EP0662506B1 - Process and apparatus for cooling rough gas from partial oxidation - Google Patents
Process and apparatus for cooling rough gas from partial oxidation Download PDFInfo
- Publication number
- EP0662506B1 EP0662506B1 EP94114403A EP94114403A EP0662506B1 EP 0662506 B1 EP0662506 B1 EP 0662506B1 EP 94114403 A EP94114403 A EP 94114403A EP 94114403 A EP94114403 A EP 94114403A EP 0662506 B1 EP0662506 B1 EP 0662506B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- crude gas
- cooling fluid
- quenching space
- space
- gas duct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 16
- 230000003647 oxidation Effects 0.000 title claims description 11
- 238000007254 oxidation reaction Methods 0.000 title claims description 11
- 238000001816 cooling Methods 0.000 title claims description 8
- 239000007789 gas Substances 0.000 claims description 100
- 238000010791 quenching Methods 0.000 claims description 91
- 239000012809 cooling fluid Substances 0.000 claims description 23
- 230000000171 quenching effect Effects 0.000 claims description 23
- 239000002893 slag Substances 0.000 claims description 18
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 238000002309 gasification Methods 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/04—Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/466—Entrained flow processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/48—Apparatus; Plants
- C10J3/52—Ash-removing devices
- C10J3/526—Ash-removing devices for entrained flow gasifiers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/78—High-pressure apparatus
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/82—Gas withdrawal means
- C10J3/84—Gas withdrawal means with means for removing dust or tar from the gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/82—Gas withdrawal means
- C10J3/84—Gas withdrawal means with means for removing dust or tar from the gas
- C10J3/845—Quench rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/08—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28C—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
- F28C3/00—Other direct-contact heat-exchange apparatus
- F28C3/02—Other direct-contact heat-exchange apparatus the heat-exchange media both being gases or vapours
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/093—Coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0956—Air or oxygen enriched air
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0959—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0973—Water
- C10J2300/0979—Water as supercritical steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0075—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems
Definitions
- the invention relates to a method for cooling raw gas, by partial oxidation from fine-grained to dusty Fuels in an entrained-flow gasifier in the presence of oxygen and / or air and water vapor Pressures up to 100 bar and temperatures above the Slag melting point is obtained, the raw gas in a vertical raw gas duct with a gaseous or vaporous one Quenching cooling fluid, which is in an annular, vertically downward flow in the Area of the raw gas duct near the wall is introduced into the raw gas duct becomes.
- the invention also relates to a raw gas duct to carry out the procedure.
- the gasification temperatures are in the range from approx. 1500 ° C to approx. 2000 ° C.
- the generated Partial oxidation raw gas flows through the so-called raw gas channel. it cools down through chemical reactions as well by dissipating heat to the cooled walls of the Raw gas channel. This is usually used as the raw gas duct designated that area. the one from the reactor shaft located above the burner level the gasification reactor and the itself immediately following, usually as Radiation cooler pipe section exists, Depending on the height and cooling of the raw gas duct stand behind this temperature of the partial oxidation raw gas between 800 and 1600 ° C on.
- the gas is then used for further cooling to the raw gas duct in a convection cooler or a combined radiation-convection heat exchanger initiated.
- That in the gasification reactor generated partial oxidation raw gas contains however constituent parts that result from the sinking
- caking or deposits can form from sticky or molten ash or slag particles consist. Because of these caking or deposits, that with conventional means only very much gas flow are difficult to remove and impaired heat dissipation from the gas or even completely prevented under certain circumstances.
- the hot one Raw gas flow in the area of the raw gas channel behind the gasification reactor with a lower one Gaseous or vaporous temperature Mix cooling fluid.
- This process which in referred to as quenching by experts with returned cold product gas, another, the desired gas composition is not negatively influencing gas or with water vapor be performed.
- the cooling fluid has an annular channel from top to bottom and occurs in the area where the raw gas channel to the Carburetor connects into the raw gas duct.
- the cooling fluid then flows as a ring flow near the wall in direct current the raw gas to be cooled upwards, the cooling fluid contact of sticky particles of the raw gas with the wall surface prevent the raw gas channel.
- the cooling effect of the quench gas in the known flow control is through indirect cooling supports the wall surface of the raw gas duct.
- the invention is therefore based on the object of a method with the characteristics described above to further develop that, on the one hand, malfunctions due to the formation of deposits is avoided as far as possible be and that on the other hand to carry out the process a raw gas duct that is as simple as possible without disruptive Internals can be used.
- the raw gas channel consists of the one above the burner level of the gasification reactor Reactor shaft 1, to which immediately the lower one above the gasification reactor Quench room 2 connects.
- the lower quench room merges into the upper quench room 3, whose However, the diameter is smaller than the diameter of the lower quench chamber 2.
- the introduction of the quench gas serving as the cooling fluid via the ring channel 4 in the area near the wall upper quench chamber 3.
- To the upper quench chamber 3 closes the radiation cooler Pipe section 5 through which the raw gas channel with the downstream one, in the figure not shown convection cooler or one combined cooler-heat exchanger in connection stands.
