[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0683862A1 - Electromagnetic valve - Google Patents

Electromagnetic valve

Info

Publication number
EP0683862A1
EP0683862A1 EP95900661A EP95900661A EP0683862A1 EP 0683862 A1 EP0683862 A1 EP 0683862A1 EP 95900661 A EP95900661 A EP 95900661A EP 95900661 A EP95900661 A EP 95900661A EP 0683862 A1 EP0683862 A1 EP 0683862A1
Authority
EP
European Patent Office
Prior art keywords
valve
armature
core
wedge
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95900661A
Other languages
German (de)
French (fr)
Other versions
EP0683862B1 (en
Inventor
Ferdinand Reiter
Martin Maier
Jörg HEYSE
Norbert Keim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4421935A external-priority patent/DE4421935A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0683862A1 publication Critical patent/EP0683862A1/en
Application granted granted Critical
Publication of EP0683862B1 publication Critical patent/EP0683862B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/02Fuel-injection apparatus having means for reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/50Arrangements of springs for valves used in fuel injectors or fuel injection pumps
    • F02M2200/505Adjusting spring tension by sliding spring seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9038Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9053Metals
    • F02M2200/9061Special treatments for modifying the properties of metals used for fuel injection apparatus, e.g. modifying mechanical or electromagnetic properties

Definitions

  • the invention is based on an electromagnetically actuated valve according to the preamble of the main claim.
  • Various electromagnetically actuated valves in particular fuel injection valves, are already known, in which components subject to wear are provided with wear-resistant layers.
  • DE-OS 32 30 844 it is also known to provide the armature and stop surface of a fuel injector with wear-resistant surfaces. These surfaces can, for example, be nickel-plated, that is to say provided with an additional layer, or nitrided, that is to say hardened by the incorporation of nitrogen.
  • nitrided that is to say hardened by the incorporation of nitrogen.
  • DE-OS 37 16 072 it is already known from DE-OS 37 16 072 to use hard molybdenum layers for parts of an injection valve which are particularly stressed by wear and corrosion and which are thin and can be subsequently machined with diamonds.
  • DE-OS 38 10 826 describes a fuel injection valve in which at least one stop surface is designed in the shape of a spherical cap in order to achieve an extremely precise air gap, a round-body insert made of non-magnetic, high-strength material being formed in the center of the stop surface.
  • a fuel injection valve is also known from EP-OS 0 536 773, in which a hard metal layer is applied to the armature on its cylindrical peripheral surface and annular stop surface by electroplating.
  • This layer of chrome or nickel has a thickness of 15 to 25 ⁇ m, for example.
  • the galvanic coating a slightly wedge-shaped layer thickness distribution occurs, with a minimally thicker layer being achieved on the outer edges. Due to the galvanically separated layers, the layer thickness distribution is physically predetermined and can hardly be influenced. After a certain operating time, the abutment surface widens in an undesirable manner due to wear, which results in changes in the pulling and falling times of the armature.
  • the electromagnetically actuated valve according to the invention with the characterizing features of the main claim has the advantage over the fact that at least one of the abutting components is designed in such a way that the creation of a wear-resistant surface is ensured that the stop surface is not undesirably enlarged by wear even after a long period of operation, so that the pulling and falling times of the movable component remain almost constant.
  • a particular advantage is that the surface of at least one of the abutting components, in its highest area closest to the opposite component, is made wear-resistant by using a method known per se, e.g. a nitriding process such as plasma nitriding or gas nitriding etc. is hardened.
  • a nitriding process such as plasma nitriding or gas nitriding etc. is hardened.
  • FIG. 1 shows a fuel injection valve
  • FIG. 2 shows an enlarged stop of the
  • FIG. 3 shows a first embodiment of a wedge armature designed according to the invention
  • FIG. 4 shows a second embodiment of a wedge armature
  • FIG. 5 shows a third embodiment of a wedge armature.
  • the solenoid-operated valve shown in FIG. 1, for example, in the form of an injection valve for fuel injection systems of mixture-compressing, spark-ignited internal combustion engines has a core 2, which is surrounded by a solenoid coil 1 and serves as a fuel inlet connection and is, for example, tubular here and a constant over its entire length Has outer diameter.
  • a tubular metallic intermediate part 12 is connected, for example by welding, concentrically to a longitudinal valve axis 10 and thereby surrounds the core end 9 partially axially.
  • the stepped coil body 3 partially overlaps the core 2 and, with a step 15 of larger diameter, the intermediate part 12 at least partially axially.
  • a tubular valve seat carrier 16 extends downstream of the bobbin 3 and the intermediate part 12 and is, for example, firmly connected to the intermediate part 12.
  • a longitudinal bore 17 runs in the valve seat support 16 and is formed concentrically to the valve longitudinal axis 10.
  • a tubular valve needle 19 Arranged in the longitudinal bore 17 is, for example, a tubular valve needle 19 which is connected at its downstream end 20 to a spherical valve closing body 21, on the periphery of which, for example, five flats 22 are provided for the fuel to flow past, for example by welding.
  • the injection valve is actuated electromagnetically in a known manner.
  • the electromagnetic circuit with the magnet coil 1, the core 2 and an armature 27 is used for the axial movement of the valve needle 19 and thus for opening against the spring force of a return spring 25 or closing the injection valve.
  • the armature 27 is connected to the End of the valve needle 19 facing away from the valve closing body 21 is connected by a first weld seam 28 and aligned with the core 2.
  • the end of the valve seat carrier 16 facing away from the core 2 is sealed in the longitudinal bore 17 by a cylindrical valve seat body 29, which has a fixed valve seat, by welding.
  • a guide opening 32 of the valve seat body 29 serves to guide the valve closing body 21 during the axial movement of the valve needle 19 with the armature 27 along the valve longitudinal axis 10.
  • the spherical valve closing body 21 interacts with the valve seat of the valve seat body 29 which tapers in the direction of the cone in the direction of flow.
  • the valve seat body 29 is connected concentrically and firmly to a spray-perforated disk 34, for example in the form of a pot. At least one runs in the base part of the spray perforated disk 34, for example four spray openings 39 formed by eroding or stamping.
  • the insertion depth of the valve seat body 29 with the cup-shaped spray perforated disk 34 determines the presetting of the stroke of the valve needle 19.
  • the one end position of the valve needle 19 when the magnet coil 1 is not energized is determined by the valve closing body 21 resting on the valve seat of the valve seat body 29 , while the other end position of the valve needle 19 when the solenoid coil 1 is excited results from the contact of the armature 27 at the core end 9, that is to say precisely in the region which is embodied according to the invention and is characterized in more detail by a circle.
  • An adjusting sleeve 48 which is pushed into a flow bore 46 of the core 2 concentric to the longitudinal axis 10 of the valve and which is formed, for example, from rolled spring steel sheet, serves to adjust the spring preload on the adjusting sleeve 48 Return spring 25, which in turn is supported with its opposite side on the valve needle 19.
  • the injection valve is largely enclosed with a plastic encapsulation 50, which extends from the core 2 in the axial direction via the magnet coil 1 to the valve seat support 16.
  • This plastic encapsulation 50 includes, for example, an injection-molded electrical connector 52.
  • a fuel filter 61 projects into the flow bore 46 of the core 2 at its inlet end 55 and provides for the filtering out of those fuel components which, because of their size, could cause blockages or damage in the injection valve.
  • FIG. 2 shows the area of the one end position of the valve needle 19 marked with a circle in FIG. 1, in which the armature 27 strikes the core end 9 of the core 2, on a different scale.
  • metallic layers 65 to the core end 9 of the core 2 and to the armature 27, for example chrome or nickel layers, by means of electroplating.
  • the layers 65 are applied both to an end face 67 running perpendicular to the longitudinal valve axis 10 and at least partially to a peripheral face 66 of the armature 27.
  • These layers 65 are particularly wear-resistant and, with their small surface area, reduce hydraulic sticking of the striking surfaces, but without being able to reliably prevent it.
  • the layer thickness of these layers 65 is generally between 10 and 25 ⁇ m.
  • the core 2 and armature 27 only in a relatively small area, for example only in the outer, from the valve. Strike the area of the upper end face of the anchor 27 facing away from the longitudinal axis 10. This requirement is met by the galvanic coating.
  • a field line concentration occurs at the edges of the parts to be coated, here core 2 and armature 27, which leads to a wedge-shaped layer thickness distribution, as indicated in FIG. 2.
  • the wedge-shaped layer 65 applied is therefore only stressed in a small area during the operation of the injection valve. In continuous operation, however, there is no longer a defined stop surface, since parts of the layer 65 are removed by several million stops, so that the stop surface increases ever further and thus the wedge is continuously reduced.
  • part of the armature 27 according to the invention is shown in the area of its upper end face 67 in FIG. 3, which has a wedge section 73 with an inclined, oblique course with respect to the valve longitudinal axis even before the coating or the creation of the wear resistance of the surface 10 has, so that the armature 27 has a wedge shape there.
  • the inclination of the wedge section 73 of the end face 67 of the armature 27 extends inwards in the exemplary embodiment in FIG. 3, it also being possible for a wedge section 73 of the end face 67 to be inclined outward (FIG. 4).
  • the wedge shape of the armature 27 in the region of the end face 67 is already produced during the mechanical processing, for example by means of a correspondingly ground countersinking tool.
  • the wedge shape of the armature 27 before the coating or the generation of the wear resistance in accordance with the required values are predetermined and manufactured such that a magnetic and hydraulic optimum is achieved in each case when used. Hydraulic adhesion of the armature 27 to the core 2 is now completely ruled out by the wedge-shaped armature, since the wedge-shape is present in any case even in the case of layers 65 that are largely flat (also magnetic). With the help of very precisely ground countersinking tools, tighter manufacturing tolerances for the wedge can be maintained than before, so that there is even less variation in the pull-in and fall-out times of the armature 27 when the injection valve is operated.
  • the inclined wedge section 73 of the end face 67 also allows non-galvanic, wear-resistant layers, which may also be magnetic, to be applied without the requirement for a very small stop area remaining unfulfilled.
  • the end face 67 at least in the region of its highest point, can be made wear-resistant by treating the surface by means of a hardening process.
  • a hardening process e.g. the known nitriding processes such as plasma nitriding or gas nitriding are suitable.
  • a stop section 68 of the end face 67 is initially provided, which extends radially inward over a width a perpendicular to the longitudinal valve axis 10 and serves as a stop surface.
  • Stop section 68 represents an almost completely constant annular surface a over the entire operating time. The wear of the stop surface during continuous operation is thus precisely defined.
  • the minimally wedge-shaped, e.g. B. made of chrome layer 65, which is deposited on the end face 67, has only a fraction of the inclination of the inclined wedge section 73 of the armature 27 adjoining the stop section 68. As a result, the coating remains on before coating Anchor 27 provided inclination of the wedge section 73 is completely preserved or is minimally reinforced.
  • the abutment surface width which corresponds to the width a of the abutment section 68, remains constant even when worn, there is a constant contact width during the abutment of the core 2 and armature 27 over the entire
  • At least the surface of the stop section 68 can also be made wear-resistant by a hardening process, so that no additional layer 65 has to be applied to the end face 67.
  • both the armature 27 and the core 2 are provided with wedge sections 73 of the end faces 67 before the coating or the generation of a wear-resistant surface. This ensures an even higher level of security against the impact and prevents hydraulic gluing. If it is expedient, the wedge portion of the end face can of course also be attached only to the core 2, the armature 27 keeping, for example, a flat end face.
  • FIGS. 4 and 5 Further exemplary embodiments of embodiments designed according to the invention
  • the anchors 27 are shown in FIGS. 4 and 5.
  • An anchor 27 is shown in FIG. 4, in which the wedge section 73 of the end face 67 is designed inclined to the outside.
  • FIG. 5 An exemplary embodiment of the armature 27 according to the invention, in which the end face 67 is formed only by the wedge section 73, is shown in FIG. 5.
  • the stop section 68 which has at least a slight radial extension, is completely dispensed with here; rather, there is a wedge on the entire end face 67, so there is no area of the end face 67 perpendicular to the longitudinal axis 10 of the valve.
  • Particularly at very small angles of the wedge section 73 there is also a stable stop, so that a defined stop surface remains even during continuous operation .
  • FIG. 5 of the course of the inclination of the wedge section 73 in the direction of the valve longitudinal axis 10
  • an exemplary embodiment analogous to the exemplary embodiment shown in FIG. 4, in which the wedge section is located is also conceivable 73 extends in the direction away from the longitudinal axis 10 of the valve, that is to say is inclined outward.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

