[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0659328A1 - Elektrische heizeinheit - Google Patents

Elektrische heizeinheit

Info

Publication number
EP0659328A1
EP0659328A1 EP94919544A EP94919544A EP0659328A1 EP 0659328 A1 EP0659328 A1 EP 0659328A1 EP 94919544 A EP94919544 A EP 94919544A EP 94919544 A EP94919544 A EP 94919544A EP 0659328 A1 EP0659328 A1 EP 0659328A1
Authority
EP
European Patent Office
Prior art keywords
heating unit
unit according
electric heating
carrying
solid body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94919544A
Other languages
English (en)
French (fr)
Inventor
Dusko Maravic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGL Carbon SE
Original Assignee
SGL Carbon SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGL Carbon SE filed Critical SGL Carbon SE
Publication of EP0659328A1 publication Critical patent/EP0659328A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Definitions

  • the present invention relates to an electrical heating unit with a current-carrying resistance heating element and a solid body which carries or guides the object to be heated or the medium to be heated.
  • Conventional electrical heating units have heating elements which are formed from conductors through which current flows.
  • Preferred materials are Cr-Ni alloys, which have a specific electrical resistance p of approximately 1-10 " 6 ⁇ m. Since the specific resistance p of electrical conductors is very small, the conductor must have the smallest possible cross-sectional area and a great length, So that a sufficiently large effective resistance R is obtained. Therefore, conventional resistance heating elements are formed from thin wires that are spirally wound. Nevertheless, the resistance R of these heating wires is so small that the input power is high even at low voltages. The wire therefore quickly has one high temperature, typical temperature values are 1000 ° C.
  • the resistance wire is separated from the liquid or gaseous medium or object to be heated by a solid, usually electrically insulated body. This carries the object to be heated or guides the medium to be heated.
  • heating units A typical example of such heating units is the electric hotplate.
  • the glass ceramic disc on which the pan to be heated is located is spaced above the heating coil.
  • Another example is the instantaneous water heater.
  • the water to be heated is guided in tubes which are wound at a distance with helically wound resistance wires.
  • the object or the medium is heated less by heat conduction than by heat radiation.
  • These examples illustrate the disadvantages of the known heating units with resistance heating elements.
  • This intermediate element has a large mass and is usually also a poor heat conductor because it is electrically insulated. This system is therefore very sluggish in terms of heat transfer. Therefore, the heating element must have a much higher temperature than would be effectively achieved with the object or medium.
  • a large part of the heating power is lost because the heat radiation is radiated in all directions. The efficiency of known heating units is therefore very low.
  • an electrical heating unit according to the preamble of claim 1, which is characterized in that the load-bearing or leading massive Body simultaneously forms the current-carrying resistance heating element.
  • the electric heating unit according to the invention like the known heating units, has a current-carrying resistance heating element.
  • this is designed as a solid, that is, as a solid and massive body.
  • it can be designed as a tube or plate.
  • This solid body is not only used as a heat source in the heating unit according to the invention, but also to carry the object to be heated or, in the case of a gas or a liquid, to guide it.
  • the resistance heating element according to the invention is not, as is known, made from an electrically conductive material with a small specific electrical resistance, but from a material which has a considerably higher specific resistance.
  • the materials used are semiconductors, such as silicon carbide, high-performance plastics doped with carbon, graphite or metal, or other semiconductor-like materials. These materials have a significantly higher resistivity p than those previously used. Typical values are between 10 ⁇ 4 to 1 ⁇ m.
  • the specific resistance p of the materials used and thus also their effective resistance R are sufficiently large that a small cross section and a large length do not Condition for the resistance heating element represents more.
  • the energy converted into heat at constant voltage is somewhat lower than in the case of conventional conductive resistance heating elements.
  • the heating element can be controlled for a low to medium temperature. Typical temperatures are between 50 ° C and 700 ° C.
  • the semiconducting resistance heating element designed as a solid body has several advantages.
