[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0686208B1 - Process for making high formability aluminium alloy sheets - Google Patents

Process for making high formability aluminium alloy sheets Download PDF

Info

Publication number
EP0686208B1
EP0686208B1 EP95905681A EP95905681A EP0686208B1 EP 0686208 B1 EP0686208 B1 EP 0686208B1 EP 95905681 A EP95905681 A EP 95905681A EP 95905681 A EP95905681 A EP 95905681A EP 0686208 B1 EP0686208 B1 EP 0686208B1
Authority
EP
European Patent Office
Prior art keywords
weight
temperature
alloy
aluminium alloy
mechanical properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95905681A
Other languages
German (de)
French (fr)
Other versions
EP0686208A1 (en
Inventor
Binrun Oh
Yuichi Suzuki
Kunihiko Kishino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
JFE Steel Corp
Furukawa Electric Co Ltd
Kaiser Aluminum and Chemical Corp
Original Assignee
Pechiney Rhenalu SAS
Furukawa Electric Co Ltd
Kawasaki Steel Corp
Kaiser Aluminum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18425926&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0686208(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pechiney Rhenalu SAS, Furukawa Electric Co Ltd, Kawasaki Steel Corp, Kaiser Aluminum and Chemical Corp filed Critical Pechiney Rhenalu SAS
Publication of EP0686208A1 publication Critical patent/EP0686208A1/en
Application granted granted Critical
Publication of EP0686208B1 publication Critical patent/EP0686208B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the present invention relates to a manufacturing method improving the mechanical properties and formability of aluminum alloy sheets intended in particular for automobile bodywork.
  • Automobile bodies are traditionally produced in cold rolled steel sheet.
  • Al-Mg-Si alloy sheet is formed into a bodywork element after a solution treatment followed by natural aging in the T4 state. After shaping, hardening by aging (baking hardening in English), during application and curing of the paints, gives it the required mechanical properties.
  • the main difficulty raised by the exploitation of aluminum alloys in automobile bodywork is the insufficient formability of this family of materials.
  • the formability of aluminum alloys and particularly that of Al-Mg-Si alloys therefore needs to be significantly improved.
  • the present invention relates to a process for manufacturing aluminum alloy sheets with high formability, characterized in that an aluminum alloy sheet composed of 0.3 to 1.7% (by weight) of Si, 0.01 to 1.2% Cu, 0.01 to 1.1% Mn, 0.4 to 1.4% Mg, less than 1.0% Fe and, for the rest, Al and inevitable impurities, is subjected to a continuous heat treatment in solution for at least 3 seconds at more than 450 ° C., followed by cooling to a temperature of 60 to 250 ° C. at a speed greater than 100 ° C / min, of a winding with maintenance at said temperature of 60 to 250 ° C and a pre-aging period of between 1 minute and 10 hours at said temperature of 60 to 250 ° C.
  • the alloy may additionally contain one or more elements chosen from 0.04 to 0.4% of Cr, less than 0.25% of Zn, less than 0.4% of Zr and less than 0.2% of Ti .
  • Aluminum alloys of the Al-Mg-Si type are alloys which harden with aging: aging induces the precipitation of a structural hardening phase, which increases the mechanical properties.
  • the process follows the following scheme: supersaturated solid solution ⁇ GP zone ⁇ Intermediate phase ⁇ Stable phase
  • the baking of the paint causes artificial aging which then precipitates an intermediate phase (hardening phase structural) which optimizes the mechanical properties of the alloy.
  • the problem of this prior process lies in the distribution of the precipitates which, being mainly concentrated in GP zones at the time of natural aging, then thwart the precipitation of the phase intermediate by artificial aging, and therefore prohibited obtaining optimal mechanical strength.
  • the alignment of the GP zones with the matrix phase (Al) harms the formability insofar as it favors, at the time of deformations, the rupture at the level of dislocations and finally the concentration of stresses in grain boundaries.
  • the present invention results from taking these various observations into account. It is mainly characterized by the permanent maintenance at a temperature above 60 ° C, without the slightest foray into the normal temperature range, during the whole process between the solution treatment and the final pre-aging.
  • the objective is in fact, by maintaining the temperature above 60 ° C. until the end of pre-aging, to prevent the formation of GP zones, knowing that the previous process precisely involves incursions at normal temperature, that this either during the quenching of natural aging or until cooking, and that these incursions are at the origin of the formation of such GP zones.
  • the sheet once pre-aged can then, without affecting its formability or its mechanical properties, be exposed for a prolonged period to a normal temperature during forming and then applying and curing the paints.
  • the manufacturing process according to the invention consists, after preparation, casting, homogenization and rolling of the above-described aluminum alloy according to a usual method, to subject it to a continuous treatment of dissolved by heating for more than 3 seconds at a temperature above 450 ° C, followed by cooling to a temperature of 60 to 250 ° C at a speed higher than 100 ° C / min, from a winding with holding at said temperature from 60 to 250 ° C and a pre-aging period between 1 minute and 10 hours at said temperature from 60 to 250 ° C.
  • the dissolution treatment improves the formability of the material by causing the temporary dissolution of elements such as Si and Mg in the matrix, and subsequently promotes the mechanical properties through the fine precipitation of compounds such as Mg 2 If during subsequent cooking.
  • the solution heating is applied for a minimum of 3 seconds at a temperature above 450 ° C. Indeed, if the temperature and the duration do not reach 450 ° C and 3 seconds, the dissolution of the elements (Si, Mg etc ...) and therefore the improvement of the mechanical properties during the subsequent cooking are insufficient .
  • the cooling rate after dissolution is chosen to be greater than 100 ° C / min. Indeed, a speed below 100 ° C / min results in coarse precipitation, therefore in poor formability as well as in an insufficient improvement in mechanical properties during cooking.
  • the final temperature for this cooling rate is chosen in the range 60-250 ° C. Indeed, if it is below 60 ° C, it shows GP areas, and if it is above 250 ° C, it promotes the precipitation of a stable phase at the expense of formability and mechanical properties.
  • the winding in the same temperature range 60-250 ° C of the material cooled to 60-250 ° C, then the pre-aging from 1 minute to 10 hours always in the temperature range 60-250 ° C are intended to allow the formation an intermediate phase which benefits the mechanical properties and the formability of the alloy. If their temperature is below 60 ° C, GP zones are formed, and if it is above 250 ° C, there is precipitation of a stable phase, in both cases to the detriment of mechanical properties and formability of the alloy.
  • the duration of the pre-aging is chosen between 1 minutes and 10 hours. In effect, below 1 minute, insufficient precipitation of the phase intermediate risk later, when returning to normal temperature, to favor the formation of GP zones, and above 10 hours, the phase intermediate, overabundant, excessively strengthens the properties mechanical properties of the alloy to the detriment of its formability.
  • the present invention applies not only to the method of continuous manufacturing mentioned above, but also and with the same effects to classic discontinuous processes.
  • Fig. 1 is a micrograph which represents the microstructure of a sheet of aluminum alloy constituting an exemplary embodiment of the invention.
  • Fig. 2 is a micrograph which represents the microstructure of a sheet aluminum alloy constituting another embodiment of the invention.
  • Fig. 3 is a micrograph which represents the microstructure of a sheet of aluminum alloy manufactured by a process of the prior art.
  • Fig. 4 is a micrograph which represents the microstructure of a sheet of aluminum alloy made by another process of the prior art.
  • the aluminum alloys having the compositions of Table 1 were prepared, poured, suitably homogenized, hot rolled at 400 ° C, then cold rolled by the usual methods to obtain sheets of 1 mm thick.
  • the sheets were subjected to a continuous treatment of 10 seconds solution treatment at 560 ° C, then heat treatment under the conditions of Table 2, to be pre-aged between 1 minute and 10 hours at a given temperature, as the case may be 60 ° C, 120 ° C, 180 ° C or 250 ° C. Some of these sheets were finally subjected to a treatment of cooking (1 hour at 180 ° C), others not.
  • the tensile test was carried out on a JIS No.5 tensile test piece.
  • the Erichsen test was conducted using the JIS Z2247A method (measurement of the deep drawing).
  • the limit drawing test (LDR) consisted stamp a lubricated blank with a 33 mm diameter punch, measure the maximum blank diameter for which there is no rupture of said blank and calculate the ratio of this maximum diameter to the diameter of the punch.
  • the alloy of code C in Table 1 (Si 1.65%, Fe 0.08%, Mn 0.10%, Mg 1.38%, Zn 0.01%, Ti 0.02%, remains: AL ) subjected to the heat treatment 3 of Table 2 (dissolution in 10 seconds at 560 ° C, cooling to 120 ° C, winding at 120 ° C, 3 hours pre-aging at 120 ° C, no cooking) was selected as sample ( at).
  • the same alloy C subjected to the heat treatment 4 of Table 2 (treatment of the sample i (a) supplemented by baking for 1 hour at 180 ° C.) was retained as sample (b).
  • Fig. 3 and Fig. 4 demonstrate that further cooling down to 20 ° C prevents precipitation of the intermediate phase of Mg 2 Si, this even if it is followed by pre-aging and cooking treatment.
  • the method according to the invention has the great advantage from an industrial point of view of making it possible to manufacture aluminum alloy sheets guaranteeing excellent mechanical properties and formability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Steel (AREA)

