[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0659507B1 - Cobalt metal powder and composite sintered article made thereby - Google Patents

Cobalt metal powder and composite sintered article made thereby Download PDF

Info

Publication number
EP0659507B1
EP0659507B1 EP94119399A EP94119399A EP0659507B1 EP 0659507 B1 EP0659507 B1 EP 0659507B1 EP 94119399 A EP94119399 A EP 94119399A EP 94119399 A EP94119399 A EP 94119399A EP 0659507 B1 EP0659507 B1 EP 0659507B1
Authority
EP
European Patent Office
Prior art keywords
metal powder
cobalt metal
cobalt
ppm
atomised
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94119399A
Other languages
German (de)
French (fr)
Other versions
EP0659507A1 (en
Inventor
Matthias Dr. Höhne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Publication of EP0659507A1 publication Critical patent/EP0659507A1/en
Application granted granted Critical
Publication of EP0659507B1 publication Critical patent/EP0659507B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other

Definitions

  • the present invention relates to cobalt metal powder as a binder metal for the Manufacture of diamond and / or hard metal tools and / or wear protection coatings and composite sintered bodies made therefrom.
  • JP-A 53-093 165 discloses the manufacture and use atomize Cobalt metal.
  • the cobalt metal powder is produced by grinding processes not only more expensive, but also contaminated.
  • Cobalt metal powders can be produced quite cheaply by atomization from the melt are produced, but these powders are available as binder metals, e.g. for the Manufacture of diamond tools completely unsuitable because of the spheroidal grain shape and grain size at the usual sintering temperatures between 800-900 ° C no dense composite sintered parts from result in sufficient hardness.
  • the main reason for the inadequate performance properties of hot-pressed composite sintered bodies made of atomized cobalt metal powder is the lack of compressibility of the pre-pressed shaped bodies due to the spheroidal grain shape, the relatively narrow grain size distribution and the coarse primary particles (FIG. 2).
  • the necessary density of at least 8.5 g / cm 3 is also not achieved by hot pressing.
  • Cobalt metal powder with an FSSS value of 3 to 5 ⁇ m so-called 400 mesh powder (Fig. 1) available. This designation is explained by the sieve passage this powder through a 400 mesh sieve.
  • Such powders meet requirements that of the matrix metal for composite materials in terms of hardness and sintered density be put.
  • the so-called 400-mesh powders are quite right high level of impurities. It is generally known that Aluminum, calcium, sodium, magnesium and silicon easily with the oxygen form stable oxides of the cobalt metal powder. These can be in diamond segments cause undesirable porosity.
  • Porosity can reduce the strength of hard metals, if the above impurities as well as sulfur in too high Amounts are included. Cobalt metal powder is therefore used in both applications low levels of impurities are desirable. Depending on the cleaning effort in the metallurgical precursors, the purity of the cobalt metal powder be adapted to requirements. The effort for the production Particularly pure cobalt metal powder is naturally expensive and such Powders are therefore very expensive.
  • This invention relates to a cobalt metal powder Binder metal for the production of diamond and / or hard metal tools and / or wear protection coatings, which is characterized by that it is 20 to 80 wt .-% of an atomized cobalt metal powder with optical determined grain sizes from 5 to 150 microns and the rest missing to 100 wt .-% from an optionally agglomerated cobalt metal powder optically determined primary size of less than 3 microns exists.
  • the cobalt metal powder according to the invention has the price advantage of Oxides or oxygen-containing compounds by reduction of cobalt metal powder obtained on, but contains significantly smaller amounts of the above critical contaminants. It preferably contains less than 20 ppm Al, 20 ppm Ca, 30 ppm Na, 20 ppm Mg, 30 ppm S and 75 ppm Si.
  • the cobalt metal powder according to the invention is a Mixing of atomized cobalt metal powder with fine cobalt powder from the Hydrogen reduction.
  • the amount of atomized cobalt metal powder is preferably 30 to 70% by weight.
  • the atomized cobalt metal powder is both a water atomized cobalt metal powder with predominantly spheroidal habit as well as a gas atomized Cobalt metal powder with spheroidal habit suitable.
  • the cobalt metal powder with a crystalline structure preferably has BET surface areas, determined by the nitrogen 1-point method (DIN 66 131), of greater than 0.8 m 2 / g.
  • the cobalt metal powder according to the invention has a bulk density of less than 1.4 kg / cm 3 .
  • the cobalt metal powder according to the invention is outstandingly suitable for powder metallurgy Manufacture of diamond tools and / or hard metals, in which the cobalt - optionally together with other customary matrix metals - represents the binder phase.
  • Example 1 (mixture 70/30)
  • Fig. 4 clearly shows that large round cobalt particles in addition to fine primary crystals have been preserved in the polished and etched sample.
  • a fine cobalt metal powder obtained from the reduction of cobalt hydroxide with an average grain size of 0.9 ⁇ m, a BET value of 1.85 m 2 / g, sieved through a 100 ⁇ m sieve (bulk density 0.8 g / cm 3 ), was sieved with 0.5 kg of a water-atomized cobalt metal powder (11.7 ⁇ m FSSS) with a BET value of 0.73 m 2 / g, through a 38 ⁇ m sieve (bulk density 3.3 g / cm 3 ), mixed in a "Turbula mixer" for 15 minutes.
  • the resulting mixture had an FSSS value of 1.5 ⁇ m FSSS, a BET value of 1.06 m 2 / g with a bulk density of 0.8 g / cm 3 .
  • a hardness of HR B 100.4 and a density of 8.5 g / cm 3 were measured from a hot-pressed sample plate according to Example 1.
  • Comparative Example 1 (100% water-atomized cobalt metal powder ⁇ 63 ⁇ m):
  • the atomized cobalt metal powder achieve the required minimum density of 8.5 g / cm 3 and the minimum hardness of 98 HRB.
  • Example 5 (100% water-atomized cobalt metal powder ⁇ 38 ⁇ m):
  • Table 1 summarizes the data from Examples 1 to 3 and the comparative data for the 400-mesh cobalt powder and the atomized powder (according to the prior art).
  • Example 5 Mixture from example 1 (70/30) Mixture from example 2 (60/40) Mixture from example 3 (50/50) Co 400 mesh St.dT 830 8.1 g / cm 3 8.54 g / cm 3 8.54 g / cm 3 8.5 g / cm 3 8.45 80 HR B 101.6 HR B 101.2 HR B 100 HR B 97.7 HR B
  • Impurities 400-mesh cobalt 400-mesh cobalt metal powder ("Cobalt Powder 400-mesh” from Hoboken Overpelt, Belgium)) and mixtures according to Examples 1, 2 and 3 according to the invention: Impurities 400 mesh-Co (100/0) Mixture example 1 (70/30) Mixture example 2 (60/40) Mixture example 3 (50/50) Al (ppm) 180 6 7 6 Ca (ppm) 320 12th 12th 13 Na (ppm) 55 25th 22 9 Mg (ppm) 150 8th 8th 3rd S (ppm) 140 13 14 15 Si (ppm) 310 34 36 41