In already known fuel injection valves, wearing parts such as the armature and the core are provided with wear-resistant layers made for example of chromium, molybdenum or nickel. If the parts of the injection valve are galvanically coated, a desired wedge-shaped distribution of the layer thicknesses is achieved that creates only a small bearing area but which is physically predetermined and practically impossible to influence. The new valve has at lest one part, for example the armature (27) that has a wedge-shaped surface before the wear-resistant layer is applied. The wedge-shaped surface may be produced in a variable manner depending on the desired optimum magnetic and hydraulic properties. The ring-shaped bearing section (68) formed by the wedge has a defined bearing surface or contact width (a) that remains constant during the whole service life of the part, as wearing of the bearing surface in continuous duty does not cause the contact width to increase. This valve is particularly suitable for use in fuel injection systems of mixture-compressing, spark-ignited internal combustion engines.

Description

Elektromagnetisch betätigbares VentilElectromagnetically actuated valve
Stand der TechnikState of the art
Die Erfindung geht aus von einem elektromagnetisch betä¬ tigbaren Ventil nach der Gattung des Hauptanspruchs. Es sind bereits verschiedene elektromagnetisch betätigbare Ventile, insbesondere Brennstoffeinspritzventile bekannt, bei denen verschleißbeanspruchte Bauteile mit verschlei߬ festen Schichten versehen sind.The invention is based on an electromagnetically actuated valve according to the preamble of the main claim. Various electromagnetically actuated valves, in particular fuel injection valves, are already known, in which components subject to wear are provided with wear-resistant layers.
Aus der DE-OS 29 42 928 ist bereits bekannt, verschleißfe¬ ste diamagnetische Materialschichten an verschleißbean¬ spruchten Teilen, wie Anker und Düsenkörper, aufzutragen. Diese aufgebrachten Schichten dienen der Begrenzung des Hubes der Ventilnadel, wodurch die Auswirkungen des Rest- magnetismus auf die bewegten Teile des Brennstoffein- spritzventils minimiert werden.It is already known from DE-OS 29 42 928 to apply wear-resistant diamagnetic material layers to parts subject to wear, such as anchors and nozzle bodies. These applied layers serve to limit the stroke of the valve needle, thereby minimizing the effects of the residual magnetism on the moving parts of the fuel injector.
Aus der DE-OS 32 30 844 ist ebenfalls bekannt, Anker und Anschlagfläche eines Brennstoffeinspritzventils mit ver- schleißfesten Oberflächen zu versehen. Diese Oberflächen können beispielsweise vernickelt, also mit einer zusätz¬ lichen Schicht versehen sein, oder nitriert, also durch Einlagerung von Stickstoff gehärtet sein. Außerdem ist bereits aus der DE-OS 37 16 072 bekannt, für durch Verschleiß und Korrosion besonders beanspruchte Teile eines Einspritzventils Molybdänhartschichten zu ver¬ wenden, die dünn ausgebildet sind und nachträglich mit Diamanten bearbeitet werden können.From DE-OS 32 30 844 it is also known to provide the armature and stop surface of a fuel injector with wear-resistant surfaces. These surfaces can, for example, be nickel-plated, that is to say provided with an additional layer, or nitrided, that is to say hardened by the incorporation of nitrogen. In addition, it is already known from DE-OS 37 16 072 to use hard molybdenum layers for parts of an injection valve which are particularly stressed by wear and corrosion and which are thin and can be subsequently machined with diamonds.
In der DE-OS 38 10 826 ist ein Brennstoffeinspritzventil beschrieben, bei dem wenigstens eine Anschlagfläche kugelkalottenförmig ausgeführt ist, um einen äußerst exakten Luftspalt zu erreichen, wobei mittig an der An¬ schlagfläche ein Rundkörpereinsatz aus nichtmagnetischem, hochfestem Werkstoff ausgebildet ist.DE-OS 38 10 826 describes a fuel injection valve in which at least one stop surface is designed in the shape of a spherical cap in order to achieve an extremely precise air gap, a round-body insert made of non-magnetic, high-strength material being formed in the center of the stop surface.
Aus der EP-OS 0 536 773 ist ebenfalls ein Brennstoffein- spritzventil bekannt, bei dem am Anker an dessen zylindri¬ scher Umfangsflache und ringförmiger Anschlagfläche eine Hartmetallschicht durch Galvanisieren aufgetragen ist. Diese Schicht aus Chrom oder Nickel besitzt beispielsweise eine Dicke von 15 bis 25 μm. Infolge der galvanischen Beschichtung entsteht eine gering keilige Schichtdicken- verteilung, wobei an den äußeren Kanten eine minimal dickere Schicht erreicht wird. Durch die galvanisch abge¬ schiedenen Schichten ist die Schichtdickenverteilung phy¬ sikalisch vorgegeben und kaum beeinflußbar. Nach einer ge- wissen Betriebszeit verbreitert sich die Anschlagfläche durch Verschleiß in unerwünschter Weise, wodurch sich Änderungen bei der Anzugs- und Abfallzeit des Ankers erge¬ ben.A fuel injection valve is also known from EP-OS 0 536 773, in which a hard metal layer is applied to the armature on its cylindrical peripheral surface and annular stop surface by electroplating. This layer of chrome or nickel has a thickness of 15 to 25 μm, for example. As a result of the galvanic coating, a slightly wedge-shaped layer thickness distribution occurs, with a minimally thicker layer being achieved on the outer edges. Due to the galvanically separated layers, the layer thickness distribution is physically predetermined and can hardly be influenced. After a certain operating time, the abutment surface widens in an undesirable manner due to wear, which results in changes in the pulling and falling times of the armature.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße elektromagnetisch betätigbare Ventil mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß wenigstens eines der anein- ander anschlagenden Bauteile so gestaltet ist, daß nach dem Erzeugen einer verschleißfesten Oberfläche gewährlei¬ stet ist, daß die Anschlagfläche auch nach längerer Betriebszeit nicht durch Verschleiß in unerwünschter Weise vergrößert wird, so daß die Anzugs- und Abfallzeiten des beweglichen Bauteils nahezu konstant bleiben. Das wird da¬ durch erreicht, daß wenigstens eines der aneinander an¬ schlagenden Bauteile bereits vor dem Erzeugen der Ver¬ schleißfestigkeit eine keilige Oberfläche besitzt. Diese keilige Oberfläche läßt sich zur Erzielung eines magneti- sehen und hydraulischen Optimums jeweils an verschiedene Gegebenheiten genau anpassen.The electromagnetically actuated valve according to the invention with the characterizing features of the main claim has the advantage over the fact that at least one of the abutting components is designed in such a way that the creation of a wear-resistant surface is ensured that the stop surface is not undesirably enlarged by wear even after a long period of operation, so that the pulling and falling times of the movable component remain almost constant. This is achieved in that at least one of the abutting components has a wedge-shaped surface before the wear resistance is generated. This wedge-shaped surface can be precisely adapted to different conditions to achieve a magnetic and hydraulic optimum.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen elektromagnetisch betätigba- ren Ventils, insbesondere Brennstoffeinspritzventils mög¬ lich.The measures listed in the subclaims enable advantageous developments and improvements of the electromagnetically actuated valve, in particular fuel injection valve, specified in the main claim.
Besonders vorteilhaft ist es, die äußerst genaue Ober¬ flächengestalt wenigstens eines der anschlagenden Bauteile mechanisch mit einem geschliffenen Senkwerkzeug herzu¬ stellen. So sind sehr präzise Abmessungen erreichbar. Mit Hilfe der sehr genau geschliffenen Werkzeuge können engere Fertigungstoleranzen als bisher eingehalten werden, so daß es beim Betrieb des Einspritzventils zu einer sehr gerin- gen Streuung der Anzugs- und insbesondere Abfallzeit des Ankers kommt.It is particularly advantageous to produce the extremely precise surface shape of at least one of the striking components mechanically using a ground countersinking tool. In this way, very precise dimensions can be achieved. With the aid of the very precisely ground tools, tighter manufacturing tolerances can be maintained than before, so that there is very little variation in the pull-in and, in particular, fall-out times of the armature during operation of the injection valve.
