to a device and a method for blowing off superfluous coating material during the continuous coating of metal strip, in particular when galvanizing steel strip, the metal strip being located between two opposite nozzle bodies which can be acted upon by a blow-off medium and at a distance from the respective nozzle gaps which extend transversely to the strip running direction Nozzle body is guided.
Beim kontinuierlichen Beschichten von Metallband, beispielsweise beim Verzinken von Stahlband, wird das Band mit Rollenführungen so aus dem Beschichtungsmittelbad geführt, daß es zwischen den sich gegenüberstehenden ortsfesten Düsenkörpern der jeweils auf einer Metallbandseite angeordneten Abblasdüsen möglichst mittig verläuft. Falls dieser mittige Verlauf gestört ist, kommt es zu Inhomogenitäten des Druckprofils in den Abblasdüsen und hierdurch zu ungleichmäßigen Schichtdicken.In the continuous coating of metal strip, for example in the galvanizing of steel strip, the strip is guided out of the coating agent bath with roller guides in such a way that it runs as centrally as possible between the stationary nozzle bodies opposite one another, each of the blow-off nozzles arranged on a metal strip side. If this central course is disturbed, there are inhomogeneities in the pressure profile in the blow-off nozzles and this leads to uneven layer thicknesses.
Eine Vorrichtung der eingangs genannten Art ist aus dem europäischen Patent 0 249 234 bekannt. Bei dieser Vorrichtung wird der Düsenspalt durch zwei gegeneinander verstellbare Düsenlippen gebildet, so daß der auf die Metallbandoberfläche wirkende Druck des Abblasmediums einstellbar ist. Bei dieser Vorrichtung sind zur Messung der Schichtdicke der Auflage auf dem Metallband Sensoren vorgesehen, die mit einem Rechner verbunden sind, mittels dessen Ausgang Regelventile gesteuert werden, über die die Menge des Abblasmediums, mit dem der Düsenspalt beaufschlagt wird, variierbar ist. Hierdurch kann die Beschichtungsdicke auf einen gewünschten Sollwert eingestellt werden. Treten bei dieser Vorrichtung Abweichungen im Bandverlauf von der mittigen Lage auf, kommt es aufgrund der ungleichmäßigen Beaufschlagung der Bandoberfläche entlang der Bandbreite mit dem Abblasmedium zu Inhomogenitäten in der Beschichtung.A device of the type mentioned is known from European Patent 0 249 234. In this device, the nozzle gap is formed by two mutually adjustable nozzle lips, so that the pressure of the blow-off medium acting on the metal strip surface can be adjusted. In this device, sensors are provided for measuring the layer thickness of the support on the metal strip, which sensors are connected to a computer, by means of whose output control valves are controlled over which the amount of the blow-off medium with which the nozzle gap is acted upon can be varied. As a result, the coating thickness can be set to a desired setpoint. If there are deviations in the course of the strip from the central position in this device, the coating medium is subjected to inhomogeneities in the coating due to the uneven loading of the strip surface along the strip.
Eine andere Vorrichtung der eingangs genannten Art ist aus der WO 92/02656 bekannt, bei der der Düsenkörper als Düsenzeile ausgebildet ist derart, daß entlang der Richtung des Düsenspalts mehrere getrennt mit dem Abblasmedium beaufschlagbare gegeneinander abgedichtete Teildüsen vorgesehen sind. Hierdurch können Unebenheiten des zu beschichtenden Bandes korrigiert werden, da die Druckbedingungen entlang der Breite des Düsenspaltes durch die Aufteilung in die Teildüsen variabel sind.Another device of the type mentioned at the outset is known from WO 92/02656, in which the nozzle body is designed as a row of nozzles in such a way that a plurality of sub-nozzles which are sealed against one another and can be acted upon separately by the blow-off medium are provided along the direction of the nozzle gap. In this way, unevenness of the strip to be coated can be corrected, since the pressure conditions along the width of the nozzle gap are variable due to the division into the sub-nozzles.
Aus der EP-A-0 188 813 ist ein Verfahren und eine Vorrichtung zum Beschichten von Bändern mit schmelzflüssigem Metall bekannt, bei dem durch Abstandsmessung des Bandes eine Schiefstellung oder Wölbung des Bandes im Bereich der Abstreifdüsen vermieden wird. Dabei können eines oder mehrere vorne an der Düse angeordnete Lasermeßgeräte quer zur Bandlaufrichtung angebracht sein.From EP-A-0 188 813 a method and a device for coating strips with molten metal is known, in which a measurement of the distance between the strips prevents the strip from being skewed or warped in the area of the stripping nozzles. In this case, one or more laser measuring devices arranged at the front of the nozzle can be attached transversely to the tape running direction.
Aus der JP-A-4-163 146 ist eine Kontrolleinrichtung für die Durchlaufposition eines Stahlbandes offenbart, bei der der Abstand des Stahlbandes zu den Abstreifdüsen mittels einer Videokamera ermittelt wird. Dabei dient das Stahlband selbst als Reflektor und es wird das aus dem Reflektionssignal gewonnene virtuelle Bild der Abstreifdüse mit ihrem realen Bild simultan verglichen.JP-A-4-163 146 discloses a control device for the passage position of a steel strip, in which the distance between the steel strip and the stripping nozzles is determined by means of a video camera. The steel strip itself serves as a reflector and the virtual image of the wiping nozzle obtained from the reflection signal is compared with its real image simultaneously.
Aus der JP-A-55-141 556 ist eine Vorrichtung und ein Verfahren zur Abstandsmessung zwischen Abstreifdüsen und Stahlband bekannt, die mittels eines optischen Abstandsmeßgerätes durchgeführt wird.From JP-A-55-141 556 a device and a method for measuring the distance between stripping nozzles and steel strip is known, which is carried out by means of an optical distance measuring device.
In der JP-A-62-30 865 ist ein Verfahren und eine Vorrichtung zur Kontrolle von transversalen Verwerfungen bei der Beschichtung von Stahlbändern mittels einer berührungslosen Sensorik oberhalb und in der unmittelbaren Nachbarschaft einer der Abstreifdüsen offenbart.JP-A-62-30 865 discloses a method and a device for controlling transverse distortions in the coating of steel strips by means of a contactless sensor system above and in the immediate vicinity of one of the stripping nozzles.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung bzw. ein Verfahren der eingangs genannten Art dahingehend weiterzuentwickeln, daß die mittige Führung des Metallbandes zwischen den Düsenkörpern verbessert wird.The invention has for its object to develop a device or a method of the type mentioned in such a way that the central guidance of the metal strip between the nozzle bodies is improved.
