[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0683248B1 - Process for the after-treatment of plates, foils or strips and its application as substrate for offset printing plates - Google Patents

Process for the after-treatment of plates, foils or strips and its application as substrate for offset printing plates Download PDF

Info

Publication number
EP0683248B1
EP0683248B1 EP95107331A EP95107331A EP0683248B1 EP 0683248 B1 EP0683248 B1 EP 0683248B1 EP 95107331 A EP95107331 A EP 95107331A EP 95107331 A EP95107331 A EP 95107331A EP 0683248 B1 EP0683248 B1 EP 0683248B1
Authority
EP
European Patent Office
Prior art keywords
post
silicate
process according
ions
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95107331A
Other languages
German (de)
French (fr)
Other versions
EP0683248A1 (en
Inventor
Wolfgang Dr. Dipl.-Chem. Wiedemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0683248A1 publication Critical patent/EP0683248A1/en
Application granted granted Critical
Publication of EP0683248B1 publication Critical patent/EP0683248B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/038Treatment with a chromium compound, a silicon compound, a phophorus compound or a compound of a metal of group IVB; Hydrophilic coatings obtained by hydrolysis of organometallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • B41N1/08Printing plates or foils; Materials therefor metallic for lithographic printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/034Chemical or electrical pretreatment characterised by the electrochemical treatment of the aluminum support, e.g. anodisation, electro-graining; Sealing of the anodised layer; Treatment of the anodic layer with inorganic compounds; Colouring of the anodic layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • B41N1/08Printing plates or foils; Materials therefor metallic for lithographic printing
    • B41N1/083Printing plates or foils; Materials therefor metallic for lithographic printing made of aluminium or aluminium alloys or having such surface layers

Definitions

  • the invention relates to a process for the aftertreatment of plate, film or tape material based on chemically, mechanically and / or electrochemically roughened and anodically oxidized aluminum or one of its alloys, the aluminum oxide layers of which are treated with an alkali metal silicate in aqueous solution, and one Carrier made of such a material, in which the aluminum oxide layer is coated with an alkali metal silicate layer, and the use of such a carrier as a carrier for offset printing plates.
  • Carrier materials for offset printing plates are either equipped directly by the consumer or by the manufacturer of precoated printing plates or equipped on one or both sides with a radiation or light-sensitive layer, a so-called reproduction layer, with the help of which an image to be printed is created for submission in a photomechanical way.
  • the support After the radiation-sensitive layer has been exposed and developed, the support carries the image-bearing areas which later lead to color printing and, at the same time, forms the hydrophilic background for the lithographic printing process at the non-image areas during later printing, the so-called non-image areas.
  • the parts of the radiation-sensitive layer which have become relatively more soluble after exposure must be easy to remove from the support without residue by development in order to produce the hydrophilic non-image areas.
  • the carrier exposed in the non-image areas must have a high affinity for water, i.e. be highly hydrophilic in order to absorb water quickly and permanently during the lithographic printing process and to be sufficiently repellent to the bold printing ink.
  • the adhesion of the radiation-sensitive layer before or the printing parts of the layer after the irradiation must be sufficient.
  • Aluminum which is roughened on the surface by known methods by dry, wet brushing, sandblasting, chemical and / or electrochemical treatment, is used in particular as the base material for such layer supports.
  • the roughened substrate is subjected to an anodization step to build up a thin oxide layer.
  • the carrier materials in particular anodically oxidized carrier materials based on aluminum, are often used to improve the Layer adhesion, to increase the hydrophilicity and / or to facilitate the developability of the radiation-sensitive layers prior to the application of a radiation-sensitive layer, undergo a further treatment step, as described for example in EP-B 0 105 170 and EP 0 154 201.
  • EP-B 0 105 170 discloses a process for the aftertreatment of aluminum oxide layers with an aqueous alkali silicate solution, in which after the treatment a) is carried out with an aqueous alkali silicate solution, a treatment b) is also carried out with a solution containing aqueous alkaline earth metal salts.
  • the alkali silicate solution is an aqueous solution containing Na 2 SiO 3 .5 H 2 O. It is then rinsed with distilled water, this intermediate cleaning can also be omitted, and then, or immediately after the silicatization, treatment is carried out in an aqueous solution of an alkaline earth metal nitrate, such as calcium, strontium or barium nitrate.
  • the intermediate rinses with distilled water show a certain influence on the alkali resistance, which is generally better for pores that have not been rinsed after the silicatization step than for rinsed pores.
  • EP-B 0 154 201 describes a process for the aftertreatment of aluminum oxide layers in a solution which contains an alkali metal silicate and alkaline earth metal cations.
  • Calcium or strontium salts are used as alkaline earth metal salts, in particular nitrates or hydroxides used.
  • the aqueous solution in the aftertreatment additionally contains at least one complexing agent for alkaline earth metal ions.
  • the materials are electrochemically roughened in an aqueous solution containing nitric acid.
  • the materials are further anodically oxidized in one or two stages in aqueous solutions containing H 2 SO 4 and / or H 3 PO 4 .
  • the aftertreatment is carried out electrochemically or by immersion treatment.
  • the object of the invention is therefore to improve a process for the aftertreatment of flat aluminum layer supports which have an aluminum oxide layer in such a way that the degradation of the oxide layer by the silicating can be avoided or at least kept very slight.
  • This object is achieved according to the invention by a process of the type described in the introduction that a) the aftertreatment is carried out in an aqueous solution of the ⁇ modification of sodium phyllosilicate Na 2 Si 2 O 5 and b) subsequently rinsed with water containing alkali metal or alkaline earth metal ions being, the Alkali or alkaline earth metal ions can be selected from the group Ca, Mg, Na, K, Sr.
  • the SiO 2 / Na 2 O molar ratio of the crystalline layered sodium silicate is preferably in the range from 1.9 to 3.5 to 1.
  • the solution in the after-treatment stage a) contains 0.1 to 10% by weight. % of ⁇ -Na 2 Si 2 O 5 .
  • the aftertreatment can be carried out as an immersion treatment or else electrochemically, the latter procedure bringing about a certain increase in the alkali resistance and / or improvement in the adsorption behavior of the material. It is assumed that a firmly adhering silicate top layer forms in the pores of the aluminum oxide layer, which protects the aluminum oxide from attacks, the surface topography previously generated, such as roughness and oxide pores, being changed practically or only insignificantly.
  • the post-treatment stage a) is carried out electrochemically and / or by an immersion treatment for a time of 10 to 120 seconds and at a temperature of 40 ° C. to 80 ° C.
  • the electrochemical aftertreatment is carried out in particular with direct or alternating current, trapezoidal, rectangular or triangular current or overlapping forms of these types of current.
  • the current density is generally 0.1 to 10 A / dm 2 and / or the voltage is 3 to 100 volts.
  • Post-treatment stage b) with ionic Water generally follows an immersion treatment in a 0.1 to 10% by weight salt solution, this salt solution containing, for example, individually or in combination NaF, NaHCO 3 , CaSO 4 , polyvinyl phosphoric acid and MgSO 4 .
  • suitable base materials for the layer supports are also alloys of aluminum which, for example, have a content of more than 98.5% by weight of Al and proportions of Si, Fe, Ti, Cu and Zn.
  • All process stages can be carried out discontinuously with plates or foils, but they are preferably carried out continuously with belts in belt systems.
  • FIG. 1 shows the structure of layered sodium silicate, which is a pure sodium silicate, ie it is composed exclusively of sodium, silicon and oxygen. It is the ⁇ phase of the crystalline disilicate Na 2 Si 2 O 5 . It is similar to the common water glass, but is anhydrous and crystalline.
  • the structure shown in FIG. 1 was determined by X-ray diffraction on single crystals. It shows the polymeric wavy layer structure of the silicate framework made of sodium ions, which are represented in the figure by large bright spheres, oxygen by large black spheres and silicon by small black spheres. The sodium ions are almost in one plane.
  • the crystalline layered sodium silicate which is a layered silica, has a SiO 2 / Na 2 O molar ratio of 1.9 to 3.5 to 1.
  • the structure of this compound is almost identical to that of the mineral natrosilite, in which it is a ⁇ modification of Na 2 Si 2 O 5 .
  • Very pure sand and soda or sodium hydroxide solution are used as the base material in the production of layered sodium silicate, from which a water glass solution is produced. This solution is then dewatered and crystallized at high temperature into the delta modification of the disilicate.
  • the product obtained can be ground and, if necessary, compacted into granules. In aqueous solution, water penetrates between two layers and widens the distance.
  • the sodium ions can then be exchanged with other ions.
  • the calcium and magnesium ions of the rinse water for example tap water, are bound by the crystalline layered silicate in an ion exchange process, ie the sodium ions of the layered silicate are quickly replaced, thereby stabilizing the silicate structure.
  • This exchange process takes place faster than the dissolution of the layered sodium silicate - with the effect that the particles are much smaller than when the amorphous silicate.
  • the layered sodium silicate provides the desired alkalinity and stabilizes the pH. Hoechst AG offers the product as a builder or builder for detergents.
  • layer silicates SKS systems from Hoechst AG, corresponding to S chicht k iesel s äure
  • SKS-6 the most important with regard to builder properties in detergents (binding capacity of Mg, Ca ions); it is also advantageously water-soluble for silicating and processing.
  • trioctahedral layered silicates such as SKS 20 (mineralogical name “Saponit”) and SKS 21 (“Hectorite”), have water solubility and a good cation exchange capacity of the intermediate Na ions.
  • anhydrous layered Na silicate with Kanemite structure (SKS-9) and the synthetic Kanemite (SKS 10) have a very good Ca binding capacity.
  • Radiation-sensitive coatings are applied to the aftertreated layer supports, and the offset printing plates thus obtained are converted into the desired printing form in a known manner by imagewise exposure and washing out of the non-image areas with a developer, preferably an aqueous developer solution.
  • a developer preferably an aqueous developer solution.
  • offset printing plates stand out, their layer support materials using the two-stage process were treated compared to those plates in which the same layer support material was aftertreated with aqueous solutions containing silicates, such as water glass or ⁇ - or ⁇ -Na 2 Si 2 O 5 , by improved alkali resistance, a lower tendency to form color and great resistance to a rubber coating of the offset printing plate.
  • a defined area of 7.5 cm x 7.5 cm at room temperature is immersed in a 0.1 N NaOH solution with an electrolyte concentration of 4 g NaOH per liter of fully deionized water and the alkali resistance is determined electrochemically .
  • the time course of the potential of an Al / Al 3+ half cell against a reference electrode is measured without current.
  • the potential curve provides information about the resistance that the aluminum oxide layer opposes to its dissolution.
  • the time in seconds which is determined in the voltage-time diagram after passing through a minimum until a maximum occurs, serves as a measure of the alkali resistance.
  • An average value is formed from the measured values of two samples.
  • the alkali resistance with an oxide weight of 3.21 g / m 2 is 112 ⁇ 10 seconds, this value being an average of 5 double measurements.
  • FIG. 2 shows the silicatization or the covering with silicate on an aluminum surface of a printing plate, in which the aftertreatment with layered sodium silicate of different concentrations in aqueous solution takes place at an immersion bath temperature of 60 ° C. for different lengths of time.
  • the surface silicatization is investigated according to the ESCA method, which is "Electron Spectroscopy for Chemical Analyzes", with which the atomic layers on a surface up to approx. 5 nm thick, due to their binding energy position and the intensity of the peak values, the surface atoms, if applicable theirs Binding state, can be determined. Furthermore, the intensity ratio of the different peak values compared to the peak value of aluminum allows an assessment of the atomic occupancy on the aluminum oxide surface.
  • FIG. 2 shows the Si / Al and the Na / Al ratio or the coating with Si and Na on the aluminum oxide surface.
  • the support with the highest Si / Al ratio is rinsed with fully deionized water and dried and then gummed with an aqueous solution of dextrin, H 3 PO 4 , glycerin, which has a pH of 5.0, and after 16 hours Washed off with fully deionized water.
  • the Si / Al ratio does not change after this procedure and is 0.56, and the Na / Al ratio goes to 0.07 back.
  • the silication with layered sodium silicate is not attacked by the rubber coating, ie the silicate coating is not removed. Phosphorus from the rubber coating can only be detected in the ESCA spectrum, which is proof that the rubber coating does not attack the silicate coating.
  • the silicatisation of the aluminum oxide surface increases with increasing concentration of the layered sodium silicate in the aftertreatment solution, with increasing temperature of the immersion bath (see FIG. 5) and with a longer immersion time. This is expressed in particular in an increase in the Si / Al ratio.
  • the concentration of the layered sodium silicate was increased from 1 g / l to 10 g / l of fully deionized water, furthermore demineralized water, the immersion temperature of the aftertreatment solution was raised from 60 to 80 ° C. (see FIG. 5) and the immersion time was 10 s increased to 120 s.
  • the ESCA measurements show that the applied layered sodium silicate retains its ion exchange capacity, ie when sodium is rinsed with tap or city water, the sodium ions are exchanged for calcium ions.
  • the sodium ions are exchanged for calcium ions.
  • the magnesium content after such a rinse is poor due to its peak value
  • the exchange of sodium for strontium could also be determined using a strontium solution (see also Table 2).
  • Figure 3 shows the oxide degradation in the aluminum oxide layer of a layer or printing plate support.
  • the substrate is roughened electrochemically in hydrochloric acid and anodized in sulfuric acid. Its total thickness is 0.3 mm, the oxide weight is 3.21 g / m 2 , the thickness of the oxide layer is about 1 ⁇ m.
  • the aftertreatment is carried out in accordance with the process according to the invention in an aqueous solution with a 1% concentration of the layered sodium silicate, deionized water being used. The solution had a pH of 11.4.
  • the printing plate carrier was immersed in the immersion bath at a temperature of 60 ° C. The diving times were 10 to 120 s. As can be seen from Figure 3, the aluminum oxide is attacked only slightly.
  • the surfaces of the substrate which were treated for 10 s, 30 s, and 120 s in the 1% sodium layer silicate solution at 60 ° C, show little change in SEM images compared to the starting material, only that Porosity of the surface, ie the refinement of the pore structure increases slightly.
  • the surfaces of substrates were also investigated, in which sodium metasilicates Na 2 SiO 3 x 5 H 2 O were used for the silicatization, under otherwise identical immersion conditions. These investigations were carried out for the diving temperatures of 25 ° C and 60 ° C. A very strong oxide degradation is found, which is still at a low diving temperature of 25 ° C is significantly higher than when silicating with layered sodium silicate.
  • the 1% sodium metasilicate solution (10 g / l Na 2 SiO 3 x 5 H 2 O, whereby the water of crystallization is not taken into account) has a pH of 12.2.
  • the oxide degradation is determined gravimetrically in a chrome / phosphoric acid bath at a higher temperature of approx. 70 ° C by differential weighing; the starting oxide weight of the support is 3.21 g / m 2 at an immersion temperature of 60 ° C.
  • the basis weight of aluminum oxide layers is determined by chemical detachment in accordance with DIN standard 30944 (March 1969 edition) in conjunction with an internal operating regulation of the applicant from 1973.
  • rinsing with demineralized water at most provides a slightly increased alkali resistance, which is only slightly dependent on the immersion temperature.
  • the aftertreatment with city water results in an alkali resistance of the oxidized aluminum surface, which is significantly higher than with the aftertreatment with demineralized water. This resistance to alkali rises sharply with increasing immersion bath temperature of the layered sodium silicate solution.
  • Alkali resistance values were determined for the following rinse solutions: Rinse solutions: Alkali resistance: 0.4% NaHCO 3 in VE-H 2 O 210/204 s to the maximum 1.0% NaHCO 3 in VE-H 2 O 350 " 0.4% Na 2 CO 3 in VE-H 2 O 258 " 0.4% Na 2 SiO 3 in VE-H 2 O 413 " 0.4% Na 3 PO 4 in VE-H 2 O 278 " , PO 4 3-, SiO 3 2-, CO 3 2- anions can be significantly enhanced by rinsing with the appropriate salt solutions - in addition to the alkaline earth metal cations and anions decisive influence on the size of the alkali resistance, for example, by HCO 3 have.
  • the table also shows that in the case of a rinsing solution in NaHCO 3 , the alkali resistance also increases with increasing concentration.
  • Table 2 shows alkali resistance values for further rinsing solutions, together with the X / Al ratios of various alkaline earth metals X in the rinsing solutions to aluminum Al, measured by the ESCA method.
  • the samples were prepared as standard, that is, siliconized with 1% sodium phyllosilicate solution in demineralized water, at an immersion temperature of 60 ° C and an immersion time of 120 s. It was rinsed with demineralized water and with solutions in which 0.4% strength CaCl 2 , MgCl 2 , SrCl 2 and dextrin were dissolved. Further Solutions were CaSO 4 , Na 2 SO 4 , MgSO 4 , NaF, polyvinyl phosphoric acid NaHCO 3 . After drying, the alkali resistance value and the X / Al ratios were determined by ESCA measurements in order to determine the surface coverage by Si, Na, Ca, Sr and the like.
  • X / Al X Ca, Mg, Sr, F, P Si / Al Well / Al X / Al default VE water 80-120 0.46 0.20 - " 0.4% igCaCl 2 / VE 145 0.47 0.02 0.07 / approx " "MgCl 2 / VE 118 0.48 0.04 ?
  • FIGS. 5 and 6 The results on the temperature dependence of the silication are shown in FIGS. 5 and 6: According to FIG. 5, the Si / Al ratio is independent of the rinsing and increases sharply with increasing temperature and with increasing immersion time.
  • the layered sodium silicate on the Al / AlOOH surface largely retains its ion exchange function; the alkaline earth ions replace the Na ions in the silicated Al / AlOOH surface.
  • layered substrates of type P51 in the 32 x 27 cm format which were coated with sodium silicate and rinsed with city water, were produced as standard and hand-coated with a positive printing plate formulation (P61 solution) and a negative printing plate formulation (N50 solution).
  • P61 solution positive printing plate formulation
  • N50 solution negative printing plate formulation
  • an untreated P51 substrate which was also not treated with polyvinylphosphonic acid solution, was coated with the same printing plate formulations and then dried.
  • the positive layer supports P51 were developed for 60 s with an EP26 developer and then consumed.
  • the negative layer supports N50 were treated by hand with 30 ml of DN-5 developer for 60 s without exposure and then brewed.
  • the essential components of the EP-26 developer are Na silicate, hydroxide, tetraborate, Sr levolinate, polyglycol and water.
  • the DN-5 developer contains benzyl alcohol, mono-, di- and triethanolamine, nitrogen and has a pH of 10.9.
  • the formation of blue haze is more pronounced in the case of the positive layer supports than the formation of green haze in the case of the negative layer supports, the fog formation being the least noticeable on the layer supports in which the silicate coating has been rinsed with city water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Laminated Bodies (AREA)
  • Printing Methods (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Discharge By Other Means (AREA)