  • the heating element can already be regulated at low temperatures, it can be heated to a temperature which is only slightly higher than the desired end temperature of the object or medium. As a result, it can be brought into contact with the object or medium to be heated, so that the heat transfer can take place by heat conduction and not by heat radiation.
  • the heating element is designed as a solid body, the contact area with the object or medium is large. The heat transfer can take place over this large area. In addition, no additional solid intermediate element is required which inhibits heat transfer. Therefore, from a reverse perspective, the low to medium temperature of the heat source is sufficient to achieve the desired temperature on the object or medium.
  • the efficiency of the heating unit according to the invention is accordingly considerably higher than that of conventional heating units with resistance heating wires.
  • the heating unit according to the invention is energy-saving.
  • the surfaces of the heating element that are not used for heat transfer can be thermally insulated.
  • the heat is brought specifically to the required location. The losses from heat radiation are kept low.
  • the solid body of the resistance heating element is electrically insulated from the medium or object to be heated.
  • the insulation layer can be, for example, a ceramic coating with a coefficient of thermal expansion similar to that of the solid body.
  • An electrically insulating material with the best possible heat-conducting properties is preferably selected.
  • Figure 1 is a heating unit in the form of a tube
  • FIG. 2 shows a heating unit with a plate-shaped resistance heating element
  • FIG. 3 shows a hotplate according to the invention.
  • a tubular resistance heating element is shown in FIG. It consists of a pipe section 1 which has well-conductive metallic contacts 2 at each of its ends with large contact areas for creating a circuit. If a voltage source is connected to these contacts, a current flows through the tube. This is heated according to its resistance R.
  • Such a resistance heating element is used, for example, in a water heater or a dishwasher.
  • the pipe section 1 of the resistance heating element is then at the same time the pipe for the water to be heated.
  • the water flows in the interior 3 of the tube 1.
  • the water is heated by direct contact with the hot tube wall. Since the tube wall only has an insignificantly higher temperature than the desired water temperature, there are no structural conversions of the water and the efficiency is considerably higher than with conventional instantaneous water heaters.
  • the pipe can be surrounded with a thermally insulated jacket.
  • the heating unit must be surrounded with an electrically insulating jacket from the surroundings.
  • the medium to be heated, the liquid or the gas remains direct Contact with the pipe serving as a heat source.
  • silicone rubber is used as insulation material.
  • a thin insulation layer of this type is also applied to the inner wall of the current-carrying tube.
  • a resistance heating element is shown in the form of a plate.
  • electrical contacts 2 are attached to both ends of the plate. They can be attached to the end faces of the plate or, as shown, enclose the circumference of the plate.
  • the plate is simultaneously the heat source and the solid body carrying the object to be heated.
  • the plate is covered with an electrically insulating layer which, however, has the best possible heat-conducting properties.
  • the lower side of the plate if not used for heat transfer, can be thermally insulated.
  • Application examples are hot plates in household use or heating elements that are immersed in a container filled with liquid.
  • FIG. 3 An application example of such a plate is shown in Figure 3.
  • the resistance element is used as a hotplate.
  • the lower side 5 of the plate 4 is electrically and thermally insulated.
  • the upper side 6 has an electrical insulation layer.
  • the saucepan to be heated is placed on this.
  • This hotplate also has the top described advantages and thus enables energy-saving preparation of meals.
  • the supporting heating element is in contact with another solid body.
  • This body has electrically insulating, but good heat-conducting properties.
  • this massive insulation is used instead of the insulation layer described above.
  • This insulating body separates the supporting heating element from the medium or object to be heated.
  • such an insulation body connects several solid heating elements to one another, which thus form a common heating unit.
  • the optimization of all essential parameters must be calculated for each application example.
  • the length and cross-sectional area of the resistance heating element must be selected so that the resulting resistance R has the size necessary to achieve the desired temperature.
  • the requirement must be met that the stability of the body is sufficient to carry the medium or carry the object.
  • the material is a freely selectable parameter in some cases.
  • the specific resistance can be changed the doping of the silicon carbide or the plastic vary.

