EP0686208B1 - Process for making high formability aluminium alloy sheets - Google Patents
Process for making high formability aluminium alloy sheets Download PDFInfo
- Publication number
- EP0686208B1 EP0686208B1 EP95905681A EP95905681A EP0686208B1 EP 0686208 B1 EP0686208 B1 EP 0686208B1 EP 95905681 A EP95905681 A EP 95905681A EP 95905681 A EP95905681 A EP 95905681A EP 0686208 B1 EP0686208 B1 EP 0686208B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- temperature
- alloy
- aluminium alloy
- mechanical properties
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/05—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
Definitions
- the present invention relates to a manufacturing method improving the mechanical properties and formability of aluminum alloy sheets intended in particular for automobile bodywork.
- Automobile bodies are traditionally produced in cold rolled steel sheet.
- Al-Mg-Si alloy sheet is formed into a bodywork element after a solution treatment followed by natural aging in the T4 state. After shaping, hardening by aging (baking hardening in English), during application and curing of the paints, gives it the required mechanical properties.
- the main difficulty raised by the exploitation of aluminum alloys in automobile bodywork is the insufficient formability of this family of materials.
- the formability of aluminum alloys and particularly that of Al-Mg-Si alloys therefore needs to be significantly improved.
- the present invention relates to a process for manufacturing aluminum alloy sheets with high formability, characterized in that an aluminum alloy sheet composed of 0.3 to 1.7% (by weight) of Si, 0.01 to 1.2% Cu, 0.01 to 1.1% Mn, 0.4 to 1.4% Mg, less than 1.0% Fe and, for the rest, Al and inevitable impurities, is subjected to a continuous heat treatment in solution for at least 3 seconds at more than 450 ° C., followed by cooling to a temperature of 60 to 250 ° C. at a speed greater than 100 ° C / min, of a winding with maintenance at said temperature of 60 to 250 ° C and a pre-aging period of between 1 minute and 10 hours at said temperature of 60 to 250 ° C.
- the alloy may additionally contain one or more elements chosen from 0.04 to 0.4% of Cr, less than 0.25% of Zn, less than 0.4% of Zr and less than 0.2% of Ti .
- Aluminum alloys of the Al-Mg-Si type are alloys which harden with aging: aging induces the precipitation of a structural hardening phase, which increases the mechanical properties.
- the process follows the following scheme: supersaturated solid solution ⁇ GP zone ⁇ Intermediate phase ⁇ Stable phase
- the baking of the paint causes artificial aging which then precipitates an intermediate phase (hardening phase structural) which optimizes the mechanical properties of the alloy.
- the problem of this prior process lies in the distribution of the precipitates which, being mainly concentrated in GP zones at the time of natural aging, then thwart the precipitation of the phase intermediate by artificial aging, and therefore prohibited obtaining optimal mechanical strength.
- the alignment of the GP zones with the matrix phase (Al) harms the formability insofar as it favors, at the time of deformations, the rupture at the level of dislocations and finally the concentration of stresses in grain boundaries.
- the present invention results from taking these various observations into account. It is mainly characterized by the permanent maintenance at a temperature above 60 ° C, without the slightest foray into the normal temperature range, during the whole process between the solution treatment and the final pre-aging.
- the objective is in fact, by maintaining the temperature above 60 ° C. until the end of pre-aging, to prevent the formation of GP zones, knowing that the previous process precisely involves incursions at normal temperature, that this either during the quenching of natural aging or until cooking, and that these incursions are at the origin of the formation of such GP zones.
- the sheet once pre-aged can then, without affecting its formability or its mechanical properties, be exposed for a prolonged period to a normal temperature during forming and then applying and curing the paints.
- the manufacturing process according to the invention consists, after preparation, casting, homogenization and rolling of the above-described aluminum alloy according to a usual method, to subject it to a continuous treatment of dissolved by heating for more than 3 seconds at a temperature above 450 ° C, followed by cooling to a temperature of 60 to 250 ° C at a speed higher than 100 ° C / min, from a winding with holding at said temperature from 60 to 250 ° C and a pre-aging period between 1 minute and 10 hours at said temperature from 60 to 250 ° C.
- the dissolution treatment improves the formability of the material by causing the temporary dissolution of elements such as Si and Mg in the matrix, and subsequently promotes the mechanical properties through the fine precipitation of compounds such as Mg 2 If during subsequent cooking.
- the solution heating is applied for a minimum of 3 seconds at a temperature above 450 ° C. Indeed, if the temperature and the duration do not reach 450 ° C and 3 seconds, the dissolution of the elements (Si, Mg etc ...) and therefore the improvement of the mechanical properties during the subsequent cooking are insufficient .
- the cooling rate after dissolution is chosen to be greater than 100 ° C / min. Indeed, a speed below 100 ° C / min results in coarse precipitation, therefore in poor formability as well as in an insufficient improvement in mechanical properties during cooking.
- the final temperature for this cooling rate is chosen in the range 60-250 ° C. Indeed, if it is below 60 ° C, it shows GP areas, and if it is above 250 ° C, it promotes the precipitation of a stable phase at the expense of formability and mechanical properties.
- the winding in the same temperature range 60-250 ° C of the material cooled to 60-250 ° C, then the pre-aging from 1 minute to 10 hours always in the temperature range 60-250 ° C are intended to allow the formation an intermediate phase which benefits the mechanical properties and the formability of the alloy. If their temperature is below 60 ° C, GP zones are formed, and if it is above 250 ° C, there is precipitation of a stable phase, in both cases to the detriment of mechanical properties and formability of the alloy.