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention concerne un procédé de fabrication améliorant les propriétés mécaniques et la formabilité des tôles d'alliage d'aluminium destinées notamment à la carrosserie automobile.The present invention relates to a manufacturing method improving the mechanical properties and formability of aluminum alloy sheets intended in particular for automobile bodywork.

ETAT DE LA TECHNIQUESTATE OF THE ART

Les carrosseries automobiles sont fabriquées traditionnellement dans de la tôle d'acier laminée à froid.Automobile bodies are traditionally produced in cold rolled steel sheet.

Soucieux d'alléger la caisse de leurs modèles, les constructeurs étudient depuis quelques années la possibilité de recourir aux alliages d'aluminium du type Al-Mg-Si pour fabriquer notamment les carrosseries.
Dans cette technologie, la tôle d'alliage Al-Mg-Si est formée en élément de carrosserie après un traitement de mise en solution suivi d'un vieillissement naturel à l'état T4. Après la mise en forme, un durcissement par vieillissement (durcissement de cuisson ou "bake hardening" en anglais), lors de l'application et de la cuisson des peintures, lui confère les propriétés mécaniques requises.
La principale difficulté soulevée par l'exploitation des alliages d'aluminium en carrosserie automobile est la formabilité insuffisante de cette famille de matériaux. La formabilité des alliages d'aluminium et singulièrement celle des alliages Al-Mg-Si demande donc à être nettement améliorée.
Par ailleurs, les tôles d'alliage d'aluminium souffrent d'un déficit de tenue mécanique par rapport aux tôles d'acier. Aussi les constructeurs sont-ils également à la recherche de procédés de cuisson qui, d'une part soient assez efficaces pour procurer à ces tôles des performances mécaniques élevées et d'autre part demandent des temps de traitement assez courts et des températures assez basses pour minimiser les coûts de fabrication.
Anxious to lighten the body of their models, manufacturers have been studying for a few years the possibility of using aluminum alloys of the Al-Mg-Si type to manufacture in particular the bodywork.
In this technology, the Al-Mg-Si alloy sheet is formed into a bodywork element after a solution treatment followed by natural aging in the T4 state. After shaping, hardening by aging (baking hardening in English), during application and curing of the paints, gives it the required mechanical properties.
The main difficulty raised by the exploitation of aluminum alloys in automobile bodywork is the insufficient formability of this family of materials. The formability of aluminum alloys and particularly that of Al-Mg-Si alloys therefore needs to be significantly improved.
In addition, aluminum alloy sheets suffer from a mechanical resistance deficit compared to steel sheets. Therefore, manufacturers are also looking for baking processes which, on the one hand, are effective enough to provide these sheets with high mechanical performance and, on the other hand, require fairly short processing times and fairly low temperatures to minimize manufacturing costs.

OBJET DE L'INVENTIONOBJECT OF THE INVENTION

La présente invention concerne un procédé de fabrication de tôles d'alliage d'aluminium à haute formabilité, caractérisé en ce qu'une tôle d'alliage d'aluminium composée de 0,3 à 1,7% (en poids) de Si, 0,01 à 1,2% de Cu, 0,01 à 1,1% de Mn, 0,4 à 1,4% de Mg, moins de 1,0% de Fe et, pour le reste, d'Al et d'inévitables impuretés, est soumise à un traitement thermique en continu de mise en solution d'au moins 3 secondes à plus de 450°C, suivi d'un refroidissement à une température de 60 à 250°C à une vitesse supérieure à 100°C/mn, d'un bobinage avec maintien à ladite temperature de 60 à 250°C et d'un prévieillissement d'une durée comprise entre 1 minute et 10 heures à ladite température de 60 à 250°C.
L'alliage peut contenir en plus un ou plusieurs éléments choisis parmi 0,04 à 0,4% de Cr, moins de 0,25% de Zn, moins de 0,4% de Zr et moins de 0,2% de Ti.
The present invention relates to a process for manufacturing aluminum alloy sheets with high formability, characterized in that an aluminum alloy sheet composed of 0.3 to 1.7% (by weight) of Si, 0.01 to 1.2% Cu, 0.01 to 1.1% Mn, 0.4 to 1.4% Mg, less than 1.0% Fe and, for the rest, Al and inevitable impurities, is subjected to a continuous heat treatment in solution for at least 3 seconds at more than 450 ° C., followed by cooling to a temperature of 60 to 250 ° C. at a speed greater than 100 ° C / min, of a winding with maintenance at said temperature of 60 to 250 ° C and a pre-aging period of between 1 minute and 10 hours at said temperature of 60 to 250 ° C.
The alloy may additionally contain one or more elements chosen from 0.04 to 0.4% of Cr, less than 0.25% of Zn, less than 0.4% of Zr and less than 0.2% of Ti .

DESCRIPTION DE L'INVENTIONDESCRIPTION OF THE INVENTION

Les plages de concentration imposées aux éléments constitutifs de l'alliage selon l'invention s'expliquent par les raisons suivantes :

  • Si améliore les propriétés mécaniques en précipitant avec Mg sous forme de Mg2Si lors de la cuisson de la peinture.
    Sa concentration est choisie dans la plage 0,3-1,7% en poids. En effet, au-dessous de 0,3% en poids, son effet est insuffisant, et au-dessus de 1,7% en poids, la formabilité après mise en solution s'en ressent.
  • Mg contribue à améliorer la formabilité en constituant une solution solide dans la matrice après le traitement de mise en solution. De plus, il améliore les propriétés mécaniques en précipitant avec Si sous forme de Mg2Si lors de la cuisson de la peinture. Sa concentration est choisie dans la plage 0,4-1,4% en poids. En effet, au-dessus de 0,4% le gain de propriétés mécaniques est insuffisant, et au-dessus de 1,4%, la formabilité après mise en solution s'en ressent.
  • Cu améliore les propriétés mécaniques en précipitant notamment les zones GP (Guinier-Preston), les phases q' et les phases S lors de la cuisson. Sa concentration est choisie dans la plage 0,01-1,2% en poids. En effet, au-dessous de 0,01% en poids, le gain de propriétés mécaniques est insuffisant, et au-dessus de 1,2% en poids, la résistance à la corrosion s'en ressent.
  • Mn et Cr améliorent la finesse de grain et les propriétés mécaniques de la matrice. Leur concentration est choisie respectivement dans les plages 0,01-1,1% en poids et 0,04-0,4% en poids. En effet, au-dessous de la borne inférieure, leur effet est insuffisant, et au-dessus de la borne supérieure, la formabilité après mise en solution s'en ressent.
  • Zn améliore les propriétés mécaniques, Zr et Ti affinent la microstructure. Leur concentration est choisie inférieure respectivement à 0,25%, 0,4% et 0,2% sous peine d'une formabilité insuffisante.
  • Fe, qui constitue de façon générale une impureté pour l'aluminium, doit être limité à moins de 1,0% en poids sous peine de ne pas réaliser les effets de l'invention.
  • The concentration ranges imposed on the constituent elements of the alloy according to the invention are explained by the following reasons:
  • Si improves the mechanical properties by precipitating with Mg in the form of Mg 2 Si during the curing of the paint.
    Its concentration is chosen in the range 0.3-1.7% by weight. Indeed, below 0.3% by weight, its effect is insufficient, and above 1.7% by weight, the formability after dissolution is affected.
  • Mg contributes to improving the formability by constituting a solid solution in the matrix after the solution treatment. In addition, it improves the mechanical properties by precipitating with Si in the form of Mg 2 Si during the curing of the paint. Its concentration is chosen in the range 0.4-1.4% by weight. Indeed, above 0.4% the gain in mechanical properties is insufficient, and above 1.4%, the formability after dissolution is affected.
  • Cu improves mechanical properties, in particular by precipitating GP (Guinier-Preston) zones, phases q 'and phases S during cooking. Its concentration is chosen in the range 0.01-1.2% by weight. In fact, below 0.01% by weight, the gain in mechanical properties is insufficient, and above 1.2% by weight, the corrosion resistance is felt.
  • Mn and Cr improve the fineness of grain and the mechanical properties of the matrix. Their concentration is chosen respectively from the ranges 0.01-1.1% by weight and 0.04-0.4% by weight. Indeed, below the lower bound, their effect is insufficient, and above the upper bound, the formability after dissolution is affected.
  • Zn improves the mechanical properties, Zr and Ti refine the microstructure. Their concentration is chosen to be less than 0.25%, 0.4% and 0.2% respectively, on pain of insufficient formability.
  • Fe, which generally constitutes an impurity for aluminum, must be limited to less than 1.0% by weight, otherwise the effects of the invention will not be achieved.
  • Les autres impuretés sont également limitées à moins de 0,5% en poids sous peine de ne pas réaliser les effets de l'invention.Other impurities are also limited to less than 0.5% by weight under trouble not realizing the effects of the invention.