Diese Aufgabe wird vorrichtungstechnisch dadurch gelöst, daß mindestens einer der beiden relativ zum Metallband verstellbaren Düsenkörper mindestens eine optische Meßeinrichtung trägt, die parallel zum Düsenspalt innerhalb der Kanten des Metallbandes sowie mindestens den Bereich einer Kante des Metallbandes überdeckend verfahrbar ist und daß der gegenüberliegende Düsenkörper einen Reflektor aufweist, der so gestaltet ist, daß der Meßstrahl der Meßeinrichtung in deren Position außerhalb der Metallbandkanten unmittelbar auf den Reflektor gerichtet ist wobei der Meßeinrichtung eine Auswerteeinrichtung nachgeordnet ist, die das Meßsignal der aktuellen Position auf der Verfahrachse zuordnet und an einen Regelkreis für die Verstelleinrichtung mindestens eines Düsenkörpers weitergibt, wobei die Auswerteeinrichtung einen Diskriminator zur Entscheidung zwischen dem vom Metallband und dem vom Reflektor reflektierten Meßsignal enthält.This object is achieved in terms of device technology in that at least one of the two nozzle bodies that are adjustable relative to the metal strip carries at least one optical measuring device that can be moved parallel to the nozzle gap within the edges of the metal strip and at least over the area of one edge of the metal strip, and that the opposite nozzle body has a reflector which is designed so that the measuring beam of the measuring device in its position outside the metal strip edges is directed directly at the reflector, the measuring device being followed by an evaluation device which assigns the measuring signal to the current position on the travel axis and at least to a control circuit for the adjusting device passes on a nozzle body, the evaluation device containing a discriminator for deciding between the measurement signal reflected by the metal strip and the reflector.
Die Erfindung zeichnet sich dadurch aus, daß eine genaue Abstandsmessung sowohl in Bezug auf den Abstand der Düsenkörper voneinander als auch des Abstandes jeweils eines Düsenkörpers von der ihm zugewandten Metalloberfläche ermöglicht wird. Wesentlich ist dabei, daß die optische Meßeinrichtung zwei Abstandsbereiche umfaßt, nämlich denjenigen innerhalb der Metallbandbreite und denjenigen außerhalb. Während im Bereich innerhalb der Metallbandkante der Abstand Düse - Band ermittelt wird, ergibt sich im Bereich außerhalb der Kante der Abstand Düse - Düse. Aufgrund dieser beiden Meßsignale kann die Positionierung der Düsenkörper nunmehr so erfolgen, daß beide Düsenkörper in Bezug auf das Metallband auf einen definierten Abstand gefahren können, insbesondere, daß beide Düsenkörper symmetrisch in Bezug auf das Band angeordnet sind. Hierdurch ergibt sich eine Automatisierungsmöglichkeit, in dem der oder die Düsenkörper über eine oder mehrere Verstelleinrichtungen entsprechend dem gewonnenen Meßsignal so verstellt werden, daß sich ein möglichst mittiger Verlauf des Bandes ergibt. Im übrigen ist es hierdurch möglich, die exakte Position der Bandkante festzustellen und somit auch diesbezüglich eine Symmetrierung, beispielsweise bei der Verwendung von speziellen auf die Kanten gerichteten Düsen ("Kantendüsen") zu erreichen.The invention is characterized in that an accurate distance measurement is made possible both with respect to the distance of the nozzle bodies from one another and the distance of one nozzle body from the metal surface facing it. It is essential that the optical measuring device comprises two distance ranges, namely those within the metal bandwidth and those outside. While the distance between the nozzle and strip is determined in the area within the metal strip edge, the distance between the nozzle and nozzle results in the area outside the edge. Because of These two measurement signals can now be used to position the nozzle bodies such that both nozzle bodies can be moved to a defined distance with respect to the metal strip, in particular that both nozzle bodies are arranged symmetrically with respect to the strip. This results in an automation option in which the nozzle body or bodies are adjusted via one or more adjustment devices in accordance with the measurement signal obtained in such a way that the strip runs as centrally as possible. In addition, this makes it possible to determine the exact position of the strip edge and thus to achieve a symmetry in this regard, for example when using special nozzles directed towards the edges (“edge nozzles”).
Der Reflektor ist vorzugsweise durch ein ebenes, parallel zum Metallband verlaufendes reflektierendes Band gebildet, dessen Breite so gewählt ist, daß mindestens die Kantenposition des zu beschichtenden Bandes überdeckt werden. Will man nun Bänder unterschiedlicher Breite beschichten, so muß das reflektierende Band eine solche Position haben, daß es vom Bereich der Kante des schmalsten sich bis über die Kante des breitesten Bandes hinaus in Bandquerrichtung erstreckt, damit auch beim breitesten zu beschichteten Metallband noch die auf die Kante gerichtete Meßeinrichtung ein entsprechendes Reflektionssignal enthält.The reflector is preferably formed by a flat reflecting tape running parallel to the metal tape, the width of which is selected so that at least the edge position of the tape to be coated is covered. If you now want to coat tapes of different widths, the reflective tape must have such a position that it extends from the area of the narrowest edge to the edge of the widest tape in the transverse direction of the tape, so that even with the widest metal tape to be coated, that on the Edge-facing measuring device contains a corresponding reflection signal.
Durch die Positionierung der Drehachse des Reflektors ergibt sich eine gute Justierungsmöglichkeit. Da nicht nur der Reflektor bei einer Drehung des Düsenkörpers nachjustiert werden muß, sondern auch die optische Meßeinrichtung, ist diese vorzugsweise so auf dem sie tragenden Düsenkörper befestigt, daß ein Winkelversatz durch eine hierfür vorgesehene Ausgleichsschraube kompensiert werden kann.The positioning of the axis of rotation of the reflector provides a good possibility of adjustment. Since not only the reflector has to be readjusted when the nozzle body rotates, but also the optical measuring device, it is preferably attached to the nozzle body carrying it in such a way that an angular offset can be compensated for by a compensating screw provided for this purpose.
Wenn die optische Meßeinrichtung auf einer Traverse angeordnet ist, gegenüber der der zugehörige Düsenkörper verschwenkbar ist, bleibt die Winkellage der Meßeinrichtung gegenüber dem Band beim Verschwenken des Düsenkörpers erhalten, so daß auf eine zusätzliche Winkelkompensation verzichtet werden kann.If the optical measuring device is arranged on a crossmember, relative to which the associated nozzle body can be pivoted, the angular position of the measuring device relative to the belt is retained when the nozzle body is pivoted, so that an additional angle compensation can be dispensed with.
Vorzugsweise eignen sich alle Varianten der Erfindung für die Kombination mit einem aus dem Stand der Technik als solchem bekannten Zwei- oder Dreirollensystem, bei dem die Führung des aus dem Beschichtungsmittelbad senkrecht herausgeführten Bandes durch die Regelung einer Führungsrolle vorgenommen wird. Gemäß der Erfindung wirkt dabei das Ausgangssignal der Auswerteeinrichtung direkt auf den Antrieb für die Führungsrolle, wodurch bereits grobe Fehljustierungen ausgeglichen werden können. Alternativ oder gleichzeitig hiermit lassen sich auch die Düsenkörper mittels der Verstelleinrichtungen nachjustieren.All variants of the invention are preferably suitable for combination with a two- or three-roller system known as such from the prior art, in which the strip which is guided vertically out of the coating agent bath is guided by regulating a guide roller. According to the invention, the output signal of the evaluation device acts directly on the drive for the guide roller, whereby even rough misalignments can be compensated for. Alternatively or simultaneously, the nozzle bodies can also be readjusted by means of the adjusting devices.