- the duration of the pre-aging is chosen between 1 minutes and 10 hours. In effect, below 1 minute, insufficient precipitation of the phase intermediate risk later, when returning to normal temperature, to favor the formation of GP zones, and above 10 hours, the phase intermediate, overabundant, excessively strengthens the properties mechanical properties of the alloy to the detriment of its formability.
- the present invention applies not only to the method of continuous manufacturing mentioned above, but also and with the same effects to classic discontinuous processes.
- Fig. 1 is a micrograph which represents the microstructure of a sheet of aluminum alloy constituting an exemplary embodiment of the invention.
- Fig. 2 is a micrograph which represents the microstructure of a sheet aluminum alloy constituting another embodiment of the invention.
- Fig. 3 is a micrograph which represents the microstructure of a sheet of aluminum alloy manufactured by a process of the prior art.
- Fig. 4 is a micrograph which represents the microstructure of a sheet of aluminum alloy made by another process of the prior art.
- the aluminum alloys having the compositions of Table 1 were prepared, poured, suitably homogenized, hot rolled at 400 ° C, then cold rolled by the usual methods to obtain sheets of 1 mm thick.
- the sheets were subjected to a continuous treatment of 10 seconds solution treatment at 560 ° C, then heat treatment under the conditions of Table 2, to be pre-aged between 1 minute and 10 hours at a given temperature, as the case may be 60 ° C, 120 ° C, 180 ° C or 250 ° C. Some of these sheets were finally subjected to a treatment of cooking (1 hour at 180 ° C), others not.
- the tensile test was carried out on a JIS No.5 tensile test piece.
- the Erichsen test was conducted using the JIS Z2247A method (measurement of the deep drawing).
- the limit drawing test (LDR) consisted stamp a lubricated blank with a 33 mm diameter punch, measure the maximum blank diameter for which there is no rupture of said blank and calculate the ratio of this maximum diameter to the diameter of the punch.
- the alloy of code C in Table 1 (Si 1.65%, Fe 0.08%, Mn 0.10%, Mg 1.38%, Zn 0.01%, Ti 0.02%, remains: AL ) subjected to the heat treatment 3 of Table 2 (dissolution in 10 seconds at 560 ° C, cooling to 120 ° C, winding at 120 ° C, 3 hours pre-aging at 120 ° C, no cooking) was selected as sample ( at).
- the same alloy C subjected to the heat treatment 4 of Table 2 (treatment of the sample i (a) supplemented by baking for 1 hour at 180 ° C.) was retained as sample (b).
- Fig. 3 and Fig. 4 demonstrate that further cooling down to 20 ° C prevents precipitation of the intermediate phase of Mg 2 Si, this even if it is followed by pre-aging and cooking treatment.
- the method according to the invention has the great advantage from an industrial point of view of making it possible to manufacture aluminum alloy sheets guaranteeing excellent mechanical properties and formability.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Powder Metallurgy (AREA)
- Heat Treatment Of Steel (AREA)
Description
La présente invention concerne un procédé de fabrication améliorant les propriétés mécaniques et la formabilité des tôles d'alliage d'aluminium destinées notamment à la carrosserie automobile.The present invention relates to a manufacturing method improving the mechanical properties and formability of aluminum alloy sheets intended in particular for automobile bodywork.
Les carrosseries automobiles sont fabriquées traditionnellement dans de la tôle d'acier laminée à froid.Automobile bodies are traditionally produced in cold rolled steel sheet.
Soucieux d'alléger la caisse de leurs modèles, les constructeurs étudient
depuis quelques années la possibilité de recourir aux alliages d'aluminium
du type Al-Mg-Si pour fabriquer notamment les carrosseries.
Dans cette technologie, la tôle d'alliage Al-Mg-Si est formée en élément
de carrosserie après un traitement de mise en solution suivi d'un
vieillissement naturel à l'état T4. Après la mise en forme, un
durcissement par vieillissement (durcissement de cuisson ou "bake
hardening" en anglais), lors de l'application et de la cuisson des
peintures, lui confère les propriétés mécaniques requises.
La principale difficulté soulevée par l'exploitation des alliages
d'aluminium en carrosserie automobile est la formabilité insuffisante de
cette famille de matériaux. La formabilité des alliages d'aluminium et
singulièrement celle des alliages Al-Mg-Si demande donc à être nettement
améliorée.
Par ailleurs, les tôles d'alliage d'aluminium souffrent d'un déficit de
tenue mécanique par rapport aux tôles d'acier. Aussi les constructeurs
sont-ils également à la recherche de procédés de cuisson qui, d'une part
soient assez efficaces pour procurer à ces tôles des performances
mécaniques élevées et d'autre part demandent des temps de traitement assez
courts et des températures assez basses pour minimiser les coûts de
fabrication. Anxious to lighten the body of their models, manufacturers have been studying for a few years the possibility of using aluminum alloys of the Al-Mg-Si type to manufacture in particular the bodywork.
In this technology, the Al-Mg-Si alloy sheet is formed into a bodywork element after a solution treatment followed by natural aging in the T4 state. After shaping, hardening by aging (baking hardening in English), during application and curing of the paints, gives it the required mechanical properties.
The main difficulty raised by the exploitation of aluminum alloys in automobile bodywork is the insufficient formability of this family of materials. The formability of aluminum alloys and particularly that of Al-Mg-Si alloys therefore needs to be significantly improved.