    Les alliages d'aluminium type Al-Mg-Si sont des alliages qui durcissent au vieillissement : le vieillissement induit la précipitation d'une phase de durcissement structural, qui augmente les propriétés mécaniques. Dans le cas de l'alliage Al-Mg-Si, le processus obéit au schéma suivant :
    solution solide sursaturée→ Zone GP→ Phase intermédiaire→Phase stable
    Aluminum alloys of the Al-Mg-Si type are alloys which harden with aging: aging induces the precipitation of a structural hardening phase, which increases the mechanical properties. In the case of the Al-Mg-Si alloy, the process follows the following scheme:
    supersaturated solid solution → GP zone → Intermediate phase → Stable phase

    Dans le cas du procédé mise en solution/trempe/vieillissement à température normale (traitement T4), le vieillissement engendre des zones GP avec des précipités en excès laissés par la trempe, et qui apportent une première amélioration nette des propriétés mécaniques.In the case of the solution / quench / aging process at normal temperature (T4 treatment), aging creates areas GP with excess precipitates left by quenching, which provide a first clear improvement in mechanical properties.

    La cuisson de la peinture provoque un vieillissement artificiel qui précipite ensuite une phase intermédiaire (phase de durcissement structural) qui optimise les propriétés mécaniques de l'alliage. Le problème de ce procédé antérieur réside dans la répartition des précipités qui, étant concentrés majoritairement dans des zones GP au moment du vieillissement naturel, contrarient ensuite la précipitation de la phase intermédiaire par le vieillissement artificiel, et interdit de ce fait l'obtention d'une tenue mécanique optimale. Quant à former directement l'alliage vieilli naturellement, il en est difficilement question l'alignement des zones GP avec la phase matricielle (Al) nuit à la formabilité dans la mesure où il favorise, au moment des déformations, la rupture au niveau des dislocations et finalement la concentration des contraintes dans les joints de grains.The baking of the paint causes artificial aging which then precipitates an intermediate phase (hardening phase structural) which optimizes the mechanical properties of the alloy. The problem of this prior process lies in the distribution of the precipitates which, being mainly concentrated in GP zones at the time of natural aging, then thwart the precipitation of the phase intermediate by artificial aging, and therefore prohibited obtaining optimal mechanical strength. As for direct training the alloy aged naturally, it is hardly question the alignment of the GP zones with the matrix phase (Al) harms the formability insofar as it favors, at the time of deformations, the rupture at the level of dislocations and finally the concentration of stresses in grain boundaries.

    La présente invention résulte de la prise en compte de ces diverses observations. Elle se caractérise principalement dans le maintien permanent à une température supérieure à 60°C, sans la moindre incursion dans la plage des températures normales, pendant tout le processus entre le traitement de mise en solution et le prévieillissement final.
    L'objectif est en effet, en maintenant la température au-dessus de 60°C jusqu'à la fin du prévieillissement, d'empêcher la formation de zones GP, sachant que le procédé antérieur implique précisément des incursions à température normale, que ce soit à l'occasion de la trempe de vieillissement naturel ou jusqu'à la cuisson, et que ces incursions sont à l'origine de la formation de telles zones GP.
    La tôle une fois prévieillie peut ensuite, sans incidence sur sa formabilité ni sur ses propriétés mécaniques, être exposée de façon prolongée à une température normale durant le formage puis l'application et la cuisson des peintures.
    The present invention results from taking these various observations into account. It is mainly characterized by the permanent maintenance at a temperature above 60 ° C, without the slightest foray into the normal temperature range, during the whole process between the solution treatment and the final pre-aging.
    The objective is in fact, by maintaining the temperature above 60 ° C. until the end of pre-aging, to prevent the formation of GP zones, knowing that the previous process precisely involves incursions at normal temperature, that this either during the quenching of natural aging or until cooking, and that these incursions are at the origin of the formation of such GP zones.
    The sheet once pre-aged can then, without affecting its formability or its mechanical properties, be exposed for a prolonged period to a normal temperature during forming and then applying and curing the paints.

    Le procédé de fabrication selon l'invention consiste, après élaboration, coulée, homogénéisation et laminage de l'alliage d'aluminium susdécrit selon un procédé habituel, à le soumettre à un traitement en continu de mise en solution par un chauffage de plus de 3 secondes à une température supérieure à 450°C, suivi d'un refroidissement à une température de 60 à 250°C à une vitesse supérieure à 100°C/mn, d'un bobinage avec maintien à ladite température de 60 à 250°C et d'un prévieillissement d'une durée comprise entre 1 minute et 10 heures à ladite température de 60 à 250°C.The manufacturing process according to the invention consists, after preparation, casting, homogenization and rolling of the above-described aluminum alloy according to a usual method, to subject it to a continuous treatment of dissolved by heating for more than 3 seconds at a temperature above 450 ° C, followed by cooling to a temperature of 60 to 250 ° C at a speed higher than 100 ° C / min, from a winding with holding at said temperature from 60 to 250 ° C and a pre-aging period between 1 minute and 10 hours at said temperature from 60 to 250 ° C.

    Le traitement de mise en solution améliore la formabilité du matériau en provoquant la mise en solution temporaire d'éléments tels que Si et Mg dans la matrice, et favorise par la suite les propriétés mécaniques par le biais de la précipitation fine de composés tels que Mg2Si lors de la cuisson ultérieure.
    Le chauffage de mise en solution est appliqué durant au minimum 3 secondes à une température supérieure à 450°C. En effet, si la température et la durée n'atteignent pas 450°C et 3 secondes, la mise en solution des éléments (Si, Mg etc...) et donc l'amélioration des propriétés mécaniques lors de la cuisson ultérieure sont insuffisantes.
    La vitesse de refroidissement après mise en solution est choisie supérieure à 100°C/mn. En effet, une vitesse inférieure à 100°C/mn se traduit par une précipitation grossière, donc par une formabilité médiocre ainsi que par une amélioration insuffisante des propriétés mécaniques lors de la cuisson.
    La température finale, pour cette vitesse de refroidissement, est choisie dans la plage 60-250°C. En effet, si elle est inférieure à 60°C, elle fait apparaíre des zones GP, et si elle est supérieure à 250°C, elle favorise la précipitation d'une phase stable au détriment de la formabilité et des propriétés mécaniques.
    The dissolution treatment improves the formability of the material by causing the temporary dissolution of elements such as Si and Mg in the matrix, and subsequently promotes the mechanical properties through the fine precipitation of compounds such as Mg 2 If during subsequent cooking.
    The solution heating is applied for a minimum of 3 seconds at a temperature above 450 ° C. Indeed, if the temperature and the duration do not reach 450 ° C and 3 seconds, the dissolution of the elements (Si, Mg etc ...) and therefore the improvement of the mechanical properties during the subsequent cooking are insufficient .
    The cooling rate after dissolution is chosen to be greater than 100 ° C / min. Indeed, a speed below 100 ° C / min results in coarse precipitation, therefore in poor formability as well as in an insufficient improvement in mechanical properties during cooking.
    The final temperature for this cooling rate is chosen in the range 60-250 ° C. Indeed, if it is below 60 ° C, it shows GP areas, and if it is above 250 ° C, it promotes the precipitation of a stable phase at the expense of formability and mechanical properties.