Abstract

Plates which have been chemically, mechanically or electrochemically roughened are anodised and then treated in an aqueous solution of a pure and crystalline alkali metal silicate followed by rinsing in an ion-containing water.

Description

Die Erfindung betrifft ein Verfahren zur Nachbehandlung von platten-, folien- oder bandförmigem Material auf der Basis von chemisch, mechanisch und/oder elektrochemisch aufgerauhtem und anodisch oxidiertem Aluminium oder einer seiner Legierungen, deren Aluminiumoxidschichten mit einem Alkalimetallsilikat in wäßriger Lösung behandelt werden, sowie einen Träger aus derartigem Material, bei dem die Aluminiumoxidschicht mit einer Alkalimetallsilikatschicht beschichtet ist, und die Verwendung eines derartigen Trägers als Träger für Offsetdruckplatten.The invention relates to a process for the aftertreatment of plate, film or tape material based on chemically, mechanically and / or electrochemically roughened and anodically oxidized aluminum or one of its alloys, the aluminum oxide layers of which are treated with an alkali metal silicate in aqueous solution, and one Carrier made of such a material, in which the aluminum oxide layer is coated with an alkali metal silicate layer, and the use of such a carrier as a carrier for offset printing plates.

Trägermaterialien für Offsetdruckplatten werden entweder vom Verbraucher direkt oder vom Hersteller vorbeschichteter Druckplatten ein- oder beidseitig mit einer strahlungs- bzw. lichtempfindlichen Schicht, einer sogenannten Reproduktionsschicht, ausgerüstet, mit deren Hilfe ein zu druckendes Bild zur Vorlage auf fotomechanischem Wege erzeugt wird. Nach dem Belichten und Entwickeln der strahlungsempfindlichen Schicht trägt der Schichtträger die beim späteren Drucken farbführenden Bildstellen und bildet zugleich an den beim späteren Drucken bildfreien Stellen, den sogenannten Nichtbildstellen, den hydrophilen Bilduntergrund für den lithographischen Druckvorgang.Carrier materials for offset printing plates are either equipped directly by the consumer or by the manufacturer of precoated printing plates or equipped on one or both sides with a radiation or light-sensitive layer, a so-called reproduction layer, with the help of which an image to be printed is created for submission in a photomechanical way. After the radiation-sensitive layer has been exposed and developed, the support carries the image-bearing areas which later lead to color printing and, at the same time, forms the hydrophilic background for the lithographic printing process at the non-image areas during later printing, the so-called non-image areas.

An einen Schichtträger für Reproduktionsschichten zum Herstellen von Offsetdruckplatten sind deshalb folgende Anforderungen zu stellen:The following requirements must therefore be placed on a layer support for reproduction layers for the production of offset printing plates:

Die nach der Belichtung relativ löslicher gewordenen Teile der strahlungsempfindlichen Schicht müssen durch eine Entwicklung leicht, zur Erzeugung der hydrophilen Nichtbildstellen, rückstandsfrei vom Träger zu entfernen sein.The parts of the radiation-sensitive layer which have become relatively more soluble after exposure must be easy to remove from the support without residue by development in order to produce the hydrophilic non-image areas.

Der in den Nichtbildstellen freigelegte Träger muß eine große Affinität zu Wasser besitzen, d.h. stark hydrophil sein, um beim lithographischen Druckvorgang schnell und dauerhaft Wasser aufzunehmen und gegenüber der fetten Druckfarbe ausreichend abstoßend zu wirken.The carrier exposed in the non-image areas must have a high affinity for water, i.e. be highly hydrophilic in order to absorb water quickly and permanently during the lithographic printing process and to be sufficiently repellent to the bold printing ink.

Die Haftung der strahlungsempfindlichen Schicht vor bzw. der druckenden Teile der Schicht nach der Bestrahlung muß in einem ausreichenden Maß gegeben sein.The adhesion of the radiation-sensitive layer before or the printing parts of the layer after the irradiation must be sufficient.

Als Basismaterial für derartige Schichtträger wird insbesondere Aluminium eingesetzt, das nach bekannten Methoden durch Trocken-, Naßbürstung, Sandstrahlen, chemische und/oder elektrochemische Behandlung oberflächlich aufgerauht wird. Zur Steigerung der Abriebfestigkeit wird das aufgerauhte Substrat noch einem Anodisierungsschritt zum Aufbau einer dünnen Oxidschicht unterworfen.Aluminum, which is roughened on the surface by known methods by dry, wet brushing, sandblasting, chemical and / or electrochemical treatment, is used in particular as the base material for such layer supports. To increase the abrasion resistance, the roughened substrate is subjected to an anodization step to build up a thin oxide layer.

In der Praxis werden die Trägermaterialien, insbesondere anodisch oxidierte Trägermaterialien auf der Basis von Aluminium, oftmals zur Verbesserung der Schichthaftung, zur Steigerung der Hydrophilie und/oder zur Erleichterung der Entwickelbarkeit der strahlungsempfindlichen Schichten vor dem Aufbringen einer strahlungsempfindlichen Schicht einem weiteren Behandlungsschritt unterzogen, wie er beispielsweise in den EP-B 0 105 170 und EP 0 154 201 beschrieben ist.In practice, the carrier materials, in particular anodically oxidized carrier materials based on aluminum, are often used to improve the Layer adhesion, to increase the hydrophilicity and / or to facilitate the developability of the radiation-sensitive layers prior to the application of a radiation-sensitive layer, undergo a further treatment step, as described for example in EP-B 0 105 170 and EP 0 154 201.

Aus der EP-B 0 105 170 ist ein Verfahren zur Nachbehandlung von Aluminiumoxidschichten mit einer wäßrigen Alkalisilikatlösung bekannt, bei dem nach Durchführung der Behandlung a) mit einer wäßrigen Alkalisilikatlösung zusätzlich eine Behandlung b) mit einer wäßrigen Erdalkalimetallsalze enthaltenden Lösung durchgeführt wird. Bei der Alkalisilikatlösung handelt es sich um eine wäßrige Na2SiO3 · 5 H2O enthaltende Lösung. Danach wird mit destilliertem Wasser abgespült, wobei diese Zwischenreinigung auch weggelassen werden kann, und anschließend oder direkt nach der Silikatisierung erfolgt eine Behandlung in einer wäßrigen Lösung eines Erdalkalimetallnitrats, wie beispielsweise eines Calcium-, Strontium- oder Bariumnitrats. Die Zwischenspülungen mit destilliertem Wasser zeigen eine gewisse Beeinflussung in der Alkaliresistenz, die im allgemeinen bei nach der Silikatisierungsstufe nicht-zwischengespülten Poren besser als bei zwischengespülten Poren ist.EP-B 0 105 170 discloses a process for the aftertreatment of aluminum oxide layers with an aqueous alkali silicate solution, in which after the treatment a) is carried out with an aqueous alkali silicate solution, a treatment b) is also carried out with a solution containing aqueous alkaline earth metal salts. The alkali silicate solution is an aqueous solution containing Na 2 SiO 3 .5 H 2 O. It is then rinsed with distilled water, this intermediate cleaning can also be omitted, and then, or immediately after the silicatization, treatment is carried out in an aqueous solution of an alkaline earth metal nitrate, such as calcium, strontium or barium nitrate. The intermediate rinses with distilled water show a certain influence on the alkali resistance, which is generally better for pores that have not been rinsed after the silicatization step than for rinsed pores.