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The invention relates to cobalt metal powders as a binder metal for the production of diamond and/or hard-metal tools and/or wear-resistant coatings and to composite sintered articles produced therefrom.

Description

Die vorliegende Erfindung betrifft Kobaltmetallpulver als Bindermetall für die Herstellung von Diamant- und/oder Hartmetallwerkzeugen und/oder Verschleißschutzbeschichtungen sowie daraus hergestellte Verbundsinterkörper.The present invention relates to cobalt metal powder as a binder metal for the Manufacture of diamond and / or hard metal tools and / or wear protection coatings and composite sintered bodies made therefrom.

Es ist bekannt, Kobaltmetallpulver durch Verdüsen des geschmolzenen Metalls herzustellen. Die JP-A 53-093 165 offenbart die Herstellung und Verwendung verdüsten Kobaltmetalls. Hierbei wird das Rohprodukt nach der Verdüsung durch Mahlen und Schocktempern nachbearbeitet, um ein gewünschtes hexagonal/kubisches Phasenverhältnis zu erreichen. Durch Mahlprozesse werden die Kobaltmetallpulver nicht nur verteuert, sondern auch zusätzlich verunreinigt.It is known to powder cobalt metal by atomizing the molten metal to manufacture. JP-A 53-093 165 discloses the manufacture and use atomize Cobalt metal. Here, the raw product after the atomization Milling and shock annealing post-processed to a desired hexagonal / cubic To achieve phase relationship. The cobalt metal powder is produced by grinding processes not only more expensive, but also contaminated.

Kobaltmetallpulver könen zwar durch Verdüsen aus der Schmelze recht kostengünstig hergestellt werden, diese Pulver sind jedoch als Bindermetalle, z.B. für die Herstellung von Diamantwerkzeugen völlig ungeeignet, da sie auf Grund der sphäroidischen Kornform und der Korngröße bei den anwendungsüblichen Sintertemperaturen zwischen 800-900°C keine dichten Verbundsinterteile von genügender Härte ergeben.Cobalt metal powders can be produced quite cheaply by atomization from the melt are produced, but these powders are available as binder metals, e.g. for the Manufacture of diamond tools completely unsuitable because of the spheroidal grain shape and grain size at the usual sintering temperatures between 800-900 ° C no dense composite sintered parts from result in sufficient hardness.

Hauptursache für die unzureichenden Gebrauchseigenschaften heißgepreßter Verbundsinterkörper aus verdüstem Kobaltmetallpulver ist die mangelnde Verpreßbarkeit der vorgepreßten Formkörper aufgrund der sphäroidischen Kornform, der relativ engen Korngrößenverteilung und der groben Primärpartikel (Fig. 2). Auch durch Heißpressen wird die notwendige Dichte von mindestens 8,5 g/cm3 nicht erreicht. The main reason for the inadequate performance properties of hot-pressed composite sintered bodies made of atomized cobalt metal powder is the lack of compressibility of the pre-pressed shaped bodies due to the spheroidal grain shape, the relatively narrow grain size distribution and the coarse primary particles (FIG. 2). The necessary density of at least 8.5 g / cm 3 is also not achieved by hot pressing.