    Le bobinage dans la même plage de température 60-250°C du matériau refroidi à 60-250°C, puis le prévieillissement de 1 minute à 10 heures toujours dans la plage de température 60-250°C ont pour objet de permettre la formation d'une phase intermédiaire qui bénéficie aux propriétés mécaniques et à la formabilité de l'alliage.
    Si leur température est inférieure à 60°C, il se forme des zones GP, et si elle est supérieure à 250°C, il y a précipitation d'une phase stable, dans les deux cas au détriment des propriétés mécaniques et de la formabilité de l'alliage.
    The winding in the same temperature range 60-250 ° C of the material cooled to 60-250 ° C, then the pre-aging from 1 minute to 10 hours always in the temperature range 60-250 ° C are intended to allow the formation an intermediate phase which benefits the mechanical properties and the formability of the alloy.
    If their temperature is below 60 ° C, GP zones are formed, and if it is above 250 ° C, there is precipitation of a stable phase, in both cases to the detriment of mechanical properties and formability of the alloy.

    La durée du prévieillissement est choisie entre 1 minutes et 10 heures. En effet, au-dessous d'1 minute, la précipitation insuffisante de la phase intermédiaire risque par la suite, lors du retour à température normale, de favoriser la formation de zones GP, et au-dessus de 10 heures, la phase intermédiaire, surabondante, renforce exagérément les propriétés mécaniques de l'alliage au détriment de sa formabilité.The duration of the pre-aging is chosen between 1 minutes and 10 hours. In effect, below 1 minute, insufficient precipitation of the phase intermediate risk later, when returning to normal temperature, to favor the formation of GP zones, and above 10 hours, the phase intermediate, overabundant, excessively strengthens the properties mechanical properties of the alloy to the detriment of its formability.

    Enfin, la présente invention s'applique non seulement au procédé de fabrication en continu évoqué ci-dessus, mais aussi et avec les mêmes effets aux classiques procédés discontinus.Finally, the present invention applies not only to the method of continuous manufacturing mentioned above, but also and with the same effects to classic discontinuous processes.

    DESCRIPTION DES FIGURESDESCRIPTION OF THE FIGURES

    La Fig.1 est une micrographie qui représente la microstructure d'une tôle d'alliage d'aluminium constituant un exemple d'exécution de l'invention.Fig. 1 is a micrograph which represents the microstructure of a sheet of aluminum alloy constituting an exemplary embodiment of the invention.

    La Fig.2 est une micrographie qui représente la microstructure d'une tôle d'alliage d'aluminium constituant un autre exemple d'exécution de l'invention.Fig. 2 is a micrograph which represents the microstructure of a sheet aluminum alloy constituting another embodiment of the invention.

    La Fig.3 est une micrographie qui représente la microstructure d'une tôle d'alliage d'aluminium fabriquée par un procédé de l'art antérieur.Fig. 3 is a micrograph which represents the microstructure of a sheet of aluminum alloy manufactured by a process of the prior art.

    La Fig.4 est une micrographie qui représente la microstructure d'une tôle d'alliage d'aluminium fabriquée par un autre procédé de l'art antérieur.Fig. 4 is a micrograph which represents the microstructure of a sheet of aluminum alloy made by another process of the prior art.

    EXEMPLESEXAMPLES

    L'invention sera mieux comprise à la lecture d'exemples d'exécution.The invention will be better understood on reading examples of execution.

    les alliages d'aluminium ayant les compositions du Tableau 1 ont été élaborés, coulés, convenablement homogénéisés, laminés à chaud à 400°C, puis laminés à froid par les procédés habituels pour obtenir des tôles de 1 mm d'épaisseur. Les tôles ont été soumises à un traitement continu de mise en solution de 10 secondes à 560°C, puis à un traitement thermique dans les conditions du Tableau 2, pour être prévieillies entre 1 minute et 10 heures à une température donnée, selon le cas 60°C, 120°C, 180°C ou 250°C. Certaines de ces tôles ont été enfin soumises à un traitement de cuisson (1 heure à 180°C), d'autres non.the aluminum alloys having the compositions of Table 1 were prepared, poured, suitably homogenized, hot rolled at 400 ° C, then cold rolled by the usual methods to obtain sheets of 1 mm thick. The sheets were subjected to a continuous treatment of 10 seconds solution treatment at 560 ° C, then heat treatment under the conditions of Table 2, to be pre-aged between 1 minute and 10 hours at a given temperature, as the case may be 60 ° C, 120 ° C, 180 ° C or 250 ° C. Some of these sheets were finally subjected to a treatment of cooking (1 hour at 180 ° C), others not.

    A titre de comparaison, il a également été préparé des tôles traitées par le procédé T4 antérieur (mise en solution et tremps jusqu'à la température normale).For comparison, sheets treated by the previous T4 process (solution and time to temperature normal).

    Les échantillons de tôles ont été soumis à un essai de traction, un essai Erichsen et un essai d'emboutissage limite (LDR). Les résultats sont reportés dans les Tableaux 3, 4, 5 et 6.The sheet metal samples were subjected to a tensile test, a test Erichsen and a limit drawing test (LDR). The results are reported in Tables 3, 4, 5 and 6.

    L'essai de traction a été pratiqué sur éprouvette de traction JIS No.5. L'essai Erichsen a été conduit par la méthode JIS Z2247A (mesure de la profondeur d'emboutissage). L'essai d'emboutissage limite (LDR) a consisté à emboutir un flan lubrifié avec un poinçon de 33 mm de diamètre, mesurer le diamètre de flan maximal pour lequel il n'y a pas rupture dudit flan et calculer le rapport de ce diamètre maximal au diamètre du poinçon.The tensile test was carried out on a JIS No.5 tensile test piece. The Erichsen test was conducted using the JIS Z2247A method (measurement of the deep drawing). The limit drawing test (LDR) consisted stamp a lubricated blank with a 33 mm diameter punch, measure the maximum blank diameter for which there is no rupture of said blank and calculate the ratio of this maximum diameter to the diameter of the punch.

    Le Tableau 3 représente les résultats des tôles utilisant un alliage de composition selon l'invention et traitées thermiquement par le procédé selon l'invention. Toutes présentent des performances élevées :

  • allongement entre 22,8 et 34,0% ; résistance à la traction entre 28,5 et 33,9 kg/mm2 ; limite conventionnelle d'élasticité entre 18,6 et 33,1 kg/mm2 ; indice Erichsen entre 9,1 et 12,6 mm ; LDR entre 1,90 et 2,53. En particulier, les échantillons non cuits (traitements thermiques 1, 3, 5, 7) garantissent de hautes performances en termes d'allongement, d'indice Erichsen et de LDR, tandis que les échantillons cuits pour les besoins de la cuisson (traitements thermiques 2, 4, 6, 8), s'ils connaissent une baisse d'allongement, d'indice Erichsen et de LDR, montrent en revanche une progression notable de la résistance à la traction et de la limite conventionnelle d'élasticité. Autrement dit, de telles tôles offrent d'abord une bonne formabilité pour leur mise en oeuvre en élément de carrosserie ; il suffit ensuite de les cuire pour leur assurer les propriétés mécaniques requises.
  • Table 3 shows the results of the sheets using an alloy of composition according to the invention and heat treated by the process according to the invention. All have high performance:
  • elongation between 22.8 and 34.0%; tensile strength between 28.5 and 33.9 kg / mm 2 ; conventional yield strength between 18.6 and 33.1 kg / mm 2 ; Erichsen index between 9.1 and 12.6 mm; LDR between 1.90 and 2.53. In particular, uncooked samples (heat treatments 1, 3, 5, 7) guarantee high performance in terms of elongation, Erichsen index and LDR, while samples cooked for cooking needs (heat treatments 2, 4, 6, 8), if they experience a fall in elongation, of the Erichsen index and of LDR, on the other hand show a significant increase in the tensile strength and the conventional elastic limit. In other words, such sheets initially offer good formability for their use as a bodywork element; it then suffices to bake them to provide them with the required mechanical properties.
  • Le Tableau 4 représente les résultats des tôles utilisant un alliage de composition selon l'invention et traitées thermiquement par un procédé ne relevant pas de l'invention. Toutes présentent des performances nettement en retrait par rapport aux tôles selon l'invention du Tableau 3 :