In der EP-B 0 154 201 ist ein Verfahren zur Nachbehandlung von Aluminiumoxidschichten in einer Lösung beschrieben, die ein Alkalimetallsilikat und Erdalkalimetallkationen enthält. Als Erdalkalimetallsalze werden Calcium- oder Strontiumsalze, insbesondere Nitrate oder Hydroxide eingesetzt. Die wäßrige Lösung bei der Nachbehandlung enthält zusätzlich noch mindestens einen Komplexbildner für Erdalkalimetallionen. Die Materialien werden elektrochemisch in einer Salpetersäure enthaltenden wäßrigen Lösung aufgerauht. Die Materialien werden ferner in wäßrigen H2SO4 und/oder H3PO4 enthaltenden Lösungen ein- oder zweistufig anodisch oxidiert. Die Nachbehandlung erfolgt elektrochemisch oder durch eine Tauchbehandlung.EP-B 0 154 201 describes a process for the aftertreatment of aluminum oxide layers in a solution which contains an alkali metal silicate and alkaline earth metal cations. Calcium or strontium salts are used as alkaline earth metal salts, in particular nitrates or hydroxides used. The aqueous solution in the aftertreatment additionally contains at least one complexing agent for alkaline earth metal ions. The materials are electrochemically roughened in an aqueous solution containing nitric acid. The materials are further anodically oxidized in one or two stages in aqueous solutions containing H 2 SO 4 and / or H 3 PO 4 . The aftertreatment is carried out electrochemically or by immersion treatment.

Bei den Schichtträgern, die nach den bekannten Verfahren behandelt wurden, zeigt sich, daß die zur Silikatisierung häufig eingesetzten Natriummetasilikate, wie beispielsweise Na2SiO3 . 5 H2O, bei einem höheren pH-Wert von 12,2, der Nachbehandlungslösung sehr schnell das Aluminiumoxid in unerwünschter Weise abbauen.In the case of the layer supports which were treated by the known processes, it can be seen that the sodium metasilicates frequently used for silicating, such as Na 2 SiO 3 . 5 H 2 O, at a higher pH of 12.2, of the aftertreatment solution very quickly degrade the aluminum oxide in an undesirable manner.

Aufgabe der Erfindung ist es daher, ein Verfahren zur Nachbehandlung von flächigen Aluminiumschichtträgern, die eine Aluminiumoxidschicht aufweisen, so zu verbessern, daß der Abbau der Oxidschicht durch die Silikatisierung vermieden oder zumindest sehr geringfügig gehalten werden kann.The object of the invention is therefore to improve a process for the aftertreatment of flat aluminum layer supports which have an aluminum oxide layer in such a way that the degradation of the oxide layer by the silicating can be avoided or at least kept very slight.

Diese Aufgabe wird erfindungsgemäß in der Weise durch ein Verfahren der eingangs beschriebenen Art gelöst, daß a) die Nachbehandlung in einer wäßrigen Lösung der ϑ-Modifikation von Natriumschichtsilikat Na2Si2O5 erfolgt und b) anschließend mit Alkali-oder Erdalkalimetallionen enthaltendem Wasser nachgespült wird, wobei die Alkali- oder Erdalkalimetallionen aus der Gruppe Ca, Mg, Na, K, Sr ausgewählt werden.This object is achieved according to the invention by a process of the type described in the introduction that a) the aftertreatment is carried out in an aqueous solution of the ϑ modification of sodium phyllosilicate Na 2 Si 2 O 5 and b) subsequently rinsed with water containing alkali metal or alkaline earth metal ions being, the Alkali or alkaline earth metal ions can be selected from the group Ca, Mg, Na, K, Sr.

In Ausgestaltung des Verfahrens liegt bevorzugt das SiO2/Na2O-Molverhältnis des kristallinen Natriumschichtsilikats im Bereich von 1,9 bis 3,5 zu 1. In Weitergestaltung der Erfindung enthält die Lösung in der Nachbehandlungsstufe a) 0,1 bis 10 Gew.% an ϑ-Na2Si2O5.In an embodiment of the process, the SiO 2 / Na 2 O molar ratio of the crystalline layered sodium silicate is preferably in the range from 1.9 to 3.5 to 1. In a further development of the invention, the solution in the after-treatment stage a) contains 0.1 to 10% by weight. % of ϑ-Na 2 Si 2 O 5 .

Die Nachbehandlung kann als Tauchbehandlung oder auch elektrochemisch durchgeführt werden, wobei die letztere Verfahrensweise eine gewisse Steigerung in der Alkaliresistenz und/oder Verbesserung des Adsorptionsverhaltens des Materials bringt. Es wird angenommen, daß sich in den Poren der Aluminiumoxidschicht eine festhaftende Silikatdeckschicht bildet, die das Aluminiumoxid vor Angriffen schützt, wobei die vorher erzeugte Oberflächentopographie, wie Rauhigkeit und Oxidporen, praktisch nicht oder nur unwesentlich verändert werden.The aftertreatment can be carried out as an immersion treatment or else electrochemically, the latter procedure bringing about a certain increase in the alkali resistance and / or improvement in the adsorption behavior of the material. It is assumed that a firmly adhering silicate top layer forms in the pores of the aluminum oxide layer, which protects the aluminum oxide from attacks, the surface topography previously generated, such as roughness and oxide pores, being changed practically or only insignificantly.

Die Nachbehandlungsstufe a) elektrochemisch und/oder durch eine Tauchbehandlung wird für eine Zeit von 10 bis 120 Sekunden und bei einer Temperatur von 40 °C bis 80 °C durchgeführt. Die elektrochemische Nachbehandlung wird insbesondere mit Gleich- oder Wechselstrom, Trapez-, Rechtecks- oder Dreieckstrom oder Überlagerungsformen dieser Stromarten vorgenommen. Die Stromdichte liegt dabei im allgemeinen bei 0,1 bis 10 A/dm2 und/oder die Spannung bei 3 bis 100 Volt. Der Nachbehandlungsstufe b) mit ionenhaltigem Wasser folgt im allgemeinen eine Tauchbehandlung in einer 0,1 bis 10 Gew.% Salzlösung, wobei diese Salzlösung beispielsweise einzeln oder in Kombination NaF, NaHCO3, CaSO4, Polyvinylphosphorsäure und MgSO4 enthält.The post-treatment stage a) is carried out electrochemically and / or by an immersion treatment for a time of 10 to 120 seconds and at a temperature of 40 ° C. to 80 ° C. The electrochemical aftertreatment is carried out in particular with direct or alternating current, trapezoidal, rectangular or triangular current or overlapping forms of these types of current. The current density is generally 0.1 to 10 A / dm 2 and / or the voltage is 3 to 100 volts. Post-treatment stage b) with ionic Water generally follows an immersion treatment in a 0.1 to 10% by weight salt solution, this salt solution containing, for example, individually or in combination NaF, NaHCO 3 , CaSO 4 , polyvinyl phosphoric acid and MgSO 4 .

Geeignete Grundmaterialien für die Schichtträger sind, neben Aluminium, auch Legierungen von Aluminium, die beispielweise einen Gehalt von mehr als 98,5 Gew.% Al und Anteile an Si, Fe, Ti, Cu und Zn aufweisen.In addition to aluminum, suitable base materials for the layer supports are also alloys of aluminum which, for example, have a content of more than 98.5% by weight of Al and proportions of Si, Fe, Ti, Cu and Zn.

Alle Verfahrensstufen können diskontinuierlich mit Platten oder Folien durchgeführt werden, sie werden aber bevorzugt kontinuierlich mit Bändern in Bandanlagen durchgeführt.All process stages can be carried out discontinuously with plates or foils, but they are preferably carried out continuously with belts in belt systems.

Bezüglich der Verfahrensparameter bei kontinuierlicher Verfahrensführung in der elektrochemischen Aufrauhungsstufe, der Vorreinigung und der anodischen Oxidation des Schichtträgermaterials, insbesondere von Aluminium, wird auf die Ausführungen in der EP-B 0 154 201, Spalte 5, Zeilen 5 bis 39, 47, bis Spalte 6, Zeile 36 einschließlich und in der EP-B 0 105 170, Seite 4, Zeilen 11 bis 60 verwiesen. Diese Ausführungen gelten ebenso für die hier beschriebenen Schichtträger, bei denen die gleichen Verfahrensparameter beim elektrochemischen Aufrauhen, der Vorreinigung und der anodischen Oxidation zur Anwendung gelangen. Der Offenbarungsgehalt dieser beiden europäischen Patentschriften im Hinblick auf die Verfahrensparameter bei der kontinuierlichen Verfahrensführung gilt auch im vollen Umfang für die Schichtträger-Materialien der vorliegenden Erfindung.Regarding the process parameters for continuous process control in the electrochemical roughening stage, the pre-cleaning and the anodic oxidation of the layer support material, in particular of aluminum, reference is made to the statements in EP-B 0 154 201, column 5, lines 5 to 39, 47 to column 6 , Line 36 including and in EP-B 0 105 170, page 4, lines 11 to 60. These statements also apply to the layer supports described here, in which the same process parameters are used for electrochemical roughening, pre-cleaning and anodic oxidation. The disclosure content of these two European patents with regard to the process parameters in the continuous process control also applies in full to the layer support materials of the present invention.

Die Erfindung wird im folgenden anhand von Zeichnungen näher erläutert. Es zeigen:

Fig. 1
die Struktur des Natriumschichtsilikats, das für die Silikatisierung in der Nachbehandlungsstufe eingesetzt wird,
Fig. 2
das Si/Al-Verhältnis in der Oberfläche eines Schichtträgers in Abhängigkeit von der Konzentration des Natriumschichtsilikats bei vorgegebener Temperatur des Tauchbades und vorgegebener Tauchzeit,
Fig. 3
den Abbau des Oxidgewichts in der Oberfläche eines Schichtträgers in Abhängigkeit von der Eintauchzeit und der Temperatur des Eintauchbades,
Fig. 4
die Alkaliresistenz nachbehandelter Schichtträger in Abhängigkeit von der Eintauchzeit, und
Fig.en 5 und 6
das Si/Al-Verhältnis in der Oberfläche nachbehandelter Schichtträger und den Naund Ca-Gehalt der Oberfläche nach der Spülung mit voll entionisiertem Wasser und mit Stadtwasser.
The invention is explained in more detail below with reference to drawings. Show it:
Fig. 1
the structure of the layered sodium silicate used for the silicatization in the aftertreatment stage,
Fig. 2
the Si / Al ratio in the surface of a layer support as a function of the concentration of the layered sodium silicate at a given temperature of the immersion bath and a given immersion time,
Fig. 3
the reduction of the oxide weight in the surface of a substrate depending on the immersion time and the temperature of the immersion bath,
Fig. 4
the alkali resistance of post-treated substrates depending on the immersion time, and
Figures 5 and 6
the Si / Al ratio in the surface of the aftertreated layer support and the Na and Ca content of the surface after rinsing with fully deionized water and with city water.

Figur 1 zeigt die Struktur von Natriumschichtsilikat, bei dem es sich um ein reines Natriumsilikat handelt, d.h. es ist ausschließlich aus Natrium, Silizium und Sauerstoff aufgebaut. Es handelt sich dabei um die ϑPhase des kristallinen Di-silikats Na2Si2O5. Es ähnelt dem weitverbreiteten Wasserglas, ist aber wasserfrei und kristallin. Die in Figur 1 gezeigte Struktur wurde durch Röntgenbeugung an Einkristallen bestimmt. Sie zeigt den polymeren wellenförmigen Schichtaufbau des Silikatgerüstes aus Natriumionen, die in der Abbildung durch große helle Kugeln, Sauerstoff durch große schwarze Kugeln und Silizium durch kleine schwarze Kugeln dargestellt sind. Die Natriumionen liegen nahezu in einer Ebene. Das kristalline Natriumschichtsilikat, bei dem es sich um eine Schichtkieselsäure handelt, besitzt ein SiO2/Na2O-Molverhältnis von 1,9 bis 3,5 zu 1. Die Struktur dieser Verbindung ist nahezu identisch mit der des Minerals Natrosilit, bei dem es sich um eine ß-Modifikation von Na2Si2O5 handelt. Als Basismaterial werden bei der Herstellung von Natriumschichtsilikat sehr reiner Sand und Soda oder Natronlauge verwendet, aus denen eine Wasserglaslösung hergestellt wird. Diese Lösung wird anschließend entwässert und bei hoher Temperatur in die Delta-Modifikation des Di-silikats kristallisiert. Das erhaltene Produkt kann gemahlen und bei Bedarf zu Granulat kompaktiert werden. In wäßriger Lösung dringt Wasser zwischen zwei Schichten und weitet den Abstand auf. Die Natriumionen sind dann einem Austausch mit anderen Ionen zugänglich. So werden die Calcium- und Magnesiumionen des Spülwassers, beispielsweise Leitungswasser, in einem Ionenaustauschprozeß von dem kristallinen Schichtsilikat gebunden, d.h. die Natriumionen des Schichtsilikats werden schnell ersetzt, wodurch das Silikatgerüst stabilisiert wird. Dieser Austauschprozeß erfolgt schneller als die Auflösung des Natriumschichtsilikats - mit dem Effekt, daß die Teilchen viel kleiner als bei Niederschlägen des amorphen Silikats sind. Das Natriumschichtsilikat liefert die gewünschte Alkalität und stabilisert den pH-Wert. Das Produkt wird von der Hoechst AG als Builder oder Gerüststoff für Waschmittel angeboten.FIG. 1 shows the structure of layered sodium silicate, which is a pure sodium silicate, ie it is composed exclusively of sodium, silicon and oxygen. It is the ϑ phase of the crystalline disilicate Na 2 Si 2 O 5 . It is similar to the common water glass, but is anhydrous and crystalline. The structure shown in FIG. 1 was determined by X-ray diffraction on single crystals. It shows the polymeric wavy layer structure of the silicate framework made of sodium ions, which are represented in the figure by large bright spheres, oxygen by large black spheres and silicon by small black spheres. The sodium ions are almost in one plane. The crystalline layered sodium silicate, which is a layered silica, has a SiO 2 / Na 2 O molar ratio of 1.9 to 3.5 to 1. The structure of this compound is almost identical to that of the mineral natrosilite, in which it is a β modification of Na 2 Si 2 O 5 . Very pure sand and soda or sodium hydroxide solution are used as the base material in the production of layered sodium silicate, from which a water glass solution is produced. This solution is then dewatered and crystallized at high temperature into the delta modification of the disilicate. The product obtained can be ground and, if necessary, compacted into granules. In aqueous solution, water penetrates between two layers and widens the distance. The sodium ions can then be exchanged with other ions. The calcium and magnesium ions of the rinse water, for example tap water, are bound by the crystalline layered silicate in an ion exchange process, ie the sodium ions of the layered silicate are quickly replaced, thereby stabilizing the silicate structure. This exchange process takes place faster than the dissolution of the layered sodium silicate - with the effect that the particles are much smaller than when the amorphous silicate. The layered sodium silicate provides the desired alkalinity and stabilizes the pH. Hoechst AG offers the product as a builder or builder for detergents.