In addition, aluminum alloy sheets suffer from a mechanical resistance deficit compared to steel sheets. Therefore, manufacturers are also looking for baking processes which, on the one hand, are effective enough to provide these sheets with high mechanical performance and, on the other hand, require fairly short processing times and fairly low temperatures to minimize manufacturing costs.
La présente invention concerne un procédé de fabrication de tôles
d'alliage d'aluminium à haute formabilité, caractérisé en ce qu'une tôle
d'alliage d'aluminium composée de 0,3 à 1,7% (en poids) de Si, 0,01 à 1,2%
de Cu, 0,01 à 1,1% de Mn, 0,4 à 1,4% de Mg, moins de 1,0% de Fe et, pour
le reste, d'Al et d'inévitables impuretés, est soumise à un traitement
thermique en continu de mise en solution d'au moins 3 secondes à plus de
450°C, suivi d'un refroidissement à une température de 60 à 250°C à une vitesse supérieure à 100°C/mn, d'un bobinage avec maintien à ladite temperature de 60 à 250°C et d'un
prévieillissement d'une durée comprise entre 1 minute et 10 heures à
ladite température de 60 à 250°C.
L'alliage peut contenir en plus un ou plusieurs éléments choisis parmi
0,04 à 0,4% de Cr, moins de 0,25% de Zn, moins de 0,4% de Zr et moins de
0,2% de Ti.The present invention relates to a process for manufacturing aluminum alloy sheets with high formability, characterized in that an aluminum alloy sheet composed of 0.3 to 1.7% (by weight) of Si, 0.01 to 1.2% Cu, 0.01 to 1.1% Mn, 0.4 to 1.4% Mg, less than 1.0% Fe and, for the rest, Al and inevitable impurities, is subjected to a continuous heat treatment in solution for at least 3 seconds at more than 450 ° C., followed by cooling to a temperature of 60 to 250 ° C. at a speed greater than 100 ° C / min, of a winding with maintenance at said temperature of 60 to 250 ° C and a pre-aging period of between 1 minute and 10 hours at said temperature of 60 to 250 ° C.
The alloy may additionally contain one or more elements chosen from 0.04 to 0.4% of Cr, less than 0.25% of Zn, less than 0.4% of Zr and less than 0.2% of Ti .
Les plages de concentration imposées aux éléments constitutifs de
l'alliage selon l'invention s'expliquent par les raisons suivantes :
Sa concentration est choisie dans la plage 0,3-1,7% en poids. En effet, au-dessous de 0,3% en poids, son effet est insuffisant, et au-dessus de 1,7% en poids, la formabilité après mise en solution s'en ressent.
Its concentration is chosen in the range 0.3-1.7% by weight. Indeed, below 0.3% by weight, its effect is insufficient, and above 1.7% by weight, the formability after dissolution is affected.
Les autres impuretés sont également limitées à moins de 0,5% en poids sous peine de ne pas réaliser les effets de l'invention.Other impurities are also limited to less than 0.5% by weight under trouble not realizing the effects of the invention.
Les alliages d'aluminium type Al-Mg-Si sont des alliages qui durcissent au
vieillissement : le vieillissement induit la précipitation d'une phase de
durcissement structural, qui augmente les propriétés mécaniques. Dans le
cas de l'alliage Al-Mg-Si, le processus obéit au schéma suivant :
solution solide sursaturée→ Zone GP→ Phase intermédiaire→Phase stableAluminum alloys of the Al-Mg-Si type are alloys which harden with aging: aging induces the precipitation of a structural hardening phase, which increases the mechanical properties. In the case of the Al-Mg-Si alloy, the process follows the following scheme:
supersaturated solid solution → GP zone → Intermediate phase → Stable phase
Dans le cas du procédé mise en solution/trempe/vieillissement à température normale (traitement T4), le vieillissement engendre des zones GP avec des précipités en excès laissés par la trempe, et qui apportent une première amélioration nette des propriétés mécaniques.In the case of the solution / quench / aging process at normal temperature (T4 treatment), aging creates areas GP with excess precipitates left by quenching, which provide a first clear improvement in mechanical properties.
La cuisson de la peinture provoque un vieillissement artificiel qui précipite ensuite une phase intermédiaire (phase de durcissement structural) qui optimise les propriétés mécaniques de l'alliage. Le problème de ce procédé antérieur réside dans la répartition des précipités qui, étant concentrés majoritairement dans des zones GP au moment du vieillissement naturel, contrarient ensuite la précipitation de la phase intermédiaire par le vieillissement artificiel, et interdit de ce fait l'obtention d'une tenue mécanique optimale. Quant à former directement l'alliage vieilli naturellement, il en est difficilement question l'alignement des zones GP avec la phase matricielle (Al) nuit à la formabilité dans la mesure où il favorise, au moment des déformations, la rupture au niveau des dislocations et finalement la concentration des contraintes dans les joints de grains.The baking of the paint causes artificial aging which then precipitates an intermediate phase (hardening phase structural) which optimizes the mechanical properties of the alloy. The problem of this prior process lies in the distribution of the precipitates which, being mainly concentrated in GP zones at the time of natural aging, then thwart the precipitation of the phase intermediate by artificial aging, and therefore prohibited obtaining optimal mechanical strength. As for direct training the alloy aged naturally, it is hardly question the alignment of the GP zones with the matrix phase (Al) harms the formability insofar as it favors, at the time of deformations, the rupture at the level of dislocations and finally the concentration of stresses in grain boundaries.