Hingegen sind durch Wasserstoffreduktion von sauerstoffhaltigen Kobalt-Verbindungen bei erhöhter Temperatur als Matrixmaterial geeignete Kobaltmetallpulver mit einem FSSS-Wert von 3 bis 5 µm, sogenannte 400-mesh-Pulver (Fig. 1), erhältlich. Diese Bezeichnung erklärt sich aus dem Siebdurchgang dieser Pulver durch ein 400-mesh-Sieb. Derartige Pulver erfüllen Anforderungen, die an das Matrixmetall für Verbundwerkstoffe bezüglich Härte und Sinterdichte gestellt werden. Allerdings weisen die sogenannten 400-mesh-Pulver einen recht hohen Anteil an Verunreinigungen auf. Dabei ist allgemein bekannt, daß Aluminium, Kalzium, Natrium, Magnesium und Silizium leicht mit dem Sauerstoff des Kobaltmetallpulvers stabile Oxide bilden. Diese können in Diamantsegmenten eine unerwünschte Porosität verursachen.On the other hand, hydrogen reduction of oxygen-containing cobalt compounds suitable as matrix material at elevated temperature Cobalt metal powder with an FSSS value of 3 to 5 µm, so-called 400 mesh powder (Fig. 1) available. This designation is explained by the sieve passage this powder through a 400 mesh sieve. Such powders meet requirements that of the matrix metal for composite materials in terms of hardness and sintered density be put. However, the so-called 400-mesh powders are quite right high level of impurities. It is generally known that Aluminum, calcium, sodium, magnesium and silicon easily with the oxygen form stable oxides of the cobalt metal powder. These can be in diamond segments cause undesirable porosity.

Bei Hartmetallen können durch Porosität bedingt Festigkeitsverminderungen auftreten, wenn die oben genannten Verunreinigungen sowie Schwefel in zu hohen Mengen enthalten sind. In beiden Anwendungen sind daher Kobaltmetallpulver mit geringen Gehalten an Verunreinigungen erstrebenswert. Je nach Reinigungsaufwand in den metallurgischen Vorstufen kann die Reinheit der Kobaltmetallpulver den Erfordernissen angepaßt werden. Der Aufwand für die Herstellung besonders reiner Kobaltmetallpulver ist naturgemäß kostenintensiv und derartige Pulver sind demzufolge sehr teuer.Porosity can reduce the strength of hard metals, if the above impurities as well as sulfur in too high Amounts are included. Cobalt metal powder is therefore used in both applications low levels of impurities are desirable. Depending on the cleaning effort in the metallurgical precursors, the purity of the cobalt metal powder be adapted to requirements. The effort for the production Particularly pure cobalt metal powder is naturally expensive and such Powders are therefore very expensive.

Es ist nun Aufgabe dieser Erfindung, ein Kobaltmetallpulver zur Verfügung zu stellen, welches die Nachteile der beschriebenen Pulver nicht aufweisen.It is an object of this invention to provide a cobalt metal powder make, which do not have the disadvantages of the powder described.

Es wurde nun ein Kobaltmetallpulver gefunden, welches diese geforderten Eigenschaften aufweist Gegenstand dieser Erfindung ist ein Kobaltmetallpulver als Bindermetall für die Herstellung von Diamant- und/oder Hartmetallwerkzeugen und/oder Verschleißschutzbeschichtungen, welches dadurch gekennzeichnet ist, daß es zu 20 bis 80 Gew.-% aus einem verdüsten Kobaltmetallpulver mit optisch ermittelten Korngrößen von 5 bis 150 µm und dem zu 100 Gew.-% fehlenden Rest aus einem, gegebenenfalls agglomeriert vorliegenden, Kobaltmetallpulver einer optisch ermittelten Primärgröße von kleiner als 3 µm besteht. A cobalt metal powder was now found, which required this Properties This invention relates to a cobalt metal powder Binder metal for the production of diamond and / or hard metal tools and / or wear protection coatings, which is characterized by that it is 20 to 80 wt .-% of an atomized cobalt metal powder with optical determined grain sizes from 5 to 150 microns and the rest missing to 100 wt .-% from an optionally agglomerated cobalt metal powder optically determined primary size of less than 3 microns exists.

Das erfindungsgemäße Kobaltmetallpulver weist den preislichen Vorteil der aus Oxiden oder sauerstoffhaltigen Verbindungen durch Reduktion erhaltenes Kobaltmetallpulver auf, enthält aber deutlich geringere Mengen der obengenannten kritischen Verunreinigungen. Vorzugsweise enthält es weniger als 20 ppm Al, 20 ppm Ca, 30 ppm Na, 20 ppm Mg, 30 ppm S und 75 ppm Si.The cobalt metal powder according to the invention has the price advantage of Oxides or oxygen-containing compounds by reduction of cobalt metal powder obtained on, but contains significantly smaller amounts of the above critical contaminants. It preferably contains less than 20 ppm Al, 20 ppm Ca, 30 ppm Na, 20 ppm Mg, 30 ppm S and 75 ppm Si.

Beim erfindungsgemäßen Kobaltmetallpulver handelt es sich um eine Aufmischung von verdüstem Kobaltmetallpulver mit feinem Kobaltpulver aus der Wasserstoffreduktion.The cobalt metal powder according to the invention is a Mixing of atomized cobalt metal powder with fine cobalt powder from the Hydrogen reduction.

Die gute technische Eignung des erfindungsgemäßen Kobaltmetallpulvers setzt bereits bei einem Mischungsanteil von 20 Gew.-% an verdüstem feinen Kobaltmetallpulver aus der Waserstoffreduktion ein, unter dem Aspekt des Preisvorteils ist aber eine Obergrenze dieses Anteils bis zu 80 Gew.-% noch vertretbar. Das pulvermetallurgische Verhalten der Mischungen ist innerhalb der genannten Grenzen ebenfalls sehr vorteilhaft.The good technical suitability of the cobalt metal powder according to the invention sets even with a mixture proportion of 20% by weight of atomized fine cobalt metal powder from the reduction of hydrogen, taking into account the price advantage however, an upper limit of this proportion up to 80% by weight is still acceptable. The Powder metallurgical behavior of the mixtures is within the above Limits are also very advantageous.