Unter der Bezeichnung Schichtsilikate (SKS-Systeme von Hoechst AG, entsprechend Schichtkieselsäure) sind eine Reihe verschiedener Verbindungen des sehr komplexten Na-Schichtsilikatsystems (Typen SKS 1-21) bekannt, wobei sich der erfindungsgemäße Typ SKS-6 als der wichtigste hinsichtlich Buildereigenschaften in Waschmitteln (Bindungsvermögen von Mg, Ca-Ionen) erwiesen hat; außerdem ist er für die Silikatisierung sowie Verarbeitung vorteilhafterweise wasserlöslich.Under the name of layer silicates (SKS systems from Hoechst AG, corresponding to S chicht k iesel s äure) are known a variety of compounds of the very komplexten Na-layer silicate system (types SKS 1-21), with the type according to the invention SKS-6 as the most important with regard to builder properties in detergents (binding capacity of Mg, Ca ions); it is also advantageously water-soluble for silicating and processing.

So besitzen auch trioktaedrisch Schichtsilikate, wie SKS 20 (mineralogische Bezeichnung "Saponit") und SKS 21 ("Hectorit"), Wasserlöslichkeit und ein gutes Kationen-Austauschvermögen der zwischengelagerten Na-Ionen.Thus, trioctahedral layered silicates, such as SKS 20 (mineralogical name "Saponit") and SKS 21 ("Hectorite"), have water solubility and a good cation exchange capacity of the intermediate Na ions.

Ferner besitzen das wasserfreie Na-Schichtsilikat mit Kanemit-Struktur (SKS-9) sowie das synthetische Kanemit (SKS 10) ein sehr gutes Ca-Bindevermögen.Furthermore, the anhydrous layered Na silicate with Kanemite structure (SKS-9) and the synthetic Kanemite (SKS 10) have a very good Ca binding capacity.

Auf die nachbehandelten Schichtträger werden strahlungsempfindliche Beschichtungen aufgebracht, und die so erhaltenen Offsetdruckplatten werden in bekannter Weise durch bildmäßiges Belichten und Auswaschen der Nichtbildstellen mit einem Entwickler, vorzugsweise einer wäßrigen Entwicklerlösung, in die gewünschte Druckform überführt. Überraschenderweise zeichnen sich Offsetdruckplatten, deren Schichtträgermaterialien nach dem zweistufigen Verfahren nachbehandelt wurden, gegenüber solchen Platten, bei denen das gleiche Schichtträgermaterial mit wäßrigen Lösungen nachbehandelt wurde, die Silikate, wie Wasserglas oder α- bzw. β-Na2Si2O5, enthalten, durch eine verbesserte Alkaliresistenz, eine geringere Neigung zur Farbschleierbildung und große Widerstandsfähigkeit gegenüber einer Gummierung der Offsetdruckplatte aus.Radiation-sensitive coatings are applied to the aftertreated layer supports, and the offset printing plates thus obtained are converted into the desired printing form in a known manner by imagewise exposure and washing out of the non-image areas with a developer, preferably an aqueous developer solution. Surprisingly, offset printing plates stand out, their layer support materials using the two-stage process were treated compared to those plates in which the same layer support material was aftertreated with aqueous solutions containing silicates, such as water glass or α- or β-Na 2 Si 2 O 5 , by improved alkali resistance, a lower tendency to form color and great resistance to a rubber coating of the offset printing plate.

In der Beschreibung und den nachfolgenden Beispielen bedeuten die %-Angaben stets Gewichts%, wenn nichts anderes angeführt wird. In den Beispielen wird folgende Methode zur Alkaliresistenzbestimmung angeführt:In the description and the examples below, the% data always mean% by weight, unless stated otherwise. The following method for determining the resistance to alkali is given in the examples:

AlkaliresistenzmessungAlkali resistance measurement

Zur Messung der Alkaliresistenz einer anoxidierten Aluminiumoberfläche wird eine definierte Fläche von 7,5 cm x 7,5 cm bei Raumtemperatur in eine 0,1 N NaOH-Lösung mit einer Elektrolytkonzentration von 4 g NaOH pro Liter voll entionisiertem Wasser eingetaucht und die Alkaliresistenz elektrochemisch bestimmt. Dazu wird stromlos der zeitliche Verlauf des Potentials einer Al/Al3+-Halbzelle gegen eine Referenzelektrode gemessen. Der Potentialverlauf gibt Aufschluß über den Widerstand, den die Aluminiumoxidschicht ihrer Auflösung entgegensetzt.To measure the alkali resistance of an oxidized aluminum surface, a defined area of 7.5 cm x 7.5 cm at room temperature is immersed in a 0.1 N NaOH solution with an electrolyte concentration of 4 g NaOH per liter of fully deionized water and the alkali resistance is determined electrochemically . For this purpose, the time course of the potential of an Al / Al 3+ half cell against a reference electrode is measured without current. The potential curve provides information about the resistance that the aluminum oxide layer opposes to its dissolution.

Als Maß für die Alkaliresistenz dient die Zeit in Sekunden, die nach dem Durchlaufen eines Minimums bis zum Auftreten eines Maximums im Spannungs-Zeitdiagramm ermittelt wird. Dabei wird aus jeweils den Meßwerten zweier Proben ein Mittelwert gebildet.The time in seconds, which is determined in the voltage-time diagram after passing through a minimum until a maximum occurs, serves as a measure of the alkali resistance. An average value is formed from the measured values of two samples.

Für das nicht nachbehandelte Schichtträgermaterial beträgt die Alkaliresistenz bei einem Oxidgewicht von 3,21 g/m2 112 ± 10 Sekunden, wobei dieser Wert ein Mittelwert aus 5 Doppelmessungen ist.For the non-post-treated substrate, the alkali resistance with an oxide weight of 3.21 g / m 2 is 112 ± 10 seconds, this value being an average of 5 double measurements.

Figur 2 zeigt die Silikatisierung bzw. die Belegung mit Silikat einer Aluminiumoberfläche einer Druckplatte, bei der die Nachbehandlung mit Natriumschichtsilikat unterschiedlicher Konzentration in wäßriger Lösung bei einer Tauchbadtemperatur von 60 °C unterschiedlich lang erfolgt. Die Oberflächensilikatisierung wird nach der ESCA-Methode untersucht, bei der es sich um "Electron Spectroscopy for Chemical Analyses" handelt, mit der die Atomlagen an einer Oberfläche bis ca. 5 nm Dicke aufgrund ihrer Bindungsenergielage und der Intensität der Scheitelwerte die Oberflächenatome, gegebenenfalls ihr Bindungszustand, ermittelt werden können. Ferner erlaubt das Intensitätsverhältnis der verschiedenen Scheitelwerte gegenüber dem Scheitelwert von Aluminium eine Beurteilung der Atombelegung auf der Aluminiumoxidoberfläche. Aus Figur 2 geht das Si/Al-sowie das Na/Al-Verhältnis bzw. die Belegung mit Si und Na auf der Aluminiumoxidoberfläche hervor.FIG. 2 shows the silicatization or the covering with silicate on an aluminum surface of a printing plate, in which the aftertreatment with layered sodium silicate of different concentrations in aqueous solution takes place at an immersion bath temperature of 60 ° C. for different lengths of time. The surface silicatization is investigated according to the ESCA method, which is "Electron Spectroscopy for Chemical Analyzes", with which the atomic layers on a surface up to approx. 5 nm thick, due to their binding energy position and the intensity of the peak values, the surface atoms, if applicable theirs Binding state, can be determined. Furthermore, the intensity ratio of the different peak values compared to the peak value of aluminum allows an assessment of the atomic occupancy on the aluminum oxide surface. FIG. 2 shows the Si / Al and the Na / Al ratio or the coating with Si and Na on the aluminum oxide surface.

Der Schichtträger mit dem höchsten Si/Al-Verhältnis wird mit voll entionisiertem Wasser gespült und getrocknet und danach mit einer wäßrigen Lösung von Dextrin, H3PO4, Glyzerin, die einen pH-Wert von 5,0 besitzt, gummiert und nach 16 Stunden mit voll entionisiertem Wasser abgewaschen. Das Si/Al-Verhältnis ändert sich nach dieser Prozedur nicht und beträgt 0,56, und das Na/Al-Verhältnis geht auf 0,07 zurück. Die Silikatisierung mit Natriumschichtsilikat wird durch die Gummierung nicht angegriffen, d.h. die Silikatbelegung wird nicht abgetragen. In dem ESCA-Spektrum läßt sich Phosphor aus der Gummierung nur andeutungsweise nachweisen, was als Beleg dafür anzusehen ist, daß die Gummierung die Silikatbelegung nicht angreift.The support with the highest Si / Al ratio is rinsed with fully deionized water and dried and then gummed with an aqueous solution of dextrin, H 3 PO 4 , glycerin, which has a pH of 5.0, and after 16 hours Washed off with fully deionized water. The Si / Al ratio does not change after this procedure and is 0.56, and the Na / Al ratio goes to 0.07 back. The silication with layered sodium silicate is not attacked by the rubber coating, ie the silicate coating is not removed. Phosphorus from the rubber coating can only be detected in the ESCA spectrum, which is proof that the rubber coating does not attack the silicate coating.

Wie aus Figur 2 ersichtlich ist, nimmt mit zunehmender Konzentration des Natriumschichtsilikats in der Nachbehandlungslösung, mit steigender Temperatur des Tauchbades (s. Fig. 5) und mit längerer Eintauchzeit, die Silikatisierung der Aluminiumoxidoberfläche zu. Diese drückt sich insbesondere in einer Zunahme des Si/Al-Verhältnisses aus. Dabei wurde die Konzentration des Natriumschichtsilikats von 1 g/l auf 10 g/l voll entionisiertes Wasser, weiterhin VE-Wasser gesteigert, die Tauchtemperatur der Nachbehandlungslösung von 60 auf 80 °C (s. Fig. 5) angehoben und die Eintauchzeit von 10 s bis auf 120 s erhöht.As can be seen from FIG. 2, the silicatisation of the aluminum oxide surface increases with increasing concentration of the layered sodium silicate in the aftertreatment solution, with increasing temperature of the immersion bath (see FIG. 5) and with a longer immersion time. This is expressed in particular in an increase in the Si / Al ratio. The concentration of the layered sodium silicate was increased from 1 g / l to 10 g / l of fully deionized water, furthermore demineralized water, the immersion temperature of the aftertreatment solution was raised from 60 to 80 ° C. (see FIG. 5) and the immersion time was 10 s increased to 120 s.