  • allongement entre 16,7 et 28,7 % ; résistance à la traction entre 24,5 et 29,4 kg/mm2 ; limite conventionnelle d'élasticité entre 16,7 et 20,8 kg/mm2 ; indice Erichsen entre 8,3 et 8,8 mm ; LDR entre 1,6 et 1,87.
  • Table 4 represents the results of the sheets using an alloy of composition according to the invention and heat treated by a process not falling within the scope of the invention. All of them have performances which are clearly behind compared to the sheets according to the invention of Table 3:
  • elongation between 16.7 and 28.7%; tensile strength between 24.5 and 29.4 kg / mm 2 ; conventional yield strength between 16.7 and 20.8 kg / mm 2 ; Erichsen index between 8.3 and 8.8 mm; LDR between 1.6 and 1.87.
  • Les Tableaux 5 et 6 représentent les résultats des tôles utilisant un alliage de composition ne relevant pas de l'invention et traitées par le procédé selon l'invention. Toutes présentent là encore des performances nettement en retrait par rapport aux tôles selon l'invention :

  • allongement entre 16,4 et 28,6% ; résistance à la traction entre 21,2 et 29,1 kg/mm2 ; limite conventionnelle d'élasticité entre 15,9 et 21,6 kg/mm2 ; indice Erichsen entre 8,2 et 8,8 mm ; LDR entre 1,60 et 1,86.
  • Tables 5 and 6 show the results of the sheets using an alloy of composition not falling within the scope of the invention and treated by the process according to the invention. Here again, all of them show performances clearly behind compared to the sheets according to the invention:
  • elongation between 16.4 and 28.6%; tensile strength between 21.2 and 29.1 kg / mm 2 ; conventional yield strength between 15.9 and 21.6 kg / mm 2 ; Erichsen index between 8.2 and 8.8 mm; LDR between 1.60 and 1.86.
  • L'alliage de code C dans le Tableau 1 (Si 1,65%, Fe 0,08%, Mn 0,10%, Mg 1,38%, Zn 0,01 %, Ti 0,02 %, reste : AL) soumis au traitement thermique 3 du Tableau 2 (mise en solution 10 secondes à 560°C, refroidissement à 120°C, bobinage à 120°C, prévieillissement 3 heures à 120°C, pas de cuisson) a été retenu comme échantillon (a). Le même alliage C soumis au traitement thermique 4 du Tableau 2 (traitement de l'échantilloni (a) complété par une cuisson d'1 heure à 180°C) a été retenu comme échantillon (b).
    Le même alliage C soumis au traitement thermique 9 du Tableau 2 (mise en solution 10 secondes à 560°C, refroidissement à 20°C, bobinage à 20°C, prévieillissement 3 heures à 120°C, pas de cuisson) a été retenu comme échantillon (c). Le même alliage C soumis au traitement thermique 10 (traitement de l'échantillon (c) complété par une cuisson d'1 heure à 180°C) a été retenu comme échantillon (d).
    The alloy of code C in Table 1 (Si 1.65%, Fe 0.08%, Mn 0.10%, Mg 1.38%, Zn 0.01%, Ti 0.02%, remains: AL ) subjected to the heat treatment 3 of Table 2 (dissolution in 10 seconds at 560 ° C, cooling to 120 ° C, winding at 120 ° C, 3 hours pre-aging at 120 ° C, no cooking) was selected as sample ( at). The same alloy C subjected to the heat treatment 4 of Table 2 (treatment of the sample i (a) supplemented by baking for 1 hour at 180 ° C.) was retained as sample (b).
    The same alloy C subjected to the heat treatment 9 of Table 2 (dissolution in 10 seconds at 560 ° C, cooling to 20 ° C, coiling at 20 ° C, 3 hours pre-aging at 120 ° C, no cooking) was retained as sample (c). The same alloy C subjected to heat treatment 10 (treatment of the sample (c) supplemented by baking for 1 hour at 180 ° C) was retained as sample (d).

    Les échantillons (a), (b), (c) et (d) ont été photographiés selon le plan {100} au microscope électronique (grossissement 200000). Les micrographies sont présentées respectivement dans les Fig.1, Fig.2, Fig.3 et Fig.4. On observe que l'échantillon prévieilli subit la précipitation fine d'une phase intermédiaire de Mg2Si (Fig.1) et que le traitement de cuisson accentue encore la finesse de cette précipitation (Fig.2).The samples (a), (b), (c) and (d) were photographed according to the plan {100} with an electron microscope (magnification 200000). The micrographs are presented respectively in Fig. 1, Fig. 2, Fig. 3 and Fig. 4. It is observed that the pre-aged sample undergoes fine precipitation of an intermediate phase of Mg 2 Si (FIG. 1) and that the baking treatment further accentuates the fineness of this precipitation (FIG. 2).

    En revanche, les Fig.3 et Fig.4 démontrent qu'un refroidissement poussé jusqu'à 20°C empêche la précipitation de la phase intermédiaire de Mg2Si, ceci même s'il est suivi d'un prévieillissement et d'un traitement de cuisson.On the other hand, Fig. 3 and Fig. 4 demonstrate that further cooling down to 20 ° C prevents precipitation of the intermediate phase of Mg 2 Si, this even if it is followed by pre-aging and cooking treatment.

    Ainsi, le procédé selon l'invention présente le grand intérêt sur le plan industriel de permettre la fabrication de tôles d'alliage d'aluminium garantissant des propriétés mécaniques et une formabilité excellentes.