- the device When operating the device according to the invention flows through the ring channel 4 introduced Quench gas initially in the area near the wall the upper quench chamber 3 vertically downwards and thus gets into the lower one Quench chamber 2, the diameter of which is larger than the diameter of the upper quench chamber 3.
- the Enlargement of the diameter in the quench chamber 2 is chosen so that thereby under Influence of the upward flowing partial oxidation raw gas the downward flow of the quench gas reversed and thus penetration of quench gas in the reactor shaft 1 is avoided. Rather, the quench gas arrives together with that from the reactor shaft 1 emerging and upward flowing partial oxidation raw gas in the pipe section 5, in which both Gases mixed together and continuing at the same time be cooled.
- the direction of flow of the gases is marked by the arrows in the illustration.
- Quench gas prevents the slag layer 6 out of the lower quench chamber 2 can grow into the upper quench chamber 3.
- the slag layer 6 can still be parallel to Downward flow of quench gas grow and thus form a cone-shaped deposit 7. This However growth is interrupted at the point at which the speed of the downward flowing Quench gas too small and its temperature become too high to melt the die cone-shaped deposit forming slag prevent. Because under certain operating conditions, namely relatively low gasification temperature and high ash melting point of the used Coal, the temperature in the lower quench room 2 may be too low to be cone-shaped Deposits 7 melt and their growth to prevent it in these circumstances expedient if the quench gas supply via the Ring channel 4 periodically interrupted for a short time becomes.
- the quench gas supply can either be completely interrupted or the quench gas is wholly or partly via special induction facilities, the ones in the illustration are not closer are shown. in a preferably oblique downward flow in the upper Quench room 3 initiated. This possibility is in the figure indicated by the arrows 8. In principle, it is of course also possible in this Trap the quench gas inlet in a horizontal or diagonally upward flow to make.
- the quench gas with a digestion that is, with a speed component in the circumferential direction
- the required swirl of the Quench gas can be achieved in this way, for example be that the quench gas contrary to the illustration not from above in the illustration, but is introduced tangentially into the ring channel 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Industrial Gases (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Kühlung von Rohgas, das durch Partialoxidation von feinkörnigen bis staubförmigen Brennstoffen in einem Flugstromvergaser in Gegenwart von Sauerstoff und/oder Luft sowie Wasserdampf bei Drücken bis zu 100 bar und Temperaturen oberhalb des Schlackeschmelzpunktes gewonnen wird, wobei das Rohgas in einem vertikalen Rohgaskanal mit einem gas- oder dampfförmigen Kühlfluid gequencht wird, welches in einer ringförmigen, senkrecht nach unten gerichteten Strömung im wandnahen Bereich des Rohgaskanales in den Rohgaskanal eingeleitet wird. Gegenstand der Erfindung ist ferner ein Rohgaskanal zur Durchführung des Verfahrens.The invention relates to a method for cooling raw gas, by partial oxidation from fine-grained to dusty Fuels in an entrained-flow gasifier in the presence of oxygen and / or air and water vapor Pressures up to 100 bar and temperatures above the Slag melting point is obtained, the raw gas in a vertical raw gas duct with a gaseous or vaporous one Quenching cooling fluid, which is in an annular, vertically downward flow in the Area of the raw gas duct near the wall is introduced into the raw gas duct becomes. The invention also relates to a raw gas duct to carry out the procedure.
Bei der Vergasung (Partialoxidation) von feinkörnigen bis staubförmigen Brennstoffen unter den vorstehend skizzierten Bedingungen liegen die Vergasungstemperaturen im Bereich von ca. 1500 °C bis ca. 2000 °C. Während das erzeugte Partialoxidations-rohgas den sogenannten Rohgaskanal durchstromt. kühlt es sich durch chemische Reaktionen sowie durch Wärmeabgabe an die gekühlten Wände des Rohgaskanals ab. Als Rohgaskanal wird dabei normalerweise jener Bereich bezeichnet. der aus dem oberhalb der Brennerebene befindlichen Reaktorschacht des Vergasungsreaktors sowie dem sich daran unmittelbar anschließenden, in der Regel als Strahlungskühler ausgebildeten Rohrstück besteht, Je nach Bauhöhe und Kühlung des Rohgaskanales stellen sich hinter diesem Temperaturen des Partialoxidationsrohgases zwischen 800 und 1600 °C ein. Zur weiteren Kühlung wird das Gas im Anschluß an den Rohgaskanal in einen Konvektionskühler oder einen kombinierten Strahlungs-Konvektions-Wärmeaustauscher eingeleitet. Das im Vergasungsreaktor erzeugte Partialoxidationsrohgas enthält jedoch Bestandteile, die sich infolge der absinkenden Gastemperatur aus dem Rohgasstrom abscheiden und die sowohl an den Wänden des Rohgaskanales als auch an den nachgeschalteten Kühleinrichtungen Anbackungen bzw. Ablagerungen bilden können, die aus klebrigen bzw. schmelzflüssigen Asche- bzw. Schlackepartikeln bestehen. Durch diese Anbackungen bzw. Ablagerungen, die mit herkömmlichen Mitteln nur sehr schwer