Desweiteren zeigt sich bei den ESCA-Messungen, daß das aufgebrachte Natriumschichtsilikat seine Ionenaustauschfähigkeit beibehält, d.h. beim Nachspülen mit Leitungs- bzw. Stadtwasser ein Austausch der Natriumionen gegen Calciumionen auftritt. Nach der Silikatisierung und der Spülung mit VE-Wasser ist neben Silizium immer ein hoher Natriumanteil nachweisbar, der nach Spülung mit Stadt- bzw. Leitungswasser stark reduziert wird und stattdessen ein Anstieg des Calciumanteils festgestellt wird. Während der Magnesiumanteil nach einer derartigen Nachspülung aufgrund seiner Scheitelwertlage schlecht nachweisbar ist, konnte mittels einer Strontiumlösung auch der Austausch von Natrium gegen Strontium festgestellt werden (s. a. Tab. 2).Furthermore, the ESCA measurements show that the applied layered sodium silicate retains its ion exchange capacity, ie when sodium is rinsed with tap or city water, the sodium ions are exchanged for calcium ions. After silicating and rinsing with demineralized water, there is always a high sodium content in addition to silicon, which is greatly reduced after rinsing with city or tap water and instead an increase in the calcium content is found. While the magnesium content after such a rinse is poor due to its peak value It can be demonstrated that the exchange of sodium for strontium could also be determined using a strontium solution (see also Table 2).

Figur 3 zeigt den Oxidabbau in der Aluminiumoxidschicht eines Schicht- bzw. Druckplattenträgers. Der Schichtträger wird elektrochemisch in Salzsäure aufgerauht und in Schwefelsäure anodisch oxidiert. Seine Gesamtdicke beträgt 0,3 mm, das Oxidgewicht liegt bei 3,21 g/m2, die Dicke der Oxidschicht beträgt etwa 1 µm. Die Nachbehandlung erfolgt gemäß dem erfindungsgemäßen Verfahren in einer wäßrigen Lösung mit einer 1 %igen Konzentration des Natriumschichtsilikats, wobei VE-Wasser verwendet wurde. Die Lösung hatte einen pH-Wert von 11,4. Bei dem Nachbehandlungsschritt erfolgte ein Eintauchen des Druckplattenträgers bei einer Temperatur von 60 °C in das Tauchbad. Die Tauchzeiten betrugen 10 bis 120 s. Wie aus Figur 3 ersichtlich ist, wird das Aluminiumoxid nur geringfügig angegriffen. Die Oberflächen des Schichtträgers, die 10 s, 30 s, und 120 s lang in der 1 %igen Natriumschichtsilikat-Lösung bei 60 °C behandelt wurden, zeigen in REM-Aufnahmen, im Vergleich zum Ausgangsmaterial, kaum eine Veränderung, einzig und allein die Porosität der Oberfläche, d.h. die Verfeinerung der Porenstruktur nimmt geringfügig zu. Im Vergleich hierzu wurden auch die Oberflächen von Schichtträgern untersucht, bei denen zur Silikatisierung Natriummetasilikate Na2SiO3 x 5 H2O, unter sonst gleichen Eintauchbedingungen, verwendet wurden. Diese Untersuchungen wurden für die Tauchtemperaturen von 25 °C und 60 °C durchgeführt. Es wird ein sehr starker Oxidabbau festgestellt, der selbst bei niedriger Tauchtemperatur von 25 °C noch deutlich höher als bei einer Silikatisierung mit Natriumschichtsilikat ist. Die 1%ige Natriummetasilikatlösung (10 g/l Na2SiO3 x 5 H2O, wobei das Kristallwasser nicht berücksichtigt ist) besitzt einen pH-Wert von 12,2.Figure 3 shows the oxide degradation in the aluminum oxide layer of a layer or printing plate support. The substrate is roughened electrochemically in hydrochloric acid and anodized in sulfuric acid. Its total thickness is 0.3 mm, the oxide weight is 3.21 g / m 2 , the thickness of the oxide layer is about 1 µm. The aftertreatment is carried out in accordance with the process according to the invention in an aqueous solution with a 1% concentration of the layered sodium silicate, deionized water being used. The solution had a pH of 11.4. In the post-treatment step, the printing plate carrier was immersed in the immersion bath at a temperature of 60 ° C. The diving times were 10 to 120 s. As can be seen from Figure 3, the aluminum oxide is attacked only slightly. The surfaces of the substrate, which were treated for 10 s, 30 s, and 120 s in the 1% sodium layer silicate solution at 60 ° C, show little change in SEM images compared to the starting material, only that Porosity of the surface, ie the refinement of the pore structure increases slightly. In comparison, the surfaces of substrates were also investigated, in which sodium metasilicates Na 2 SiO 3 x 5 H 2 O were used for the silicatization, under otherwise identical immersion conditions. These investigations were carried out for the diving temperatures of 25 ° C and 60 ° C. A very strong oxide degradation is found, which is still at a low diving temperature of 25 ° C is significantly higher than when silicating with layered sodium silicate. The 1% sodium metasilicate solution (10 g / l Na 2 SiO 3 x 5 H 2 O, whereby the water of crystallization is not taken into account) has a pH of 12.2.

Der Oxidabbau wird in einem Chrom/Phosphorsäurebad bei einer höheren Temperatur von ca. 70 °C durch Differenzwägung gravimetrisch ermittelt; das Ausgangsoxidgewicht des Schichtträgers beträgt bei einer Tauchtemperatur von 60 °C 3,21 g/m2.The oxide degradation is determined gravimetrically in a chrome / phosphoric acid bath at a higher temperature of approx. 70 ° C by differential weighing; the starting oxide weight of the support is 3.21 g / m 2 at an immersion temperature of 60 ° C.

Die Bestimmung des Flächengewichts von Aluminiumoxidschichten erfolgt durch chemisches Ablösen gemäß der DIN-Norm 30944 (Ausgabe März 1969) in Verbindung mit einer internen Betriebsvorschrift der Anmelderin aus dem Jahr 1973.The basis weight of aluminum oxide layers is determined by chemical detachment in accordance with DIN standard 30944 (March 1969 edition) in conjunction with an internal operating regulation of the applicant from 1973.

Anhand von Figur 4 werden die Alkaliresistenzmessungen von Schichtträgern nach einer Behandlung mit Natriumschichtsilikat und Nachspülung mit Wasser mit unterschiedlicher Zusammensetzung erläutert. Bei den Versuchen wurden Aluminiumschichtträger in einer 1 %igen Natriumschichtsilikat-Lösung (10 g/l Natriumschichtsilikat in VE-Wasser) bei verschiedenen Tauchtemperaturen im Bereich von 40 bis 80 °C unterschiedlich lang getaucht, wobei die Tauchzeiten 10, 30 und 120 s betrugen. Nach Abquetschen der Lösung wurde im Nachspülschritt die Probe entweder mit VE-Wasser oder Stadtwasser bei Raumtemperatur ca. 20 s lang behandelt. Die Ergebnisse dieser Versuche sind in Figur 4 dargestellt.The alkali resistance measurements of substrates after treatment with sodium silicate and rinsing with water with different compositions are explained with reference to FIG. 4. In the tests, aluminum substrates were immersed in a 1% sodium layer silicate solution (10 g / l sodium layer silicate in demineralized water) at different immersion temperatures in the range from 40 to 80 ° C, the immersion times being 10, 30 and 120 s. After squeezing off the solution, the sample was treated with either demineralized water or city water at room temperature for about 20 s in the rinsing step. The results of these tests are shown in FIG. 4.

Außerdem wurden weitere Versuche, bei denen von einem nachbehandelten Träger (1%ig Natriumschichtsilikat-Lösung/VE-Wasser, Tauchbadtemperatur 60 °C, Tauchzeit variiert) ausgegangen wurde, durchgeführt (s. Tab. 1). Tabelle 1 ϑ-Na2Si2O5-Nachbehandl Nachspülen Alkali- resistenz ESCA:X/A1 (X=Si,Na,Ca) 1 % Natriumschichtsilikat Lösung Tauchtemp.60°C Tauchzeit/s (20s) Max.nach s Si Na Ca 20 VE-H2O 80/82 0,33 0,18 - 120 VE-H2O 99/61 0,44 0,22 - 20 Stadtwasser 206/127/ 188 0,34 0,04 0,06 120 Stadtwasser 447/244/209 0,47 0,06 0,07 120 VE-H2O 78 0,46 0,20 - 120 VE-H2O 119 0,51 0,15 - 120 VE-H2O 118 0,43 0,22 - 120 VE-H2O 86 0,43 0,21 - 120 Stadtwasser 60 °C/20s 307 0,43 0,03 0,06 10 VE-H2O 100 0,27 0,14 0,02 30 VE-H2O 95 0,36 0,18 0,01 120 VE-H2O 150 0,43 0,16 0,02 In addition, further tests were carried out in which a post-treated carrier (1% sodium phyllosilicate solution / demineralized water, immersion bath temperature 60 ° C., immersion time varied) was carried out (see Table 1). Table 1 ϑ-Na 2 Si 2 O 5 post-treatment Rinse Alkali resistance ESCA: X / A1 (X = Si, Na, Ca) 1% layered sodium silicate solution, immersion temperature 60 ° C Dive time / s (20s) Max after s Si N / A Approx 20th VE-H 2 O 80/82 0.33 0.18 - 120 VE-H 2 O 99/61 0.44 0.22 - 20th City water 206/127/188 0.34 0.04 0.06 120 City water 447/244/209 0.47 0.06 0.07 120 VE-H 2 O 78 0.46 0.20 - 120 VE-H 2 O 119 0.51 0.15 - 120 VE-H 2 O 118 0.43 0.22 - 120 VE-H 2 O 86 0.43 0.21 - 120 City water 60 ° C / 20s 307 0.43 0.03 0.06 10th VE-H 2 O 100 0.27 0.14 0.02 30th VE-H 2 O 95 0.36 0.18 0.01 120 VE-H 2 O 150 0.43 0.16 0.02

Das für die Nachspülung verwendete Stadtwasser hat folgende Zusammensetzung:
pH = 7,7, 16° D.H. (Deutsche Härte), 10,5° HCO3 Karbonathärte; Ca-Ionen 85 mg/l Cl-Ionen 102 mg/l Mg-Ionen 15 mg/l SO4-Ionen 75 mg/l Na-Ionen 61 mg/l NO3-Ionen 6 mg/l K-Ionen 5,8 mg/l SiO2-Ionen 5,9 mg/l DOC 0,8 mgC/l mit DOC = gelöster, organisch gebundener Kohlenstoff
The city water used for rinsing has the following composition:
pH = 7.7, 16 ° DH (German hardness), 10.5 ° HCO 3 carbonate hardness; Ca ions 85 mg / l Cl ions 102 mg / l Mg ions 15 mg / l SO 4 ions 75 mg / l Na ions 61 mg / l NO 3 ions 6 mg / l K ions 5.8 mg / l SiO 2 ions 5.9 mg / l DOC 0.8 mgC / l with DOC = dissolved, organically bound carbon

Neben NaCl sind hauptsächlich Ca++ sowie SO4 --, jedoch relativ wenig Mg im Stadtwasser nachweisbar.In addition to NaCl, mainly Ca ++ and SO 4 - , but relatively little Mg are detectable in the city water.

Wie Figur 4 zeigt, liefert die Nachspülung mit VE-Wasser allenfalls eine leicht erhöhte Alkaliresistenz, die nur gering von der Tauchtemperatur abhängig ist. Die Nachbehandlung mit Stadtwasser ergibt eine Alkaliresistenz der anoxidierten Aluminiumoberfläche, die deutlich höher liegt als bei der Nachbehandlung mit VE-Wasser. Diese Alkaliresistenz steigt mit zunehmender Tauchbadtemperatur der Natriumschichtsilikat-Lösung stark an.As shown in FIG. 4, rinsing with demineralized water at most provides a slightly increased alkali resistance, which is only slightly dependent on the immersion temperature. The aftertreatment with city water results in an alkali resistance of the oxidized aluminum surface, which is significantly higher than with the aftertreatment with demineralized water. This resistance to alkali rises sharply with increasing immersion bath temperature of the layered sodium silicate solution.

Im Rahmen dieser Versuche (siehe Tab. 1) wurde zum Vergleich auch ein Aluminiumschichtträger mit einer 1 %igen Natriumschichtsilikat-Lösung bei 60 °C während zwei Minuten gespült und anschließend mit VE-Wasser nachgespült. Der Mittelwert der gemessenen Alkaliresistenz aus sechs Doppelmessungen von derart behandelten Platten beträgt 106 ± 19 s bis zum Erreichen des Maximums. Dagegen wird die Alkaliresistenz einer Standard-Silikatisierung, bei der mit Stadtwasser gespült wird, deutlich erhöht. Parallel zur Erhöhung der Alkaliresistenz bei Spülung mit Stadtwasser werden die Na-Ionen größtenteils gegen Ca-Ionen ausgetauscht.In the course of these experiments (see Table 1), for comparison, an aluminum layer support was also rinsed with a 1% sodium layer silicate solution at 60 ° C. for two minutes and then rinsed with demineralized water. The mean value of the measured alkali resistance from six double measurements of plates treated in this way is 106 ± 19 s until the maximum is reached. In contrast, the alkali resistance of a standard silicate coating, which is rinsed with city water, is significantly increased. In parallel to increasing the alkali resistance when flushing with city water, the Na ions are largely exchanged for Ca ions.