Vorteilhaft ist zudem, daß durch einen keiligen Anker und/oder Kern ein hydraulisches Kleben vollständig ausge- schlössen ist, da auch bei weitgehend eben abgeschiedenen Schichten die Keiligkeit auf jeden Fall vorhanden bleibt. Die Schichten an wenigstens- einem der anschlagenden Bau¬ teile besitzen nämlich nur einen Bruchteil der Keiligkeit der Bauteile selbst. Die keilige Oberflächengestalt des mindestens einen Bau¬ teils, z. B. des Ankers, erlaubt es zudem, daß auch nicht¬ galvanische und magnetische verschleißfeste Schichten aufgebracht werden können, ohne daß die Forderung nach einem sehr kleinen Anschlagbereich unerfüllt bleibt.It is also advantageous that hydraulic bonding is completely excluded by means of a wedge-shaped anchor and / or core, since the wedge-shape remains in any case even with largely flat layers. The layers on at least one of the striking components have only a fraction of the wedge shape of the components themselves. The wedge-shaped surface shape of the at least one component, e.g. B. the anchor, it also allows that non-galvanic and magnetic wear-resistant layers can be applied without the requirement for a very small stop area remains unfulfilled.
Ein besonderer Vorteil besteht darin, daß die Oberfläche in ihrem höchsten, dem gegenüberliegenden Bauteil nächst- liegenden Bereich wenigstens eines der aneinanderanschla- genden Bauteile dadurch verschleißfest gemacht wird, daß sie mittels eines an sich bekannten Verfahrens, z.B. einem Nitrierverfahren wie Plasmanitrieren oder Gasnitrieren o.a. gehärtet wird.A particular advantage is that the surface of at least one of the abutting components, in its highest area closest to the opposite component, is made wear-resistant by using a method known per se, e.g. a nitriding process such as plasma nitriding or gas nitriding etc. is hardened.
Zeichnungdrawing
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschrei¬ bung näher erläutert. Es zeigen Figur 1 ein Brennstoffein- spritzventil, Figur 2 einen vergrößerten Anschlag desExemplary embodiments of the invention are shown in simplified form in the drawing and are explained in more detail in the following description. FIG. 1 shows a fuel injection valve, FIG. 2 shows an enlarged stop of the
Einspritzventils im Bereich von Kern und Anker, Figur 3 ein erstes Ausführungsbeispiel eines erfindungsgemäß aus¬ gebildeten keiligen Ankers, Figur 4 ein zweites Ausfüh- rungsbeispiel eines keiligen Ankers und Figur 5 ein drit- tes Ausführungsbeispiel eines keiligen Ankers.Injection valve in the area of the core and armature, FIG. 3 shows a first embodiment of a wedge armature designed according to the invention, FIG. 4 shows a second embodiment of a wedge armature and FIG. 5 shows a third embodiment of a wedge armature.
Beschreibung der AusführungsbeispieleDescription of the embodiments
Das in der Figur 1 beispielsweise dargestellte elektromag- netisch betätigbare Ventil in der Form eines Einspritz¬ ventils für Brennstoffeinspritzanlagen von gemischverdich¬ tenden, fremdgezündeten Brennkraftmaschinen hat einen von einer Magnetspule 1 umgebenen, als Brennstoffeinlaßstutzen dienenden Kern 2, der beispielsweise hier rohrförmig aus- gebildet ist und über seine gesamte Länge einen konstanten Außendurchmesser aufweist. Ein in radialer Richtung gestufter Spulenkörper 3 nimmt eine Bewicklung der Magnetspule 1 auf und ermöglicht in Verbindung mit dem einen konstanten Außendurchmesser aufweisenden Kern 2 einen besonders kompakten Aufbau des Einspritzventils im Bereich der Magnetspule 1.The solenoid-operated valve shown in FIG. 1, for example, in the form of an injection valve for fuel injection systems of mixture-compressing, spark-ignited internal combustion engines has a core 2, which is surrounded by a solenoid coil 1 and serves as a fuel inlet connection and is, for example, tubular here and a constant over its entire length Has outer diameter. A coil body 3, which is stepped in the radial direction, takes up a winding of the magnetic coil 1 and, in conjunction with the core 2 having a constant outer diameter, enables a particularly compact structure of the injection valve in the area of the magnetic coil 1.
Mit einem unteren Kernende 9 des Kerns 2 ist konzentrisch zu einer Ventillängsachse 10 dicht ein rohrförmiges metal- lenes Zwischenteil 12 beispielsweise durch Schweißen ver¬ bunden und umgibt dabei das Kernende 9 teilweise axial. Der gestufte Spulenkörper 3 übergreift teilweise den Kern 2 und mit einer Stufe 15 größeren Durchmessers das Zwi¬ schenteil 12 zumindest teilweise axial. Stromabwärts des Spulenkörpers 3 und des Zwischenteils 12 erstreckt sich ein rohrförmiger Ventilsitzträger 16, der beispielsweise fest mit dem Zwischenteil 12 verbunden ist. In dem Ven¬ tilsitzträger 16 verläuft eine Längsbohrung 17, die kon¬ zentrisch zu der Ventillängsachse 10 ausgebildet ist. In der Längsbohrung 17 ist eine zum Beispiel rohrförmige Ven¬ tilnadel 19 angeordnet, die an ihrem stromabwärtigen Ende 20 mit einem kugelförmigen Ventilschließkörper 21, an dessen Umfang beispielsweise fünf Abflachungen 22 zum Vorbeiströmen des Brennstoffs vorgesehen sind, beispiels- weise durch Schweißen verbunden ist.With a lower core end 9 of the core 2, a tubular metallic intermediate part 12 is connected, for example by welding, concentrically to a longitudinal valve axis 10 and thereby surrounds the core end 9 partially axially. The stepped coil body 3 partially overlaps the core 2 and, with a step 15 of larger diameter, the intermediate part 12 at least partially axially. A tubular valve seat carrier 16 extends downstream of the bobbin 3 and the intermediate part 12 and is, for example, firmly connected to the intermediate part 12. A longitudinal bore 17 runs in the valve seat support 16 and is formed concentrically to the valve longitudinal axis 10. Arranged in the longitudinal bore 17 is, for example, a tubular valve needle 19 which is connected at its downstream end 20 to a spherical valve closing body 21, on the periphery of which, for example, five flats 22 are provided for the fuel to flow past, for example by welding.
Die Betätigung des Einspritzventils erfolgt in bekannter Weise elektromagnetisch. Zur axialen Bewegung der Ventil- nadel 19 und damit zum Öffnen entgegen der Federkraft einer Rückstellfeder 25 bzw. Schließen des Einspritzven¬ tils dient der elektromagnetische Kreis mit der Magnetspu¬ le 1, dem Kern 2 und einem Anker 27. Der Anker 27 ist mit dem dem Ventilschließkörper 21 abgewandten Ende der Ven¬ tilnadel 19 durch eine erste Schweißnaht 28 verbunden und auf den Kern 2 ausgerichtet. In das stromabwärts liegende, dem Kern 2 abgewandte Ende des Ventilsitzträgers 16 ist in der Längsbohrung 17 ein zylinderförmiger Ventilsitzkörper 29, der einen festen Ventilsitz aufweist, durch Schweißen dicht montiert.The injection valve is actuated electromagnetically in a known manner. The electromagnetic circuit with the magnet coil 1, the core 2 and an armature 27 is used for the axial movement of the valve needle 19 and thus for opening against the spring force of a return spring 25 or closing the injection valve. The armature 27 is connected to the End of the valve needle 19 facing away from the valve closing body 21 is connected by a first weld seam 28 and aligned with the core 2. In the downstream The end of the valve seat carrier 16 facing away from the core 2 is sealed in the longitudinal bore 17 by a cylindrical valve seat body 29, which has a fixed valve seat, by welding.
Zur Führung des Ventilschließkörpers 21 während der Axial¬ bewegung der Ventilnadel 19 mit dem Anker 27 entlang der Ventillängsachse 10 dient eine Führungsöffnung 32 des Ven¬ tilsitzkörpers 29. Der kugelförmige Ventilschließkörper 21 wirkt mit dem sich in Strömungsrichtung kegelstumpfförmig verjüngenden Ventilsitz des Ventilsitzkörpers 29 zusammen. An seiner dem Ventilschließkörper 21 abgewandten Stirn¬ seite ist der Ventilsitzkörper 29 mit einer beispielsweise topfförmig ausgebildeten Spritzlochscheibe 34 konzentrisch und fest, verbunden. Im Bodenteil der Spritzlochscheibe 34 verläuft wenigstens eine, beispielsweise verlaufen vier durch Erodieren oder Stanzen ausgeformte Abspritzöffnungen 39.A guide opening 32 of the valve seat body 29 serves to guide the valve closing body 21 during the axial movement of the valve needle 19 with the armature 27 along the valve longitudinal axis 10. The spherical valve closing body 21 interacts with the valve seat of the valve seat body 29 which tapers in the direction of the cone in the direction of flow. On its end facing away from the valve closing body 21, the valve seat body 29 is connected concentrically and firmly to a spray-perforated disk 34, for example in the form of a pot. At least one runs in the base part of the spray perforated disk 34, for example four spray openings 39 formed by eroding or stamping.
Die Einschubtiefe des Ventilsitzkörpers 29 mit der topfförmigen Spritzlochscheibe 34 bestimmt die Voreinstel¬ lung des Hubs der Ventilnadel 19. Dabei ist die eine End¬ stellung der Ventilnadel 19 bei nicht erregter Magnetspule 1 durch die Anlage des Ventilschließkörpers 21 am Ventil- sitz des Ventilsitzkörpers 29 festgelegt, während sich die andere Endstellung der Ventilnadel 19 bei erregter Magnet¬ spule 1 durch die Anlage des Ankers 27 am Kernende 9 er¬ gibt, also genau in dem Bereich, der erfindungsgemäß aus¬ gebildet und durch einen Kreis näher gekennzeichnet ist.The insertion depth of the valve seat body 29 with the cup-shaped spray perforated disk 34 determines the presetting of the stroke of the valve needle 19. The one end position of the valve needle 19 when the magnet coil 1 is not energized is determined by the valve closing body 21 resting on the valve seat of the valve seat body 29 , while the other end position of the valve needle 19 when the solenoid coil 1 is excited results from the contact of the armature 27 at the core end 9, that is to say precisely in the region which is embodied according to the invention and is characterized in more detail by a circle.