zu entfernen sind, werden die Gasströmung und die Wärmeabfuhr aus dem Gas beeinträchtigt oder unter Umständen sogar vollständig verhindert. Es ist deshalb erforderlich, den Rohgasstrom möglichst unmittelbar hinter dem Vergasungsreaktor in geeigneter Weise soweit abzukühlen, daß die im Rohgas befindlichen der Asche- und Schlackepartikel keine Anbackungen an den Wänden bilden. Zu diesem Zweck ist es bereits bekannt, den Heißen Rohgasstrom im Bereich des Rohgaskanales hinter dem Vergasungsreaktor mit einem eine niedrigere Temperatur aufweisenden gas- oder dampfförmigen Kühlfluid zu mischen. Dieser Vorgang, der in der Fachwelt als Quenchen bezeichnet wird, kann mit zurückgeführtem kalten Produktgas, einem anderen, die gewünschte Gaszusammensetzung nicht negativ beeinflussenden Gas oder mit Wasserdampf durchgeführt werden. In Verfolgung dieser Aufgabe sind bereits in der Vergangenheit unterschiedliche Vorschläge unterbreitet worden, bei denen eine Zuführung des Kühlfluids in Teilströmen über im Mantel des Rohgaskanales befindliche Eintrittsöffnungen oder über Ringspalte vorgesehen ist, wobei die Quenchgaseinspeisung entweder waagerecht oder gleichläufig zum aufwärts strömenden Rohgas erfolgt. Es hat sich allerdings gezeigt, daß hierbei unter ungünstigen Bedingungen die Bildung von Anbackungen bzw. Ablagerungen nicht vermieden werden kann. Diese können dabei unter ungünstigen Bedingungen bis in den Quenchbereich des Rohgaskanales hineinwachsen und dort den Eintritt des Quenchgases in den Rohgaskanal beeinträchtigen. so daß die Funktionsfähigkeit des Quenchprozesses erheblich gestört ist. Beim plötzlichen Auftreten von Druckschwankungen kann es außerdem zum Ablösen einzelner Schlackebrocken kommen, die dann in die Quenchgaszuführungskanäle gelangen und dort liegen bleiben können. Diese Gefahr ist insbesondere bei einer waagerechten Quenchgaseinspeisung gegeben. Wegen der plastischen Oberfläche, die die Ablagerungen auf der dem Rohgasstrom zugewendeten Heißen Seite aufweisen, sind dieselben mit den üblichen mechanischen Abreinigungsvorrichtungen nur sehr schwer zu entfernen.In gasification (partial oxidation) from fine-grained to dusty fuels among those outlined above Conditions the gasification temperatures are in the range from approx. 1500 ° C to approx. 2000 ° C. While the generated Partial oxidation raw gas flows through the so-called raw gas channel. it cools down through chemical reactions as well by dissipating heat to the cooled walls of the Raw gas channel. This is usually used as the raw gas duct designated that area. the one from the reactor shaft located above the burner level the gasification reactor and the itself immediately following, usually as Radiation cooler pipe section exists, Depending on the height and cooling of the raw gas duct stand behind this temperature of the partial oxidation raw gas between 800 and 1600 ° C on. The gas is then used for further cooling to the raw gas duct in a convection cooler or a combined radiation-convection heat exchanger initiated. That in the gasification reactor generated partial oxidation raw gas contains however constituent parts that result from the sinking Separate the gas temperature from the raw gas stream and both on the walls of the Raw gas channels as well as on the downstream Cooling devices caking or deposits can form from sticky or molten ash or slag particles consist. Because of these caking or deposits, that with conventional means only very much gas flow are difficult to remove and impaired heat dissipation from the gas or even completely prevented under certain circumstances. It is therefore necessary to have the raw gas flow as possible immediately behind the gasification reactor in cool appropriately to the extent that the The ash and slag particles are found in the raw gas no caking on the walls. To for this purpose it is already known, the hot one Raw gas flow in the area of the raw gas channel behind the gasification reactor with a lower one Gaseous or vaporous temperature Mix cooling fluid. This process, which in referred to as quenching by experts with returned cold product gas, another, the desired gas composition is not negatively influencing gas or with water vapor be performed. In pursuit of this Tasks have been different in the past Proposals have been made at which a supply of the cooling fluid in partial flows via inlet openings located in the jacket of the raw gas channel or provided via annular gaps is, the quench gas feed either horizontal or parallel to the upward flowing Raw gas takes place. However, it has been shown that here under unfavorable conditions the formation of caking or deposits cannot be avoided. They can do this under unfavorable conditions until Grow the quench area of the raw gas channel and there the entry of the quench gas into the raw gas channel affect. so that the functionality the quench process is significantly disturbed. When pressure fluctuations occur suddenly it can also be used to replace individual Slag chunks come into the Quench gas supply channels reach and lie there can stay. This danger is special given a horizontal quench gas feed. Because of the plastic surface that the Deposits on the raw gas flow Have hot side, they are the same the usual mechanical cleaning devices very difficult to remove.