Die nachgewiesene deutlich erhöhte Alkaliresistenz durch die Nachspülung mit Stadtwasser ist vermutlich darauf zurückzuführen, daß sich bei Behandlung mit Natriumschichtsilikat ϑ-Na2Si2O5 zunächst Alumosilikate (Na-Salze) ausbilden, die im Nachspülschritt mit Stadtwasser weitere alkaliresistente Bindungen, beispielsweise mit Ca, K, Mg sowie gegebenenfalls mit den Anionen, eingehen.The significantly increased resistance to alkali demonstrated by rinsing with city water is presumably due to the fact that when treated with layered sodium silicate ϑ-Na 2 Si 2 O 5 , aluminosilicates (Na salts) initially form, which in the rinsing step with city water form further alkali-resistant bonds, for example with Ca. , K, Mg and possibly with the anions.

Es wurden auch Untersuchungen angestellt, durch gezielte Nachspülung der mit Natriumschichtsilikat behandelten Schichtträger mit verschiedenen Salzlösungen die Oberflächeneigenschaften zu verbessern, insbesondere die Alkaliresistenz zu steigern und zu stabilisieren. Alkaliresistenzmessungen wurden desweiteren an standardmäßig vorbehandelten Schichtträgerplatten vorgenommen, die mit anionhaltigen Salzlösungen nachgespült wurden. Die Schichtträgerplatten wurden mit 1 %iger Natriumschichtsilikat-Lösung silikatisiert, die Tauchtemperatur betrug 60 °C und die Eintauchzeit 120 s, danach wurde mit VE-Wasser gespült und anschließend quetschnaß in den nachstehend angeführten Salzlösungen nachgespült, wobei die Eintauchzeit 20 s bei Raumtemperatur betrug. Zur Nachspülung wurden größtenteils 0,1 bis 0,4 %ige Salzlösungen eingesetzt, nur in einem Fall eine 1 %ige Salzlösung zu Vergleichszwecken.Investigations were also carried out to improve the surface properties, in particular to increase and stabilize the alkali resistance, by rinsing the layer supports treated with layered sodium silicate with various salt solutions. Alkali resistance measurements were also carried out on standard-pretreated substrate boards, which were then rinsed with anionic salt solutions. The support plates were silicated with 1% sodium phyllosilicate solution, the immersion temperature was 60 ° C and the immersion time was 120 s, then rinsed with demineralized water and then rinsed soaking wet in the salt solutions listed below, the immersion time being 20 s at room temperature. For rinsing, mostly 0.1 to 0.4% salt solutions were used, only in one case a 1% salt solution for comparison purposes.

Alkaliresistenzwerte wurden für folgende Nachspüllösungen ermittelt: Nachspüllösungen: Alkaliresistenz: 0,4 %ig NaHCO3 in VE-H2O 210/204 s bis zum Maximum 1,0 %ig NaHCO3 in VE-H2O 350    " 0,4 %ig Na2CO3 in VE-H2O 258    " 0,4 %ig Na2SiO3 in VE-H2O 413    " 0,4 %ig Na3PO4 in VE-H2O 278    "  Neben den Erdalkalikationen haben auch Anionen entscheidenden Einfluß auf die Größe der Alkaliresistenz, die beispielsweise durch HCO3 -, PO4 3-, SiO3 2-, CO3 2--Anionen durch Nachspülung mit den entsprechenden Salzlösungen deutlich gesteigert werden kann. Die Aufstellung läßt auch erkennen, daß im Falle einer Nachspüllösung in NaHCO3 mit steigender Konzentration auch die Alkaliresistenz sich erhöht.Alkali resistance values were determined for the following rinse solutions: Rinse solutions: Alkali resistance: 0.4% NaHCO 3 in VE-H 2 O 210/204 s to the maximum 1.0% NaHCO 3 in VE-H 2 O 350 " 0.4% Na 2 CO 3 in VE-H 2 O 258 " 0.4% Na 2 SiO 3 in VE-H 2 O 413 " 0.4% Na 3 PO 4 in VE-H 2 O 278 " , PO 4 3-, SiO 3 2-, CO 3 2- anions can be significantly enhanced by rinsing with the appropriate salt solutions - in addition to the alkaline earth metal cations and anions decisive influence on the size of the alkali resistance, for example, by HCO 3 have. The table also shows that in the case of a rinsing solution in NaHCO 3 , the alkali resistance also increases with increasing concentration.

In der nachfolgenden Tabelle 2 finden sich Alkaliresistenzwerte für weitere Nachspüllösungen, zusammen mit den Verhältnissen X/Al von verschiedenen Erdalkalimetallen X in den Nachspüllösungen zu Aluminium Al, gemessen nach der ESCA-Methode.Table 2 below shows alkali resistance values for further rinsing solutions, together with the X / Al ratios of various alkaline earth metals X in the rinsing solutions to aluminum Al, measured by the ESCA method.

Für diese Messungen wurden die Proben standardmäßig vorbereitet, d.h. mit Hilfe von 1 %iger Natriumschichtsilikat-Lösung in VE-Wasser silikatisiert, bei einer Tauchtemperatur von 60 °C und einer Eintauchzeit von 120 s. Es wurde mit VE-Wasser sowie mit Lösungen, in denen jeweils 0,4 %ig CaCl2, MgCl2, SrCl2 und Dextrin gelöst waren, nachgespült. Weitere Lösungen waren CaSO4, Na2SO4, MgSO4, NaF, Polyvinylphosphorsäure NaHCO3. Nach der Trocknung wurde der Alkaliresistenzwert und die X/Al-Verhältnisse durch ESCA-Messungen bestimmt, um so die Oberflächenbelegung durch Si, Na, Ca, Sr und dergl. zu - ermitteln. TABELLE 2 Natriumschichtsilikat Nachspülung Alkaliresistenz in s bis zum Maximum ESCA: X/Al X = Ca, Mg, Sr, F, P Si/Al Na/Al X/Al Standard VE-Wasser 80-120 0,46 0,20 - " 0,4%igCaCl2/VE 145 0,47 0,02 0,07/Ca " " MgCl2/VE 118 0,48 0,04 ? /Mg " " SrCl2/VE 126 0,49 0,02 0,07/Sr " Stadtwasser D.H. = 16° 200-250 0,47 0,06 0,07/Ca " 0,4%igDextrin/VE 130 0,49 0,16 - Standard 0,4%igCaCl2/Stadtwasser 217 0,49 0,04 0,06/Ca " 0,4%igCaCl2/60°C 254 0,42 0,03 0,08/Ca Stadtwasser " 0,1%igCaSO4/VE 212/242 0,42 0,03 0,10/Ca 0,06/P " 0,4%igNa2SO4/VE 90/115 0,46 0,29 - " 0,2%igMgSO4/VE 144 0,42 0,09 0,05/P Standard 0,4%igNaF/VE 182**/255 0,47 0,33 0,13/F " 0,4%igNaF/* Stadtwasser 362 0,46 0,29 0,21/F 0,06/Ca " 0,4%igNaF/60°C* 246 0,39 0,41 0,35/F 0,09/Ca " 0,4%igNaF/60°C 128** 0,40 0,43 0,19/F Standard 0,22%igLC1/VE 110/135 0,31 0,01 0,58/P " 0,4%igNaHCO3/VE 210/204 0,42 0,31 - " 0,4%igNaHCO3/60°C 168** 0,45 0,31 - ** 2. Max./Mittelwert    LC1 = Polyvinylphosphonsäure * mit Stadtwasser gespült vor der Nachspülung For these measurements, the samples were prepared as standard, that is, siliconized with 1% sodium phyllosilicate solution in demineralized water, at an immersion temperature of 60 ° C and an immersion time of 120 s. It was rinsed with demineralized water and with solutions in which 0.4% strength CaCl 2 , MgCl 2 , SrCl 2 and dextrin were dissolved. Further Solutions were CaSO 4 , Na 2 SO 4 , MgSO 4 , NaF, polyvinyl phosphoric acid NaHCO 3 . After drying, the alkali resistance value and the X / Al ratios were determined by ESCA measurements in order to determine the surface coverage by Si, Na, Ca, Sr and the like. TABLE 2 Layered sodium silicate Rinse Alkali resistance in s up to the maximum ESCA: X / Al X = Ca, Mg, Sr, F, P Si / Al Well / Al X / Al default VE water 80-120 0.46 0.20 - " 0.4% igCaCl 2 / VE 145 0.47 0.02 0.07 / approx " "MgCl 2 / VE 118 0.48 0.04 ? / Mg " "SrCl 2 / VE 126 0.49 0.02 0.07 / Sr " City water DH = 16 ° 200-250 0.47 0.06 0.07 / approx " 0.4% Dextrin / VE 130 0.49 0.16 - default 0.4% igCaCl 2 / city water 217 0.49 0.04 0.06 / approx " 0.4% igCaCl 2/60 ° C 254 0.42 0.03 0.08 / approx City water " 0.1% igCaSO 4 / VE 212/242 0.42 0.03 0.10 / approx 0.06 / P " 0.4% igNa 2 SO 4 / VE 90/115 0.46 0.29 - " 0.2% MgSO 4 / VE 144 0.42 0.09 0.05 / P default 0.4% igNaF / VE 182 ** / 255 0.47 0.33 0.13 / F " 0.4% igNaF / * city water 362 0.46 0.29 0.21 / F 0.06 / approx " 0.4% igNaF / 60 ° C * 246 0.39 0.41 0.35 / F 0.09 / approx " 0.4% igNaF / 60 ° C 128 ** 0.40 0.43 0.19 / F default 0.22% igLC1 / VE 110/135 0.31 0.01 0.58 / P " 0.4% nigHCO 3 / VE 210/204 0.42 0.31 - " 0.4% igNaHCO 3/60 ° C 168 ** 0.45 0.31 - ** 2. Max./ mean LC1 = polyvinylphosphonic acid * rinsed with city water before rinsing

Die Ergebnisse zur Temperaturabhängigkeit der Silikatisierung sind in den Figuren 5 und 6 dargestellt:
Nach Figur 5 ist das Si/Al-Verhältnis unabhängig von der Spülung und nimmt mit steigender Temperatur stark zu sowie mit zunehmender Eintauchzeit.
The results on the temperature dependence of the silication are shown in FIGS. 5 and 6:
According to FIG. 5, the Si / Al ratio is independent of the rinsing and increases sharply with increasing temperature and with increasing immersion time.

Aus Figur 6 ist ersichtlich, daß die Ca/Al- sowie Na/Al-Verhältnisse bei Spülung mit Stadtwasser im gleichen Bereich von etwa 0,05 ± 0,02 liegen, während bei Nachspülung mit VE-Wasser das Na/Al-Verhältnis mit steigender Temperatur zunimmt, ähnlich wie das Si/Al-Verhältnis.It can be seen from FIG. 6 that the Ca / Al and Na / Al ratios in the case of rinsing with city water are in the same range of about 0.05 ± 0.02, while the rinsing with demineralized water also contains the Na / Al ratio increasing temperature increases, similar to the Si / Al ratio.

Das aufgebrachte Natriumschichtsilikat auf der Al/AlOOH-Oberfläche behält weitgehend seine Ionenaustauschfunktion; die Erdalkali-Ionen ersetzen die Na-Ionen in der silikatisierten Al/AlOOH-Oberfläche.The layered sodium silicate on the Al / AlOOH surface largely retains its ion exchange function; the alkaline earth ions replace the Na ions in the silicated Al / AlOOH surface.