Eine in eine konzentrisch zur Ventillängsachse 10 verlau¬ fende Strömungsbohrung 46 des Kerns 2 eingeschobene Ein¬ stellhülse 48, die beispielsweise aus gerolltem Feder¬ stahlblech ausgeformt ist, dient zur Einstellung der FedervorSpannung der an der Einstellhülse 48 anliegenden Rückstellfeder 25, die sich wiederum mit ihrer gegenüber¬ liegenden Seite an der Ventilnadel 19 abstützt. Das Einspritzventil ist weitgehend mit einer Kunststoffum- spritzung 50 umschlossen, die sich vom Kern 2 ausgehend in axialer Richtung über die Magnetspule 1 bis zum Ventil¬ sitzträger 16 erstreckt. Zu dieser Kunststoffumspritzung 50 gehört beispielsweise ein mitangespritzter elektrischer Anschlußstecker 52.An adjusting sleeve 48, which is pushed into a flow bore 46 of the core 2 concentric to the longitudinal axis 10 of the valve and which is formed, for example, from rolled spring steel sheet, serves to adjust the spring preload on the adjusting sleeve 48 Return spring 25, which in turn is supported with its opposite side on the valve needle 19. The injection valve is largely enclosed with a plastic encapsulation 50, which extends from the core 2 in the axial direction via the magnet coil 1 to the valve seat support 16. This plastic encapsulation 50 includes, for example, an injection-molded electrical connector 52.
Ein Brennstoffilter 61 ragt in die Strömungsbohrung 46 des Kerns 2 an dessen Zulaufseitigem Ende 55 hinein und sorgt für die Herausfiltrierung solcher Brennstoffbestandteile, die aufgrund ihrer Größe im Einspritzventil Verstopfungen oder Beschädigungen verursachen könnten.A fuel filter 61 projects into the flow bore 46 of the core 2 at its inlet end 55 and provides for the filtering out of those fuel components which, because of their size, could cause blockages or damage in the injection valve.
In der Figur 2 ist der in Figur 1 mit einem Kreis gekenn¬ zeichnete Bereich der einen Endstellung der Ventilnadel 19, in dem der Anker 27 an dem Kernende 9 des Kerns 2 anschlägt, in einem anderen Maßstab dargestellt. Bereits bekannt ist das Aufbringen von metallischen Schichten 65 auf dem Kernende 9 des Kerns 2 und auf dem Anker 27, bei¬ spielsweise von Chrom- oder Nickelschichten, mittels Gal- vanisierens. Dabei werden die Schichten 65 sowohl auf eine senkrecht zur Ventillängsachse 10 verlaufende Stirnfläche 67 als auch zumindest teilweise auf eine Umfangsflache 66 des Ankers 27 aufgebracht. Diese Schichten 65 sind besonders verschleißfest und reduzieren mit ihrer kleinen Oberfläche ein hydraulisches Kleben der anschlagenden Flä¬ chen, ohne es jedoch sicher verhindern zu können. Die Schichtdicke dieser Schichten 65 beträgt im allgemeinen zwischen 10 und 25 μm.FIG. 2 shows the area of the one end position of the valve needle 19 marked with a circle in FIG. 1, in which the armature 27 strikes the core end 9 of the core 2, on a different scale. It is already known to apply metallic layers 65 to the core end 9 of the core 2 and to the armature 27, for example chrome or nickel layers, by means of electroplating. The layers 65 are applied both to an end face 67 running perpendicular to the longitudinal valve axis 10 and at least partially to a peripheral face 66 of the armature 27. These layers 65 are particularly wear-resistant and, with their small surface area, reduce hydraulic sticking of the striking surfaces, but without being able to reliably prevent it. The layer thickness of these layers 65 is generally between 10 and 25 μm.
Für die Funktion des Einspritzventils ist es notwendig, daß Kern 2 und Anker 27 nur in einem relativ kleinen Bereich, beispielsweise nur im äußeren, von der Ventil- längsachse 10 abgewandten Bereich der oberen Stirnfläche des Ankers 27 anschlagen. Diese Forderung wird gerade durch die galvanische Beschichtung erreicht. Bei der gal¬ vanischen Beschichtung tritt an den Kanten der zu beschichtenden Teile, hier Kern 2 und Anker 27, eine Feld¬ linienkonzentration auf, die dazu führt, daß eine keilige Schichtdickenverteilung, wie sie in Figur 2 angedeutet ist, auftritt. Die aufgebrachte keilige Schicht 65 wird also beim Betrieb des Einspritzventils nur in einem klei- nen Bereich beansprucht. Beim Dauerbetrieb liegt aller¬ dings nicht mehr eine definierte Anschlagfläche vor, da durch mehrere Millionen Anschläge Teile der Schicht 65 ab¬ getragen werden, so daß sich die Anschlagfläche immer weiter vergrößert und somit die Keiligkeit ständig weiter reduziert wird.For the function of the injection valve, it is necessary that the core 2 and armature 27 only in a relatively small area, for example only in the outer, from the valve. Strike the area of the upper end face of the anchor 27 facing away from the longitudinal axis 10. This requirement is met by the galvanic coating. In the case of galvanic coating, a field line concentration occurs at the edges of the parts to be coated, here core 2 and armature 27, which leads to a wedge-shaped layer thickness distribution, as indicated in FIG. 2. The wedge-shaped layer 65 applied is therefore only stressed in a small area during the operation of the injection valve. In continuous operation, however, there is no longer a defined stop surface, since parts of the layer 65 are removed by several million stops, so that the stop surface increases ever further and thus the wedge is continuously reduced.
Demgegenüber ist in der Figur 3 ein Teil des erfindungsge¬ mäßen Ankers 27 im Bereich seiner oberen Stirnfläche 67 gezeigt, die bereits vor der Beschichtung oder dem Erzeu- gen der Verschleißfestigkeit der Oberfläche einen Keilab¬ schnitt 73 mit einem geneigten, schrägen Verlauf gegenüber der Ventillängsachse 10 aufweist, so daß der Anker 27 dort eine Keilform hat. Die Neigung des Keilabschnitts 73 der Stirnfläche 67 des Ankers 27 verläuft bei dem Ausführungs- beispiel in Figur 3 nach innen, wobei auch ein Keilab¬ schnitt 73 der Stirnfläche 67 geneigt nach außen ausgebil¬ det sein kann (Figur 4) . Die Keilform des Ankers 27 im Bereich der Stirnfläche 67 wird bereits bei der mechani¬ schen Bearbeitung, beispielsweise durch ein entsprechend geschliffenes Senkwerkzeug, hergestellt.In contrast, part of the armature 27 according to the invention is shown in the area of its upper end face 67 in FIG. 3, which has a wedge section 73 with an inclined, oblique course with respect to the valve longitudinal axis even before the coating or the creation of the wear resistance of the surface 10 has, so that the armature 27 has a wedge shape there. The inclination of the wedge section 73 of the end face 67 of the armature 27 extends inwards in the exemplary embodiment in FIG. 3, it also being possible for a wedge section 73 of the end face 67 to be inclined outward (FIG. 4). The wedge shape of the armature 27 in the region of the end face 67 is already produced during the mechanical processing, for example by means of a correspondingly ground countersinking tool.
Während die bei galvanisch abgeschiedenen Schichten 65 entstehende Schichtdickenverteilung physikalisch vorgege¬ ben und kaum beeinflußbar ist, kann die Keiligkeit des Ankers 27 vor der Beschichtung bzw. dem Erzeugen der Ver- schleißfestigkeit entsprechend geforderter Werte so vor¬ bestimmt und gefertigt werden, daß bei der Benutzung je¬ weils ein magnetisches und hydraulisches Optimum erreicht wird. Ein hydraulisches Kleben des Ankers 27 am Kern 2 ist durch den keiligen Anker nun vollständig ausgeschlossen, da auch bei weitgehend eben abgeschiedenen (auch magneti¬ schen) Schichten 65 die Keiligkeit auf jeden Fall vorhan¬ den ist. Mit Hilfe sehr genau geschliffener Senkwerkzeuge können engere Fertigungstoleranzen für die Keiligkeit als bisher eingehalten werden, so daß es beim Betrieb des Ein¬ spritzventils zu einer noch geringeren Streuung der An¬ zugs- und Abfallzeit des Ankers 27 kommt. Der geneigte Keilabschnitt 73 der Stirnfläche 67 erlaubt es zudem, daß auch nichtgalvanische, verschleißfeste Schichten, die auch magnetisch sein dürfen, aufgebracht werden können, ohne daß die Forderung nach einem sehr kleinen Anschlagbereich unerfüllt bleibt.While the layer thickness distribution that arises in the case of electrodeposited layers 65 is physically predetermined and can hardly be influenced, the wedge shape of the armature 27 before the coating or the generation of the wear resistance in accordance with the required values are predetermined and manufactured such that a magnetic and hydraulic optimum is achieved in each case when used. Hydraulic adhesion of the armature 27 to the core 2 is now completely ruled out by the wedge-shaped armature, since the wedge-shape is present in any case even in the case of layers 65 that are largely flat (also magnetic). With the help of very precisely ground countersinking tools, tighter manufacturing tolerances for the wedge can be maintained than before, so that there is even less variation in the pull-in and fall-out times of the armature 27 when the injection valve is operated. The inclined wedge section 73 of the end face 67 also allows non-galvanic, wear-resistant layers, which may also be magnetic, to be applied without the requirement for a very small stop area remaining unfulfilled.