Bevorzugt beträgt die Menge des verdüsten Kobaltmetallpulvers 30 bis 70 Gew.-%. Als verdüstes Kobaltmetallpulver sind sowohl ein wasserverdüstes Kobaltmetallpulver mit überwiegend sphäroidischem Habitus als auch ein gasverdüstes Kobaltmetallpulver mit sphäroidischem Habitus geeignet.The amount of atomized cobalt metal powder is preferably 30 to 70% by weight. The atomized cobalt metal powder is both a water atomized cobalt metal powder with predominantly spheroidal habit as well as a gas atomized Cobalt metal powder with spheroidal habit suitable.

Das Kobaltmetallpulver mit kristalliner Struktur weist bevorzugt BET-Oberflächen, bestimmt nach der Stickstoff-1-Punkt-Methode (DIN 66 131), von größer als 0,8 m2/g auf. Das erfindungsgemäße Kobaltmetallpulver weist in einer bevorzugten Ausführungsform eine Schüttdichte von kleiner als 1,4 kg/cm3 auf.The cobalt metal powder with a crystalline structure preferably has BET surface areas, determined by the nitrogen 1-point method (DIN 66 131), of greater than 0.8 m 2 / g. In a preferred embodiment, the cobalt metal powder according to the invention has a bulk density of less than 1.4 kg / cm 3 .

Durch die günstige Kornverteilung des erfindungsgemäßen Kobaltmetallpulvers wird eine Dichte nach dem Heißpressen von mindenstens 8,5 g/cm3 erreicht, womit eine hervorragende Verpreßbarkeit des Pulvers einhergeht. Eine weitere bevorzugte Ausführungsform des erfindungsgemäßen Kobaltmetallpulvers besteht darin, daß das Pulver eine Rockwell-Härte, gemessen an heißgepreßten Prüfplatten, von mindestens 98 HRB aufweist. Due to the favorable particle size distribution of the cobalt metal powder according to the invention, a density after hot pressing of at least 8.5 g / cm 3 is achieved, which is associated with excellent compressibility of the powder. A further preferred embodiment of the cobalt metal powder of the invention is that the powder has a Rockwell hardness, as measured on hot-pressed test plates, of at least 98 HR B has.

Das erfindungsgemäße Kobaltmetallpulver eignet sich hervorragend für die pulvermetallurgische Herstellung von Diamantwerkzeugen und/oder Hartmetallen, in denen das Kobalt - gegebenenfalls zusammen mit weiteren üblichen Matrix-Metallen - die Binderphase darstellt.The cobalt metal powder according to the invention is outstandingly suitable for powder metallurgy Manufacture of diamond tools and / or hard metals, in which the cobalt - optionally together with other customary matrix metals - represents the binder phase.

Gegenstand dieser Erfindung sind somit auch Verbundsinterkörper, hergestellt aus Hartstoffpulver und/oder Diamantpulver und Bindermetallen, wobei als Bindermetall, gegebenenfalls neben anderen Metallpulvern, das erfindungsgemäße Kobaltmetallpulver verwendet wird.This invention therefore also relates to composite sintered bodies produced from Hard material powder and / or diamond powder and binder metals, whereby as binder metal, optionally the cobalt metal powder according to the invention in addition to other metal powders is used.

Im folgenden wird die Erfindung beispielhaft erläutert, ohne daß hierzu eine Einschränkung zu sehen ist. In the following, the invention is explained by way of example, without any restriction you can see.

Beispiel 1: (Mischung 70/30)Example 1: (mixture 70/30)

0,7 kg eines feinen Kobaltmetallpulvers aus der Reduktion von Kobaltoxid mit Wasserstoff mit einer durchschnittlichen Korngröße von 1,7 µm, gesiebt über ein 63-µm-Sieb mit einer Schüttdichte von 1,2 g/cm3 (Fig. 1), wurde mit 0,3 kg eines wasserverdüsten Kobaltmetallpulvers (11,7µm FSSS), gesiebt über ein 38-µm-Sieb mit einer Schüttdichte von 3,3 g/cm3 (Fig. 2), eine Stunde lang im Turbula-Mischer gemischt. Das so hergestellte Produkt wies einen FSSS-Wert von 2,25 µm und ein Schüttgewicht von 0,73 g/cm3 auf. Der Gehalt an kritischen Verunreinigungen im Vergleich zu einem 400-mesh-Kobaltmetallpulver gemäß dem Stand der Technik war deutlich erniedrigt (Tab. 2).0.7 kg of a fine cobalt metal powder from the reduction of cobalt oxide with hydrogen with an average grain size of 1.7 μm, was sieved through a 63 μm sieve with a bulk density of 1.2 g / cm 3 (FIG. 1) mixed with 0.3 kg of a water-atomized cobalt metal powder (11.7 μm FSSS), sieved through a 38 μm sieve with a bulk density of 3.3 g / cm 3 (FIG. 2), in a Turbula mixer. The product produced in this way had an FSSS value of 2.25 μm and a bulk density of 0.73 g / cm 3 . The content of critical impurities compared to a 400-mesh cobalt metal powder according to the prior art was significantly reduced (Table 2).