La présente invention résulte de la prise en compte de ces diverses
observations. Elle se caractérise principalement dans le maintien
permanent à une température supérieure à 60°C, sans la moindre incursion
dans la plage des températures normales, pendant tout le processus entre
le traitement de mise en solution et le prévieillissement final.
L'objectif est en effet, en maintenant la température au-dessus de 60°C
jusqu'à la fin du prévieillissement, d'empêcher la formation de zones GP,
sachant que le procédé antérieur implique précisément des incursions à
température normale, que ce soit à l'occasion de la trempe de
vieillissement naturel ou jusqu'à la cuisson, et que ces incursions sont à
l'origine de la formation de telles zones GP.
La tôle une fois prévieillie peut ensuite, sans incidence sur sa
formabilité ni sur ses propriétés mécaniques, être exposée de façon
prolongée à une température normale durant le formage puis l'application
et la cuisson des peintures.The present invention results from taking these various observations into account. It is mainly characterized by the permanent maintenance at a temperature above 60 ° C, without the slightest foray into the normal temperature range, during the whole process between the solution treatment and the final pre-aging.
The objective is in fact, by maintaining the temperature above 60 ° C. until the end of pre-aging, to prevent the formation of GP zones, knowing that the previous process precisely involves incursions at normal temperature, that this either during the quenching of natural aging or until cooking, and that these incursions are at the origin of the formation of such GP zones.
The sheet once pre-aged can then, without affecting its formability or its mechanical properties, be exposed for a prolonged period to a normal temperature during forming and then applying and curing the paints.
Le procédé de fabrication selon l'invention consiste, après élaboration, coulée, homogénéisation et laminage de l'alliage d'aluminium susdécrit selon un procédé habituel, à le soumettre à un traitement en continu de mise en solution par un chauffage de plus de 3 secondes à une température supérieure à 450°C, suivi d'un refroidissement à une température de 60 à 250°C à une vitesse supérieure à 100°C/mn, d'un bobinage avec maintien à ladite température de 60 à 250°C et d'un prévieillissement d'une durée comprise entre 1 minute et 10 heures à ladite température de 60 à 250°C.The manufacturing process according to the invention consists, after preparation, casting, homogenization and rolling of the above-described aluminum alloy according to a usual method, to subject it to a continuous treatment of dissolved by heating for more than 3 seconds at a temperature above 450 ° C, followed by cooling to a temperature of 60 to 250 ° C at a speed higher than 100 ° C / min, from a winding with holding at said temperature from 60 to 250 ° C and a pre-aging period between 1 minute and 10 hours at said temperature from 60 to 250 ° C.
Le traitement de mise en solution améliore la formabilité du matériau en
provoquant la mise en solution temporaire d'éléments tels que Si et Mg
dans la matrice, et favorise par la suite les propriétés mécaniques par le
biais de la précipitation fine de composés tels que Mg2Si lors de la
cuisson ultérieure.
Le chauffage de mise en solution est appliqué durant au minimum 3 secondes
à une température supérieure à 450°C. En effet, si la température et la
durée n'atteignent pas 450°C et 3 secondes, la mise en solution des
éléments (Si, Mg etc...) et donc l'amélioration des propriétés mécaniques
lors de la cuisson ultérieure sont insuffisantes.
La vitesse de refroidissement après mise en solution est choisie
supérieure à 100°C/mn. En effet, une vitesse inférieure à 100°C/mn se
traduit par une précipitation grossière, donc par une formabilité médiocre
ainsi que par une amélioration insuffisante des propriétés mécaniques lors
de la cuisson.
La température finale, pour cette vitesse de refroidissement, est choisie
dans la plage 60-250°C. En effet, si elle est inférieure à 60°C, elle fait
apparaíre des zones GP, et si elle est supérieure à 250°C, elle favorise
la précipitation d'une phase stable au détriment de la formabilité et des
propriétés mécaniques.The dissolution treatment improves the formability of the material by causing the temporary dissolution of elements such as Si and Mg in the matrix, and subsequently promotes the mechanical properties through the fine precipitation of compounds such as Mg 2 If during subsequent cooking.
The solution heating is applied for a minimum of 3 seconds at a temperature above 450 ° C. Indeed, if the temperature and the duration do not reach 450 ° C and 3 seconds, the dissolution of the elements (Si, Mg etc ...) and therefore the improvement of the mechanical properties during the subsequent cooking are insufficient .
The cooling rate after dissolution is chosen to be greater than 100 ° C / min. Indeed, a speed below 100 ° C / min results in coarse precipitation, therefore in poor formability as well as in an insufficient improvement in mechanical properties during cooking.
The final temperature for this cooling rate is chosen in the range 60-250 ° C. Indeed, if it is below 60 ° C, it shows GP areas, and if it is above 250 ° C, it promotes the precipitation of a stable phase at the expense of formability and mechanical properties.
Le bobinage dans la même plage de température 60-250°C du matériau
refroidi à 60-250°C, puis le prévieillissement de 1 minute à 10 heures
toujours dans la plage de température 60-250°C ont pour objet de permettre
la formation d'une phase intermédiaire qui bénéficie aux propriétés
mécaniques et à la formabilité de l'alliage.