Aus der DE-OS 38 08 729 ist ferner ein Vorschlag bekannt, bei dem ein Teil des Kühlfluids radial über den Mantel des Rohgaskanals in den Rohgasstrom eingeleitet wird, während die Zuführung des anderen Teiles des Kühlfluids über ein axial im Rohgaskanal angeordnetes Quenchrohr entgegen der Strömungsrichtung des Rohgasstromes erfolgt. Diese Arbeitsweise setzt also immer das Vorhandensein eines entsprechend angeordneten Quenchrohres im Rohgaskanal voraus. Eine derartige Konstruktion dürfte jedoch unter strömungstechnischen Gesichtspunkten nicht als unproblematisch anzusehen sein. From DE-OS 38 08 729 is also a proposal known in which part of the cooling fluid radially over the jacket of the raw gas channel in the Raw gas flow is introduced while the feed the other part of the cooling fluid over a Quench tube arranged axially in the raw gas duct against the flow direction of the raw gas flow he follows. This way of working always sets the presence of an appropriately arranged Quench tube in the raw gas channel ahead. A such construction, however, is likely to be under fluidic Considerations not as unproblematic to be seen.
Bei einem aus EP-A-0 171 351 bekannten Verfahren durchströmt das Kühlfluid einen Ringkanal von oben nach unten und tritt in dem Bereich, in dem der Rohgaskanal an den Vergaser anschließt, in den Rohgaskanal ein. Das Kühlfluid strömt dann als wandnahe Ringströmung im Gleichstrom mit dem zu kühlenden Rohgas nach oben, wobei das Kühlfluid einen Kontakt klebriger Teilchen des Rohgases mit der Wandfläche des Rohgaskanales verhindern soll. Die Kühlwirkung des Quenchgases bei der bekannten Strömungsführung wird durch eine indirekte Kühlung der Wandfläche des Rohgaskanales unterstützt.In a process known from EP-A-0 171 351 the cooling fluid has an annular channel from top to bottom and occurs in the area where the raw gas channel to the Carburetor connects into the raw gas duct. The cooling fluid then flows as a ring flow near the wall in direct current the raw gas to be cooled upwards, the cooling fluid contact of sticky particles of the raw gas with the wall surface prevent the raw gas channel. The cooling effect of the quench gas in the known flow control is through indirect cooling supports the wall surface of the raw gas duct.
Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren mit den eingangs beschriebenen Merkmalen dahingehend weiterzuentwickeln, daß einerseits Betriebsstörungen durch die Bildung von Ablagerungen möglichst weitgehend vermieden werden und daß andererseits zur Durchführung des Verfahrens ein möglichst einfach gestalteter Rohgaskanal ohne störende Einbauten verwendet werden kann.The invention is therefore based on the object of a method with the characteristics described above to further develop that, on the one hand, malfunctions due to the formation of deposits is avoided as far as possible be and that on the other hand to carry out the process a raw gas duct that is as simple as possible without disruptive Internals can be used.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das
Kühlfluid in einen oberen Quenchraum des Rohgaskanales
eingeleitet wird, im wandnahen Bereich des oberen Quenchraumes
im Gegenstrom zum Rohgas nach unten strömt und in
einen unteren Quenchraum des Rohgaskanales gelangt, dessen
Durchmesser größer ist als der Durchmesser des oberen
Quenchraumes, wobei die Vergrößerung des Durchmessers im
Quenchraum so gewählt wird,
Weitere Einzelheiten des erfindungsgemäßen Verfahrens ergeben sich aus den Unteransprüchen 2 bis 4.Further details of the method according to the invention result resulting from subclaims 2 to 4.
Gegenstand der Erfindung ist ferner ein Rohgaskanal zur
Durchführung des Verfahrens, mit
Im folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung ausführlicher erläutert. Die einzige Figur zeigt einen Schnitt durch eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens. In the following, the invention is based on only one Embodiment representing drawing in more detail explained. The only figure shows a section through a Device for performing the method according to the invention.