Sintertest:Sinter test:

Das gemischte Pulver wurde für den Sinterversuch in eine runde Graphitform mit ca. 30 mm Durchmesser gefüllt und unter folgenden Bedingungen heißgepreßt:

Aufheizgradient:
180 K/min
Sintertemperatur:
830°C (in der Graphitform gemessen)
Sinterdruck:
350 N/mm2
Haltzeit:
3 min
The mixed powder was filled into a round graphite mold with a diameter of approx. 30 mm for the sintering test and hot pressed under the following conditions:
Heating gradient:
180 K / min
Sintering temperature:
830 ° C (measured in the graphite form)
Sinter printing:
350 N / mm 2
Stop time:
3 min

Das so erhaltende Prüfplättchen hat eine End-Dichte von 8,54 g/cm3 und eine Härte (Rockwell-B) von HRB = 101,6.The test plate obtained in this way has a final density of 8.54 g / cm 3 and a hardness (Rockwell-B) of HR B = 101.6.

Beispiel 2: (Mischung 60/40)Example 2: (Mix 60/40)

0,6 kg eines feinen Kobaltmetallpulvers mit einem BET-Wert von 1,11 m2/g, einer durchschnittlichen Korngröße von 1,7 µm (FSSS), gesiebt über ein 63-µm Sieb mit einer Schüttdichte von 1,2 g/cm3 (Fig. 1), wurden mit 0,4 kg eines wasserverdüsten Kobaltmetallpulvers (11,7 µm FSSS) mit einem BET-Wert von 0,73 m2/g, bestimmt nach der N2-1-Punkt-Methode (DIN 66 131), gesiebt über ein 38-µm-Sieb mit einer Schüttdichte von 3,3 g/cm3 (Fig. 2) in einem Pflugschar-Mischer 60 Minuten lang gemischt. Das so erhaltene Kobaltmetallpulver (Fig. 3) hatte einen FSSS-Wert von 2,6 µm, einen BET-Wert von 0,74 m2/g sowie ein Schüttgewicht von 0,8 g/cm3. Der Gehalt an chemischen Verunreinigungen ist gegenüber einem üblichen 400-mesh-Kobaltmetallpulver deutlich erniedrigt (Tab. 2).0.6 kg of a fine cobalt metal powder with a BET value of 1.11 m 2 / g, an average grain size of 1.7 µm (FSSS), sieved through a 63 µm sieve with a bulk density of 1.2 g / cm 3 (Fig. 1), were with 0.4 kg of a water-atomized cobalt metal powder (11.7 µm FSSS) with a BET value of 0.73 m 2 / g, determined by the N 2 -1-point method (DIN 66 131), sieved through a 38-µm sieve with a bulk density of 3.3 g / cm 3 (Fig. 2) mixed in a ploughshare mixer for 60 minutes. The cobalt metal powder obtained in this way (FIG. 3) had an FSSS value of 2.6 μm, a BET value of 0.74 m 2 / g and a bulk density of 0.8 g / cm 3 . The level of chemical impurities is significantly reduced compared to a conventional 400 mesh cobalt metal powder (Tab. 2).

Ein, wie bei Beispiel 1 beschriebenes, heißgepreßtes Probeplättchen wies eine Dichte von 8,54 g/cm3 und eine Härte von HRB = 101,2 auf. Fig. 4 zeigt deutlich, daß in der polierten und geätzten Probe noch große runde Kobaltpartikel neben feinen Primärkristallen erhalten geblieben sind.A hot-pressed test plate as described in Example 1 had a density of 8.54 g / cm 3 and a hardness of HR B = 101.2. Fig. 4 clearly shows that large round cobalt particles in addition to fine primary crystals have been preserved in the polished and etched sample.

Beispiel 3: (Mischung 50/50)Example 3: (Mix 50/50)

0,5 kg eines feinen Kobaltmetallpulvers, erhalten aus der Reduktion von Kobalthydroxid mit einer durchschnittlichen Korngröße von 0,9 µm, einem BET-Wert von 1,85 m2/g, gesiebt über ein 100-µm-Sieb (Schüttdichte 0,8 g/cm3), wurde mit 0,5 kg eines wasserverdüsten Kobaltmetallpulvers (11,7 µm FSSS) mit einem BET-Wert von 0,73 m2/g, gesiebt über ein 38-µm-Sieb (Schüttdiche 3,3 g/cm3), in einem "Turbula-Mischer" 15 Minuten lang gemischt. Die so entstandene Mischung hatte einen FSSS-Wert von 1,5 µm FSSS, einen BET-Wert von 1,06 m2/g bei einem Schüttgewicht von 0,8 g/cm3.0.5 kg of a fine cobalt metal powder, obtained from the reduction of cobalt hydroxide with an average grain size of 0.9 μm, a BET value of 1.85 m 2 / g, sieved through a 100 μm sieve (bulk density 0.8 g / cm 3 ), was sieved with 0.5 kg of a water-atomized cobalt metal powder (11.7 μm FSSS) with a BET value of 0.73 m 2 / g, through a 38 μm sieve (bulk density 3.3 g / cm 3 ), mixed in a "Turbula mixer" for 15 minutes. The resulting mixture had an FSSS value of 1.5 µm FSSS, a BET value of 1.06 m 2 / g with a bulk density of 0.8 g / cm 3 .

Aus einem heißgepreßten Probeplättchen entsprechend Beispiel 1 wurde eine Härte von HRB 100,4 und eine Dichte von 8,5 g/cm3 gemessen.A hardness of HR B 100.4 and a density of 8.5 g / cm 3 were measured from a hot-pressed sample plate according to Example 1.