Eine erste Ausgestaltung der Erfindung (Fig. 1) sieht vor, daß dem einen Düsenkörper zwei Meßeinrichtungen zugeordnet sind, die jeweils über sich nicht überlappende Bereiche von mindestens der halben Metallbandbreite verfahrbar sind, wobei jede Meßeinrichtung von einem separaten Antrieb verfahrbar sein kann. Bei dieser Ausführungsform übernimmt jede der beiden Meßeinrichtungen die Funktion der Abstandsmessung innerhalb der Bandkante als auch außerhalb der Bandkante. Während der Beschichtung wird dabei jede der beiden Meßeinrichtungen von getrennten Antrieben kontinuierlich parallel zum Düsenspalt verfahren, wobei ständig oder in bestimmten Zeitabschnitten Meßsignale gewonnen werden.A first embodiment of the invention (FIG. 1) provides that two measuring devices are assigned to the one nozzle body, each of which can be moved over non-overlapping areas of at least half the metal bandwidth, each measuring device being able to be moved by a separate drive. In this embodiment, each of the two measuring devices takes on the function of measuring the distance inside the strip edge and outside the strip edge. During the coating process, each of the two measuring devices is moved continuously by separate drives parallel to the nozzle gap, with measurement signals being obtained continuously or in certain time segments.
Eine andere Variante der Erfindung (Fig.2) sieht anstelle von zwei einzelnen Meßeinrichtungen vor, daß der eine Düsenkörper zwei Paare von Meßeinrichtungen mit sich jeweils nicht überlappenden Verfahrbereichen aufweist, wobei die Meßeinrichtungen des ersten Paares über weniger als der halben Metallbandbreite verfahrbar sind und die Meßeinrichtung des zweiten Paares den Bereich der jeweiligen Metallbandkante überdecken. Hierdurch werden die Funktionen Abstandsmessung Düse - Band, Messung der Metallbandbreite bzw. Abstandsmessung Düse - Düse auf separaten Meßeinrichtungen übertragen, wobei die ersten Meßeinrichtungen für die Messung Düse - Band immer im Bereich der Bandkante und die zweiten Paare von Meßeinrichtungen immer um den Bereich der Bandkante herum oszillierend und von getrennten Antrieben verfahren werden.Another variant of the invention (FIG. 2) provides that instead of two individual measuring devices, the one nozzle body does not have two pairs of measuring devices has overlapping travel ranges, the measuring devices of the first pair being movable over less than half the metal strip width and the measuring device of the second pair covering the area of the respective metal strip edge. As a result, the functions distance measurement nozzle - belt, measurement of the metal strip width or distance measurement nozzle - nozzle are transferred to separate measuring devices, the first measuring devices for the measurement nozzle - belt always in the area of the belt edge and the second pairs of measuring devices always around the area of the belt edge oscillating around and moved by separate drives.
Innerhalb dieser Variante sind als Alternativen denkbar, daß entweder alle Meßeinrichtungen auf einer gemeinsamen Führung angeordnet und jeweils von separaten Antrieben antreibbar sind oder die Meßeinrichtungen des ersten bzw. zweiten Paares auf unterschiedlichen Düsenkörpern angeordnet sind, wobei die um den Bereich der Metallbandkante verfahrbaren Meßeinrichtungen auf dem dem Reflektor gegenüberliegenden Düsenkörper angeordnet sind (Fig.4) und auch jede Meßeinrichtung von einem separaten Antrieb verstellbar ist. Beide Alternativen sind technisch äquivalent, wobei die letztere aufgrund der sich nicht überlappenden Antriebe herstellungstechnisch einfacher ist.Within this variant, alternatives are conceivable that either all measuring devices are arranged on a common guide and each can be driven by separate drives, or the measuring devices of the first or second pair are arranged on different nozzle bodies, the measuring devices that can be moved around the area of the metal strip edge on the nozzle body opposite the reflector are arranged (FIG. 4) and each measuring device is adjustable by a separate drive. Both alternatives are technically equivalent, the latter being simpler to manufacture due to the non-overlapping drives.
Eine weitere Variante (Fig.7) der Erfindung sieht vor, daß die optische Meßeinrichtung gebildet ist aus einer ersten Meßeinrichtung, die stationär innerhalb der Bandkanten angeordnet ist, und einem Paar zweiter Meßeinrichtungen, von denen jede um einen Bereich oszilliert, der die zur jeweiligen Meßeinrichtung benachbarten Bandkanten einschließt.A further variant (FIG. 7) of the invention provides that the optical measuring device is formed from a first measuring device, which is arranged stationary within the band edges, and a pair of second measuring devices, each of which oscillates around a region that corresponds to the respective one Measuring device includes adjacent strip edges.
Diese Lösung zeichnet sich insbesondere dadurch aus, daß entlang der Bandbreite jeweils genau drei Meßwerte zur Verfügung stehen, aus denen hinreichend auf das Vorhandensein von Bandfehlern, wie Bandlauffehlern oder ein Bandwölbung geschlossen werden kann. Gleichzeitig ist der vorrichtungstechnische Aufwand herabgesetzt, da die erste Meßeinrichtung stationär an einer günstigen Stelle innerhalb der Bandkantenbereiche angeordnet ist. Demgegenüber müssen nur die beiden äußeren Meßeinrichtungen, die das Paar zweiter Meßeinrichtungen bilden, verfahrbar angeordnet sein. Eine genaue Erfassung des Übergangs Metallband - Kante ist dadurch möglich, daß der Lichtstrahl einer jeden Meßeinrichtung um einen vorgegebenen Öffnungswinkel aufweitbar ist und daß ein Empfänger für die Erfassung der Intensität des reflektierten Lichtsignales vorgesehen ist.This solution is characterized in particular by the fact that exactly three measured values are available along the bandwidth, from which it can be reasonably concluded that there are strip defects, such as strip running defects or a strip curvature. At the same time, the outlay in terms of device technology is reduced since the first measuring device is arranged in a stationary manner at a favorable location within the band edge regions. In contrast, only the two outer measuring devices, which form the pair of second measuring devices, must be arranged to be movable. A precise detection of the transition from the metal strip to the edge is possible in that the light beam of each measuring device can be expanded by a predetermined opening angle and in that a receiver is provided for detecting the intensity of the reflected light signal.