    Figure 00090001
    Figure 00100001
    Traitement Alliage A% Rm
    kg/mm2
    RO,2
    kg/mm2
    Erichsen
    mm
    LDR
    1 A 33,7 28,7 18,7 12,5 2,52 1 B 33,0 28,9 18,6 12,4 2,52 1 C 32,5 29,4 19,2 12,4 2,48 1 D 34,0 29,3 18,7 12,6 2,51 1 E 31,9 30,1 20,1 12,1 2,32 2 A 25,4 34,8 26,8 9,5 1,82 2 B 24,6 35,0 27,6 9,4 1,91 2 C 23,8 36,7 28,3 9,3 1,90 2 D 23,4 37,2 28,9 9,3 1,90 2 E 22,9 38,9 31,0 9,2 1,90 3 A 33,5 28,5 19,3 12,4 2,52 3 B 32,9 29,4 18,7 12,3 2,49 3 C 32,8 29,8 19,8 12,3 2,48 3 D 32,7 29,7 20,1 12,3 2,49 3 E 31,8 30,5 21,8 12,1 2,31 4 A 25,8 34,8 27,6 9,6 1,92 4 B 24,9 35,6 28,6 9,4 1,91 4 C 23,7 36,4 29,9 9,3 1,90 4 D 23,9 37,6 31,2 9,4 1,91 4 E 23,7 38,7 32,4 9,4 1,90 5 A 34,0 28,7 19,3 12,6 2,53 5 B 32,9 29,0 19,7 12,4 2,52 5 C 33,7 28,7 20,6 12,5 2,53 5 D 32,7 29,9 21,4 12,4 2,52 5 E 31,8 30,4 22,5 12,1 2,30 6 A 25,7 35,2 30,7 9,6 1,92 6 B 25,8 34,8 29,8 9,6 1,93 6 C 24,6 36,7 31,5 9,4 1,91 6 D 23,8 38,0 32,7 9,3 1,90 6 E 22,8 39,0 33,1 9,1 1,90 7 A 33,7 28,6 21,0 12,5 2,54 7 B 32,9 29,7 20,4 12,4 2,52 7 C 32,5 28,7 22,7 12,3 2,49 7 D 32,8 30,1 20,7 12,3 2,48 7 E 32,7 30,2 22,7 12,4 2,51 8 A 25,6 34,8 28,9 9,6 1,92 8 B 25,7 35,6 28,5 9,6 1,92 8 C 24,8 36,4 28,4 9,5 1,91 8 D 23,7 37,5 29,5 9,3 1,90 8 E 23,7 38,6 30,7 9,3 1,90
    Traitement Alliage A% Rm
    kg/mm2
    RO,2
    kg/mm2
    Erichsen
    mm
    LDR
    9 A 28,7 26,7 16,7 8,8 1,87 9 B 28,6 25,7 17,7 8,7 1,86 9 C 27,6 28,0 17,8 8,7 1,85 9 D 26,7 27,6 16,7 8,6 1,84 9 E 24,9 26,4 16,8 8,5 1,82 10 A 18,6 28,7 19,8 8,4 1,71 10 B 19,7 27,9 20,3 8,4 1,76 10 C 18,7 29,4 17,8 8,4 1,75 10 D 16,7 28,7 19,6 8,3 1,61 10 E 18,2 28,9 18,9 8,4 1,70 11 A 27,6 27,0 17,6 8,8 1,86 11 B 26,8 26,7 16,8 8,6 1,84 11 C 27,5 26,5 16,7 8,7 1,85 11 D 24,3 26,7 17,2 8,6 1,84 11 E 27,6 27,6 16,9 8,6 1,83 12 A 16,7 28,6 19,4 8,3 1,61 12 B 18,4 27,6 20,6 8,3 1,62 12 C 16,7 28,8 20,3 8,3 1,60 12 D 18,5 26,7 19,6 8,4 1,70 12 E 17,7 27,7 20,8 8,4 1,65 13 A 25,7 24,5 16,7 8,6 1,84 13 B 28,4 26,7 17,5 8,8 1,86 13 C 27,6 24,6 16,8 8,7 1,85 13 D 28,5 25,9 18,0 8,6 1,84 13 E 28,4 26,4 16,7 8,8 1,85 14 A 16,7 27,9 20,4 8,3 1,60 14 B 18,6 28,6 18,9 8,4 1,70 14 C 17,7 27,7 19,2 8,4 1,65 14 D 16,5 26,5 17,8 8,3 1,61 14 E 17,7 27,7 19,9 8,4 1,65
    Traitement Alliage A% Rm
    kg/mm2
    RO,2
    kg/mm2
    Erichsen
    mm
    LDR
    1 F 28,6 23,9 17,6 8,8 1,86 1 G 24,3 24,6 16,9 8,5 1,82 1 H 25,9 25,8 18,8 8,6 1,84 1 I 27,6 24,6 17,8 8,6 1,83 2 F 16,4 26,9 20,6 8,3 1,60 2 G 17,6 27,8 19,7 8,4 1,61 2 H 16,5 26,6 18,9 8,3 1,60 2 I 17,6 27,7 17,6 8,3 1,61 3 F 25,3 23,2 18,6 8,6 1,84 3 G 24,4 22,6 17,1 8,5 1,82 3 H 27,6 25,2 17,6 8,6 1,83 3 I 25,8 24,6 18,2 8,6 1,84 4 F 16,6 27,8 19,7 8,3 1,60 4 G 18,5 26,9 20,0 8,4 1,61 4 H 20,1 28,8 18,9 8,5 1,80 4 I 17,6 27,7 18,0 8,4 1,61 5 F 26,4 22,6 17,1 8,6 1,84 5 G 26,6 24,1 16,5 8,6 1,83 5 H 25,8 23,8 17,7 8,5 1,82 5 I 25,5 22,9 17,2 8,5 1,81 6 F 18,5 27,6 21,0 8,4 1,61 6 G 16,5 28,3 20,7 8,3 1,60 6 H 16,4 27,6 19,6 8,3 1,61 6 I 17,7 28,8 21,6 8,3 1,62 7 F 26,8 21,2 18,0 8,6 1,84 7 G 26,7 25,0 16,5 8,6 1,85 7 H 25,7 21,3 16,7 8,5 1,83 7 I 26,5 22,4 18,4 8,5 1,84
    Traitement Alliage A% Rm
    kg/mm2
    RO,2
    kg/mm2
    Erichsen
    mm
    LDR
    8 F 18,8 27,6 20,3 8,4 1,60 8 G 19,3 28,3 18,9 8,5 1,62 8 H 17,7 29,0 19,2 8,3 1,61 8 I 18,6 27,6 18,7 8,4 1,60 9 F 26,9 22,8 16,5 8,6 1,84 9 G 28,0 21,6 17,0 8,7 1,85 9 H 26,9 22,3 16,6 8,6 1,84 9 I 27,3 22,0 16,7 8,5 1,83 10 F 17,6 28,6 20,5 8,3 1,62 10 G 19,9 27,8 19,6 8,4 1,61 10 H 18,6 28,6 18,9 8,4 1,60 10 I 19,6 27,7 19,9 8,5 1,62 11 F 27,6 23,4 16,7 8,7 1,85 11 G 27,2 22,5 16,3 8,7 1,84 11 H 26,4 22,6 17,4 8,6 1,84 11 I 25,8 24,3 17,9 8,5 1,82 12 F 19,6 28,6 20,9 8,4 1,61 12 G 18,8 29,1 20,5 8,4 1,60 12 H 17,7 28,6 19,8 8,3 1,61 12 I 19,6 27,7 18,9 8,5 1,65 13 F 28,6 23,1 15,9 8,7 1,85 13 G 27,6 22,2 16,8 8,6 1,84 13 H 26,6 24,0 17,6 8,5 1,82 13 I 25,5 23,3 16,8 8,5 1,84 14 F 19,7 27,6 20,1 8,4 1,61 14 G 16,8 28,8 19,7 8,2 1,60 14 H 17,8 27,6 18,4 8,3 1,60 14 I 19,6 26,6 19,7 8,4 1,61
    Thus, the method according to the invention has the great advantage from an industrial point of view of making it possible to manufacture aluminum alloy sheets guaranteeing excellent mechanical properties and formability.
    Figure 00090001
    Figure 00100001
    Treatment Alloy AT% rm
    kg / mm2
    RO 2
    kg / mm2
    Erichsen
    mm
    LDR
    1 AT 33.7 28.7 18.7 12.5 2.52 1 B 33.0 28.9 18.6 12.4 2.52 1 VS 32.5 29.4 19.2 12.4 2.48 1 D 34.0 29.3 18.7 12.6 2.51 1 E 31.9 30.1 20.1 12.1 2.32 2 AT 25.4 34.8 26.8 9.5 1.82 2 B 24.6 35.0 27.6 9.4 1.91 2 VS 23.8 36.7 28.3 9.3 1.90 2 D 23.4 37.2 28.9 9.3 1.90 2 E 22.9 38.9 31.0 9.2 1.90 3 AT 33.5 28.5 19.3 12.4 2.52 3 B 32.9 29.4 18.7 12.3 2.49 3 VS 32.8 29.8 19.8 12.3 2.48 3 D 32.7 29.7 20.1 12.3 2.49 3 E 31.8 30.5 21.8 12.1 2.31 4 AT 25.8 34.8 27.6 9.6 1.92 4 B 24.9 35.6 28.6 9.4 1.91 4 VS 23.7 36.4 29.9 9.3 1.90 4 D 23.9 37.6 31.2 9.4 1.91 4 E 23.7 38.7 32.4 9.4 1.90 5 AT 34.0 28.7 19.3 12.6 2.53 5 B 32.9 29.0 19.7 12.4 2.52 5 VS 33.7 28.7 20.6 12.5 2.53 5 D 32.7 29.9 21.4 12.4 2.52 5 E 31.8 30.4 22.5 12.1 2.30 6 AT 25.7 35.2 30.7 9.6 1.92 6 B 25.8 34.8 29.8 9.6 1.93 6 VS 24.6 36.7 31.5 9.4 1.91 6 D 23.8 38.0 32.7 9.3 1.90 6 E 22.8 39.0 33.1 9.1 1.90 7 AT 33.7 28.6 21.0 12.5 2.54 7 B 32.9 29.7 20.4 12.4 2.52 7 VS 32.5 28.7 22.7 12.3 2.49 7 D 32.8 30.1 20.7 12.3 2.48 7 E 32.7 30.2 22.7 12.4 2.51 8 AT 25.6 34.8 28.9 9.6 1.92 8 B 25.7 35.6 28.5 9.6 1.92 8 VS 24.8 36.4 28.4 9.5 1.91 8 D 23.7 37.5 29.5 9.3 1.90 8 E 23.7 38.6 30.7 9.3 1.90
    Treatment Alloy AT% rm
    kg / mm2
    RO 2
    kg / mm2
    Erichsen
    mm
    LDR
    9 AT 28.7 26.7 16.7 8.8 1.87 9 B 28.6 25.7 17.7 8.7 1.86 9 VS 27.6 28.0 17.8 8.7 1.85 9 D 26.7 27.6 16.7 8.6 1.84 9 E 24.9 26.4 16.8 8.5 1.82 10 AT 18.6 28.7 19.8 8.4 1.71 10 B 19.7 27.9 20.3 8.4 1.76 10 VS 18.7 29.4 17.8 8.4 1.75 10 D 16.7 28.7 19.6 8.3 1.61 10 E 18.2 28.9 18.9 8.4 1.70 11 AT 27.6 27.0 17.6 8.8 1.86 11 B 26.8 26.7 16.8 8.6 1.84 11 VS 27.5 26.5 16.7 8.7 1.85 11 D 24.3 26.7 17.2 8.6 1.84 11 E 27.6 27.6 16.9 8.6 1.83 12 AT 16.7 28.6 19.4 8.3 1.61 12 B 18.4 27.6 20.6 8.3 1.62 12 VS 16.7 28.8 20.3 8.3 1.60 12 D 18.5 26.7 19.6 8.4 1.70 12 E 17.7 27.7 20.8 8.4 1.65 13 AT 25.7 24.5 16.7 8.6 1.84 13 B 28.4 26.7 17.5 8.8 1.86 13 VS 27.6 24.6 16.8 8.7 1.85 13 D 28.5 25.9 18.0 8.6 1.84 13 E 28.4 26.4 16.7 8.8 1.85 14 AT 16.7 27.9 20.4 8.3 1.60 14 B 18.6 28.6 18.9 8.4 1.70 14 VS 17.7 27.7 19.2 8.4 1.65 14 D 16.5 26.5 17.8 8.3 1.61 14 E 17.7 27.7 19.9 8.4 1.65
    Treatment Alloy AT% rm
    kg / mm2
    RO 2
    kg / mm2
    Erichsen
    mm
    LDR
    1 F 28.6 23.9 17.6 8.8 1.86 1 G 24.3 24.6 16.9 8.5 1.82 1 H 25.9 25.8 18.8 8.6 1.84 1 I 27.6 24.6 17.8 8.6 1.83 2 F 16.4 26.9 20.6 8.3 1.60 2 G 17.6 27.8 19.7 8.4 1.61 2 H 16.5 26.6 18.9 8.3 1.60 2 I 17.6 27.7 17.6 8.3 1.61 3 F 25.3 23.2 18.6 8.6 1.84 3 G 24.4 22.6 17.1 8.5 1.82 3 H 27.6 25.2 17.6 8.6 1.83 3 I 25.8 24.6 18.2 8.6 1.84 4 F 16.6 27.8 19.7 8.3 1.60 4 G 18.5 26.9 20.0 8.4 1.61 4 H 20.1 28.8 18.9 8.5 1.80 4 I 17.6 27.7 18.0 8.4 1.61 5 F 26.4 22.6 17.1 8.6 1.84 5 G 26.6 24.1 16.5 8.6 1.83 5 H 25.8 23.8 17.7 8.5 1.82 5 I 25.5 22.9 17.2 8.5 1.81 6 F 18.5 27.6 21.0 8.4 1.61 6 G 16.5 28.3 20.7 8.3 1.60 6 H 16.4 27.6 19.6 8.3 1.61 6 I 17.7 28.8 21.6 8.3 1.62 7 F 26.8 21.2 18.0 8.6 1.84 7 G 26.7 25.0 16.5 8.6 1.85 7 H 25.7 21.3 16.7 8.5 1.83 7 I 26.5 22.4 18.4 8.5 1.84
    Treatment Alloy AT% rm
    kg / mm2
    RO 2
    kg / mm2
    Erichsen
    mm
    LDR
    8 F 18.8 27.6 20.3 8.4 1.60 8 G 19.3 28.3 18.9 8.5 1.62 8 H 17.7 29.0 19.2 8.3 1.61 8 I 18.6 27.6 18.7 8.4 1.60 9 F 26.9 22.8 16.5 8.6 1.84 9 G 28.0 21.6 17.0 8.7 1.85 9 H 26.9 22.3 16.6 8.6 1.84 9 I 27.3 22.0 16.7 8.5 1.83 10 F 17.6 28.6 20.5 8.3 1.62 10 G 19.9 27.8 19.6 8.4 1.61 10 H 18.6 28.6 18.9 8.4 1.60 10 I 19.6 27.7 19.9 8.5 1.62 11 F 27.6 23.4 16.7 8.7 1.85 11 G 27.2 22.5 16.3 8.7 1.84 11 H 26.4 22.6 17.4 8.6 1.84 11 I 25.8 24.3 17.9 8.5 1.82 12 F 19.6 28.6 20.9 8.4 1.61 12 G 18.8 29.1 20.5 8.4 1.60 12 H 17.7 28.6 19.8 8.3 1.61 12 I 19.6 27.7 18.9 8.5 1.65 13 F 28.6 23.1 15.9 8.7 1.85 13 G 27.6 22.2 16.8 8.6 1.84 13 H 26.6 24.0 17.6 8.5 1.82 13 I 25.5 23.3 16.8 8.5 1.84 14 F 19.7 27.6 20.1 8.4 1.61 14 G 16.8 28.8 19.7 8.2 1.60 14 H 17.8 27.6 18.4 8.3 1.60 14 I 19.6 26.6 19.7 8.4 1.61