Landscapes

  • Resistance Heating (AREA)

Abstract

Eine Heizeinheit weist ein stromdurchflossenes Widerstandheizelement auf, das als massiver Körper, beispielsweise als Rohr (1) oder als Platte, ausgebildet ist. Dieser aus einem halbleitenden Material bestehender Körper trägt den zu heizenden Gegenstand oder führt das zu erwärmende Medium. Dadurch ist eine grosse Kontaktfläche für die Wärmeübertragung vorhanden und ein grosser Wirkungsgrad wird erzielt. Mögliche Anwendungsbereiche sind Durchlauferhitzer, Heiz- und Kochplatten.

Description

Elektrische Heizeinheit
Die vorliegende Erfindung betrifft eine elektrische Heizein¬ heit mit einem stromdurchflossenen Widerstandsheizelement und einem, den zu heizenden Gegenstand oder das zu erwärmende Medium tragenden beziehungsweise führenden, massiven Körper.
Konventionelle elektrische Heizeinheiten weisen Heizelemente auf, die aus stromdurchflossenen Leitern gebildet werden. Bevorzugte Materialien sind Cr-Ni-Legierungen, die einen spezifischen elektrischen Widerstand p von circa 1-10"6 Ωm aufweisen. Da der spezifische Widerstand p von elektrischen Leitern sehr klein ist, muss der Leiter eine möglichst kleine Querschnittsfläche und eine grosse Länge aufweisen, damit ein genügend grosser effektiver Widerstand R erhalten wird. Deshalb werden konventionelle Widerstandsheizelemente aus dünnen Drähten gebildet, die spiralförmig gewickelt sind. Trotzdem ist der Widerstand R dieser Heizdrähte so klein, dass schon bei kleinen Spannungen die Eingangsleistung gross ist. Der Draht weist somit schnell eine hohe Temperatur auf. Typische Temperaturwerte liegen bei 1000°C.
Der Widerstandsdraht ist von dem zu erwärmenden, flüssigen oder gasförmigen, Medium oder Gegenstand durch einen massi¬ ven, meist elektrisch isolierten Körper getrennt. Dieser trägt den zu heizenden Gegenstand oder führt das zu erwär¬ mende Mediu .
Ein typisches Beispiel derartiger Heizeinheiten ist die elek¬ trische Kochplatte. Beabstandet über der Heizspirale befindet sich die Glaskeramikscheibe, auf der sich die zu erwärmende Pfanne befindet.
Ein weiteres Beispiel ist der Durchlauferhitzer. Das zu erwärmende Wasser wird in Rohren geführt, die mit spiral¬ förmig gewickelten Widerstandsdrähten beabstandet umwickelt sind.
In beiden Beispielen erfolgt die Erwärmung des Gegenstandes oder des Mediums weniger durch Wärmeleitung als durch Wärme¬ strahlung. Diese Beispiele verdeutlichen die Nachteile der bekannten Heizeinheiten mit Widerstandsheizelementen. Es ist stets ein Zwischenelement zwischen der Wärmequelle, dem Heiz- draht, und der Wärmesenke, dem Gegenstand oder Medium, notwendig. Dieses Zwischenelement weist eine grosse Masse auf und ist meist auch noch ein schlechter Wärmeleiter, da er elektrisch isoliert ist. Dieses System ist somit bezüglich der Wärmeübertragung sehr träge. Deshalb muss das Heizelement eine viel höhere Temperatur aufweisen als effektiv beim Gegenstand oder Medium erzielt werden möchte. Zudem geht ein Grossteil der Heizleistung verloren, da die Wärmestrahlung in allen Richtungen abgestrahlt wird. Der Wirkungsgrad bekannter Heizeinheiten ist demzufolge sehr klein. Eine Erhöhung des Wirkungsgrades könnte erzielt werden, indem der zu erwärmende Gegenstand oder das Medium in wärmeleiten¬ den Kontakt mit der Wärmequelle gebracht wird. Dies ist aber bei den herkömmlichen Heizdrähten nicht durchführbar. Wie bereits erwähnt, können keine niedrigen bis mittleren Tempe¬ raturen erzielt werden. Berührung mit dem heissen Heizelement kann zu Strukturveränderungen des Gegenstandes oder des Mediums führen. Ebenso können die Wärmeübertragung hemmende Randeffekte auftreten.