Die der Erfindung zugrundeliegende Aufgabe wird bei einem Verfahren zum Abblasen von überflüssigem Beschichtungsmaterial beim kontinuierlichen Beschichten von Metallband, insbesondere beim Verzinken von Stahlband, bei welchem das Metallband ein Beschichtungsmittelbad durchläuft und mittels Führungs- und Umlenkrollen in den Bereich eines oberhalb des Badspiegels angeordneten mit einem Abblasmedium, insbesondere Druckluft, beaufschlagten Abblasdüsenpaares gelangt, dessen Düsenspalte sich jeweils quer zur Bandlaufrichtung erstrecken, dadurch gelöst, daß mindestens eine auf mindestens einer der beiden relativ zur Metallband verstellbaren Düsenkörper angebrachte optische Meßeinrichtung quer zur Bandlaufrichtung bis über den Bereich einer der Bandkanten hinaus kontinuierlich verfahren wird derart, daß der Meßstrahl der Meßeinrichtung im Bereich innerhalb der Bandkante von der Metallbandoberfläche und außerhalb der Bandkante von einem auf dem gegenüberliegenden Düsenkörper angebrachten Reflektor reflektiert wird und daß das innerhalb der Bandkante gewonnene Meßsignal zur Korrektur des jeweiligen Abstandes zwischen Düsenspalt und Metallbandoberfläche und das außerhalb der Bandkarte gewonnene Meßsignal zur Symmetrierung des Abstandes jedes der beiden Düsenspalte in Bezug auf das Metallband herangezogen werden.The object on which the invention is based is achieved in a method for blowing off superfluous coating material in the continuous coating of metal strip, in particular in the galvanizing of steel strip, in which the metal strip passes through a coating agent bath and by means of guide and deflection rollers in the region of a blow-off medium arranged above the bath level , in particular compressed air, passes the blow-off nozzle pair, the nozzle gaps of which each extend transversely to the strip running direction, solved by the fact that at least one optical measuring device mounted on at least one of the two nozzle bodies, which is adjustable relative to the metal strip, is moved continuously across the strip running direction beyond the area of one of the strip edges such that the measuring beam of the measuring device in the area within the strip edge from the metal strip surface and outside the strip edge from one on the opposite nozzle body attached reflector is reflected and that the measurement signal obtained within the band edge to correct the the respective distance between the nozzle gap and the metal strip surface and the measurement signal obtained outside the strip card can be used to symmetrize the distance of each of the two nozzle columns with respect to the metal strip.
Die Erfindung wird im folgenden anhand von in einer Zeichnung dargestellten Ausführungsbeispielen näher erläutert.The invention is explained in more detail below with reference to exemplary embodiments shown in a drawing.
Dabei zeigen:
- Fig. 1
- ein erstes Ausführungsbeispiel der Erfindung als Draufsicht in der Normalebene des Metallbandes,
- Fig. 2
- ein zweites Ausführungsbeispiel der Erfindung,
- Fig. 3
- einen Schnitt entlang der Linie A - A in den
Figuren 1 bzw. 2, - Fig. 4
- ein drittes Ausführungsbeispiel der Erfindung ebenfalls als Draufsicht in der Normalebene des Metallbandes,
- Fig. 5
- einen Schnitt entlang der Linie B - B in Fig. 4,
- Fig. 6
- ein viertes Ausführungsbeispiel der Erfindung als Schnittdarstellung und
- Fig. 7
- ein fünftes Ausführungsbeispiel der Erfindung wiederum als Draufsicht in der Normalebene des Metallbandes.
- Fig. 1
- a first embodiment of the invention as a plan view in the normal plane of the metal strip,
- Fig. 2
- a second embodiment of the invention,
- Fig. 3
- 2 shows a section along the line AA in FIGS. 1 and 2,
- Fig. 4
- a third embodiment of the invention also as a plan view in the normal plane of the metal strip,
- Fig. 5
- 3 shows a section along the line BB in FIG. 4,
- Fig. 6
- a fourth embodiment of the invention as a sectional view and
- Fig. 7
- a fifth embodiment of the invention in turn as a plan view in the normal plane of the metal strip.
Das in Fig. 1 dargestellte erste Ausführungsbeispiel zeigt zwei an jeweils einer Seite des zu beschichtenden Metallbandes 1 angeordnete Düsenkörper 2, deren Düsenspalte jeweils einen bestimmten Abstand X zur Oberfläche des Metallbandes 1 haben. Der in Fig. 3 rechts dargestellte untere Düsenkörper 2 trägt auf seiner Oberseite einen Aufsatz für eine Meßeinrichtung 4, die als ein optischer Sensor ausgestaltet ist, welcher einen Laserstrahl entlang der mit a bezeichneten optischen Achse aussendet. Dieser Strahl fällt annähernd senkrecht auf die Oberfläche des Metallbandes 1. Die optische Meßeinrichtung 4 ist zur Vermeidung von Verunreinigungen auf der Seite, auf der der Lichtstrahl austritt, mit einer mit Druckluft beaufschlagten Schutzhülse 7 umgeben. Das Gehäuse der Meßeinrichtung 4 besteht aus einem Gehäusedeckel 8b und einem hinteren Gehäuseteil 8a, welches geöffnet werden kann.The first exemplary embodiment shown in FIG. 1 shows two
Die optische Meßeinrichtung 4 ruht auf einer Führung 12, auf welcher sie längs der Breite des Metallbandes 1 in der Art eines Schlittens verfahrbar ist.The
Die gesamte Einheit bestehend aus Führung 12, Meßeinrichtung 4 und Gehäuse 8a, 8b kann gegenüber dem sie tragenden Düsenkörper 2 mittels einer Winkelausgleichsschraube 13 um einen bestimmten Drehwinkel verstellt werden. Dies ist dann von Bedeutung, wenn der um den Drehpunkt 9 drehbare Düsenkörper 2 verstellt wird und dieser Winkel von der elektronischen Winkelerfassung 10 ermittelt wird.The entire unit consisting of
Jeder der beiden Düsenkörper 2 ist mittels eines Antriebs 5 in senkrechter Richtung zur Transportrichtung des Metallbandes 1 in der in Fig. 1 dargestellten Normalebene verfahrbar. Allerdings besteht für jeden Düsenkörper 2 der Verstellantrieb aus zwei Linearantrieben 5, gegenüber denen der Düsenkörper 2 kardanisch gelagert ist. Bei gleichgerichteter Bewegung seiner Antriebe ist der Düsenkörper 2 lateral zum Metallband hin oder von ihm fort verstellbar, so daß der Abstand zwischen Düsenspalt 3 und Metallbandoberfläche veränderbar ist.Each of the two
Bei gegensinniger Bewegung der Antriebe 5 ist der Düsenkörper 2 in der dargestellten Normalebene drehbar.When the