Bei der in der Abbildung dargestellten Vorrichtung
besteht der Rohgaskanal aus dem oberhalb
der Brennerebene des Vergasungsreaktors befindlichen
Reaktorschacht 1, an den sich unmittelbar
oberhalb des Vergasungsreaktors der untere
Quenchraum 2 anschließt. Der untere Quenchraum
geht in den oberen Quenchraum 3 über, dessen
Durchmesser jedoch kleiner als der Durchmesser
des unteren Quenchraumes 2 ist. Die Einleitung
des als Kühlfluid dienenden Quenchgases erfolgt
über den Ringkanal 4 im wandnahen Bereich des
oberen Quenchraumes 3. An den oberen Quenchraum
3 schließt sich das als Strahlungskühler ausgebildete
Rohrstück 5 an, durch das der Rohgaskanal
mit dem nachgeschalteten, in der Abbildung
nicht dargestellten Konvektionskühler bzw. einem
kombinierten Kühler-Wärmetauscher in Verbindung
steht. Beim Betrieb der erfindungsgemäßen Vorrichtung
strömt das durch den Ringkanal 4 eingeleitete
Quenchgas zunächst im wandnahen Bereich
des oberen Quenchraumes 3 senkrecht nach unten
und gelangt auf diese Weise in den unteren
Quenchraum 2, dessen Durchmesser größer ist als
der Durchmesser des oberen Quenchraumes 3. Die
Vergrößerung des Durchmessers im Quenchraum
2 wird dabei so gewählt, daß dadurch unter dem
Einfluß des nach oben strömenden Partialoxidationsrohgases
die nach unten gerichtete Strömung
des Quenchgases umgekehrt und damit ein Eindringen
von Quenchgas in den Reaktorschacht 1
vermieden wird. Das Quenchgas gelangt vielmehr
zusammen mit dem aus dem Reaktorschacht 1
austretenden und nach oben strömenden Partialoxidationsrohgas
in das Rohrstück 5, in dem beide
Gase miteinander vermischt und gleichzeitig weiter
gekühlt werden. Die Strömungsrichtung der Gase
ist in der Abbildung durch die Pfeile markiert. Ein
weiterer Gesichtspunkt, der bei der Bemessung der
Differenz der Durchmesser von oberem und unterem
Quenchraunn berücksichtigt werden muß, ist die
Tatsache, daß diese Differenz in jedem Falle größer
sein muß als die Dicke der Schlackenschicht 6,
die sich im unteren Bereich des Rohgaskanales an
den Wänden absetzt. In der Praxis ist davon auszugehen,
daß den vorstehend beschriebenen Bedingungen
Rechnung getragen wird, wenn der
Durchmesser des oberen Quenchraumes 3 zwischen
10 und 100 cm kleiner ist als der Durchmesser
des unteren Quenchraumes 2.In the device shown in the figure
the raw gas channel consists of the one above
the burner level of the gasification reactor
Reactor shaft 1, to which immediately
the lower one above the gasification reactor
Quench room 2 connects. The lower quench room
merges into the upper quench room 3, whose
However, the diameter is smaller than the diameter
of the lower quench chamber 2. The introduction
of the quench gas serving as the cooling fluid
via the ring channel 4 in the area near the wall
upper quench chamber 3. To the upper quench chamber
3 closes the radiation cooler
Pipe section 5 through which the raw gas channel
with the downstream one, in the figure
not shown convection cooler or one
combined cooler-heat exchanger in connection
stands. When operating the device according to the invention
flows through the ring channel 4 introduced
Quench gas initially in the area near the wall
the upper quench chamber 3 vertically downwards
and thus gets into the lower one
Quench chamber 2, the diameter of which is larger than
the diameter of the upper quench chamber 3. The
Enlargement of the diameter in the quench chamber
2 is chosen so that thereby under
Influence of the upward flowing partial oxidation raw gas
the downward flow
of the quench gas reversed and thus penetration
of quench gas in the reactor shaft 1
is avoided. Rather, the quench gas arrives
together with that from the reactor shaft 1
emerging and upward flowing partial oxidation raw gas
in the pipe section 5, in which both
Gases mixed together and continuing at the same time
be cooled. The direction of flow of the gases
is marked by the arrows in the illustration. A
Another point of view when designing the
Difference in the diameter of the upper and lower
Quenchraunn must be taken into account
Fact that this difference is larger in any case
must be than the thickness of the
Durch die erfindungsgemäße Einleitung des
Quenchgases wird verhindert, daß die Schlackenschicht
6 aus dem unteren Quenchraum 2 heraus
in den oberen Quenchraum 3 hineinwachsen kann.
Die Schlackenschicht 6 kann zwar noch parallel zur
Abwärtsströmung des Quenchgases wachsen und
so eine zapfenförmige Ablagerung 7 bilden. Dieses
Wachstum wird jedoch an der Stelle unterbrochen,
an der die Geschwindigkeit des abwärts strömenden
Quenchgases zu klein und dessen Temperatur
zu hoch werden, um das Aufschmelzen der die
zapfenförmige Ablagerung bildenden Schlacke zu
verhindern. Da bei bestimmten Betriebsbedingungen,
nämlich relativ niedriger Vergasungstemperatur
und hohem Ascheschmelzpunkt der eingesetzten
Kohle, die Temperatur im unteren Quenchraum
2 zu niedrig sein kann, um die zapfenförmigen
Ablagerungen 7 abzuschmelzen und deren Wachstum
zu verhindern, ist es unter diesen Umständen
zweckmäßige, wenn die Quenchgaszufuhr über den
Ringkanal 4 periodisch für kurze Zeit unterbrochen
wird. Die dadurch bedingte Temperaturerhöhung
im unteren Quenchraum 2 bewirkt dann ein Aufschmelzen
der Ablagerungen. Während dieses
Zeitraumes kann die Quenchgaszufuhr entweder
ganz unterbrochen werden oder das Quenchgas
wird ganz oder teilweise über besondere Einleitungseinrichtungen,
die in der Abbildung nicht näher
dargestellt sind. in einer vorzugsweise schräg
nach unten gerichteten Strömung in den oberen
Quenchraum 3 eingeleitet. Diese Möglichkeit ist in
der Abbildung durch die Pfeile 8 angedeutet.