Außerdem kann die Stirnfläche 67, zumindest im Bereich ihres höchsten Punktes, durch eine Behandlung der Oberflä¬ che mittels eines Härteverfahrens verschleißfest gemacht werden. Als Härteverfahren sind hierzu z.B. die bekannten Nitrierverfahren wie Plasmanitrieren oder Gasnitrieren geeignet.In addition, the end face 67, at least in the region of its highest point, can be made wear-resistant by treating the surface by means of a hardening process. As a hardening process, e.g. the known nitriding processes such as plasma nitriding or gas nitriding are suitable.
Bei dem Ausführungsbeispiel nach Figur 3 ist ausgehend von der Umfangsflache 66 des Ankers 27 zunächst ein Anschlag¬ abschnitt 68 der Stirnfläche 67 vorgesehen, der sich über eine Breite a radial nach innen senkrecht zur Ventillängs- achse 10 erstreckt und als Anschlagfläche dient. DieserIn the exemplary embodiment according to FIG. 3, starting from the circumferential surface 66 of the armature 27, a stop section 68 of the end face 67 is initially provided, which extends radially inward over a width a perpendicular to the longitudinal valve axis 10 and serves as a stop surface. This
Anschlagabschnitt 68 stellt über die gesamte Betriebsdauer eine fast vollständig konstant in ihrer Breite a bleibende Ringfläche dar. Der Anschlagflächenverschleiß bei Dauerbetrieb ist damit genau definiert. Um ein hydrauli- sches und magnetisches Optimum zu erreichen, ist der Keilabschnitt 73 idealerweise um einen Winkel zwischen >0° und <=1° gegenüber dem Anschlagabschnitt 68 geneigt. Die minimal keilige, z. B. aus Chrom gebildete Schicht 65, die auf der Stirnfläche 67 abgeschieden wird, besitzt nur einen Bruchteil der Neigung des sich an den Anschlagab¬ schnitt 68 nach innen anschließenden, geneigten Keilab¬ schnitts 73 des Ankers 27. Folglich bleibt die vor dem Beschichten am Anker 27 vorgesehene Neigung des Keilab¬ schnittes 73 vollständig erhalten bzw. wird minimal ver- stärkt.Stop section 68 represents an almost completely constant annular surface a over the entire operating time. The wear of the stop surface during continuous operation is thus precisely defined. In order to achieve a hydraulic and magnetic optimum, the is Wedge section 73 ideally inclined at an angle between> 0 ° and <= 1 ° with respect to stop section 68. The minimally wedge-shaped, e.g. B. made of chrome layer 65, which is deposited on the end face 67, has only a fraction of the inclination of the inclined wedge section 73 of the armature 27 adjoining the stop section 68. As a result, the coating remains on before coating Anchor 27 provided inclination of the wedge section 73 is completely preserved or is minimally reinforced.
Da die Anschlagflächenbreite, die der Breite a des An¬ schlagabschnitts 68 entspricht, auch bei Verschleiß kon¬ stant bleibt, ist eine konstante Kontaktbreite während des Anschlagens von Kern 2 und Anker 27 über die gesamteSince the abutment surface width, which corresponds to the width a of the abutment section 68, remains constant even when worn, there is a constant contact width during the abutment of the core 2 and armature 27 over the entire
Lebensdauer vorhanden, wodurch auch die hydraulischen Ver¬ hältnisse im Spalt zwischen dem Kern 2 und dem Anker 27 konstant bleiben, was einen besonderen Vorteil darstellt. Wie bereits erwähnt, kann zumindest die Oberfläche des An- Schlagabschnittes 68 auch durch ein Härteverfahren ver¬ schleißfest gemacht werden, so daß keine zusätzliche Schicht 65 auf die Stirnfläche 67 aufgetragen werden muß.Lifetime available, whereby the hydraulic conditions in the gap between the core 2 and the armature 27 remain constant, which is a particular advantage. As already mentioned, at least the surface of the stop section 68 can also be made wear-resistant by a hardening process, so that no additional layer 65 has to be applied to the end face 67.
Die gleichen Effekte sind ebenso erzielbar, wenn sowohl der Anker 27 als auch der Kern 2 vor dem Beschichten bzw. dem Erzeugen einer verschleißfesten Oberfläche mit Keilab¬ schnitten 73 der Stirnflächen 67 versehen werden. Damit kann eine noch höhere Anschlagsicherheit bzw. Verhinderung des hydraulischen Klebens gewährleistet werden. Wenn es zweckmäßig ist, kann selbstverständlich das Anbringen eines Keilabschnitts der Stirnfläche auch nur am Kern 2 vorgenommen werden, wobei der Anker 27 beispielsweise eine plane Stirnfläche behält.The same effects can also be achieved if both the armature 27 and the core 2 are provided with wedge sections 73 of the end faces 67 before the coating or the generation of a wear-resistant surface. This ensures an even higher level of security against the impact and prevents hydraulic gluing. If it is expedient, the wedge portion of the end face can of course also be attached only to the core 2, the armature 27 keeping, for example, a flat end face.
Weitere Ausführungsbeispiele von erfindungsgemäß ausgebil- deten Ankern 27 zeigen die Figuren 4 und 5. In der Figur 4 ist ein Anker 27 dargestellt, bei dem der Keilabschnitt 73 der Stirnfläche 67 geneigt nach außen ausgeführt ist.Further exemplary embodiments of embodiments designed according to the invention The anchors 27 are shown in FIGS. 4 and 5. An anchor 27 is shown in FIG. 4, in which the wedge section 73 of the end face 67 is designed inclined to the outside.
Ein erfindungsgemäßes Ausführungsbeispiel des Ankers 27, bei dem die Stirnfläche 67 nur durch den Keilabschnitt 73 gebildet wird, zeigt die Figur 5. Hierbei wird völlig auf den wenigstens eine geringe radiale Erstreckung aufweisen¬ den Anschlagabschnitt 68 verzichtet; vielmehr liegt eine Keiligkeit an der gesamten Stirnfläche 67 vor, es besteht also kein senkrecht zur Ventillängsachse 10 verlaufender Bereich der Stirnfläche 67. Besonders bei sehr kleinen Winkeln des Keilabschnitts 73 liegt auch dann ein stabiler Anschlag vor, so daß auch bei Dauerbetrieb eine definierte Anschlagfläche bleibt. Neben der in Figur 5 gezeigten Mög¬ lichkeit des Verlaufs der Neigung des Keilabschnitts 73 in Richtung zu der Ventillängsachse 10 hin, ist auch ein Aus¬ führungsbeispiel analog zu dem in der Figur 4 dargestell¬ ten Ausführungsbeispiel denkbar, bei dem sich der Keilab- schnitt 73 in Richtung von der Ventillängsachse 10 weg er¬ streckt, also nach außen geneigt ausgeführt ist.An exemplary embodiment of the armature 27 according to the invention, in which the end face 67 is formed only by the wedge section 73, is shown in FIG. 5. The stop section 68, which has at least a slight radial extension, is completely dispensed with here; rather, there is a wedge on the entire end face 67, so there is no area of the end face 67 perpendicular to the longitudinal axis 10 of the valve. Particularly at very small angles of the wedge section 73, there is also a stable stop, so that a defined stop surface remains even during continuous operation . In addition to the possibility shown in FIG. 5 of the course of the inclination of the wedge section 73 in the direction of the valve longitudinal axis 10, an exemplary embodiment analogous to the exemplary embodiment shown in FIG. 4, in which the wedge section is located, is also conceivable 73 extends in the direction away from the longitudinal axis 10 of the valve, that is to say is inclined outward.
Da an wenigstens einer Stirnfläche 67 von Anker 27 und/oder Kern 2 bereits der Keilabschnitt 73 vorliegt, der bisher erst durch das Aufbringen von Chrom- oder Nickel- schichten erzielt wurde, können nun, wie bereits erwähnt, auch andere Verfahren zur Qualitätserhöhung durch Verbes¬ serung der Verschleißfestigkeit der Stirnfläche 67 zum Einsatz kommen. Durch den Einsatz von Härteverfahren, wie z.B. Plasmanitrieren, Gasnitrieren oder Carburieren, durch die die Oberflächenstruktur am Anker 27 und/oder Kern 2 verändert wird, kann sogar ganz auf Verfahren zur unmit¬ telbaren Beschichtung verzichtet werden. Since the wedge section 73 already exists on at least one end face 67 of armature 27 and / or core 2, which was previously achieved only by applying chrome or nickel layers, as already mentioned, other methods for increasing quality by means of verbs can now also be used ¬ improvement of the wear resistance of the end face 67 are used. Through the use of hardening processes, e.g. Plasma nitriding, gas nitriding or carburizing, by means of which the surface structure on the armature 27 and / or core 2 is changed, methods for direct coating can even be dispensed with entirely.