Wie aus Fig. 1 hervorgeht, sind entlang der Breite b des Metallbandes zwei optische Meßeinrichtungen 4 vorgesehen, die jeweils etwa die Hälfte des Metallbandes 1 überdecken. Diese werden von getrennten Antrieben 6 angetrieben kontinuierlich derart verfahren, daß sie den jeweils mit Δ bezeichneten Verfahrbereich überdecken.As can be seen from FIG. 1, two
Auf dem gegenüberliegenden Düsenkörper 2 sind Reflektoren 11 vorgesehen, die die jeweils mit K bezeichneten Bandkanten überdecken.On the
Die in Fig. 1 dargestellte Vorrichtung arbeitet wie folgt:The device shown in Figure 1 operates as follows:
Jede der beiden Meßeinrichtungen 4 wird entlang der Führung 12 kontinuierlich verfahren, so daß der mit a bezeichnete Meßstrahl der jeweiligen Meßeinrichtung 4 im Bereich innerhalb der Metallbandkante K vom Metallband 1 reflektiert wird. Gelangt die Meßeinrichtung 4 in den Bereich der Metallbandkante K, erfolgt ein sprunghafter Übergang der Reflektion vom Metallband 1 auf den Reflektor 11. Dieser sprunghafte Übergang ermöglicht eine genaue Lageerkennung der Bandkante.Each of the two
Im Bereich innerhalb der Kanten K mißt die optische Meßeinrichtung 4 jeweils den Abstand zwischen dem definierten Punkt auf dem Düsenkörper 2 und der Metallbandoberfläche. Zeigt sich im Laufe der Messung innerhalb des Verfahrweges innerhalb der Metallbandkanten, daß sich der gemessene Abstand ändert, läßt dies auf eine Schrägstellung des Metallbandes in Bezug auf den Düsenspalt schließen. Dem kann dann durch entsprechende Ansteuerung der Verstelleinrichtungen 5 oder der Führungsrollen beim "Zwei- oder Dreirollensystem" entgegengewirkt werden.In the area within the edges K, the
Stellt andererseits die Meßeinrichtung 4 im Bereich außerhalb der Metallbandkanten K eine Abweichung des Meßwertes von einem vorbestimmten Wert fest, ist dies auf eine Veränderung des vorgegebenen Abstandes zwischen den Bezugspunkten der beiden Düsenkörper 2 zurückzuführen. Aus der Kenntnis sowohl des Abstandes zwischen den Bezugspunkten auf den Düsenkörpern 2 als auch des Abstandes zwischen einem Düsenkörper und der Metallbandoberfläche kann nun mittels des nachgeschalteten, nicht näher dargestellten Auswerterechners die Symmetrierung erfolgen.On the other hand, if the measuring
Das in der Fig. 2 dargestellte zweite Ausführungsbeispiel der Erfindung unterscheidet sich von dem beschriebenen dadurch, daß anstelle von zwei Meßeinrichtungen, die jeweils mehr als die Bandhälfte überdecken, vier Meßeinrichtungen vorgesehen sind, von denen die beiden Inneren ständig in dem mit Δ a bezeichneten Verfahrbereich oszillieren, der innerhalb der Bandkanten K liegt. Die beiden äußeren Meßeinrichtungen 4b oszillieren hingegen innerhalb des mit Δ b bezeichneten Bereichs um die Bandkanten K, wobei der Meßstrahl der Meßeinrichtungen 4b entweder vom Metallband oder von den Reflektoren 11 reflektiert wird. Hierdurch lassen sich die Meßsignale für den Abstand Düsenkörper - Band bzw. Düsenkörper - Düsenkörper sowie für die Bandbreite gleichzeitig ermitteln, wodurch eine schnellere Auswertung möglich ist.The second exemplary embodiment of the invention shown in FIG. 2 differs from that described in that instead of two measuring devices, each covering more than the band half, four measuring devices are provided, of which the two interiors are constantly in the travel range denoted by Δ a oscillate, which lies within the band edges K. The two
Das in Fig. 4 und 5 dargestellte Ausführungsbeispiel unterscheidet sich von demjenigen der Fig. 2 nur dadurch, daß die im Kantenbereich oszillierenden optischen Meßeinrichtungen 4b nicht auf der gemeinsamen Führung 12 des unteren Düsenkörpers angeordnet sind, welcher auch die auf das Metallband gerichteten optischen Meßeinrichtungen 4a trägt. Vielmehr ist für die auf die Kantenbereiche K gerichteten optischen Meßeinrichtungen 4b eine weitere Führung 12 auf dem gegenüberliegenden (oberen) Düsenkörper 2 vorgesehen. Entsprechend ist der Reflektor dann auf demjenigen Düsenkörper 2 vorgesehen, der auch die optischen Meßeinrichtungen 4a trägt. Die von den jeweiligen Meßeinrichtungen überstrichenen Verfahrbereiche Δ a bzw. Δ b sind prinzipiell über denjenigen in Fig. 2 unverändert.The embodiment shown in FIGS. 4 and 5 differs from that of FIG. 2 only in that the
Die in den Figuren 2 und 4 dargestellten Ausführungsbeispiele bieten Vorteile bei der Justierung. Soll nämlich aus technologischen Gründen das Band 1 nicht in der in durchgezogenen Linien dargestellten Position abgeblasen werden sondern in der gestrichelten Position (Fig.5), so ist jeder der Düsenkörper 2 um den Drehpunkt 9 zu drehen. Die Drehung des Düsenkörpers 2 wird dabei von einer elektronischen Winkelerfassung 10 festgestellt. Damit die optische Achse jeder Meßeinrichtung 4a,4b nach wie vor senkrecht auf das Metallband 1 einfällt, muß der Winkelversatz ausgeglichen werden, und zwar durch eine Winkelausgleichsschraube 13. Eine solche Winkelkorrektur kann auch elektronisch erfolgen, in dem das Meßsignal der Winkelerfassung 10 zur Stellung der Ausgleichsschraube 13 verwendet wird.The exemplary embodiments shown in FIGS. 2 and 4 offer advantages in the adjustment. If, for technological reasons, the
Das in Fig. 6 dargestellte Ausführungsbeispiel der Erfindung zeigt eine Alternative zur Anordnung, wie sie in der jeweils rechten Bildhälft der Figuren 3 und 5 dargestellt ist. Demgemäß ruht die Meßeinrichtung 4 nicht direkt auf dem Düsenkörper 2 sondern ist auf einer Traverse 16 befestigt, entlang der die Meßeinrichtung 4 quer zur Bandlaufrichtung verfahrbar ist. Die Traverse 16 ist mittels eines Traversenantriebes 17 in Bezug auf das Metallband 1 verstellbar. Die Traverse 16 ist im Bereich des Drehpunktes 9 für den Düsenkörper 2 gelagert. Allerdings ist der Düsenkörper 2 im Drehpunkt 9 drehbar gegenüber der Traverse 16, so daß bei einer Drehung des Düsenkörpers 2 in die in Fig.6 gestrichelt dargestellte Position die Traverse 16 und somit die Meßeinrichtung 4 ortsfest bleiben.The exemplary embodiment of the invention shown in FIG. 6 shows an alternative to the arrangement as shown in the right half of FIGS. 3 and 5. Accordingly, the measuring
Dies bedeutet, daß die Orientierung der Meßeinrichtung 4 in Bezug auf das Metallband 1 auch bei Drehung des Düsenkörpers 2 um den Drehpunkt 9 erhalten bleibt. Hierdurch können zusätzliche Kompensationsmittel zum Ausgleich der Drehung entfallen.This means that the orientation of the measuring