Grundzätzlich ist es natürlich auch möglich, in diesem
Falle die Quenchgaseinleitung in einer waagerechten
oder schräg nach oben gerichteten Strömung
vorzunehmen.Through the initiation of the invention
Quench gas prevents the
Im Eingangsbereich des Rohrstückes 5 kann es unter Umständen wegen der intensiven Turbulenz der Gasströmung und der noch nicht ausgeglichenen Temperaturdifferenz zwischen dem Partialoxidationsrohgas und dem Quenchgas zu einer verstärkten Verschmutzung kommen. Um dies möglichts weitgehend zu vermeiden, kann es zweckmäßig sein, wenn das Quenchgas mit einer Verdrailung, das heißt mit einer Geschwindigkeitskomponente in der Umfangsrichtung, in den Rohgaskanal eingeleitet wird. Die erforderliche Verdrallung des Quenchgases kann beispielsweise dadurch erzielt werden, daß das Quenchgas entgegen der Darstellung in der Abbildung nicht von oben, sondern tangential in den Ringkanal 4 eingeleitet wird.In the entrance area of the pipe section 5 can it may be because of the intense turbulence the gas flow and the not yet balanced Temperature difference between the partial oxidation raw gas and the quench gas to an enhanced one Pollution coming. To do this To a large extent to avoid it may be appropriate be when the quench gas with a digestion, that is, with a speed component in the circumferential direction, in the raw gas channel is initiated. The required swirl of the Quench gas can be achieved in this way, for example be that the quench gas contrary to the illustration not from above in the illustration, but is introduced tangentially into the ring channel 4.
Selbstverständlich kann bei der erfindungsgemäßen Vorrichtung die Reinigung der Wandflächen im Bedarfsfalle auch durch mechanische Abreinigungsvorrichtungen, wie z.B. Klopfer, unterstützt werden, die sowohl an der Außenwand der beiden Quenchräume (2 und 3) als auch an der Außenwand des Rohrstückes 5 angebracht sein können. Diese Abreinigungsvorrichtungen sind in der Abbildung ebensowenig dargestellt wie eine Dehnungsfuge, die zum Ausgleich der unterschiedlichen Wärmedehnungen im Bereich des oberen Quenchraumes 3 angeordnet sein kann. Of course, with the invention Device for cleaning the wall surfaces if necessary also by mechanical cleaning devices, such as. Knocker, supports be both on the outside wall of the two Quench rooms (2 and 3) as well as on the outer wall of the pipe section 5 can be attached. These cleaning devices are shown in the picture just as little represented as an expansion joint, those to balance the different Thermal expansion in the area of the upper quench chamber 3 can be arranged.
Die mit der vorliegenden Erfindung zu erzieltenden Vorteile lassen sich wie folgt zusammenfassen:
- Ein die Funktionsfähigkeit des Quenchens beeinträchtigendes Wachstum der Schlackeschicht im Quenchbereich des Rohgaskanales wird verhindert;
- in der erfindungsgemäßen Vorrichtung ist keine Fläche vorhanden, auf der sich eine Schlackeschicht abstützen kann;
- abfallende Schlackebrocken können nicht in den nach unten offenen Ringkanal 4 gelangen;
- die sich an der Wand des oberen Quenchraumes 3 eventuell abscheidende Schlackeschicht wird durch die wandnahe Strömung des Quenchgases so intensiv gekühlt, daß die relativ kalte Schlackeschicht so spröde wird, daß ihre Entfernung mittels mechanischer Abreinigungsvorrichtungen (Klopier) problemlos möglich ist;
- die für den gewünschten Temperaturausgleich
zwischen Partialoxidationsrohgas und
Quenchgas erforderliche Mischstrecke ist relativ
kurz, weil durch die erfindungsgemäße
Art der Quenchgaseinspeisung eine besonders
vermischungsfördernde Turbulenz beider
Gasströme erzeugt wird.
- 1 Reaktorschacht
- 2 unterer Quenchraum
- 3 oberer Quenchraum
- 4 Ringkanal
- 5 Ronrstück
- 6 Schlackenschicht
- 7 zapfenförmige Ablagerung
- 8 Pfeil
- A growth of the slag layer in the quench area of the raw gas channel which impairs the functionality of the quenching is prevented;
- there is no surface in the device according to the invention on which a slag layer can be supported;
- falling slag lumps cannot get into the downwardly open ring channel 4;
- the slag layer possibly depositing on the wall of the upper quench chamber 3 is cooled so intensely by the flow of the quench gas near the wall that the relatively cold slag layer becomes so brittle that its removal by means of mechanical cleaning devices (Klopier) is possible without any problems;
- the mixing section required for the desired temperature compensation between partial oxidation raw gas and quench gas is relatively short, because the type of quench gas feed according to the invention produces turbulence which promotes particularly mixing of the two gas streams.