Vergleichs-Beispiel 1 (100 % wasserverdüstes Kobaltmetallpulver < 63 µm):Comparative Example 1 (100% water-atomized cobalt metal powder <63 µm):

Reines wasserverdüstes Kobaltmetallpulver, gesiebt über ein 63- µm-Sieb, mit einem FSSS-Wert von 12 µm wurde gemäß Beispiel 1 heißgepreßt, wobei die Heißpreßtemperatur variiert wurde. An den so erhaltenen Prüfplättchen wurden folgende Härtewerte ermittelt:Pure water atomized cobalt metal powder, sieved through a 63 µm sieve, With an FSSS value of 12 μm was hot-pressed according to Example 1, the Hot pressing temperature was varied. On the test slides thus obtained following hardness values determined:

Sintertest mittels Heißpressen:Sintering test using hot pressing:

Aufheizgradient:Heating gradient:
180 K/min180 K / min
Sinterdruck:Sinter printing:
350 N/mm2 350 N / mm 2
Haltezeit:Holding time:
3 min3 min
Ergebnisse:Results:

SintertemperaturSintering temperature Härtewerte (HRB)Hardness values (HR B ) Dichtedensity 800°C800 ° C Preßkörper zerfällt, Härte nicht bestimmbarPress body disintegrates, hardness cannot be determined n.b.n.b. 850°C850 ° C 2525th 7,07.0 900°C900 ° C 4040 7,57.5 950°C950 ° C 4747 7,87.8

In keinem Fall gelang es, mit dem verdüsten Kobaltmetallpulver die geforderte Mindestdichte von 8,5 g/cm3 und die Mindesthärte von 98 HRB zu erreichen.In no case did the atomized cobalt metal powder achieve the required minimum density of 8.5 g / cm 3 and the minimum hardness of 98 HRB.

Beispiel 5 (100 % wasserverdüstes Kobaltmetallpulver < 38 µm):Example 5 (100% water-atomized cobalt metal powder <38 µm):

Reines wasserverdüstes Kobaltmetallpulver, gesiebt über ein 38- µm-Sieb (Fig. 2), mit einem FSSS-Wert von 11,8 µm wurde nach den unter Beispiel 1 beschriebenen Bedingungen heißgepreßt, wobei die Härte von HRB 80 an den Probeplättchen gemessen wurde.Pure water-atomized cobalt metal powder, sieved through a 38 μm sieve (FIG. 2), with an FSSS value of 11.8 μm, was hot-pressed according to the conditions described in Example 1, the hardness of HR B 80 being measured on the test platelets .

Auch bei dieser noch feineren Absiebung war es nicht möglich, die geforderte Mindestdichte und Mindesthärte zu erreichen.Even with this even finer screening, it was not possible to to achieve the required minimum density and minimum hardness.

In Tabelle 1 sind die Daten aus den Beispielen 1 bis 3 und die Vergleichsdaten zu dem 400-mesh-Kobaltpulver und dem verdüsten Pulver (gemäß Stand der Technik) zusammengefaßt. (Versuchsergebnisse aus dem Härtetest): Heißpreßtemperatur Sinterdichten/Rockwell-Härten (HRB) (°C) Verdüstes Co-Pulver Beispiel 5 Mischung aus Beispiel 1 (70/30) Mischung aus Beispiel 2 (60/40) Mischung aus Beispiel 3 (50/50) Co 400 mesh St.d.T. 830 8,1 g/cm3 8,54 g/cm3 8,54 g/cm3 8,5 g/cm3 8,45 80 HRB 101,6 HRB 101,2 HRB 100 HRB 97,7 HRB Table 1 summarizes the data from Examples 1 to 3 and the comparative data for the 400-mesh cobalt powder and the atomized powder (according to the prior art). (Test results from the endurance test): Hot pressing temperature Sintered densities / Rockwell hardness (HR B ) (° C) Atomized co-powder Example 5 Mixture from example 1 (70/30) Mixture from example 2 (60/40) Mixture from example 3 (50/50) Co 400 mesh St.dT 830 8.1 g / cm 3 8.54 g / cm 3 8.54 g / cm 3 8.5 g / cm 3 8.45 80 HR B 101.6 HR B 101.2 HR B 100 HR B 97.7 HR B

Vergleichsbeispiel (400 mesh-Pulver)Comparative example (400 mesh powder) Tabelle 2 : Vergleichsdaten kritischer Verunreinigungen in KobaltmetallpulvernTable 2: Comparative data of critical impurities in cobalt metal powders

Der Gehalt an kritischen Verunreinigungen war im Vergleich zu einem üblichen 400-mesh-Kobaltmetallpulver deutlich vermindert ( Tab. 2)The level of critical contaminants was compared to one usual 400-mesh cobalt metal powder significantly reduced (Tab. 2)

Verunreinigungen 400-mesh-Kobalt (400 mesh-Kobaltmetallpulver ("Cobalt Powder 400-mesh" der Fa. Hoboken Overpelt, Belgien)) und Mischungen gemäß den erfindungsgemäßen Beispielen 1, 2 und 3: Verunreinigungen 400 mesh-Co (100/0) Mischung Beispiel 1 (70/30) Mischung Beispiel 2 (60/40) Mischung Beispiel 3 (50/50) Al (ppm) 180 6 7 6 Ca (ppm) 320 12 12 13 Na (ppm) 55 25 22 9 Mg (ppm) 150 8 8 3 S (ppm) 140 13 14 15 Si (ppm) 310 34 36 41 Impurities 400-mesh cobalt (400-mesh cobalt metal powder ("Cobalt Powder 400-mesh" from Hoboken Overpelt, Belgium)) and mixtures according to Examples 1, 2 and 3 according to the invention: Impurities 400 mesh-Co (100/0) Mixture example 1 (70/30) Mixture example 2 (60/40) Mixture example 3 (50/50) Al (ppm) 180 6 7 6 Ca (ppm) 320 12th 12th 13 Na (ppm) 55 25th 22 9 Mg (ppm) 150 8th 8th 3rd S (ppm) 140 13 14 15 Si (ppm) 310 34 36 41