    Claims (2)

    1. Manufacturing process for aluminium alloy sheets with high formability, characterized in that an aluminium alloy sheet composed of 0.3 - 1.7% by weight of Si, 0.01 - 1.2% by weight of Cu, 0.01 - 1.1% by weight of Mn, 0.4 - 1.4% by weight of Mg, less than 1.0% by weight of Fe and the remainder consisting of Al and inevitable impurities, is submitted to a continuous solution heat treatment for at least 3 seconds at more than 450°C followed by cooling to a temperature of 60 to 250°C at a rate exceeding 100°C/min, a coiling maintaining the said temperature between 60 and 250°C and pre-aging lasting for between 1 minute and 10 hours at the said temperature of 60 - 250°C.
    2. Manufacturing process for aluminium alloy plates according to claim 1, characterized in that the alloy contains one or several elements among 0.04 - 0.4% of Cr, less than 0.25% of Zn, less than 0.4% of Zr and less than 0.2% of Ti.
    EP95905681A 1993-12-28 1994-12-28 Process for making high formability aluminium alloy sheets Expired - Lifetime EP0686208B1 (en)

    Applications Claiming Priority (4)

    Application Number Priority Date Filing Date Title
    JP352713/93 1993-12-28
    JP35271393 1993-12-28
    JP5352713A JPH07197219A (en) 1993-12-28 1993-12-28 Production of aluminum alloy sheet for forming
    PCT/FR1994/001547 WO1995018244A1 (en) 1993-12-28 1994-12-28 Process for making high formability aluminium alloy sheets

    Publications (2)

    Publication Number Publication Date
    EP0686208A1 EP0686208A1 (en) 1995-12-13
    EP0686208B1 true EP0686208B1 (en) 2002-05-15

    Family

    ID=18425926

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95905681A Expired - Lifetime EP0686208B1 (en) 1993-12-28 1994-12-28 Process for making high formability aluminium alloy sheets

    Country Status (8)

    Country Link
    US (1) US5690758A (en)
    EP (1) EP0686208B1 (en)
    JP (1) JPH07197219A (en)
    KR (1) KR0158723B1 (en)
    CA (1) CA2157000A1 (en)
    DE (1) DE69430622T2 (en)
    ES (1) ES2176313T3 (en)
    WO (1) WO1995018244A1 (en)