- 1 reactor shaft
- 2 lower quench room
- 3 upper quench room
- 4 ring channel
- 5 round piece
- 6 slag layer
- 7 cone-shaped deposit
- 8 arrow
Claims (5)
- A method of cooling crude gas which is obtained by the partial oxidation of fine-grained to pulverulent fuels in a suspension flow gasifier in the presence of oxygen and/or air and of steam at pressures up to 100 bar and temperatures above the melting point of the slag, wherein the crude gas is quenched in a vertical crude gas duct by a cooling fluid which is gaseous or which is in the form of a vapour and which is introduced into the crude gas duct as a vertically downwardly directed annular flow in the region near the wall of the crude gas duct, characterised in that the cooling fluid is introduced into an upper quenching space (3) of the crude gas duct, flows downwards in countercurrent flow to the crude gas in the region near the wall of the upper quenching space (3), and enters a lower quenching space (2) of the crude gas duct, the diameter of which is larger than the diameter of the upper quenching space (3), wherein the enlargement of the diameter in the quenching space is selected so thatthe difference in the diameters of the lower and upper quenching spaces (2, 3) is greater than the thickness of a slag layer (6) which is deposited on the wall area of the lower quenching space (2), andthat the downwardly directed flow of the cooling fluid is reversed under the influence of the upwardly flowing crude gas and the cooling fluid is entrained upwards with the crude gas stream.
- A method according to claim 1, characterised in that the cooling fluid is introduced into the upper quenching space (3) of the crude gas duct with a spiral flow which has a circumferential component of velocity.
- A method according to claims 1 or 2, characterised in that the supply of cooling fluid is periodically stopped for a short period, whereupon the temperature in the lower quenching space rises and icicle-shaped slag deposits (7) which have grown parallel to the downward flow of the cooling fluid are melted off at the transition region between the lower and upper quenching spaces (2,3).
- A method according to claim 3, characterised in that during the stoppage of the vertically downwardly directed supply of cooling fluid, cooling fluid is introduced into the crude gas duct in a stream which is directed obliquely downwards away from the wall surface.
- A crude gas duct for carrying out the method according to any one of claims 1 to 4, havinga lower quenching space (2) attached to a reactor shaft (1),an upper quenching space (3) adjoining the lower quenching space (2), anda pipe section (5) which is attached to the upper quenching space (3) and which protrudes into the upper quenching space (3),
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4340156 | 1993-11-25 | ||
DE4340156A DE4340156A1 (en) | 1993-11-25 | 1993-11-25 | Method and device for cooling partial oxidation raw gas |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0662506A1 EP0662506A1 (en) | 1995-07-12 |
EP0662506B1 true EP0662506B1 (en) | 1999-02-24 |
Family
ID=6503405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94114403A Expired - Lifetime EP0662506B1 (en) | 1993-11-25 | 1994-09-14 | Process and apparatus for cooling rough gas from partial oxidation |
Country Status (4)
Country | Link |
---|---|
US (1) | US5571295A (en) |
EP (1) | EP0662506B1 (en) |
DE (2) | DE4340156A1 (en) |
ES (1) | ES2128476T3 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8960651B2 (en) | 2008-12-04 | 2015-02-24 | Shell Oil Company | Vessel for cooling syngas |
US9051522B2 (en) | 2006-12-01 | 2015-06-09 | Shell Oil Company | Gasification reactor |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10330512B4 (en) * | 2003-07-05 | 2006-11-23 | Sustec Schwarze Pumpe Gmbh | Method and device for preventing deposits in raw gas feedthroughs |
RU2402596C2 (en) | 2005-05-02 | 2010-10-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Procedure for production of synthetic gas and system for implementation of this procedure |
AU2007231719B2 (en) | 2006-11-01 | 2012-02-02 | Air Products And Chemicals, Inc. | Solid carbonaceous feed to liquid process |
DE102007027601A1 (en) * | 2007-06-12 | 2008-12-18 | Uhde Gmbh | Production and cooling of gaseous coal gasification products |
CN101631740A (en) | 2007-11-20 | 2010-01-20 | 国际壳牌研究有限公司 | Process for producing a purified synthesis gas stream |
CN101348735B (en) * | 2008-08-26 | 2012-07-25 | 浙江大学 | Fluidized bed cracking gas purification and coke tar recovery system and method |
EP2334765A2 (en) | 2008-10-08 | 2011-06-22 | Shell Internationale Research Maatschappij B.V. | Process to prepare a gas mixture of hydrogen and carbon monoxide |
CN102264679B (en) | 2008-12-22 | 2014-07-23 | 国际壳牌研究有限公司 | Process to prepare methanol and/or dimethylether |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2971830A (en) * | 1958-06-18 | 1961-02-14 | Sumitomo Chemical Co | Method of gasifying pulverized coal in vortex flow |
NL178134C (en) * | 1974-06-17 | 1986-02-03 | Shell Int Research | METHOD AND APPARATUS FOR TREATING A HOT PRODUCT GAS. |
DE2504060A1 (en) * | 1975-01-31 | 1976-08-05 | Otto & Co Gmbh Dr C | SLAG BATH GENERATOR WORKING UNDER PRESSURE |
DE2710154C2 (en) * | 1977-03-09 | 1982-09-23 | Dr. C. Otto & Comp. Gmbh, 4630 Bochum | Gas generator working under pressure and high temperature |