Claims (9)

  1. A cobalt metal powder as binder metal for the production of diamond tools and/or hard metal tools and/or wear-resistant coatings, characterised in that 20 to 80 wt.% of the powder consists of an atomised cobalt metal powder having optically determined particle sizes of from 5 to 150 µm and the balance to 100 wt.% consists of an optionally agglomerated cobalt powder having an optically determined primary particle size of less than 3 µm.
  2. A cobalt metal powder according to claim 1, characterised in that the quantity of atomised cobalt metal powder is from 30 to 70 wt.%.
  3. A cobalt metal powder according to one of claims 1 or 2, characterised in that the cobalt metal powder of crystalline structure has BET surface areas, as measured by the nitrogen one-point method (DIN 66131), of greater than 0.8 m2/g.
  4. A cobalt metal powder according to one or more of claims 1 to 3, characterised in that the atomised cobalt metal powder is a water-atomised cobalt metal powder having a predominantly spheroidal habit.
  5. A cobalt metal powder according to one or more of claims 1 to 3, characterised in that the atomised cobalt metal powder is a gas-atomised cobalt metal powder having a spheroidal habit.
  6. A cobalt metal powder according to one or more of claims 1 to 5, characterised in that it has a bulk density of less than 1.4 g/cm3.
  7. A cobalt metal powder according to one or more of claims 1 to 6, characterised in that it contains less than 20 ppm of aluminium, 20 ppm of calcium, 30 ppm of sodium, 20 ppm of magnesium, 30 ppm of sulphur, 75 ppm of silicon.
  8. A cobalt metal powder according to one or more of claims 1 to 7, characterised in that it has a Rockwell hardness, as measured on hot-pressed test plates, of at least 98 HRB.
  9. Composite sintered articles produced from hard material powders and/or diamond powder and from binder metals, wherein the cobalt metal powder according to one or more of claims 1 to 6 is used as binder metal, optionally together with other metal powders.
EP94119399A 1993-12-21 1994-12-08 Cobalt metal powder and composite sintered article made thereby Expired - Lifetime EP0659507B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4343594 1993-12-21
DE4343594A DE4343594C1 (en) 1993-12-21 1993-12-21 Cobalt metal powder and a composite sintered body manufactured from it

Publications (2)

Publication Number Publication Date
EP0659507A1 EP0659507A1 (en) 1995-06-28
EP0659507B1 true EP0659507B1 (en) 1998-07-08

Family

ID=6505607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94119399A Expired - Lifetime EP0659507B1 (en) 1993-12-21 1994-12-08 Cobalt metal powder and composite sintered article made thereby

Country Status (10)

Country Link
US (1) US5482530A (en)
EP (1) EP0659507B1 (en)
JP (1) JP3435660B2 (en)
KR (1) KR100340161B1 (en)
CN (1) CN1070094C (en)
AT (1) ATE168054T1 (en)
DE (2) DE4343594C1 (en)
ES (1) ES2118304T3 (en)
GR (1) GR3027693T3 (en)
RU (1) RU2126310C1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19519331C1 (en) * 1995-05-26 1996-11-28 Starck H C Gmbh Co Kg Cobalt metal agglomerates, process for their preparation and their use
DE19519329C1 (en) * 1995-05-26 1996-11-28 Starck H C Gmbh Co Kg Cobalt metal agglomerates, process for their preparation and their use
DE19540076C1 (en) * 1995-10-27 1997-05-22 Starck H C Gmbh Co Kg Ultrafine cobalt metal powder, process for its preparation and use of the cobalt metal powder and the cobalt carbonate
DE19544107C1 (en) * 1995-11-27 1997-04-30 Starck H C Gmbh Co Kg Metal powder granules, process for its preparation and its use
SE9703204L (en) * 1997-09-05 1999-03-06 Sandvik Ab Tools for drilling / milling circuit board material
US7344557B2 (en) * 2003-11-12 2008-03-18 Advanced Stent Technologies, Inc. Catheter balloon systems and methods
US7360991B2 (en) * 2004-06-09 2008-04-22 General Electric Company Methods and apparatus for fabricating gas turbine engines
US7470307B2 (en) * 2005-03-29 2008-12-30 Climax Engineered Materials, Llc Metal powders and methods for producing the same
EP1971462B1 (en) * 2005-11-14 2020-02-26 National University of Science and Technology MISiS Binder for the fabrication of diamond tools
WO2009068154A2 (en) * 2007-11-26 2009-06-04 Umicore Thermally stable co powder
US8197885B2 (en) * 2008-01-11 2012-06-12 Climax Engineered Materials, Llc Methods for producing sodium/molybdenum power compacts
CN102728832B (en) * 2012-07-30 2016-12-21 河北航华金刚石制品有限公司 The technique of cobalt powder cladding diamond granule