Das in Fig. 7 dargestellte fünfte Ausführungsbeispiel unterscheidet sich von den bislang dargestellten Ausführungsbeispielen dadurch, daß in den beiden Kantenbereichen des Metallbandes jeweils eine optische Meßeinrichtung 4b vorgesehen ist, die jeweils den dargestellten Bereich Δ des Metallbandes 1 überdeckt, der die jeweilige Bandkante einschließt. Dabei sind die Meßeinrichtungen 4b von getrennten Antrieben 6 angetrieben kontinuierlich derart verfahrbar, daß sie den Bereich oszillierend überdecken. Demgegenüber ist die im Mittenbereich zwischen den Bandkanten vorgesehene Meßeinrichtung 4a stationär.The fifth exemplary embodiment shown in FIG. 7 differs from the previously illustrated exemplary embodiments in that an
Die Meßeinrichtungen 4a,4b ruhen jeweils auf einer Führung 12, auf welcher sie längs der Breite des Metallbandes 1 entweder mittels der Antriebe 6 (Meßeinrichtungen 4b) oder zur Einstellung der stationären Position (Meßeinrichtung 4a) verfahrbar sind.The measuring
Auf dem gegenüberliegenden Düsenkörper 2 sind Reflektoren 11 vorgesehen, die Bandkanten überdecken.On the
Diese Vorrichtung arbeitet wie folgt:This device works as follows:
Jede der beiden Meßeinrichtungen 4b wird entlang der Führung 12 kontinuierlich um den Bereich Δ oszillierend derart verfahren, daß der mit a bezeichnete Meßstrahl der jeweiligen Meßeinrichtung 4b im Bereich innerhalb der Metallbandkante K vom Metallband 1 reflektiert wird. Gelangt hier die Meßeinrichtung 4b in den Bereich der Metallbandkante K, erfolgt ein sprunghafter Übergang der Reflektion vom Metallband auf den Reflektor 11. Dieser sprunghafte Übergang ermöglicht eine genaue Lageerkennung der Bandkante. Dieser Übergang wird insbesondere deswegen genau detektiert, weil die Meßeinrichtung 4b einen um einen bestimmten Öffnungswinkel aufgeweiteten Lichtstrahl aufweist. Da gleichzeitig ein Empfänger zur Erfassung der Intensität der reflektierten Strahl vorgesehen ist, kann durch die Auswertung bestimmter Intensitätsschwellwerte der Übergang genau festgelegt werden.Each of the two
Im Bereich innerhalb der Kanten K mißt die stationäre Meßeinrichtung 4b den Abstand zwischen den definierten Punkt auf den Düsenkörper 2 und der Metallbandoberfläche. Zeigt sich um Laufe der Messung aus der Auswertung der von den drei Meßeinrichtungen 4a,4b gewonnenen Meßwerte eine Schrägstellung des Metallbandes in Bezug auf den Düsenspalt, kann durch entsprechende Ansteuerung der Verstelleinrichtung 5 oder der Führungsrollen beim "Zwei- oder Dreirollensystem" eine Kompensation erfolgen.In the area within the edges K, the
Stellt andererseits eine der Meßeinrichtungen 4b im Bereich außerhalb der Metallbandkanten K eine Abweichung des Meßwertes von einem vorbestimmten Wert fest, ist dies auf eine Veränderung des vorgegebenen Abstandes zwischen den Bezugspunkten der beiden Düsenkörper 2 zurückzuführen. Aus der Kenntnis sowohl des Abstandes zwischen den Bezugspunkten auf den Düsenkörpern 2 als auch des Abstandes zwischen einem Düsenkörper und der Metallbandoberfläche kann nun mittels des nachgeschalteten nicht näher dargestellten Auswerterechners die Symmetrierung erfolgen.If, on the other hand, one of the
- 1 -1 -
- MetallbandMetal strap
- 2 -2 -
- DüsenkörperNozzle body
- 3 -3 -
- DüsenspaltNozzle gap
- 4 -4 -
- MeßeinrichtungMeasuring device
- 4a -4a -
- AbstandsmeßeinrichtungDistance measuring device
- 4b -4b -
- KantenmeßeinrichtungEdge measuring device
- 5 -5 -
- Antrieb für DüsenkörperDrive for nozzle body
- 6,6a,6b -6.6a, 6b -
- Antrieb für MeßeinrichtungDrive for measuring device
- 7 -7 -
- SchutzhülseProtective sleeve
- 8a -8a -
- Gehäusecasing
- 8b -8b -
- GehäusedeckelHousing cover
- 9 -9 -
- Drehpunkt DüsenkörperPivot point of the nozzle body
- 10 -10 -
- WinkelerfassungAngle detection
- 11 -11 -
- Reflektorreflector
- 12 -12 -
- Führungguide
- 13 -13 -
- WinkelausgleichsschraubeAngle compensation screw
- 14 -14 -
- Drehpunkt MeßeinrichtungPivot measuring device
- 15 -15 -
- Drehpunkt ReflektorPivot point reflector
- 16 -16 -
- Traversetraverse
- 17 -17 -
- Antrieb für TraverseTraverse drive
- Δ -Δ -
- VerfahrbereichTravel range
- Δa -Δa -
- Verfahrbereich AbstandsmeßeinrichtungDistance measuring device travel range
- Δb -Δb -
- Verfahrbereich KantenmeßeinrichtungEdge measuring device travel range
- a -a -
- optische Achse der Meßeinrichtungoptical axis of the measuring device
- x -x -
- Abstand Düsenspalt zur MetallbandoberflächeDistance from the nozzle gap to the metal strip surface
- b -b -
- MetallbandbereichMetal band area
- K -K -
- MetallbandkantenpositionMetal tape edge position
Claims (20)
- An apparatus for blowing off superfluous coating material in the continuous coating of metal strip, more particularly the galvanizing of steel strip, wherein the metal strip (1) is guided in two nozzle bodies (2a, 2b) which can be operated by a blow-off medium at a distance from the respective gaps (3a, 3b) of the nozzle bodies (2a, 2b) extending transversely of the direction in which the strip runs, characterized in that at least one of the two nozzle bodies (2) which can be adjusted in relation to the metal strip (1) bears at least one optical measuring device (4, 4a, 4b) which can be moved parallel with the nozzle gap inside the edges (K) of the metal strip (1) to cover at least the zone of one edge (K) of the metal strip, the opposite nozzle body (2) having a reflector (11) so designed that in the position of the measuring device (4, 4a, 4b) outside the metal strip edges (K) the measuring beam is directed at the reflector (11), while connected to the measuring device (4, 4a, 4b) is an evaluating device which allocates the measuring signal to the momentary position on the axis of movement and passes said signal on to a control circuit for the adjusting device (5) of at least one nozzle body (2), the evaluating device comprising a descriminator for distinguishing between the measuring signals reflected from the metal strip and the reflector respectively.
- A device according to claim 1, characterized in that the reflector is formed by a flat reflecting strip which extends parallel with the metal strip (1) and whose width is so selected that at least one edge position of the strip to be coated is covered.