Claims

Patentansprüche claims
1. Elektromagnetisch betätigbares Ventil, insbesondere Brennstoffeinspritzventil für Brennstoffeinspritzanlagen von Brennkraftmaschinen, mit einer Ventillängsachse, mit einem Kern aus ferromagnetisehern Material, mit einer Ma¬ gnetspule und mit einem Anker, der ein mit einem festen Ventilsitz zusammenwirkenden Ventilschließkδrper betätigt und bei erregter Magnetspule gegen eine Anschlagfläche des Kerns gezogen wird, dadurch gekennzeichnet, daß wenigstens eine der beiden Stirnflächen (67) der Bauteile Anker (27) und Kern (2) , die jeweils zu dem anderen gegenüberliegen¬ den Bauteil gerichtet sind, wenigstens einen zur Ventil¬ längsachse (10) schräg verlaufenden Keilabschnitt (73) be¬ sitzt.1. Electromagnetically actuated valve, in particular fuel injection valve for fuel injection systems of internal combustion engines, with a valve longitudinal axis, with a core made of ferromagnetic material, with a magnetic coil and with an armature which actuates a valve closing body interacting with a fixed valve seat and against a stop surface when the magnet coil is excited of the core, characterized in that at least one of the two end faces (67) of the components armature (27) and core (2), which are each directed towards the other opposite component, at least one to the valve longitudinal axis (10) oblique wedge section (73) sits.
2. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß we¬ nigstens eine der beiden Stirnflächen (67) der Bauteile Anker (27) und Kern (2) in einen Anschlagabschnitt (68) und den wenigstens einen zur Ventillängsachse (10) schräg verlaufenden Keilabschnitt (73) aufgeteilt ist und der we¬ nigstens eine Anschlagabschnitt (68) eine definierte Brei¬ te (a) hat.2. Valve according to claim 1, characterized in that we at least one of the two end faces (67) of the components armature (27) and core (2) in a stop section (68) and the at least one wedge section extending obliquely to the valve longitudinal axis (10) (73) is divided and the at least one stop section (68) has a defined width (a).
3. Ventil nach Anspruch 2, dadurch gekennzeichnet, daß der wenigstens eine Anschlagabschnitt (68) an Anker (27) und/oder Kern (2) eine Breite (a) besitzt, die nur einen Bruchteil des Durchmessers der Stirnfläche (67) darstellt.3. Valve according to claim 2, characterized in that the at least one stop section (68) on armature (27) and / or the core (2) has a width (a) which represents only a fraction of the diameter of the end face (67).
4. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß sich der wenigstens eine zur Ventillängsachse (10) schräg verlaufende Keilabschnitt (73) über die gesamte Stirn¬ fläche (67) erstreckt.4. Valve according to claim 1, characterized in that the at least one wedge section (73) extending obliquely to the longitudinal valve axis (10) extends over the entire end face (67).
5. Ventil nach Anspruch 2 oder 4, dadurch gekennzeichnet, daß der wenigstens eine Keilabschnitt (73) am Kern (2) und/oder Anker (27) in Richtung zu der Ventillängsachse (10) hin geneigt verläuft.5. Valve according to claim 2 or 4, characterized in that the at least one wedge portion (73) on the core (2) and / or armature (27) in the direction of the valve longitudinal axis (10) is inclined.
6. Ventil nach Anspruch 2 oder 4, dadurch gekennzeichnet, daß der wenigstens eine Keilabschnitt (73) am Kern (2) und/oder Anker (27) in Richtung von der Ventillängsachse (10) weg geneigt verläuft.6. Valve according to claim 2 or 4, characterized in that the at least one wedge section (73) on the core (2) and / or armature (27) in the direction of the valve longitudinal axis (10) is inclined away.
7. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß Kern (2) und/oder Anker (27) im Bereich der Stirnfläche7. Valve according to claim 1, characterized in that the core (2) and / or armature (27) in the region of the end face
(67) beschichtet sind.(67) are coated.
8. Ventil nach Anspruch 7, dadurch gekennzeichnet, daß die durch das Beschichten aufgebrachte Schicht (65) magnetisch ist.8. Valve according to claim 7, characterized in that the layer (65) applied by the coating is magnetic.
9. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß Kern (2) und/oder Anker (27) im Bereich der Stirnfläche (67) mittels eines Härteverfahrens behandelt sind. 9. Valve according to claim 1, characterized in that the core (2) and / or armature (27) in the region of the end face (67) are treated by means of a hardening process.
EP95900661A 1993-12-09 1994-11-24 Electromagnetic valve Expired - Lifetime EP0683862B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4341961 1993-12-09
DE4341961 1993-12-09
DE4421935 1994-06-23
DE4421935A DE4421935A1 (en) 1993-12-09 1994-06-23 Electromagnetically operated valve esp. for IC engine fuel-injection valve - has one of facing end faces of armature or core elements having wedge section which is inclined to valve longitudinal axis
PCT/DE1994/001392 WO1995016126A1 (en) 1993-12-09 1994-11-24 Electromagnetic valve