Die Ergebnisse der Nachspülversuche aus Tabelle 2 sowie der Darstellung in den Figuren 4 bis 6 lassen folgende Aussagen zu:

  • Unter Standardbedingungen für die Silikatisierung der Oberflächen der Schichtträgerplatten wird durch die Erhöhung der Natriumschichtsilikatkonzentration, der Tauchtemperatur auf 80 °C sowie eventueller Verlängerung der Eintauchzeit und Alterung der Al/AlOOH-Trägeroberfläche eine stärkere Silikatbelegung erreicht.
  • Das aufgebrachte Natriumschichtsilikat mit einem Si/Al-Verhältnis von 0,4 bis 0,5 und einem Na/Al-Verhältnis von ca. 0,2 erhöht nicht die Alkaliresistenz bei Nachspülung mit VE-Wasser.
  • Das Natriumschichtsilikat behält auf der Schichtträgeroberfläche seine Ioneraustausch-Eigenschaften, d.h. es erfolgt ein Austausch der Na- gegen Ca-Ionen, wenn mit Stadtwasser nachgespült wird.
  • Durch die Nachspülung mit Stadtwasser, in dem verschiedene Ionen, insbesondere Ca, Mg, vorhanden sind, wird die Alkali- resistenz deutlich erhöht, die Meßwerte liegen oberhalb von 200 s. Dieser Effekt wird verstärkt, wenn das Stadtwasser erhitzt wird, beispielsweise die Tauchtemperatur 60 °C beträgt. Der Wet der Alkaliresistenz liegt dann bei etwa 300 s. Nach Fig. 4 beträgt der Alkaliresistenzwert mehr als 400 s bei 60 °C Tauchbadtemperatur.
       Die Nachspülung mit verschiedenen Salzlösungen in VE-Wasser steigert die Alkaliresistenz nicht wesentlich, nur mit Salzlösungen auf der Basis von beispielsweise NaHCO3, CaSO4, MgSO4 läßt sich die Alkaliresistenz erhöhen.
  • Die Nachspülung mit 0,4 %iger NaF-Lösung in VE-Wasser bzw. in Stadtwasser bringt eine sehr hohe Alkaliresistenz. Es wird vermutet, daß das schwer lösliche CaF2 im Schichtsilikat aufgrund einer vorangegangenen Stadtwasserspülung entsteht, das dann die Alkaliresistenz erheblich steigert.
  • Die Vorteile von Natriumschichtsilikat gegenüber anderen Silikaten, wie beispielsweise Na2SiO3, liegt in seiner geringeren Alkalität und dem stark reduzierten Oxidangriff, wie anhand von Figur 3 schon beschrieben wurde.
  • Die Silikatschicht bleibt auch nach erfolgter Gummierung erhalten. Bei den ESCA-Messungen wird die Gummierung durch das andeutungsweise Vorhandensein von Phosphor nachgewiesen, während das gleichbleibende Si/Al-Verhältnis anzeigt, daß die Gummierung die Silikatisierung nicht beeinträchtigt.
The results of the rinse tests from Table 2 and the illustration in FIGS. 4 to 6 allow the following statements:
  • Under standard conditions for the silicatization of the surfaces of the substrate plates, a higher silicate coating is achieved by increasing the sodium layer silicate concentration, the immersion temperature to 80 ° C and possibly extending the immersion time and aging of the Al / AlOOH substrate surface.
  • The applied layered sodium silicate with a Si / Al ratio of 0.4 to 0.5 and a Na / Al ratio of approx. 0.2 does not increase the alkali resistance when rinsed with demineralized water.
  • The layered sodium silicate retains its ion exchange properties on the surface of the substrate, ie the Na ions are exchanged for Ca ions when rinsed with city water.
  • The rinsing with city water, in which various ions, in particular Ca, Mg, are present, significantly increases the alkali resistance; the measured values are above 200 s. This effect is intensified when the city water is heated, for example the diving temperature is 60 ° C. The alkali resistance is then around 300 s. 4, the alkali resistance value is more than 400 s at 60 ° C immersion bath temperature.
    Rinsing with various salt solutions in demineralized water does not significantly increase the alkali resistance; only with salt solutions based on, for example, NaHCO 3 , CaSO 4 , MgSO 4 can the alkali resistance be increased.
  • Rinsing with 0.4% NaF solution in demineralized water or in city water results in a very high resistance to alkali. It is believed that the poorly soluble CaF 2 in Layered silicate arises due to a previous city water rinse, which then increases the resistance to alkali considerably.
  • The advantages of layered sodium silicate over other silicates, such as Na 2 SiO 3 , lie in its lower alkalinity and the greatly reduced oxide attack, as has already been described with reference to FIG. 3.
  • The silicate layer is retained even after gumming. In the ESCA measurements, the gumming is demonstrated by the hint of the presence of phosphorus, while the constant Si / Al ratio indicates that the gumming does not affect the silication.

Zur Untersuchung der Farbschleierbildung wurden standardmäßig mit Natriumschichtsilikat beschichtete und mit Stadtwasser nachgespülte Schichtträger vom Typ P51 im Format 32 x 27 cm hergestellt und mit einer Positiv-Druckplattenrezeptur (P61-Lösung) und einer Negativ-Druckplattenrezeptur (N50-Lösung) handbeschichtet. Für Vergleichszwecke wurde außerdem ein unbehandelter Schichtträger P51, der auch nicht mit Polyvinylphosphonsäure-Lösung behandelt wurde, mit den gleichen Druckplattenrezepturen beschichtet und anschließend getrocknet.To investigate the formation of color fog, layered substrates of type P51 in the 32 x 27 cm format, which were coated with sodium silicate and rinsed with city water, were produced as standard and hand-coated with a positive printing plate formulation (P61 solution) and a negative printing plate formulation (N50 solution). For comparison purposes, an untreated P51 substrate, which was also not treated with polyvinylphosphonic acid solution, was coated with the same printing plate formulations and then dried.

Die Positiv-Schichtträger P51 wurden nach der Belichtung 60 s lang mit einem Entwickler EP26 entwickelt und anschließend abgebraust. Die NegativSchichtträger N50 wurden ohne Belichtung 60 s lang von Hand aus mit 30 ml DN-5 Entwickler behandelt und anschließend abgebraust.After exposure, the positive layer supports P51 were developed for 60 s with an EP26 developer and then consumed. The negative layer supports N50 were treated by hand with 30 ml of DN-5 developer for 60 s without exposure and then brewed.

Die wesentlichen Bestandteile des EP-26-Entwicklers sind Na-Silikat, -hydroxid, -tetraborat, Sr-Levolinat, Polyglykol und Wasser. Der DN-5-Entwickler enthält Benzylalkohol, Mono-, Di- und Triethanolamin, Stickstoff und hat einen pH-Wert von 10,9.The essential components of the EP-26 developer are Na silicate, hydroxide, tetraborate, Sr levolinate, polyglycol and water. The DN-5 developer contains benzyl alcohol, mono-, di- and triethanolamine, nitrogen and has a pH of 10.9.

Nach visueller Beurteilung ist bei den PositivSchichtträgern die Blauschleierbildung stärker ausgeprägt als bei den Negativ-Schichtträger die Grünschleierbildung, wobei die Schleierbildungen auf den Schichtträgern am wenigsten erkennbar sind, bei denen die Silikatbeschichtung mit Stadtwasser nachgespült wurde.According to visual assessment, the formation of blue haze is more pronounced in the case of the positive layer supports than the formation of green haze in the case of the negative layer supports, the fog formation being the least noticeable on the layer supports in which the silicate coating has been rinsed with city water.

Die in der nachstehenden Tabelle 3 angeführten Werte für die Helligkeit L und die Farbverschiebung a/b der Schichtträger werden gemäß der DIN-Norm 6171 (Fassung vom Januar 1979) gemessen. Die in Tabelle 3 eingetragenen Werte sind Mittelwerte aus drei Messungen. TABELLE 3 P51-Träger/ Nachbehandlung Platten- typ Entwicklungszeit/Entwickler L a b ohne LC1/unbehandelt unbeschichtet -- 77,7 -0,26 0,65 "   " +(P61) 60s/EP26 74,7 -0,82 -0,10 "   " -(N50) 60s/DN-5 74,7 -1,82 0,48 SKS-6 Standard/Stadtwasser unbesch. -- 77,0 0,08 0,64 "   " +(P61) 60s/EP26 74,1 -0,64 -1,39 "   " -(N50) 60s/DN-5 75,7 -0,96 -0,06 SKS-6 Standard/VE-Wasser unbesch. -- 77,4 0,04 0,55 "   " +(P61) 60s/EP26 71,6 -1,57 -4,3 "   " -(N50) 60s/DN-5 73,9 -1,92 -1,62 LC1 = polyvinylphosphonsäure SKS-6 = Natriumschichtsilikat ϑ-Na2Si2O5 The values for the brightness L and the color shift a / b of the substrates listed in Table 3 below are measured in accordance with DIN standard 6171 (version from January 1979). The values entered in Table 3 are mean values from three measurements. TABLE 3 P51 carrier / aftercare Plate type Development time / developer L a b without LC1 / untreated uncoated - 77.7 -0.26 0.65 "" + (P61) 60s / EP26 74.7 -0.82 -0.10 "" - (N50) 60s / DN-5 74.7 -1.82 0.48 SKS-6 standard / city water careless - 77.0 0.08 0.64 "" + (P61) 60s / EP26 74.1 -0.64 -1.39 "" - (N50) 60s / DN-5 75.7 -0.96 -0.06 SKS-6 standard / demineralized water careless - 77.4 0.04 0.55 "" + (P61) 60s / EP26 71.6 -1.57 -4.3 "" - (N50) 60s / DN-5 73.9 -1.92 -1.62 LC1 = polyvinylphosphonic acid SKS-6 = layered sodium silicate ϑ-Na 2 Si 2 O 5

Claims (13)

  1. Process for post-treating material in plate, sheet or strip form based on chemically, mechanically and/or electrochemically roughened and anodically oxidised aluminium or an alloy thereof, the aluminium oxide layers of which are treated with an alkali metal silicate in an aqueous solution, characterised in that
    a) post-treatment proceeds in an aqueous solution of the δ modification of sodium phyllosilicate Na2Si2O5 and
    b) post-rinsing is then performed with water containing alkali metal or alkaline earth metal ions, wherein the alkali metal or alkaline earth metal ions are selected from the group Ca, Mg, Na, K, Sr.
  2. Process according to claim 1, characterised in that the SiO2/Na2O molar ratio of the crystalline sodium phyllosilicate is in the range from 1.9-3.5 to 1.
  3. Process according to claims 1 and 2, characterised in that the solution in post-treatment stage a) contains 0.1 to 10 wt.% of ϑ-Na2Si2O5.
  4. Process according to one or more of claims 1 to 3, characterised in that post-treatment stage a) is performed electrochemically and/or by immersion for 10 to 120 seconds and at a temperature of 25°C to 80°C.
  5. Process according to claim 1, characterised in that post-treatment stage b) with water containing ions is followed by immersion in a 0.1 to 10 wt.% salt solution.
  6. Process according to claim 5, characterised in that electrochemical post-treatment is performed at a current density of 0.1 to 10 A/dm2 and/or a voltage of 3 to 100 V.
  7. Process according to claim 5, characterised in that the salt solution contains NaF, NaHCO3, CaSO4, polyvinylphosphonic acid and MgSO4 individually or in combination.
  8. Process according to claim 7, characterised in that rinsing with the salt solution is preceded by spraying with water containing ions.
  9. Support made from material in plate, sheet or strip form based on chemically, mechanically and/or electrochemically roughened and anodically oxidised aluminium or an alloy thereof, the aluminium oxide layer of which is coated with an alkali metal phyllosilicate layer, characterised in that the alkali metal silicate layer consists of pure, crystalline sodium phyllosilicate.
  10. Support according to claim 9, characterised in that the sodium phyllosilicate has a lamellar, polymeric structure.
  11. Support according to claim 9, characterised in that the sodium silicate has the composition ϑ-Na2Si2O5 and that the SiO2:Na2O molar ratio of the crystalline sodium phyllosilicate is in the range from 1.9-3.5 to 1.
  12. Support according to claim 11, characterised in that, at the Al/AlOOH surface, the Si/Al ratio is 0.10-0.8 and the Ca/Al ratio is 0.01-0.15.
  13. Use of the material post-treated according to one or more of claims 1 to 8 as a support of offset printing plates.
EP95107331A 1994-05-21 1995-05-15 Process for the after-treatment of plates, foils or strips and its application as substrate for offset printing plates Expired - Lifetime EP0683248B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4417907 1994-05-21
DE4417907A DE4417907A1 (en) 1994-05-21 1994-05-21 Process for the aftertreatment of plate, foil or strip material, supports of such material and its use for offset printing plates

Publications (2)

Publication Number Publication Date
EP0683248A1 EP0683248A1 (en) 1995-11-22
EP0683248B1 true EP0683248B1 (en) 1997-12-17

Family

ID=6518714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95107331A Expired - Lifetime EP0683248B1 (en) 1994-05-21 1995-05-15 Process for the after-treatment of plates, foils or strips and its application as substrate for offset printing plates

Country Status (7)