Eine optimale Wärmeübertragung ist zudem erst dann vorhanden, wenn die Kontaktfläche zwischen den wärmetauschenden Medien möglichst gross ist. Aus den bisher verwendeten Materialien kann jedoch kein grossflächiges Heizelement gebaut werden, da ihr spezifischer Widerstand zu klein ist.
In Hinblick auf die immer bedeutendere Forderung, dass elek¬ trische Energie möglichst effizient und sparsam verwendet werden soll, können diese bekannten Heizeinheiten nicht mehr genügen.
Es ist deshalb Aufgabe der vorliegenden Erfindung, eine elek¬ trische Heizeinheit zu schaffen, die einen hohen Wirkungsgrad in der Wärmeübertragung von der Wärmequelle zu der Wärmesenke gewährleistet.
Diese Aufgabe löst eine elektrische Heizeinheit gemäss Ober¬ begriff des Patentanspruchs 1, die dadurch gekennzeichnet ist, dass der tragende, beziehungsweise führende, massive Körper gleichzeitig das stromdurchflossene Widerstands- heizelement bildet.
Die erfindungsgemässe elektrische Heizeinheit weist wie die bekannten Heizeinheiten ein stromdurchflossenes Widerstands¬ heizelement auf. Dieses ist jedoch als massiver, das heisst als fester und wuchtiger Körper ausgebildet. Es kann beispielsweise als Rohr oder Platte gestaltet sein. Dieser massive Körper wird in der erfindungsgemässen Heizeinheit nicht nur als Wärmequelle eingesetzt, sondern auch um den zu erwärmenden Gegenstand zu tragen oder, im Falle eines Gases oder einer Flüssigkeit, dieses zu führen.
Das erfindungsgemässe Widerstandsheizelement ist nicht, wie bekannt, aus einem elektrisch leitenden Material mit kleinem spezifischen elektrischen Widerstand gefertigt, sondern aus einem einen beträchlich höheren spezifischen Widerstand auf¬ weisenden Material. Beispiele der verwendeten Materialien sind Halbleiter, wie Siliciumkarbid, mit Kohlenstoff, Graphit oder Metall dotierte Hochleistungs-Kunststoffe oder andere halbleiterähnliche Materialien. Diese Materialien haben einen beträchtlich höheren spezifischen Widerstand p als die bisher verwendeten. Typische Werte liegen zwischen 10~4 bis 1 Ωm.
Der spezifische Widerstand p der verwendeten Materialien und damit auch deren effektiver Widerstand R sind genügend gross, so dass ein kleiner Querschnitt und eine grosse Länge keine Bedingung für das Widerstandsheizelement mehr darstellt. Zudem ist die bei gleichbleibender Spannung in Wärme umgewan¬ delte Energie wegen dem höheren Widerstand um einiges tiefer als bei den herkömmlichen leitenden Widerstandsheizelementen. Das Heizelement lässt sich schon für eine niedrige bis mittlere Temperatur regeln. Typische Temperaturen liegen bei 50°C bis 700°C.
Das als massiver Körper ausgebildete, halbleitende Wider¬ standsheizelement birgt mehrere Vorteile.
Da das Heizelement bereits bei tiefen Temperaturen regelbar ist, kann es auf eine Temperatur erwärmt werden, die nur leicht höher als die gewünschte Endtemperatur des Gegen¬ standes oder Mediums liegt. Dadurch kann es in Kontakt mit dem zu erwärmenden Gegenstand oder Medium gebracht werden, so dass die Wärmeübertragung durch Wärmeleitung und nicht durch Wärmestrahlung erfolgen kann.