Si leur température est inférieure à 60°C, il se forme des zones GP, et si
elle est supérieure à 250°C, il y a précipitation d'une phase stable, dans
les deux cas au détriment des propriétés mécaniques et de la formabilité
de l'alliage.The winding in the same temperature range 60-250 ° C of the material cooled to 60-250 ° C, then the pre-aging from 1 minute to 10 hours always in the temperature range 60-250 ° C are intended to allow the formation an intermediate phase which benefits the mechanical properties and the formability of the alloy.
If their temperature is below 60 ° C, GP zones are formed, and if it is above 250 ° C, there is precipitation of a stable phase, in both cases to the detriment of mechanical properties and formability of the alloy.
La durée du prévieillissement est choisie entre 1 minutes et 10 heures. En effet, au-dessous d'1 minute, la précipitation insuffisante de la phase intermédiaire risque par la suite, lors du retour à température normale, de favoriser la formation de zones GP, et au-dessus de 10 heures, la phase intermédiaire, surabondante, renforce exagérément les propriétés mécaniques de l'alliage au détriment de sa formabilité.The duration of the pre-aging is chosen between 1 minutes and 10 hours. In effect, below 1 minute, insufficient precipitation of the phase intermediate risk later, when returning to normal temperature, to favor the formation of GP zones, and above 10 hours, the phase intermediate, overabundant, excessively strengthens the properties mechanical properties of the alloy to the detriment of its formability.
Enfin, la présente invention s'applique non seulement au procédé de fabrication en continu évoqué ci-dessus, mais aussi et avec les mêmes effets aux classiques procédés discontinus.Finally, the present invention applies not only to the method of continuous manufacturing mentioned above, but also and with the same effects to classic discontinuous processes.
La Fig.1 est une micrographie qui représente la microstructure d'une tôle d'alliage d'aluminium constituant un exemple d'exécution de l'invention.Fig. 1 is a micrograph which represents the microstructure of a sheet of aluminum alloy constituting an exemplary embodiment of the invention.
La Fig.2 est une micrographie qui représente la microstructure d'une tôle d'alliage d'aluminium constituant un autre exemple d'exécution de l'invention.Fig. 2 is a micrograph which represents the microstructure of a sheet aluminum alloy constituting another embodiment of the invention.
La Fig.3 est une micrographie qui représente la microstructure d'une tôle d'alliage d'aluminium fabriquée par un procédé de l'art antérieur.Fig. 3 is a micrograph which represents the microstructure of a sheet of aluminum alloy manufactured by a process of the prior art.
La Fig.4 est une micrographie qui représente la microstructure d'une tôle d'alliage d'aluminium fabriquée par un autre procédé de l'art antérieur.Fig. 4 is a micrograph which represents the microstructure of a sheet of aluminum alloy made by another process of the prior art.
L'invention sera mieux comprise à la lecture d'exemples d'exécution.The invention will be better understood on reading examples of execution.
les alliages d'aluminium ayant les compositions du Tableau 1 ont été élaborés, coulés, convenablement homogénéisés, laminés à chaud à 400°C, puis laminés à froid par les procédés habituels pour obtenir des tôles de 1 mm d'épaisseur. Les tôles ont été soumises à un traitement continu de mise en solution de 10 secondes à 560°C, puis à un traitement thermique dans les conditions du Tableau 2, pour être prévieillies entre 1 minute et 10 heures à une température donnée, selon le cas 60°C, 120°C, 180°C ou 250°C. Certaines de ces tôles ont été enfin soumises à un traitement de cuisson (1 heure à 180°C), d'autres non.the aluminum alloys having the compositions of Table 1 were prepared, poured, suitably homogenized, hot rolled at 400 ° C, then cold rolled by the usual methods to obtain sheets of 1 mm thick. The sheets were subjected to a continuous treatment of 10 seconds solution treatment at 560 ° C, then heat treatment under the conditions of Table 2, to be pre-aged between 1 minute and 10 hours at a given temperature, as the case may be 60 ° C, 120 ° C, 180 ° C or 250 ° C. Some of these sheets were finally subjected to a treatment of cooking (1 hour at 180 ° C), others not.
A titre de comparaison, il a également été préparé des tôles traitées par le procédé T4 antérieur (mise en solution et tremps jusqu'à la température normale).For comparison, sheets treated by the previous T4 process (solution and time to temperature normal).
Les échantillons de tôles ont été soumis à un essai de traction, un essai Erichsen et un essai d'emboutissage limite (LDR). Les résultats sont reportés dans les Tableaux 3, 4, 5 et 6.The sheet metal samples were subjected to a tensile test, a test Erichsen and a limit drawing test (LDR). The results are reported in Tables 3, 4, 5 and 6.
L'essai de traction a été pratiqué sur éprouvette de traction JIS No.5. L'essai Erichsen a été conduit par la méthode JIS Z2247A (mesure de la profondeur d'emboutissage). L'essai d'emboutissage limite (LDR) a consisté à emboutir un flan lubrifié avec un poinçon de 33 mm de diamètre, mesurer le diamètre de flan maximal pour lequel il n'y a pas rupture dudit flan et calculer le rapport de ce diamètre maximal au diamètre du poinçon.The tensile test was carried out on a JIS No.5 tensile test piece. The Erichsen test was conducted using the JIS Z2247A method (measurement of the deep drawing). The limit drawing test (LDR) consisted stamp a lubricated blank with a 33 mm diameter punch, measure the maximum blank diameter for which there is no rupture of said blank and calculate the ratio of this maximum diameter to the diameter of the punch.