Country Link
US (2) US5556531A (en)
EP (1) EP0683248B1 (en)
JP (1) JPH07316882A (en)
KR (1) KR950032719A (en)
AT (1) ATE161297T1 (en)
BR (1) BR9502487A (en)
DE (2) DE4417907A1 (en)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69605178T2 (en) * 1996-04-03 2000-06-21 Agfa-Gevaert N.V., Mortsel Process for the production of a hydrophilic surface of a lithographic printing plate
JP3830114B2 (en) * 1997-09-29 2006-10-04 富士写真フイルム株式会社 Positive photosensitive lithographic printing plate
EP0908306B3 (en) 1997-10-08 2009-08-05 Agfa-Gevaert A method for making positive working printing plates from a heat mode sensitive imaging element
DE69901642T3 (en) 1998-03-14 2019-03-21 Agfa Nv A process for producing a positive-working printing plate from a thermosensitive image-recording material
JP2000219234A (en) * 1999-01-29 2000-08-08 Bridgestone Sports Co Ltd Golf ball case
US6865862B2 (en) * 2000-11-20 2005-03-15 C.G. Bretting Mfg. Co., Inc. Log bander apparatus and method
EP1243413B1 (en) 2001-03-20 2004-05-26 Agfa-Gevaert Method of making a negative-working heat-sensitive lithographic printing plate precursor
JP4268345B2 (en) * 2001-04-20 2009-05-27 富士フイルム株式会社 Support for lithographic printing plate
EP1295717B1 (en) 2001-09-24 2007-07-25 Agfa Graphics N.V. Heat-sensitive positive-working lithographic printing plate precursor
EP1297950B1 (en) 2001-09-27 2007-04-25 Agfa Graphics N.V. Heat-sensitive lithographic printing plate precursor
EP1366898A3 (en) 2002-05-29 2004-09-22 Agfa-Gevaert Method of lithographic printing from a reusable aluminum support
DE60213236T2 (en) 2002-09-04 2007-06-21 Agfa-Gevaert Heat sensitive planographic printing plate precursor
US20060000377A1 (en) * 2002-10-04 2006-01-05 Agfa-Gevaert Method of marking a lithographic printing plate precursor
US20060234161A1 (en) * 2002-10-04 2006-10-19 Eric Verschueren Method of making a lithographic printing plate precursor
US7455949B2 (en) 2002-10-15 2008-11-25 Agfa Graphics, N.V. Polymer for heat-sensitive lithographic printing plate precursor
US20060060096A1 (en) * 2002-10-15 2006-03-23 Agfa-Gevaert Polymer for heat-sensitive lithographic printing plate precursor
US7198877B2 (en) 2002-10-15 2007-04-03 Agfa-Gevaert Heat-sensitive lithographic printing plate precursor
US7458320B2 (en) 2002-10-15 2008-12-02 Agfa Graphics, N.V. Polymer for heat-sensitive lithographic printing plate precursor
WO2005058605A1 (en) 2003-12-18 2005-06-30 Agfa-Gevaert Positive-working lithographic printing plate precursor
US7467587B2 (en) 2004-04-21 2008-12-23 Agfa Graphics, N.V. Method for accurate exposure of small dots on a heat-sensitive positive-working lithographic printing plate material
US7348126B2 (en) 2004-04-27 2008-03-25 Agfa Graphics N.V. Negative working, heat-sensitive lithographic printing plate precursor
US7354696B2 (en) 2004-07-08 2008-04-08 Agfa Graphics Nv Method for making a lithographic printing plate
US7195861B2 (en) 2004-07-08 2007-03-27 Agfa-Gevaert Method for making a negative working, heat-sensitive lithographic printing plate precursor
US7425405B2 (en) 2004-07-08 2008-09-16 Agfa Graphics, N.V. Method for making a lithographic printing plate
US20070003869A1 (en) * 2005-06-30 2007-01-04 Agfa-Gevaert Heat-sensitive lithographic printing plate-precursor
US20070003875A1 (en) * 2005-06-30 2007-01-04 Agfa-Gevaert Method for preparing a lithographic printing plate precursor
US7678533B2 (en) 2005-06-30 2010-03-16 Agfa Graphics, N.V. Heat-sensitive lithographic printing plate precursor
US8313885B2 (en) 2005-11-10 2012-11-20 Agfa Graphics Nv Lithographic printing plate precursor comprising bi-functional compounds
US7355889B2 (en) * 2005-12-19 2008-04-08 Sandisk Corporation Method for programming non-volatile memory with reduced program disturb using modified pass voltages
US7355888B2 (en) * 2005-12-19 2008-04-08 Sandisk Corporation Apparatus for programming non-volatile memory with reduced program disturb using modified pass voltages
ATE517758T1 (en) 2006-03-17 2011-08-15 Agfa Graphics Nv METHOD FOR PRODUCING A LITHOGRAPHIC PRINTING FORM
US7492633B2 (en) * 2006-06-19 2009-02-17 Sandisk Corporation System for increasing programming speed for non-volatile memory by applying counter-transitioning waveforms to word lines
US7349261B2 (en) * 2006-06-19 2008-03-25 Sandisk Corporation Method for increasing programming speed for non-volatile memory by applying counter-transitioning waveforms to word lines
EP1884372B1 (en) 2006-08-03 2009-10-21 Agfa Graphics N.V. A lithographic printing plate support
US8189378B2 (en) * 2006-09-27 2012-05-29 Sandisk Technologies Inc. Reducing program disturb in non-volatile storage
US8184478B2 (en) * 2006-09-27 2012-05-22 Sandisk Technologies Inc. Apparatus with reduced program disturb in non-volatile storage
ES2366743T3 (en) 2007-04-27 2011-10-25 Agfa Graphics N.V. PRECURSOR OF LITHOGRAPHIC PRINT PLATE.
DE102007057777B4 (en) * 2007-11-30 2012-03-15 Erbslöh Ag Method for producing a component from aluminum and / or an aluminum alloy and use of the method
ES2430562T3 (en) 2008-03-04 2013-11-21 Agfa Graphics N.V. Method for manufacturing a support of a lithographic printing plate
US8173221B2 (en) * 2008-03-18 2012-05-08 MCT Research & Development Protective coatings for metals
US20090271562A1 (en) * 2008-04-25 2009-10-29 Sinclair Alan W Method and system for storage address re-mapping for a multi-bank memory device
ATE552111T1 (en) 2008-09-02 2012-04-15 Agfa Graphics Nv HEAT SENSITIVE, POSITIVE WORKING LITHOGRAPHY PRINTING FORM PRECURSOR
DE102009045762A1 (en) * 2009-10-16 2011-04-21 Henkel Ag & Co. Kgaa Multi-stage process for the production of alkali-resistant anodized aluminum surfaces
EP2366545B1 (en) 2010-03-19 2012-12-05 Agfa Graphics N.V. A lithographic printing plate precursor
EP2489512B1 (en) 2011-02-18 2013-08-28 Agfa Graphics N.V. A lithographic printing plate precursor
JP5813063B2 (en) 2012-07-27 2015-11-17 富士フイルム株式会社 Lithographic printing plate support, method for producing the same, and lithographic printing plate precursor
BR112015015795A2 (en) 2013-01-01 2017-07-11 Agfa Graphics Nv ethylene vinyl acetal copolymers and their use in lithographic printing plate precursors
ITMO20130129A1 (en) * 2013-05-14 2014-11-15 Italtecno S R L METHOD OF FIXING THE ALUMINUM OXIDE.
CN105283807B (en) 2013-06-18 2019-09-27 爱克发有限公司 Prepare the method with the Lighographic printing plate precursor of patterning backing layer
EP2871057B1 (en) 2013-11-07 2016-09-14 Agfa Graphics Nv Negative working, heat-sensitive lithographic printing plate precursor
WO2015110350A1 (en) 2014-01-21 2015-07-30 Agfa Graphics Nv A conveyor belt for an inkjet print device
EP2933278B1 (en) 2014-04-17 2018-08-22 Agfa Nv (Ethylene, vinyl acetal) copolymers and their use in lithographic printing plate precursors
ES2617557T3 (en) 2014-05-15 2017-06-19 Agfa Graphics Nv Copolymers (ethylene, vinyl acetal) and their use in lithographic printing plate precursors
ES2660063T3 (en) 2014-06-13 2018-03-20 Agfa Nv Copolymers (ethylene, vinyl acetal) and their use in lithographic printing plate precursors
EP2963496B1 (en) 2014-06-30 2017-04-05 Agfa Graphics NV A lithographic printing plate precursor including ( ethylene, vinyl acetal ) copolymers
AU2015315842A1 (en) * 2014-09-08 2017-04-20 Mct Holdings Limited Silicate coatings
EP3017943A1 (en) 2014-11-06 2016-05-11 Agfa Graphics Nv A sustainable lithographic printing plate
EP3017944B1 (en) 2014-11-06 2017-07-19 Agfa Graphics Nv Method for preparing a lithographic printing plate precursor
ES2655798T3 (en) 2014-12-08 2018-02-21 Agfa Nv System to reduce ablation waste
EP3121008B1 (en) 2015-07-23 2018-06-13 Agfa Nv A lithographic printing plate precursor comprising graphite oxide
EP3130465B1 (en) 2015-08-12 2020-05-13 Agfa Nv Heat-sensitive lithographic printing plate precursor
EP3157310A1 (en) 2015-10-12 2017-04-19 Agfa Graphics Nv An entry sheet for perforating electric boards such as printed circuit boards
EP3170662B1 (en) 2015-11-20 2019-08-14 Agfa Nv A lithographic printing plate precursor
EP3429864A1 (en) 2016-03-16 2019-01-23 Agfa Nv Method and apparatus for processing a lithographic printing plate
EP3239184A1 (en) 2016-04-25 2017-11-01 Agfa Graphics NV Thermoplastic polymer particles and a lithographic printing plate precursor
EP3548970A1 (en) 2016-12-01 2019-10-09 Agfa Nv Method of making a lithographic printing plate precursor containing a diazonium compound
CN111051981B (en) 2017-08-25 2024-04-09 富士胶片株式会社 Negative-working lithographic printing plate precursor and method for producing lithographic printing plate
EP3715140A1 (en) 2019-03-29 2020-09-30 Agfa Nv A method of printing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882153A (en) * 1954-02-04 1959-04-14 Polychrome Corp Planographic printing plate
US2882152A (en) * 1957-06-21 1959-04-14 Malon H Dickerson High speed developers
US3902976A (en) * 1974-10-01 1975-09-02 S O Litho Corp Corrosion and abrasion resistant aluminum and aluminum alloy plates particularly useful as support members for photolithographic plates and the like
DE3232485A1 (en) * 1982-09-01 1984-03-01 Hoechst Ag, 6230 Frankfurt METHOD FOR TREATING ALUMINUM OXIDE LAYERS WITH AQUEOUS SOLUTIONS CONTAINING ALKALISILICATE AND THE USE THEREOF IN THE PRODUCTION OF OFFSET PRINT PLATE CARRIERS
DE3406102A1 (en) * 1984-02-21 1985-08-22 Hoechst Ag, 6230 Frankfurt METHOD FOR TREATING ALUMINUM OXIDE LAYERS WITH AQUEOUS SOLUTIONS CONTAINING ALKALIMETAL SILICATE AND THE USE THEREOF IN THE PRODUCTION OF OFFSET PRINT PLATE CARRIERS

Also Published As

Publication number Publication date
JPH07316882A (en) 1995-12-05
EP0683248A1 (en) 1995-11-22
US5770315A (en) 1998-06-23
US5556531A (en) 1996-09-17
BR9502487A (en) 1995-12-19
DE4417907A1 (en) 1995-11-23
KR950032719A (en) 1995-12-22
ATE161297T1 (en) 1998-01-15
DE59501119D1 (en) 1998-01-29

Similar Documents

Publication Publication Date Title
EP0683248B1 (en) Process for the after-treatment of plates, foils or strips and its application as substrate for offset printing plates
DE3012135C2 (en) Support for lithographic printing plates, process for its manufacture and its use in the manufacture of presensitized printing plates
DE3150278C2 (en) Process for the production of a steel substrate for planographic printing plates
EP0121880B1 (en) Two-step process for the production of anodically oxidized flat materials of aluminium, and their use in the preparation of offset printing plates
EP0105170B1 (en) Process for the after treatment of aluminium oxide layers with aqueous solutions containing alkali silicate, and its application during the manufacture of supports for offset printing plates
EP0089510B1 (en) Aluminium material with a hydrophilic surface layer, method for its production and its use as a base for offset printing plates
EP0069320A1 (en) Lithographic plate support materials with hydrophilic properties, processes for their manufacture and their use
DE1671614B2 (en) LITHOGRAPHIC PRINTING PLATE AND METHOD OF MANUFACTURING IT
DE2251382A1 (en) METHOD FOR MANUFACTURING ALUMINUM CARRIERS
DE3030815A1 (en) ELECTROLYTIC GRIT PROCESS
EP0050216B1 (en) Process for the anodic oxidation of aluminium and its use as a bearer of printing plates
EP0268790B1 (en) Process for electrochemically modifying support materials of aluminum or aluminum alloys, which have been grained in a multi-stage process and use of these materials in the manufacture of offset-printing plates
DE1238048B (en) Process for making lithographic planographic printing plates
EP0043991B1 (en) Method of burning-in light-sensitive layers in the production of printing plates
DE3222967A1 (en) METHOD FOR REMOVING MODIFICATION OF ELECTROCHEMICALLY Roughened SUPPORT MATERIALS MADE OF ALUMINUM AND THE USE THEREOF IN THE PRODUCTION OF OFFSET PRINTING PLATES
EP0139111B1 (en) Process for two step anodic oxidation of aluminium carrier materials for offset printing plates
DE69818204T2 (en) Method for producing an aluminum support for a planographic printing plate
EP0141056B1 (en) Process for the single step anodic oxidation of aluminium substrates for offset printing plates
DE2328606A1 (en) PROCESS FOR PREPARING ALUMINUM FOR THE MANUFACTURE OF LITHOGRAPHIC PLATES
DE3206469A1 (en) METHOD FOR THE PRODUCTION OF CARRIER MATERIALS FOR OFFSET PRINTING PLATES
EP0269851B1 (en) Aluminium or aluminium alloy based carrier materials for offset printing plates, and process for manufacturing them
DE2729391C2 (en) Lithographic planographic printing plate and method for making the same
DE1956795A1 (en) Process for the production of offset printing plates from anodized aluminum
DE69938214T2 (en) Support for a lithographic printing plate
EP0161461A2 (en) Process for the anodic oxidation of aluminium and its use as a support material for offset printing plates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19960522

17Q First examination report despatched

Effective date: 19961017

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGFA-GEVAERT AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 161297

Country of ref document: AT

Date of ref document: 19980115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59501119

Country of ref document: DE

Date of ref document: 19980129

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980216

ITF It: translation for a ep patent filed
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980414

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980513

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980518

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980520

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990515

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 19990531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050515