Da das Heizelement als massiver Körper ausgebildet ist, ist die Kontaktfläche zum Gegenstand oder Medium gross. Die Wärmeübertragung kann über diese grosse Fläche erfolgen. Zudem ist kein zusätzliches massives Zwischenelement erfor¬ derlich, das die Wärmeübertragung hemmt. Daher reicht, in umgekehrter Betrachtungsweise, die niedrige bis mittlere Temperatur der Wärmequelle zu Erzielung der gewünschten Temperatur am Gegenstand oder Medium aus.
Der Wirkungsgrad der erfindungsgemässen Heizeinheit ist dem¬ nach beträchtlich höher als bei konventionellen Heizeinheiten mit Widerstandsheizdrähten. Die erfindungsgemässe Heizeinheit ist energiesparend.
Zur zusätzlichen Erhöhung des Wirkungsgrades können die nicht zur Wärmeübertragung verwendeten Flächen des Heizelementes thermisch isoliert werden. Die Wärme wird so gezielt an die benötigte Stelle gebracht. Die Verluste durch Wärmestrahlung sind gering gehalten.
Je nach Anwendungsbereich wird der massive Körper des Wider¬ standsheizelementes gegenüber dem zu erwärmenden Medium oder Gegenstand elektrisch isoliert. Die Isolationsschicht kann beispielsweise ein Keramiküberzug mit ähnlichem Wärmeausdeh¬ nungskoeffizient wie der massive Körper sein. Vorzugsweise wird ein elektrisch isolierendes Material mit möglichst guten wärmeleitenden Eigenschaften gewählt.
In den Zeichnungen sind Ausführungsbeispiele des Erfindungs¬ gegenstandes dargestellt und in der nachfolgenden Beschrei¬ bung erläutert. Es zeigen:
Figur 1 eine Heizeinheit in Form eines Rohres;
Figur 2 eine Heizeinheit mit einem plattenförmigen Wider¬ standsheizelement;
Figur 3 eine erfindungsgemässe Kochplatte. In Figur 1 ist ein rohrförmiges Widerstandsheizelement darge¬ stellt. Es besteht aus einem Rohrstück l, das an jedem seiner Enden gut leitende metallische Kontakte 2 mit grossen Kon¬ taktflächen zur Erstellung eines Stromkreises aufweist. Wird eine Spannungsquelle an diese Kontakte angeschlossen, so fliesst ein Strom durch das Rohr. Dieses wird entsprechend seinem Widerstand R erhitzt.
Ein derartiges Widerstandsheizelement wird beispielsweise in einem Durchlauferhitzer oder einer Geschirrspülmaschine verwendet . Das Rohrstück 1 des Widerstandsheizelementes ist dann gleichzeitig die Rohrleitung für das zu erwärmende Wasser. Das Wasser fliesst im Innern 3 des Rohres 1. Durch den direkten Kontakt mit der heissen Rohrwandung wird das Wasser erwärmt. Da die Rohrwandung nur eine unwesentlich höhere Temperatur als die gewünschte Wassertemperatur aufweist, treten keine Strukturumwandlungen des Wassers auf und der Wirkungsgrad ist wesentlich höher als bei konven¬ tionellen Durchlauferhitzern. Um unerwünschten Wärmeverlust an die Umgebung zu verhindern, kann das Rohr mit einem thermisch isolierten Mantel umgeben sein.
Wird eine Niederspannung, das heisst eine Spannung kleiner als 50 V, an das Rohr angelegt, so ist keine spezielle elek¬ trische Isolation notwendig.
Wird jedoch eine Spannung von 220 V verwendet, so muss die Heizeinheit gegenüber der Umgebung mit einem elektrisch iso¬ lierenden Mantel umgeben werden. Das zu erwärmende Medium, die Flüssigkeit oder das Gas, bleibt trotzdem in direktem Kontakt mit dem als Wärmequelle dienenden Rohr. Als Isolationsmaterial wird beispielsweise Silikon-Kautschuk verwendet. Eine dünne derartige Isolationsschicht wird in einer speziellen Ausführungsform auch auf der inneren Wandung des stromdurchflossenen Rohres angebracht.