US4279622A (en) * | 1979-07-13 | 1981-07-21 | Texaco Inc. | Gas-gas quench cooling and solids separation process |
US4466808A (en) * | 1982-04-12 | 1984-08-21 | Texaco Development Corporation | Method of cooling product gases of incomplete combustion containing ash and char which pass through a viscous, sticky phase |
GB8312103D0 (en) * | 1983-05-04 | 1983-06-08 | Shell Int Research | Cooling and purifying hot gas |
US4494963A (en) * | 1983-06-23 | 1985-01-22 | Texaco Development Corporation | Synthesis gas generation apparatus |
US4581899A (en) * | 1984-07-09 | 1986-04-15 | Texaco Inc. | Synthesis gas generation with prevention of deposit formation in exit lines |
DE3427088C2 (en) * | 1984-07-18 | 1987-05-07 | Korf Engineering GmbH, 4000 Düsseldorf | Device for cooling a hot product gas |
DE3808729A1 (en) * | 1988-03-16 | 1989-10-05 | Krupp Koppers Gmbh | METHOD AND DEVICE FOR COOLING THE HOT PRODUCT GAS LEAVING A GASIFICATION REACTOR |
DE3809313A1 (en) * | 1988-03-19 | 1989-10-05 | Krupp Koppers Gmbh | METHOD AND DEVICE FOR COOLING PARTIAL OXIDATION GAS |
DE3816340A1 (en) * | 1988-05-13 | 1989-11-23 | Krupp Koppers Gmbh | METHOD AND DEVICE FOR COOLING A HOT PRODUCT GAS THAT STICKY OR. MELT-LIQUID PARTICLES INCLUDED |
-
1993
- 1993-11-25 DE DE4340156A patent/DE4340156A1/en not_active Withdrawn
-
1994
- 1994-09-14 EP EP94114403A patent/EP0662506B1/en not_active Expired - Lifetime
- 1994-09-14 DE DE59407843T patent/DE59407843D1/en not_active Expired - Fee Related
- 1994-09-14 ES ES94114403T patent/ES2128476T3/en not_active Expired - Lifetime
- 1994-11-22 US US08/343,105 patent/US5571295A/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9051522B2 (en) | 2006-12-01 | 2015-06-09 | Shell Oil Company | Gasification reactor |
US8960651B2 (en) | 2008-12-04 | 2015-02-24 | Shell Oil Company | Vessel for cooling syngas |
Also Published As
Publication number | Publication date |
---|---|
EP0662506A1 (en) | 1995-07-12 |
ES2128476T3 (en) | 1999-05-16 |
US5571295A (en) | 1996-11-05 |
DE59407843D1 (en) | 1999-04-01 |
DE4340156A1 (en) | 1995-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0616023B1 (en) | Gasification apparatus for gasification under pressure of fine particulate fuels | |
DE102011088628B4 (en) | Method and apparatus for entrained flow gasification of solid fuels under pressure | |
DE19714376C1 (en) | Synthesis gas generator with combustion and quench chamber | |
DE3530918C2 (en) | Entrained flow coal dust gasifier | |
DE102007006981B4 (en) | Process, gasification reactor and plant for entrained flow gasification of solid fuels under pressure | |
DE69231941T2 (en) | Process for the treatment of gases and granular solids in a fluidized bed | |
DE3809313A1 (en) | METHOD AND DEVICE FOR COOLING PARTIAL OXIDATION GAS | |
EP0662506B1 (en) | Process and apparatus for cooling rough gas from partial oxidation | |
DE2952065A1 (en) | METHOD FOR DRY COOLING COCKS AND COOKING COOLING DEVICE FOR CARRYING OUT THE METHOD | |
DE2918859A1 (en) | PLANT FOR DEGASSING AND / OR GASIFYING COAL | |
EP0616022B1 (en) | Process for pressure gasification of fine particulate fuels | |
DD299893A7 (en) | DEVICE FOR DISPENSING HOT GAS AND SLAG | |
DE3601786A1 (en) | DEVICE FOR COOLING THE HOT GAS PRODUCTION GAS LEAVING FROM A PRESSURIZED PRESSURE | |
DE3628866C2 (en) | ||
EP0618282B1 (en) | Process for cooling raw gas obtained by gasification | |
EP0632122B1 (en) | Process and device for separating slag droplets from hot gases from combustion or gasification of solid or liquid fuels | |
EP0716138B1 (en) | Device for pressure gasification of fine particulate fuels to obtain a gaseous product | |
EP0433579B1 (en) | Process and apparatus for cooling rough gas from partial oxidation | |
DE2816282C2 (en) | Incinerator with a fluidized bed | |
EP0533866B1 (en) | Process and reduction and melting furnace for producing liquid metal from fine metal oxide particles | |
DE1496428A1 (en) | Method and device for the production of glass beads | |
DE4233724C2 (en) | Process for separating solid particles from hot combustion gases and device for carrying out the process | |
DE4307462C2 (en) | Device for the gasification of fine-grained to dusty fuels and process for their operation | |
DE102013003413A1 (en) | Method and device for separating liquid slag particles | |
DE1421094A1 (en) | Process for gasifying pulverized coal by means of a vortex flow process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR IT NL |
|
17P | Request for examination filed |
Effective date: 19951020 |
|
17Q | First examination report despatched |
Effective date: 19980129 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR IT NL |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 59407843 Country of ref document: DE Date of ref document: 19990401 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2128476 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010827 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010903 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010904 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20010918 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030401 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030603 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20031011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050914 |