Le Tableau 3 représente les résultats des tôles utilisant un alliage de
composition selon l'invention et traitées thermiquement par le procédé
selon l'invention. Toutes présentent des performances élevées :
Le Tableau 4 représente les résultats des tôles utilisant un alliage de
composition selon l'invention et traitées thermiquement par un procédé ne
relevant pas de l'invention. Toutes présentent des performances nettement
en retrait par rapport aux tôles selon l'invention du Tableau 3 :
Les Tableaux 5 et 6 représentent les résultats des tôles utilisant un
alliage de composition ne relevant pas de l'invention et traitées par le
procédé selon l'invention. Toutes présentent là encore des performances
nettement en retrait par rapport aux tôles selon l'invention :
L'alliage de code C dans le Tableau 1 (Si 1,65%, Fe 0,08%, Mn 0,10%, Mg
1,38%, Zn 0,01 %, Ti 0,02 %, reste : AL) soumis au traitement thermique 3
du Tableau 2 (mise en solution 10 secondes à 560°C, refroidissement à
120°C, bobinage à 120°C, prévieillissement 3 heures à 120°C, pas de
cuisson) a été retenu comme échantillon (a). Le même alliage C soumis au
traitement thermique 4 du Tableau 2 (traitement de l'échantilloni (a)
complété par une cuisson d'1 heure à 180°C) a été retenu comme échantillon
(b).
Le même alliage C soumis au traitement thermique 9 du Tableau 2 (mise en
solution 10 secondes à 560°C, refroidissement à 20°C, bobinage à 20°C,
prévieillissement 3 heures à 120°C, pas de cuisson) a été retenu comme
échantillon (c). Le même alliage C soumis au traitement thermique 10
(traitement de l'échantillon (c) complété par une cuisson d'1 heure à
180°C) a été retenu comme échantillon (d).The alloy of code C in Table 1 (Si 1.65%, Fe 0.08%, Mn 0.10%, Mg 1.38%, Zn 0.01%, Ti 0.02%, remains: AL ) subjected to the heat treatment 3 of Table 2 (dissolution in 10 seconds at 560 ° C, cooling to 120 ° C, winding at 120 ° C, 3 hours pre-aging at 120 ° C, no cooking) was selected as sample ( at). The same alloy C subjected to the heat treatment 4 of Table 2 (treatment of the sample i (a) supplemented by baking for 1 hour at 180 ° C.) was retained as sample (b).
The same alloy C subjected to the heat treatment 9 of Table 2 (dissolution in 10 seconds at 560 ° C, cooling to 20 ° C, coiling at 20 ° C, 3 hours pre-aging at 120 ° C, no cooking) was retained as sample (c). The same alloy C subjected to heat treatment 10 (treatment of the sample (c) supplemented by baking for 1 hour at 180 ° C) was retained as sample (d).
Les échantillons (a), (b), (c) et (d) ont été photographiés selon le plan {100} au microscope électronique (grossissement 200000). Les micrographies sont présentées respectivement dans les Fig.1, Fig.2, Fig.3 et Fig.4. On observe que l'échantillon prévieilli subit la précipitation fine d'une phase intermédiaire de Mg2Si (Fig.1) et que le traitement de cuisson accentue encore la finesse de cette précipitation (Fig.2).The samples (a), (b), (c) and (d) were photographed according to the plan {100} with an electron microscope (magnification 200000). The micrographs are presented respectively in Fig. 1, Fig. 2, Fig. 3 and Fig. 4. It is observed that the pre-aged sample undergoes fine precipitation of an intermediate phase of Mg 2 Si (FIG. 1) and that the baking treatment further accentuates the fineness of this precipitation (FIG. 2).
En revanche, les Fig.3 et Fig.4 démontrent qu'un refroidissement poussé jusqu'à 20°C empêche la précipitation de la phase intermédiaire de Mg2Si, ceci même s'il est suivi d'un prévieillissement et d'un traitement de cuisson.On the other hand, Fig. 3 and Fig. 4 demonstrate that further cooling down to 20 ° C prevents precipitation of the intermediate phase of Mg 2 Si, this even if it is followed by pre-aging and cooking treatment.
Ainsi, le procédé selon l'invention présente le grand intérêt sur le plan
industriel de permettre la fabrication de tôles d'alliage d'aluminium
garantissant des propriétés mécaniques et une formabilité excellentes.
kg/mm2
kg/mm2
mm
kg/mm2
kg/mm2
mm
kg/mm2
kg/mm2
mm
kg/mm2
kg/mm2
mm
kg / mm2
kg / mm2
mm
kg / mm2
kg / mm2
mm
kg / mm2
kg / mm2
mm
kg / mm2
kg / mm2
mm
Claims (2)
- Manufacturing process for aluminium alloy sheets with high formability, characterized in that an aluminium alloy sheet composed of 0.3 - 1.7% by weight of Si, 0.01 - 1.2% by weight of Cu, 0.01 - 1.1% by weight of Mn, 0.4 - 1.4% by weight of Mg, less than 1.0% by weight of Fe and the remainder consisting of Al and inevitable impurities, is submitted to a continuous solution heat treatment for at least 3 seconds at more than 450°C followed by cooling to a temperature of 60 to 250°C at a rate exceeding 100°C/min, a coiling maintaining the said temperature between 60 and 250°C and pre-aging lasting for between 1 minute and 10 hours at the said temperature of 60 - 250°C.