Publications (2)

Publication Number Publication Date
EP0683862A1 true EP0683862A1 (en) 1995-11-29
EP0683862B1 EP0683862B1 (en) 1998-06-10

Family

ID=25931897

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95900661A Expired - Lifetime EP0683862B1 (en) 1993-12-09 1994-11-24 Electromagnetic valve

Country Status (9)

Country Link
US (1) US5732888A (en)
EP (1) EP0683862B1 (en)
JP (2) JP3742651B2 (en)
CN (1) CN1049951C (en)
BR (1) BR9406079A (en)
CZ (1) CZ285156B6 (en)
ES (1) ES2118531T3 (en)
RU (1) RU2131549C1 (en)
WO (1) WO1995016126A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095215A1 (en) * 2001-05-21 2002-11-28 Robert Bosch Gmbh Fuel injection valve
WO2004051072A1 (en) * 2002-12-04 2004-06-17 Robert Bosch Gmbh Fuel-injection valve

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19627939C1 (en) * 1996-07-11 1997-03-20 Bosch Gmbh Robert Solenoid-operated needle valve
DE19654322C2 (en) * 1996-12-24 1999-12-23 Bosch Gmbh Robert Electromagnetically actuated valve
DE19712591A1 (en) * 1997-03-26 1998-10-01 Bosch Gmbh Robert Fuel injector and method for manufacturing and using a fuel injector
US6047907A (en) 1997-12-23 2000-04-11 Siemens Automotive Corporation Ball valve fuel injector
US6019297A (en) * 1998-02-05 2000-02-01 Siemens Automotive Corporation Non-magnetic shell for welded fuel injector
DE19914711A1 (en) * 1998-05-15 1999-11-18 Ford Motor Co Movable armature for use in a fuel injector
US6489870B1 (en) 1999-11-22 2002-12-03 Tlx Technologies Solenoid with improved pull force
US6198369B1 (en) * 1998-12-04 2001-03-06 Tlx Technologies Proportional actuator for proportional control devices
US6392516B1 (en) 1998-12-04 2002-05-21 Tlx Technologies Latching solenoid with improved pull force
US20010002680A1 (en) 1999-01-19 2001-06-07 Philip A. Kummer Modular two part fuel injector
US6409102B1 (en) * 1999-03-15 2002-06-25 Aerosance, Inc. Fuel injector assembly
JP2001050133A (en) * 1999-08-06 2001-02-23 Hitachi Ltd Electronic fuel injection valve
DE19960605A1 (en) 1999-12-16 2001-07-19 Bosch Gmbh Robert Fuel injector
DE10008554A1 (en) * 2000-02-24 2001-08-30 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
US6676044B2 (en) 2000-04-07 2004-01-13 Siemens Automotive Corporation Modular fuel injector and method of assembling the modular fuel injector
US6409101B1 (en) * 2000-06-30 2002-06-25 Siemens Automotive Corporation Hollow oversized telescopic needle with armature
US6481646B1 (en) 2000-09-18 2002-11-19 Siemens Automotive Corporation Solenoid actuated fuel injector
US6695232B2 (en) 2000-12-29 2004-02-24 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a lift set sleeve
US6520421B2 (en) 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having an integral filter and o-ring retainer
US6550690B2 (en) 2000-12-29 2003-04-22 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having an integral filter and dynamic adjustment assembly
US6499677B2 (en) 2000-12-29 2002-12-31 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6547154B2 (en) 2000-12-29 2003-04-15 Siemens Automotive Corporation Modular fuel injector having a terminal connector interconnecting an electromagnetic actuator with a pre-bent electrical terminal
US6511003B2 (en) 2000-12-29 2003-01-28 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6607143B2 (en) 2000-12-29 2003-08-19 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a lift set sleeve
US6698664B2 (en) 2000-12-29 2004-03-02 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and dynamic adjustment assembly
US6565019B2 (en) 2000-12-29 2003-05-20 Seimens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and O-ring retainer assembly
US6499668B2 (en) * 2000-12-29 2002-12-31 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6523760B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6655609B2 (en) 2000-12-29 2003-12-02 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having an integral filter and o-ring retainer assembly
US6536681B2 (en) 2000-12-29 2003-03-25 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and O-ring retainer assembly
US6508417B2 (en) 2000-12-29 2003-01-21 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a lift set sleeve
US6502770B2 (en) 2000-12-29 2003-01-07 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6523761B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a lift set sleeve
US6523756B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having a lift set sleeve
US6568609B2 (en) 2000-12-29 2003-05-27 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and o-ring retainer assembly
US6543707B2 (en) 2000-12-29 2003-04-08 Siemens Automotive Corporation Modular fuel injector having a lift set sleeve
US6520422B2 (en) 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6811091B2 (en) 2000-12-29 2004-11-02 Siemens Automotive Corporation Modular fuel injector having an integral filter and dynamic adjustment assembly
US6708906B2 (en) * 2000-12-29 2004-03-23 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6533188B1 (en) 2000-12-29 2003-03-18 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and dynamic adjustment assembly
US6769636B2 (en) 2000-12-29 2004-08-03 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having an integral filter and O-ring retainer assembly
US6904668B2 (en) 2001-03-30 2005-06-14 Siemens Vdo Automotive Corp. Method of manufacturing a modular fuel injector
US6676043B2 (en) 2001-03-30 2004-01-13 Siemens Automotive Corporation Methods of setting armature lift in a modular fuel injector
US6687997B2 (en) 2001-03-30 2004-02-10 Siemens Automotive Corporation Method of fabricating and testing a modular fuel injector
US7093362B2 (en) 2001-03-30 2006-08-22 Siemens Vdo Automotive Corporation Method of connecting components of a modular fuel injector
DE10119982A1 (en) * 2001-04-24 2002-10-31 Bosch Gmbh Robert Fuel injection device for an internal combustion engine
DE10119984A1 (en) * 2001-04-24 2002-10-31 Bosch Gmbh Robert Fuel injection device for an internal combustion engine
ITBO20010483A1 (en) * 2001-07-27 2003-01-27 Magneti Marelli Powertrain Spa ELECTROMAGNETIC ACTUATOR FOR A FUEL INJECTOR
JP2003232268A (en) * 2002-02-08 2003-08-22 Hitachi Ltd Solenoid operated fuel injection valve
JP3819907B2 (en) * 2004-02-27 2006-09-13 株式会社ケーヒン Electromagnetic fuel injection valve and manufacturing method thereof
JP3819906B2 (en) * 2004-02-27 2006-09-13 株式会社ケーヒン Electromagnetic fuel injection valve and manufacturing method thereof
JP4168448B2 (en) * 2004-07-08 2008-10-22 株式会社デンソー Fuel injection valve
JP2006022727A (en) * 2004-07-08 2006-01-26 Aisan Ind Co Ltd Fuel injection valve
JP4252507B2 (en) 2004-07-09 2009-04-08 愛三工業株式会社 Fuel pump
JP4577654B2 (en) * 2005-02-10 2010-11-10 株式会社デンソー Electromagnetic drive device and fuel injection valve using the same
JP2006266231A (en) * 2005-03-25 2006-10-05 Aisan Ind Co Ltd Fuel injection valve
DE102005061408A1 (en) 2005-12-22 2007-06-28 Robert Bosch Gmbh Combined plastic and metal component e.g. automotive fuel injection valve has serrated metal edge to plastic interface
JP2007205234A (en) * 2006-02-01 2007-08-16 Denso Corp Fuel injection valve
JP4948295B2 (en) * 2007-07-06 2012-06-06 愛三工業株式会社 Fuel injection valve
JP5048617B2 (en) * 2008-09-17 2012-10-17 日立オートモティブシステムズ株式会社 Fuel injection valve for internal combustion engine
DE102008053310A1 (en) 2008-10-27 2010-04-29 Vacuumschmelze Gmbh & Co. Kg Soft-magnetic workpiece with wear-resistant layer, used to make fuel injection- or solenoid valve, includes core of crystalline iron-cobalt alloy
JP5178683B2 (en) * 2009-10-21 2013-04-10 日立オートモティブシステムズ株式会社 Electromagnetic fuel injection valve
DE102009046466A1 (en) * 2009-11-06 2011-05-12 Robert Bosch Gmbh MIM 2K sleeve for injector
JP5482272B2 (en) * 2010-02-12 2014-05-07 株式会社デンソー Fuel injection valve
DE102010041787B4 (en) * 2010-09-30 2022-01-05 Robert Bosch Gmbh Electromagnetic device and driver assistance device
JP5724661B2 (en) * 2011-06-15 2015-05-27 株式会社デンソー High pressure pump and control method thereof
DE102012204753A1 (en) 2012-03-26 2013-09-26 Robert Bosch Gmbh Method for producing a solenoid valve
US20140097275A1 (en) * 2012-10-10 2014-04-10 Caterpillar Inc. Fuel injector with nozzle passages having electroless nickel coating
EP2811148B1 (en) * 2013-06-04 2016-03-23 Continental Automotive GmbH Fluid injector for a combustion engine
JP5578258B2 (en) * 2013-07-16 2014-08-27 株式会社デンソー Fuel injection valve
DE102014201097A1 (en) * 2014-01-22 2015-07-23 Robert Bosch Gmbh Method for producing a solenoid valve
JP5862712B2 (en) * 2014-06-27 2016-02-16 株式会社デンソー Fuel injection valve
JP5862713B2 (en) * 2014-06-27 2016-02-16 株式会社デンソー Fuel injection valve
US20170254304A1 (en) * 2014-09-17 2017-09-07 Denso Corporation Fuel injection valve
DE102014220100B3 (en) * 2014-10-02 2016-01-28 Continental Automotive Gmbh Fuel injection valve and method for producing such
DE102014226811A1 (en) * 2014-12-22 2016-06-23 Robert Bosch Gmbh Injection valve for injecting a fluid, using an injection valve and method for producing an injection valve
JP6605371B2 (en) * 2016-03-14 2019-11-13 日立オートモティブシステムズ株式会社 Electromagnetic solenoid and fuel injection valve
JP2018159294A (en) * 2017-03-22 2018-10-11 株式会社ケーヒン Fuel injection valve
JP6788085B1 (en) * 2019-09-20 2020-11-18 株式会社ケーヒン Electromagnetic fuel injection valve