In Figur 2 ist ein Widerstandsheizelement in Form einer Platte dargestellt. An beiden Enden der Platte sind wie in der bereits beschriebenen Ausführungsform elektrische Kontakte 2 angebracht. Sie können an den Stirnflächen der Platte befestigt sein oder, wie dargestellt, den Umfang der Platte umfassen. Auch in diesem Beispiel ist die Platte gleichzeitig die Wärmequelle und der massive, den zu erwär¬ mende Gegenstand tragende Körper. Je nach angelegter Spannung wird die Platte mit einer elektrisch isolierenden Schicht bedeckt, die aber möglichst gute wärmeleitende Eigenschaften aufweist. Ebenso kann die untere Seite der Platte, falls sie nicht zur Wärmeübertragung verwendet wird, thermisch isoliert sein. Anwendungsbeispiele sind Wärmeplatten im Haushalts- gebrauch oder Heizelemente, die in einen mit Flüssigkeit gefüllten Behälter eingetaucht werden.
Ein Anwendungsbeispiel einer derartigen Platte ist in Figur 3 dargestellt. Das Widerstandselement wird als Kochplatte verwendet. Die untere Seite 5 der Platte 4 ist elektrisch und thermisch isoliert. Die obere Seite 6 weist eine elektrische Isolationsschicht auf. Auf diese wird der zu erwärmende Kochtopf gestellt. Auch diese Kochplatte weist die oben beschriebenen Vorteile auf und ermöglicht so eine energie¬ sparende Zubereitung von Mahlzeiten.
In einem weiteren, nicht dargestellten Ausführungsbeispiel ist das tragende Heizelement mit einem weiteren massiven Körper in Kontakt. Dieser Körper weist elektrisch isolie¬ rende, aber gut wärmeleitende Eigenschaften auf. Im Falle einer Kochplatte oder einer Wärmeplatte wird diese massive Isolation anstelle der oben beschriebenen Isolationsschicht verwendet. Als Isolationsmaterial wird beispielweise Alumi¬ niumnitrid (AlN) . Dieser Isolationskörper trennt das tragende Heizelement von dem zu erwärmenden Medium oder Gegenstand.
In einer weiteren Ausführungsform verbindet ein derartiger Isolationskörper mehrere massive Heizelemente miteinander, die somit eine gemeinsame Heizeinheit bilden.
Damit die erfindungsgemässe Heizeinheit sinnvoll eingesetzt werden kann, muss für jedes Anwendungsbeispiel jeweils die Optimierung aller wesentlichen Parameter berechnet werden. Das heisst, die Länge und Querschnittsfläche des Widerstands¬ heizelementes müssen so gewählt werden, dass der resultie¬ rende Widerstand R die zur Erzielung der gewünschten Tempera¬ tur notwendige Grosse aufweist. Gleichzeitig muss aber die Forderung erfüllt werden, dass die Stabilität des Körpers zum Führen des Mediums oder Tragen des Gegenstandes ausreicht. Ein dabei teilweise frei wählbarer Parameter ist das Mate¬ rial. Der spezifische Widerstand lässt sich durch Veränderung der Dotierung des Siliziumkarbits oder des Kunststoffes variieren.
Im folgenden werden einige Zahlenbeispiele typischer Ausführungsformen angegeben:
1. Beispiel;
- verwendetes Material : graphitgefüllter Hochleistungs - kunststoff mit einem spezifischen Widerstand von p = 4 Ωcm.
Abmessungen des Rohres Durchmesser: 40 mm Wandstärke: 2.5 mm Länge: 200 mm angelegte Spannung: 220 V , 50 Hz Leistung: 1.78 kW
2. Beispiel:
- verwendetes Material : Hochleistungskunststoff mit einem spezifischen Widerstand von p = 0.04 Ωcm
Abmessungen des Rohres siehe Beispiel 1 angelegte Spannung: 24 V Leistung: 2.12 kW
3. Beispiel:
- verwendetes Material : Hochleistungskunststoff mit einem spezifischen Widerstand von p = 40 Ωcm - Abmessungen des Rohres: siehe Beispiel 1
- angelegte Spannung: 380 V
- Leistung: 532 W
4. Beispiel :
- verwendetes Material .- Siliziumkarbit mit einem spezifi¬ schen Widerstand von p = 1.3 Ωcm
- Abmessungen des Stabes Durchmesser: 8 mm Länge: 150 mm
- angelegte Spannung: 220 V, 50 Hz
- Leistung. - 1.25 kW