- Manufacturing process for aluminium alloy plates according to claim 1, characterized in that the alloy contains one or several elements among 0.04 - 0.4% of Cr, less than 0.25% of Zn, less than 0.4% of Zr and less than 0.2% of Ti.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP352713/93 | 1993-12-28 | ||
JP35271393 | 1993-12-28 | ||
JP5352713A JPH07197219A (en) | 1993-12-28 | 1993-12-28 | Production of aluminum alloy sheet for forming |
PCT/FR1994/001547 WO1995018244A1 (en) | 1993-12-28 | 1994-12-28 | Process for making high formability aluminium alloy sheets |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0686208A1 EP0686208A1 (en) | 1995-12-13 |
EP0686208B1 true EP0686208B1 (en) | 2002-05-15 |
Family
ID=18425926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95905681A Expired - Lifetime EP0686208B1 (en) | 1993-12-28 | 1994-12-28 | Process for making high formability aluminium alloy sheets |
Country Status (8)
Country | Link |
---|---|
US (1) | US5690758A (en) |
EP (1) | EP0686208B1 (en) |
JP (1) | JPH07197219A (en) |
KR (1) | KR0158723B1 (en) |
CA (1) | CA2157000A1 (en) |
DE (1) | DE69430622T2 (en) |
ES (1) | ES2176313T3 (en) |
WO (1) | WO1995018244A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5616189A (en) * | 1993-07-28 | 1997-04-01 | Alcan International Limited | Aluminum alloys and process for making aluminum alloy sheet |
GB9318041D0 (en) * | 1993-08-31 | 1993-10-20 | Alcan Int Ltd | Extrudable a1-mg-si alloys |
FR2748035B1 (en) * | 1996-04-29 | 1998-07-03 | Pechiney Rhenalu | ALUMINUM-SILICON-MAGNESIUM ALLOY FOR AUTOMOTIVE BODYWORK |
US6224693B1 (en) * | 1999-12-10 | 2001-05-01 | Tenedora Nemak, S.A. De C.V. | Method and apparatus for simplified production of heat treatable aluminum alloy castings with artificial self-aging |
AUPQ485399A0 (en) * | 1999-12-23 | 2000-02-03 | Commonwealth Scientific And Industrial Research Organisation | Heat treatment of age-hardenable aluminium alloys |
AUPR360801A0 (en) * | 2001-03-08 | 2001-04-05 | Commonwealth Scientific And Industrial Research Organisation | Heat treatment of age-hardenable aluminium alloys utilising secondary precipitation |
CA2450767C (en) * | 2001-07-23 | 2010-09-14 | Corus Aluminium Walzprodukte Gmbh | Weldable high strength al-mg-si alloy |
DE10163039C1 (en) * | 2001-12-21 | 2003-07-24 | Daimler Chrysler Ag | Hot and cold formable component made of an aluminum alloy and process for its production |
RU2345172C2 (en) * | 2003-03-17 | 2009-01-27 | Корус Алюминиум Вальцпродукте Гмбх | Method for manufacture of solid monolithic aluminium structure and aluminium product manufactured by mechanical cutting from such structure |
US20060070686A1 (en) * | 2004-10-05 | 2006-04-06 | Corus Aluminium Walzprodukte Gmbh | High hardness moulding plate and method for producing said plate |
FR2902442B1 (en) * | 2006-06-16 | 2010-09-03 | Aleris Aluminum Koblenz Gmbh | ALLOY OF AA6XXX SERIES WITH HIGH DAMAGE TO AEROSPACE INDUSTRY |
JP2008303449A (en) * | 2007-06-11 | 2008-12-18 | Furukawa Sky Kk | Aluminum alloy plate for forming and manufacturing method of aluminum alloy plate for forming |
JP5432439B2 (en) * | 2007-06-27 | 2014-03-05 | 株式会社神戸製鋼所 | Aluminum alloy sheet for warm forming |
JP5204517B2 (en) * | 2008-03-19 | 2013-06-05 | 株式会社神戸製鋼所 | Aluminum alloy plate for battery case and manufacturing method thereof |
KR20130104740A (en) * | 2012-03-15 | 2013-09-25 | (주)경남금속 | Aluminum alloy |
WO2015112450A1 (en) | 2014-01-21 | 2015-07-30 | Alcoa Inc. | 6xxx aluminum alloys |
EP3390678B1 (en) | 2015-12-18 | 2020-11-25 | Novelis, Inc. | High strength 6xxx aluminum alloys and methods of making the same |
US10428412B2 (en) * | 2016-11-04 | 2019-10-01 | Ford Motor Company | Artificial aging of strained sheet metal for strength uniformity |
WO2019174870A1 (en) | 2018-03-15 | 2019-09-19 | Aleris Aluminum Duffel Bvba | Method of manufacturing an almgsi alloy sheet product |
WO2019222236A1 (en) | 2018-05-15 | 2019-11-21 | Novelis Inc. | High strength 6xxx and 7xxx aluminum alloys and methods of making the same |
CN112522550B (en) * | 2020-11-04 | 2022-10-04 | 佛山科学技术学院 | Aluminum alloy with rapid aging response and preparation method and application thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3135633A (en) * | 1959-09-08 | 1964-06-02 | Duralumin | Heat treatment process improving the mechanical properties of aluminiummagnesium-silicon alloys |
FR2493345A1 (en) * | 1980-11-05 | 1982-05-07 | Pechiney Aluminium | INTERRUPTED METHOD OF ALUMINUM ALLOY-BASED ALLOYS |
US5098490A (en) * | 1990-10-05 | 1992-03-24 | Shin Huu | Super position aluminum alloy can stock manufacturing process |
US5582660A (en) * | 1994-12-22 | 1996-12-10 | Aluminum Company Of America | Highly formable aluminum alloy rolled sheet |
-
1993
- 1993-12-28 JP JP5352713A patent/JPH07197219A/en active Pending
-
1994
- 1994-12-28 KR KR1019940040700A patent/KR0158723B1/en not_active IP Right Cessation
- 1994-12-28 WO PCT/FR1994/001547 patent/WO1995018244A1/en active IP Right Grant
- 1994-12-28 DE DE69430622T patent/DE69430622T2/en not_active Expired - Lifetime
- 1994-12-28 EP EP95905681A patent/EP0686208B1/en not_active Expired - Lifetime
- 1994-12-28 ES ES95905681T patent/ES2176313T3/en not_active Expired - Lifetime