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1601395A1 (en) * 1968-01-30 1970-10-29 Bosch Gmbh Robert Electromagnetically operated injection valve
FR2466630B1 (en) * 1979-10-05 1985-06-28 Weber Spa ELECTROMAGNETICALLY ACTUATED INJECTOR FOR INTERNAL COMBUSTION ENGINES
DE3230844A1 (en) * 1982-08-19 1984-02-23 Robert Bosch Gmbh, 7000 Stuttgart ELECTROMAGNETICALLY ACTUABLE VALVE
IT1175561B (en) * 1984-07-12 1987-07-01 Spica Spa IMPROVED ELECTROINJECTOR FOR FOOD FUEL TO A C.I. ENGINE
US4875658A (en) * 1986-10-08 1989-10-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Electromagnetic valve
DE3716072A1 (en) * 1987-05-14 1987-12-17 Bosch Gmbh Robert Electromagnetically actuatable valve
DE3810826A1 (en) * 1988-03-30 1989-10-12 Pierburg Gmbh Solenoid injection valve for internal combustion engines
IT1250845B (en) * 1991-10-11 1995-04-21 Weber Srl ELECTROMAGNETICALLY OPERATED FUEL DOSING AND PULVERIZING VALVE FOR AN ENDOTHERMAL MOTOR FEEDING DEVICE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9516126A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095215A1 (en) * 2001-05-21 2002-11-28 Robert Bosch Gmbh Fuel injection valve
US8020789B2 (en) 2002-03-04 2011-09-20 Robert Bosch Gmbh Fuel injection valve
WO2004051072A1 (en) * 2002-12-04 2004-06-17 Robert Bosch Gmbh Fuel-injection valve
US8656591B2 (en) 2002-12-04 2014-02-25 Robert Bosch Gmbh Fuel injector

Also Published As

Publication number Publication date
EP0683862B1 (en) 1998-06-10
WO1995016126A1 (en) 1995-06-15
JP2005337266A (en) 2005-12-08
JP3742651B2 (en) 2006-02-08
CN1116871A (en) 1996-02-14
RU2131549C1 (en) 1999-06-10
JPH08506877A (en) 1996-07-23
CN1049951C (en) 2000-03-01
CZ197795A3 (en) 1996-05-15
CZ285156B6 (en) 1999-05-12
ES2118531T3 (en) 1998-09-16
BR9406079A (en) 1996-01-16
US5732888A (en) 1998-03-31
JP3864175B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
EP0683862B1 (en) Electromagnetic valve
EP0886727B1 (en) Electromagnetically controlled valve
EP0683861B1 (en) Electromagnetic valve
EP1042606B1 (en) Electromagnetically actuatable valve
EP0720691B1 (en) Valve needle for an electromagnetic valve and method of producing the same
DE68918498T2 (en) Electromagnetic fuel injector.
DE4137994C2 (en) Electromagnetically actuated injection valve with a nozzle holder and method for producing a nozzle holder of an injection valve
DE4109868A1 (en) ADJUSTING SOCKET FOR AN ELECTROMAGNETICALLY ACTUABLE VALVE AND METHOD FOR THE PRODUCTION THEREOF
DE4421935A1 (en) Electromagnetically operated valve esp. for IC engine fuel-injection valve - has one of facing end faces of armature or core elements having wedge section which is inclined to valve longitudinal axis
EP1919654A1 (en) Rigid housing production method
WO2007073964A1 (en) Electromagnetically operated valve
EP1001863A1 (en) Method for producing a valve seat body for a fuel injection valve, and corresponding fuel injection valve
WO2000040855A1 (en) Fuel injector
EP0937200B1 (en) Electromagnetically actuated valve
WO2002079637A1 (en) Fuel injection valve
EP0675283A1 (en) Injection valve
EP1570170A1 (en) Fuel-injection valve
EP1200729A1 (en) Method for adjusting the valve lift of an injection valve
DE3501973A1 (en) Fuel injection nozzle
DE3716073A1 (en) Electromagnetically actuatable valve
DE102012210956A1 (en) Method for producing a housing, in particular a valve housing
DE3716072A1 (en) Electromagnetically actuatable valve
DE102005037742A1 (en) Electromagnetically operated valve e.g. fuel injection valve, for internal combustion engine, has rotor with opening whose axis is aligned unequally ninety degrees to stop face, where generated surface of rotor is inclined to opening
WO2003027489A1 (en) Fuel injection valve
WO2004101986A1 (en) Fuel injection valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19951215

17Q First examination report despatched

Effective date: 19970425

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 59406220

Country of ref document: DE

Date of ref document: 19980716

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980811

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2118531

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20041123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20041125

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051125

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051125

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20051125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131122

Year of fee payment: 20

Ref country code: FR

Payment date: 20131119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131126

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140124

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59406220

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20141123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141123