Claims

Patentansprüche
1. Elektrische Heizeinheit mit einem stromdurchflossenen Widerstandsheizelement und einem, den zu heizenden Gegen¬ stand oder das zu erwärmende Medium tragenden beziehungs¬ weise oder führenden, massiven Körper, dadurch gekenn¬ zeichnet, dass der tragende, beziehungsweise führende massive Körper gleichzeitig das stromdurchflossene Wider¬ standsheizelement bildet.
2. Elektrische Heizeinheit nach Anspruch 1, dadurch gekenn¬ zeichnet, dass der stromdurchflossene, massive Körper aus einem halbleitenden Material hergestellt ist, dessen spezifischer elektrischer Widerstand 10~4 Ωm bis 1 Ωm beträgt.
3. Elektrische Heizeinheit nach Anspruch 2, dadurch gekenn¬ zeichnet, dass der massive Körper aus Siliziumkarbit gefertigt ist.
4. Elektrische Heizeinheit nach Anspruch 2, dadurch gekenn¬ zeichnet, dass der massive Körper aus einem mit Kohlen¬ stoff, Graphit oder Metall dotierten Hochleistungs-Kunst¬ stoff gefertigt ist.
5. Elektrische Heizeinheit nach Anspruch 1, dadurch gekenn¬ zeichnet, dass der massive Körper die Form eines Rohres hat.
6. Elektrische Heizeinheit nach Anspruch 5, dadurch gekenn¬ zeichnet, dass das Rohr einen thermisch isolierten Mantel aufweist.
7. Elektrische Heizeinheit nach Anspruch 1, dadurch gekenn¬ zeichnet, dass das Heizelement mindestens teilweise mit einer elektrisch isolierenden, gut wärmeleitenden Schicht oder einem Isolationskörper bedeckt ist.
8. Elektrische Heizeinheit nach einem der Ansprüche 1 oder 7, dadurch gekennzeichnet, dass das Heizelement aus einer Platte besteht.
9. Elektrische Heizeinheit nach Anspruch 7, dadurch gekenn¬ zeichnet, dass sie eine Kochplatte ist.
10. Elektrische Heizeinheit nach Anspruch 7, dadurch gekenn¬ zeichnet, dass sie eine Kochplatte ist.
EP94919544A 1993-07-12 1994-07-08 Elektrische heizeinheit Withdrawn EP0659328A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH208393A CH688328A5 (de) 1993-07-12 1993-07-12 Elektrische Heizeinheit.
CH2083/93 1993-07-12
PCT/CH1994/000143 WO1995002952A1 (de) 1993-07-12 1994-07-08 Elektrische heizeinheit

Publications (1)

Publication Number Publication Date
EP0659328A1 true EP0659328A1 (de) 1995-06-28

Family

ID=4225513

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94919544A Withdrawn EP0659328A1 (de) 1993-07-12 1994-07-08 Elektrische heizeinheit

Country Status (7)

Country Link
EP (1) EP0659328A1 (de)
AU (1) AU7067094A (de)
CH (1) CH688328A5 (de)
CZ (1) CZ283545B6 (de)
HU (1) HUT71146A (de)
PL (1) PL308110A1 (de)
WO (1) WO1995002952A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528495B2 (ja) * 2003-05-26 2010-08-18 住友電気工業株式会社 超電導ケーブル用断熱管のベーキング方法
PL211421B1 (pl) 2007-12-21 2012-05-31 Tadeusz Tatarzyński Zespół grzewczy zbiorczy, zwłaszcza dla grzejnika elektrycznego