- 1994-12-28 CA CA002157000A patent/CA2157000A1/en not_active Abandoned
- 1994-12-28 US US08/491,869 patent/US5690758A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE69430622D1 (en) | 2002-06-20 |
JPH07197219A (en) | 1995-08-01 |
KR0158723B1 (en) | 1999-01-15 |
EP0686208A1 (en) | 1995-12-13 |
DE69430622T2 (en) | 2002-12-05 |
WO1995018244A1 (en) | 1995-07-06 |
ES2176313T3 (en) | 2002-12-01 |
KR950018595A (en) | 1995-07-22 |
CA2157000A1 (en) | 1995-07-06 |
US5690758A (en) | 1997-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0686208B1 (en) | Process for making high formability aluminium alloy sheets | |
JP4794862B2 (en) | Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability | |
EP2984195B1 (en) | Process of manufacturing a rolled al-cu-li sheet with improved formability and corrosion resistance | |
FR2853666A1 (en) | HIGH-STRENGTH Al-Zn ALLOY, PROCESS FOR PRODUCING PRODUCTS IN SUCH AN ALLOY, AND PRODUCTS OBTAINED ACCORDING TO THIS PROCESS | |
EP2981632B1 (en) | Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages | |
FR2762329A1 (en) | Aluminium@ alloy of series seven thousand hardened by precipitation and of high resistance | |
EP3201372B1 (en) | Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same | |
EP1883715A1 (en) | Aluminum alloy sheet and method for manufacturing the same | |
JP5278494B2 (en) | Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability | |
EP0756017B1 (en) | Aluminium-copper-magnesium alloy with high creep resistance | |
EP0259232B1 (en) | Easily workable and weldable aluminium alloy, and process for its manufacture | |
JP2001262264A (en) | Al-Mg-Si SERIES Al ALLOY SHEET EXCELLENT IN TOUGHNESS AND BENDABILITY | |
KR20180095117A (en) | Aluminum alloy sheet for forming | |
JPH10219382A (en) | Aluminum alloy sheet excellent in moldability and paint bake hardenability and method for producing the same | |
JPH083702A (en) | Production of aluminum alloy sheet material excellent in formability and heating hardenability | |
JPH11350058A (en) | Aluminum alloy sheet excellent in formability and baking hardenability and its production | |
KR20180095116A (en) | Aluminum alloy sheet | |
JP3471421B2 (en) | Manufacturing method of aluminum alloy forging | |
JPH10226894A (en) | Method for producing aluminum alloy sheet excellent in formability, paint bake hardenability, chemical conversion property, and corrosion resistance | |
JPH10259464A (en) | Production of aluminum alloy sheet for forming | |
JP2925884B2 (en) | Method for producing Al-Mg-Si alloy sheet excellent in heat-curability | |
FR2841567A1 (en) | Heat-treatable, rolled aluminum alloy product used for production of car body parts contains silicon, magnesium, copper and iron | |
FR2748035A1 (en) | ALUMINUM-SILICON-MAGNESIUM ALLOY FOR AUTOMOTIVE BODYWORK | |
JPH08109428A (en) | Aluminum alloy plate excellent in paint bake hardenability and method for producing the same | |
JPH09279281A (en) | Aluminum alloy baking finished sheet for can top material excellent in corrosion resistance and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950905 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20011005 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69430622 Country of ref document: DE Date of ref document: 20020620 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020724 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2176313 Country of ref document: ES Kind code of ref document: T3 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: ALCAN DEUTSCHLAND GMBH Effective date: 20030217 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: PECHINEY RHENALU Owner name: KAISER ALUMINUM & CHEMICAL CORPORATION Owner name: JFE STEEL CORPORATION Owner name: THE FURUKAWA ELECTRIC CO., LTD. |
|
PLBD | Termination of opposition procedure: decision despatched |
Free format text: ORIGINAL CODE: EPIDOSNOPC1 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051228 |
|
PLBM | Termination of opposition procedure: date of legal effect published |
Free format text: ORIGINAL CODE: 0009276 |
|
PLBP | Opposition withdrawn |
Free format text: ORIGINAL CODE: 0009264 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION PROCEDURE CLOSED |
|
27C | Opposition proceedings terminated |
Effective date: 20051017 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20091228 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20091229 Year of fee payment: 16 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20091201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20091230 Year of fee payment: 16 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20101228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: CONSTELLIUM FRANCE, FR Effective date: 20111123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120104 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20120206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101229 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20111229 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130830 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69430622 Country of ref document: DE Effective date: 20130702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130102 |