    Families Citing this family (21)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5616189A (en) * 1993-07-28 1997-04-01 Alcan International Limited Aluminum alloys and process for making aluminum alloy sheet
    GB9318041D0 (en) * 1993-08-31 1993-10-20 Alcan Int Ltd Extrudable a1-mg-si alloys
    FR2748035B1 (en) * 1996-04-29 1998-07-03 Pechiney Rhenalu ALUMINUM-SILICON-MAGNESIUM ALLOY FOR AUTOMOTIVE BODYWORK
    US6224693B1 (en) * 1999-12-10 2001-05-01 Tenedora Nemak, S.A. De C.V. Method and apparatus for simplified production of heat treatable aluminum alloy castings with artificial self-aging
    AUPQ485399A0 (en) * 1999-12-23 2000-02-03 Commonwealth Scientific And Industrial Research Organisation Heat treatment of age-hardenable aluminium alloys
    AUPR360801A0 (en) * 2001-03-08 2001-04-05 Commonwealth Scientific And Industrial Research Organisation Heat treatment of age-hardenable aluminium alloys utilising secondary precipitation
    CA2450767C (en) * 2001-07-23 2010-09-14 Corus Aluminium Walzprodukte Gmbh Weldable high strength al-mg-si alloy
    DE10163039C1 (en) * 2001-12-21 2003-07-24 Daimler Chrysler Ag Hot and cold formable component made of an aluminum alloy and process for its production
    RU2345172C2 (en) * 2003-03-17 2009-01-27 Корус Алюминиум Вальцпродукте Гмбх Method for manufacture of solid monolithic aluminium structure and aluminium product manufactured by mechanical cutting from such structure
    US20060070686A1 (en) * 2004-10-05 2006-04-06 Corus Aluminium Walzprodukte Gmbh High hardness moulding plate and method for producing said plate
    FR2902442B1 (en) * 2006-06-16 2010-09-03 Aleris Aluminum Koblenz Gmbh ALLOY OF AA6XXX SERIES WITH HIGH DAMAGE TO AEROSPACE INDUSTRY
    JP2008303449A (en) * 2007-06-11 2008-12-18 Furukawa Sky Kk Aluminum alloy plate for forming and manufacturing method of aluminum alloy plate for forming
    JP5432439B2 (en) * 2007-06-27 2014-03-05 株式会社神戸製鋼所 Aluminum alloy sheet for warm forming
    JP5204517B2 (en) * 2008-03-19 2013-06-05 株式会社神戸製鋼所 Aluminum alloy plate for battery case and manufacturing method thereof
    KR20130104740A (en) * 2012-03-15 2013-09-25 (주)경남금속 Aluminum alloy
    WO2015112450A1 (en) 2014-01-21 2015-07-30 Alcoa Inc. 6xxx aluminum alloys
    EP3390678B1 (en) 2015-12-18 2020-11-25 Novelis, Inc. High strength 6xxx aluminum alloys and methods of making the same
    US10428412B2 (en) * 2016-11-04 2019-10-01 Ford Motor Company Artificial aging of strained sheet metal for strength uniformity
    WO2019174870A1 (en) 2018-03-15 2019-09-19 Aleris Aluminum Duffel Bvba Method of manufacturing an almgsi alloy sheet product
    WO2019222236A1 (en) 2018-05-15 2019-11-21 Novelis Inc. High strength 6xxx and 7xxx aluminum alloys and methods of making the same
    CN112522550B (en) * 2020-11-04 2022-10-04 佛山科学技术学院 Aluminum alloy with rapid aging response and preparation method and application thereof

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3135633A (en) * 1959-09-08 1964-06-02 Duralumin Heat treatment process improving the mechanical properties of aluminiummagnesium-silicon alloys
    FR2493345A1 (en) * 1980-11-05 1982-05-07 Pechiney Aluminium INTERRUPTED METHOD OF ALUMINUM ALLOY-BASED ALLOYS
    US5098490A (en) * 1990-10-05 1992-03-24 Shin Huu Super position aluminum alloy can stock manufacturing process
    US5582660A (en) * 1994-12-22 1996-12-10 Aluminum Company Of America Highly formable aluminum alloy rolled sheet

    Also Published As

    Publication number Publication date
    DE69430622D1 (en) 2002-06-20
    JPH07197219A (en) 1995-08-01
    KR0158723B1 (en) 1999-01-15
    EP0686208A1 (en) 1995-12-13
    DE69430622T2 (en) 2002-12-05
    WO1995018244A1 (en) 1995-07-06
    ES2176313T3 (en) 2002-12-01
    KR950018595A (en) 1995-07-22
    CA2157000A1 (en) 1995-07-06
    US5690758A (en) 1997-11-25

    Similar Documents

    Publication Publication Date Title
    EP0686208B1 (en) Process for making high formability aluminium alloy sheets
    JP4794862B2 (en) Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability
    EP2984195B1 (en) Process of manufacturing a rolled al-cu-li sheet with improved formability and corrosion resistance
    FR2853666A1 (en) HIGH-STRENGTH Al-Zn ALLOY, PROCESS FOR PRODUCING PRODUCTS IN SUCH AN ALLOY, AND PRODUCTS OBTAINED ACCORDING TO THIS PROCESS
    EP2981632B1 (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
    FR2762329A1 (en) Aluminium@ alloy of series seven thousand hardened by precipitation and of high resistance
    EP3201372B1 (en) Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same
    EP1883715A1 (en) Aluminum alloy sheet and method for manufacturing the same
    JP5278494B2 (en) Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability
    EP0756017B1 (en) Aluminium-copper-magnesium alloy with high creep resistance
    EP0259232B1 (en) Easily workable and weldable aluminium alloy, and process for its manufacture
    JP2001262264A (en) Al-Mg-Si SERIES Al ALLOY SHEET EXCELLENT IN TOUGHNESS AND BENDABILITY
    KR20180095117A (en) Aluminum alloy sheet for forming
    JPH10219382A (en) Aluminum alloy sheet excellent in moldability and paint bake hardenability and method for producing the same
    JPH083702A (en) Production of aluminum alloy sheet material excellent in formability and heating hardenability
    JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
    KR20180095116A (en) Aluminum alloy sheet
    JP3471421B2 (en) Manufacturing method of aluminum alloy forging
    JPH10226894A (en) Method for producing aluminum alloy sheet excellent in formability, paint bake hardenability, chemical conversion property, and corrosion resistance
    JPH10259464A (en) Production of aluminum alloy sheet for forming
    JP2925884B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in heat-curability
    FR2841567A1 (en) Heat-treatable, rolled aluminum alloy product used for production of car body parts contains silicon, magnesium, copper and iron
    FR2748035A1 (en) ALUMINUM-SILICON-MAGNESIUM ALLOY FOR AUTOMOTIVE BODYWORK
    JPH08109428A (en) Aluminum alloy plate excellent in paint bake hardenability and method for producing the same
    JPH09279281A (en) Aluminum alloy baking finished sheet for can top material excellent in corrosion resistance and its production

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19950905

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 20011005

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 69430622

    Country of ref document: DE

    Date of ref document: 20020620

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020724

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2176313

    Country of ref document: ES

    Kind code of ref document: T3

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: ALCAN DEUTSCHLAND GMBH

    Effective date: 20030217

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: PECHINEY RHENALU

    Owner name: KAISER ALUMINUM & CHEMICAL CORPORATION

    Owner name: JFE STEEL CORPORATION

    Owner name: THE FURUKAWA ELECTRIC CO., LTD.

    PLBD Termination of opposition procedure: decision despatched

    Free format text: ORIGINAL CODE: EPIDOSNOPC1

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051228

    PLBM Termination of opposition procedure: date of legal effect published

    Free format text: ORIGINAL CODE: 0009276

    PLBP Opposition withdrawn

    Free format text: ORIGINAL CODE: 0009264

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

    27C Opposition proceedings terminated

    Effective date: 20051017

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20091228

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20091229

    Year of fee payment: 16

    PGRI Patent reinstated in contracting state [announced from national office to epo]

    Ref country code: IT

    Effective date: 20091201

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20091230

    Year of fee payment: 16

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20101228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101228

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Owner name: CONSTELLIUM FRANCE, FR

    Effective date: 20111123

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101228

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20120104

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20120206

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101229

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20111229

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20130830

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69430622

    Country of ref document: DE

    Effective date: 20130702

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130702

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130102