- A device according to claim 2, characterized in that the reflector strip is retained by a support which is attached to the nozzle body (2a, 2b) and can be rotated around a pivot (15), the reflector plane extending through the pivot (9) of its supporting nozzle body (2).
- A device according to claims 2 or 3, characterized in that the reflector (11) is retained by a casing (8a, 8b) bearing at least one measuring device (4, 4a, 4b).
- A device according to one of the preceding claims,
characterized in that the nozzle body (2) can be pivoted around an axis parallel with the nozzle gap (3), while provided for the correction of the output signal of the measuring device (4) is an angle-correcting device (10) which detects the pivoting angle, the optical measuring device borne by the nozzle body (2) being adjustable by means of an angle-equalizing screw (13). - A device according to one of the preceding claims,
characterized in that the measuring device is an optical sensor which determines the distance to the metal surface and to the reflector over the running time of its light beam. - A device according to one of the preceding claims,
characterized in that the measuring device is a laser beam measuring device. - A device according to one of the preceding claims,
characterized in that the evaluating device for the output signals of the measuring devices is coupled to the adjusting drive for the guide rollers of a three-roller guide or a two-roller guide. - A device according to one of the preceding claims,
characterized in that the optical measuring device (4, 4a, 4b) is disposed on a traverse (16) which can be adjusted by means of a traverse drive (17) in the direction of the metal strip, the nozzle body (2a, 2b) being pivotable in relation to the traverse (16). - A device according to claim 1, characterized in that associated with one of the nozzle bodies (2, 2b) are at least two measuring devices (4, 4a, 4b), each of the two measuring devices (4, 4a, 4b) being movable by separate drives (6, 6a, 6b).
- A device according to one of the preceding claims,
characterized in that associated with one nozzle body are two measuring devices (4) which can each be moved over non-overlapping zones (Δ) of at least half the width of the metal strip. - A device according to one of claims 1 to 10, characterized in that one nozzle body (2) has two pairs of measuring devices (4a, 4b) which each have non-overlapping zones of movement, the measuring devices of the first pair (4a) being movable over less than half the width (b) of the metal strip, and the measuring devices of the second pair (4b) covering the zone of the respective component strip edge (K).
- A device according to claim 12, characterized in that all the measuring devices (4a, 4b) are disclosed on a common guide (12) and can each be driven by separate drives (6a, 6b).
- A device according to claim 13, characterized in that the measuring devices of the first and second pair (4a, 4b) are disposed on different nozzle bodies (2), the measuring devices (4b) movable by the zone of the metal strip edge (K) being disposed on the nozzle body (2) opposite the reflector (11).
- A device according to one of claims 1 to 10, characterized in that the optical measuring device is formed by a first measuring device (4a), which is disposed stationary inside the strip edges (K), and a pair of second measuring devices (4b) each of which oscillates around a zone (Δ) which encloses the edge adjacent the particular measuring device (4).
- A device according to claim 16 (sic), characterized in that the second measuring devices (4a, 4b) are disposed on a common guide (12).
- A device according to one of claims 14 to 16, characterized in that the light beam of each measuring device can be widened by a given opening angle, a receiver being provided to determine the intensity of the reflected light signal.
- A method of blowing off superfluous coating material in the continuous coating of metal strip, more particularly the galvanization of steel strip, wherein a metal strip passes through a bath of coating agent and moves via guide and deflecting rollers into the zone of a pair of blow-off nozzles which are disposed above the level of the bath and are acted upon by a blow-off medium, more particularly compressed air, and whose nozzle gaps each extend transversely of the direction in which the strip runs, characterized in that at least one optical measuring device disposed on at least one of the two nozzle bodies adjustable in relation to the metal strip is so moved continuously transversely of the direction in which the strip runs as far as beyond the zone of one of the strip edges that the measuring beam of the measuring device is reflected in the zone inside the strip edge from the metal strip surface and outside the strip edge from a reflector disposed on the opposite nozzle body, and the measuring signal obtained inside the strip edge is used to correct the particular distance between the nozzle gap and the surface of the metal strip, the measuring signal obtained outside the strip edge being used for symmetrization of the distance of each of the two nozzle gaps in relation to the metal strip.
- A method according to claim 18, characterized in that the width of the metal strip is calculated from the position of the transition of the measuring signal reflected from the metal strip and the measuring signal reflected from the reflector.
- A method according to claim 18, characterized in that a first measuring signal is obtained by means of a stationary first measuring device (4a) inside the strip edges, and a pair of second measuring signals is obtained by means of a pair of second measuring devices (4b), each of which oscillates in the zone (Δ) of the strip edge (K), the first measuring signal being used to correct the particular distance between the nozzle gap and the surface of the metal strip, and the pair of second measuring signals being used for the symmetrization of the distance of each of the two nozzle gaps in relation to the metal strip, the second measuring signal measured inside the strip edge also being used to correct the distance between the nozzle gap and the surface of the strip.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19934306394 DE4306394C1 (en) | 1993-03-02 | 1993-03-02 | Blow-off device and method for blowing off excess coating material |
DE4306394 | 1993-03-02 | ||
DE4342904A DE4342904C1 (en) | 1993-03-02 | 1993-12-16 | Blow off device |
DE4342904 | 1993-12-16 | ||
PCT/EP1994/000560 WO1994020647A1 (en) | 1993-03-02 | 1994-02-25 | Blow-off device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0690932A1 EP0690932A1 (en) | 1996-01-10 |
EP0690932B1 true EP0690932B1 (en) | 1996-09-25 |
Family
ID=25923562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94909070A Expired - Lifetime EP0690932B1 (en) | 1993-03-02 | 1994-02-25 | Blow-off device |
Country Status (5)
Country | Link |
---|---|
US (1) | US5786036A (en) |
EP (1) | EP0690932B1 (en) |
AT (1) | ATE143418T1 (en) |
DE (2) | DE4342904C1 (en) |
WO (1) | WO1994020647A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6483587B1 (en) | 1999-06-30 | 2002-11-19 | John Charles Jackson | Gap/edge bead detection system |
US6946163B2 (en) * | 2001-08-31 | 2005-09-20 | Honda of Canada Manufacturing a division of Honda Canada Inc. | Coating technique |