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2371275A (en) * 1945-03-13 heating element
CH138805A (de) * 1926-04-28 1930-03-31 Max Dr Hauser Elektrischer Widerstandskörper und Verfahren zur Herstellung desselben.
DE1239416B (de) * 1960-04-26 1967-04-27 Siemens Electrogeraete Ges Mit Elektrischer Durchlauferhitzer mit Heizwiderstand aus Keramik
US3309643A (en) * 1964-01-02 1967-03-14 Massachusetts Inst Technology Electric heating element
DE2049977C3 (de) * 1970-10-12 1973-10-11 Danfoss As. Elektrischer Widerstand und Verfahren zu seiner Herstellung
FR2167267A1 (en) * 1972-01-11 1973-08-24 Klima Technik Resistance compsn - for heating panels eg in muffles baking ovens and cooking appliances
GB1444722A (en) * 1972-08-25 1976-08-04 Harris Barbara Joan Electrical heating elements
NL7212816A (de) * 1972-09-22 1974-03-26
US4384192A (en) * 1981-03-02 1983-05-17 Teledyne Still-Man Manufacturing Electric heating element
WO1991001617A1 (en) * 1989-07-18 1991-02-07 Matsusita Electric Works, Ltd. Heat generating member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9502952A1 *

Also Published As

Publication number Publication date
CZ63095A3 (en) 1995-08-16
HU9500746D0 (en) 1995-05-29
AU7067094A (en) 1995-02-13
HUT71146A (en) 1995-11-28
PL308110A1 (en) 1995-07-24
WO1995002952A1 (de) 1995-01-26
CZ283545B6 (cs) 1998-04-15
CH688328A5 (de) 1997-07-31

Similar Documents

Publication Publication Date Title
DE3102919C2 (de) Strahlungsheizer für Herde mit ebenen Kochplatten
AT403091B (de) Heizeinrichtung für mit elektroenergie beheizte strahlungsheizstellen
EP1290916A1 (de) Elektrische heizvorrichtung
DE2205132C3 (de) Elektrokochgerät
WO2007085415A1 (de) Heizelement für eine heisslufteinrichtung
EP0017057A1 (de) Vorrichtung zum Vorwärmen von Heizöl
DE2743880B2 (de) Heizeinrichtung mit einem optimierten Heizelement aus Kaltleiter-Material
CH654966A5 (de) Elektrischer kochherd.
DE8525366U1 (de) Strahlungsheizer für Herde mit Glaskeramikdeckplatten
EP0783830B1 (de) Elektrisches heizelement
EP0659328A1 (de) Elektrische heizeinheit
EP0866641A2 (de) Elektrokochplatte
DE3730580C1 (de) Thermoschlauch
EP3777473A1 (de) Keramischer heizwiderstand, elektrisches heizelement sowie vorrichtung zur erwärmung eines fluides
DE19856087A1 (de) Elektrischer Durchlauferhitzer und Verfahren zu seiner Herstellung
DE1489276C3 (de) Thermoelektrischer Generator
DE19537121C2 (de) Vorrichtung zur Gewinnung elektrischer Energie aus Strahlungsenergie
DE19600069C2 (de) Elektrischer PTC-Heizkörper
DE19823493A1 (de) Beheizbares Rohr
WO1995004443A1 (de) Keramisches heizelement sowie verfahren zur herstellung eines solchen heizelements
DE3730195C2 (de)
EP0513953B1 (de) Thermostat-Ventil
DE10310255A1 (de) Elektrische Heizung mit einer Kontaktkochplatte
DE102008054546B3 (de) Verbessertes Trennsäulenmodul für einen Gas-Chromatographen
DE10344860B4 (de) Heizvorrichtung für ein Gargerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

RAX Requested extension states of the european patent have changed

Free format text: SI PAYMENT 950317

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SGL CARBON AG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MARAVIC, DUSKO

17Q First examination report despatched

Effective date: 19980626

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20010201