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1279332B (en) * 1962-08-18 1968-10-03 Krebsoege Gmbh Sintermetall Process for the powder-metallurgical production of precision parts from stellite or stellite-like alloys
US3746518A (en) * 1965-02-26 1973-07-17 Crucible Inc Alloy composition and process
SE378260B (en) * 1973-11-29 1975-08-25 Hoeganaes Ab
JPS5274508A (en) * 1975-12-18 1977-06-22 Mitsubishi Metal Corp Co-base sintered alloy
JPS5393165A (en) * 1977-01-27 1978-08-15 Sumitomo Electric Industries Cobalt powder adapted for wet type ball mill mixing and manufacturing process
US4724000A (en) * 1986-10-29 1988-02-09 Eaton Corporation Powdered metal valve seat insert
EP0298593A3 (en) * 1987-05-19 1990-01-10 Kabushiki Kaisha Toshiba Matrix material for bonding abrasive material, and method of manufacturing same
US4927456A (en) * 1987-05-27 1990-05-22 Gte Products Corporation Hydrometallurgical process for producing finely divided iron based powders
US4818482A (en) * 1987-07-09 1989-04-04 Inco Alloys International, Inc. Method for surface activation of water atomized powders
US5114471A (en) * 1988-01-04 1992-05-19 Gte Products Corporation Hydrometallurgical process for producing finely divided spherical maraging steel powders
US5338508A (en) * 1988-07-13 1994-08-16 Kawasaki Steel Corporation Alloy steel powders for injection molding use, their compounds and a method for making sintered parts from the same
WO1992005902A1 (en) * 1990-10-09 1992-04-16 Iowa State University Research Foundation, Inc. Environmentally stable reactive alloy powders and method of making same
US5250101A (en) * 1991-04-08 1993-10-05 Mitsubishi Gas Chemical Company, Inc. Process for the production of fine powder

Also Published As

Publication number Publication date
RU94045279A (en) 1997-04-20
ATE168054T1 (en) 1998-07-15
KR950017006A (en) 1995-07-20
DE4343594C1 (en) 1995-02-02
JP3435660B2 (en) 2003-08-11
CN1070094C (en) 2001-08-29
GR3027693T3 (en) 1998-11-30
CN1112466A (en) 1995-11-29
KR100340161B1 (en) 2002-10-31
ES2118304T3 (en) 1998-09-16
RU2126310C1 (en) 1999-02-20
US5482530A (en) 1996-01-09
EP0659507A1 (en) 1995-06-28
JPH07207301A (en) 1995-08-08
DE59406412D1 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
EP1079950B1 (en) Sinter-active metal and alloy powders for powder metallurgy applications and methods for their production and their use
EP0659507B1 (en) Cobalt metal powder and composite sintered article made thereby
DE69227503T2 (en) HARD ALLOY AND THEIR PRODUCTION
DE69333084T2 (en) FINE-PART CAF 2? AND BAF 2? AGENTS FOR IMPROVING THE WORKABILITY OF SINNED IRON BASE POWDER
EP0595081B1 (en) Zirconia-Corundum abrasive grains, process for their production, and use thereof
EP2013307B1 (en) Abrasive grain based on melted spherical corundum
DE69604902T2 (en) STAINLESS STEEL POWDER AND THEIR USE FOR PRODUCING MOLDED BODIES BY POWDER METALLURGY
DE3428252C3 (en) Process for making a refractory zirconia body
DE69803332T2 (en) Hard molybdenum alloy, wear-resistant alloy and process for its production
DE2625214A1 (en) Process for the production of sintered molded bodies
DE102007004937A1 (en) metal formulations
DE2947336A1 (en) METHOD FOR PRODUCING A Sintered Aluminum Product
DE19640788C1 (en) Coating powder used e.g. in thermal spraying
DE69804220T2 (en) PRE-ALLOY COPPER-CONTAINING POWDER AND ITS USE IN THE PRODUCTION OF DIAMOND TOOLS
DE1646583B1 (en) CERAMICALLY BONDED FIREPROOF MOLDED BODY OF HIGH TONER CONTENT
DE69430904T2 (en) Iron sponge powder
EP0524519B1 (en) Coloured corundum, process for its production and use thereof
DE2329739A1 (en) METHOD OF MANUFACTURING METAL-CERAMIC POWDERS
DE2122499C3 (en) Process for the production of tungsten and tungsten carbide in powder form
DE10110448A1 (en) Coating powder based on titanium sub-oxides with defined defect structure used in coating technology is modified by alloy elements stabilizing defect structure during processing of coating powder
DE3615861C2 (en)
EP1097113B1 (en) Monolithic basic refractory ceramic hollow body
DE2115999A1 (en) Process for the production of sintered cemented carbide
DE202007000041U1 (en) Powder mixture for cobalt-bonded sintered hard metal objects
DE10000979C1 (en) Coating powder used in plasma spraying, high speed flame spraying and detonation spraying of components of engines is based on a titanium sub-oxide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB GR IT SE

17P Request for examination filed

Effective date: 19950712

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19971212

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB GR IT SE

REF Corresponds to:

Ref document number: 168054

Country of ref document: AT

Date of ref document: 19980715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59406412

Country of ref document: DE

Date of ref document: 19980813

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2118304

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981008

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051116

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20051118

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20051201

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20051206

Year of fee payment: 12

Ref country code: FR

Payment date: 20051206

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051207

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20051228

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20051230

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070703

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061208

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061208

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061208

BERE Be: lapsed

Owner name: H.C. *STARCK G.M.B.H. & CO. K.G.

Effective date: 20061231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20061209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070102

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071208