US6802903B2 (en) * | 2001-09-25 | 2004-10-12 | Becton, Dickinson And Company | Apparatus for applying adhesive to tubing |
DE102006052000A1 (en) * | 2006-11-03 | 2008-05-08 | Emg Automation Gmbh | Device for stabilizing the run of a metal strip |
SE531120C2 (en) * | 2007-09-25 | 2008-12-23 | Abb Research Ltd | An apparatus and method for stabilizing and visual monitoring an elongated metallic band |
BRPI0822700A2 (en) * | 2008-05-15 | 2015-07-07 | Siemens Vai Metals Technologies S A S | System and method for orienting a galvanizing product drying device |
JP5543726B2 (en) | 2009-05-08 | 2014-07-09 | 三菱日立製鉄機械株式会社 | Gas wiping device |
CN106480392A (en) * | 2015-08-31 | 2017-03-08 | 鞍钢股份有限公司 | Method for adjusting position of strip steel continuous hot galvanizing air knife frame |
KR102195240B1 (en) * | 2017-11-28 | 2020-12-24 | 주식회사 고영테크놀러지 | Apparatus for inspecting substrate and method thereof |
EP3489619A1 (en) | 2017-11-28 | 2019-05-29 | Koh Young Technology Inc. | Apparatus for inspecting substrate and method thereof |
ES2951125T3 (en) * | 2018-10-24 | 2023-10-18 | John Cockerill S A | Method to control the uniformity of coating weight in industrial galvanizing lines |
IT201900023484A1 (en) * | 2019-12-10 | 2021-06-10 | Danieli Off Mecc | STABILIZATION APPARATUS |
CN113173440A (en) * | 2021-05-28 | 2021-07-27 | 安徽华茂纺织股份有限公司 | Automatic edge blowing device capable of adjusting direction and control method thereof |
CN113522691A (en) * | 2021-06-24 | 2021-10-22 | 西安航天华阳机电装备有限公司 | Adjustable tuyere structure |
CN113798266A (en) * | 2021-09-06 | 2021-12-17 | 华菱安赛乐米塔尔汽车板有限公司 | Strip steel edge purging device and method for hot-dip galvanized steel strip |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4078103A (en) * | 1975-04-17 | 1978-03-07 | Armco Steel Corporation | Method and apparatus for finishing molten metallic coatings |
JPS55141556A (en) * | 1979-04-18 | 1980-11-05 | Nisshin Steel Co Ltd | Nozzle-steel strip interval measuring instrument in molten metal plating equipment |
FR2474185A1 (en) * | 1979-08-08 | 1981-07-24 | Rhone Poulenc Syst | METHOD FOR DEVELOPING AND FIXING AN IMAGE OBTAINED BY ELECTROGRAPHY |
DE3500878C1 (en) * | 1985-01-12 | 1986-01-09 | Thyssen Stahl AG, 4000 Düsseldorf | Method and device for coating strips with molten metal, in particular for hot-dip galvanizing steel strips |
JPS6230865A (en) * | 1985-07-31 | 1987-02-09 | Sumitomo Metal Ind Ltd | Method and apparatus for producing metal hot dipped strip |
DE4024229C1 (en) * | 1990-07-31 | 1991-07-18 | Heinrich 4100 Duisburg De Pannenbecker | |
JP3015086B2 (en) * | 1990-09-25 | 2000-02-28 | 川崎製鉄株式会社 | Method and apparatus for measuring position and shape of running belt |
US5401317A (en) * | 1992-04-01 | 1995-03-28 | Weirton Steel Corporation | Coating control apparatus |
DE4306394C1 (en) * | 1993-03-02 | 1994-04-21 | Duma Masch Anlagenbau | Blow-off device and method for blowing off excess coating material |
-
1993
- 1993-12-16 DE DE4342904A patent/DE4342904C1/en not_active Expired - Fee Related
-
1994
- 1994-02-25 WO PCT/EP1994/000560 patent/WO1994020647A1/en active IP Right Grant
- 1994-02-25 DE DE59400745T patent/DE59400745D1/en not_active Expired - Lifetime
- 1994-02-25 US US08/507,456 patent/US5786036A/en not_active Expired - Lifetime
- 1994-02-25 AT AT94909070T patent/ATE143418T1/en active
- 1994-02-25 EP EP94909070A patent/EP0690932B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0690932A1 (en) | 1996-01-10 |
US5786036A (en) | 1998-07-28 |
DE4342904C1 (en) | 1995-04-27 |
WO1994020647A1 (en) | 1994-09-15 |
ATE143418T1 (en) | 1996-10-15 |
DE59400745D1 (en) | 1996-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0690932B1 (en) | Blow-off device | |
DE3712043C2 (en) | Roll stand with axially displaceable rolls | |
DE3419261C2 (en) | ||
EP3221487B1 (en) | Method and device for coating a metal strip | |
DE69024093T2 (en) | Method for steering casting belts in machines for continuous casting of metals and continuous casting machine | |
DE19735603C1 (en) | Vacuum coating installation | |
DE3115461A1 (en) | "CONTROL ARRANGEMENT ON STRIP OR SHEET MILLING MILLS" | |
EP3802910B1 (en) | Vacuum-coating system and method for coating a band-type material | |
EP0249234B2 (en) | Blow-off device for the continuous two-sided coating of strip metal | |
EP0650534B1 (en) | Coating device | |
DE3701267C2 (en) | ||
EP2132526A1 (en) | Device for thickness measurement and method therefor | |
EP2190602A1 (en) | Device and method for strip position control | |
DE4306394C1 (en) | Blow-off device and method for blowing off excess coating material | |
DE4300868C1 (en) | Coating device | |
DE68901941T2 (en) | CONTINUOUSLY WORKING MELGANIZING DEVICE. | |
DE3320160A1 (en) | Device for thickness control when coating flat articles, preferably when applying a glazing layer to ceramic plates | |
DE4223343C1 (en) | Blow off device | |
DE3500878C1 (en) | Method and device for coating strips with molten metal, in particular for hot-dip galvanizing steel strips | |
DE102022100820B3 (en) | Stabilizing device and sensor structure for continuously moving metal strips | |
DE3837101A1 (en) | Method for controlling the running of the strip during rolling in a mill train | |
DE3810242C2 (en) | Device for acting on both sides of a strip | |
DE3405146C1 (en) | Rolling stand and method for flat rolling of metal strip in a rolling stand | |
DE102015121662A1 (en) | Method for carrying out a strip thickness measurement and strip thickness measuring device | |
DE4219979A1 (en) | Control installation in a galvanising plant - has measuring heads with feelers to measure distance between strip edge and head w.r.t. predetermined value obtd. by feeler, for automatic adjustment of masks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950824 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE DE ES FR GB IT LU NL |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19960304 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR GB IT LU NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19960925 |
|
REF | Corresponds to: |
Ref document number: 143418 Country of ref document: AT Date of ref document: 19961015 Kind code of ref document: T |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19961001 |
|
REF | Corresponds to: |
Ref document number: 59400745 Country of ref document: DE Date of ref document: 19961031 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120224 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20130221 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130301 Year of fee payment: 20 Ref country code: GB Payment date: 20130218 Year of fee payment: 20 Ref country code: DE Payment date: 20130219 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20130219 Year of fee payment: 20 Ref country code: BE Payment date: 20130220 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20130213 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59400745 Country of ref document: DE |
|
BE20 | Be: patent expired |
Owner name: *DUMA MASCHINEN- UND ANLAGENBAU BETEILIGUNGS G.M.B Effective date: 20140225 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20140225 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20140224 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 143418 Country of ref document: AT Kind code of ref document: T Effective date: 20140225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140224 Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140226 |