EP0645594A1 - Apparatus for self-contained cooling of high temperature superconducting components, preferably sensors - Google Patents
Apparatus for self-contained cooling of high temperature superconducting components, preferably sensors Download PDFInfo
- Publication number
- EP0645594A1 EP0645594A1 EP94114258A EP94114258A EP0645594A1 EP 0645594 A1 EP0645594 A1 EP 0645594A1 EP 94114258 A EP94114258 A EP 94114258A EP 94114258 A EP94114258 A EP 94114258A EP 0645594 A1 EP0645594 A1 EP 0645594A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- pressure vessel
- self
- temperature superconducting
- high temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 28
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 239000001294 propane Substances 0.000 claims description 3
- 238000005057 refrigeration Methods 0.000 claims description 3
- 239000007791 liquid phase Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000005496 eutectics Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 3
- 239000008207 working material Substances 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
- F25D19/006—Thermal coupling structure or interface
Definitions
- a cooling device for electronic components was proposed in DE-OS 40 33 383, in which a storage container for the Cryogenic fluid is present.
- An evaporation chamber is assigned to the storage container, in which there is a so-called cooling finger, which feeds the evaporation temperature generated to the cooling point at which the component to be cooled is arranged.
- the temperature is regulated via a heater in the area of the cooling finger and a return of the evaporated refrigerant to the storage container. Due to the rising evaporated coolant in the form of bubbles, in the described case nitrogen, undesirable vibrations occur which have a negative effect on the functioning of the electronic components.
- Another disadvantage of these cooling devices is that it is necessary to add coolant after certain operating times.
- a cooling device for sensors has been proposed in which a condenser for nitrogen is arranged on the cold head of a Stirling engine and an evaporator for sensor cooling is connected via lines for the liquid and gaseous nitrogen.
- the lines which have a capillary size, achieve extensive decoupling of the vibrations of the Stirling engine, but this device is too complex for certain applications and complete freedom from vibration at the measuring point is not achieved.
- the object of the invention is to provide a simple, self-sufficient cooling device for sensors, in which no vibrations of the refrigerating machine occur at the measuring point.
- the object of the invention is solved by the features of the claims.
- the invention is based on the fact that discontinuous cooling meets the requirements in a large part of the applications.
- the latent storage for cryogenic temperatures according to the invention is characterized by the alternating mode of operation between the performance of the refrigerator with the freezing of the working fluid and the storage of the "cooling energy" as latent conversion energy and the actual useful phase when the machine is at rest and the melting of the working fluid.
- the dimensioning of the device is chosen so that the cooling capacity of the machine is significantly greater than the required useful power, so that the useful phase becomes large compared to the storage phase.
- Fig. 1 the structure of the device according to the invention is shown schematically and in Fig. 2 the process flow.
- a spherical pressure vessel 2 is arranged in the housing 1. It is made of copper and has a wall thickness of 0.4 mm with a diameter of 50 mm.
- the pressure vessel is thermally conductively connected to the cold head 4 of a split Stirling engine via an adapter 3.
- the sensor cooling surface 5 is coupled via the contact surface 6.
- a suitable amount of propane 8 is condensed into the evacuated pressure vessel 2 in a suitable manner via the filler neck 7 and the filler neck 7 is hermetically sealed.
- the cold head 4, the pressure vessel 2 with the sensor cooling surface 5 are located inside the housing 1 in an insulation vacuum 10 and are protected by radiation shields 9.
- the device according to the invention has the following process flow: After switching on the Split Stirling machine, the first cooling takes place until the liquid-solid temperature falls below 85.5 K by approx. 8 K (subcooling).
- the latent storage warms up to an almost constant temperature until the propane melts. This represents the actual work area of the trouble-free use. After the complete melting, the vessel continues to heat up.
- the ratio of machine runtime to trouble-free usage time depends on the ratio of machine performance to loss plus useful performance. Typical is, for example, a machine power of 1 W and a loss plus useful power of 0.2 W. With the specified dimensions, the maximum storage capacity is approximately 1.28 Wh. With a charging time of approximately 10 minutes, 50 minutes and after one maximum charging time of approximately one hour can be 5 hours of use.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
An die Kühlung von hochtemperatursupraleitenden, mikroelektronischen Bauelementen werden hinsichtlich der Temperaturkonstanz und einer möglichst geringen Belastung durch elektromagnetische und mechanische Schwingungen sehr hohe Anforderungen gestellt.Very high demands are placed on the cooling of high-temperature superconducting, microelectronic components with regard to temperature constancy and the lowest possible exposure to electromagnetic and mechanical vibrations.
Insbesondere im Hinblick auf die geringe Belastbarkeit der Bauelemente durch Schwingungen sind bisher keine praktischen Lösungen bekannt geworden, bei denen zur Kälteerzeugung Verdichterkälteanlagen eingesetzt werden. Bekannte Lösungen mit Kältemaschinen wie sie z.B. in der DE-PS 36 39 881 und DE-PS 34 45 674 beschrieben sind, sind durch aufwendige Maßnahmen zur Kompensation der von der Kältemaschine erzeugten Schwingungen gekennzeichnet.In particular with regard to the low load-bearing capacity of the components due to vibrations, no practical solutions have hitherto been known in which compressor cooling systems are used to generate refrigeration. Known solutions with chillers such as e.g. in DE-PS 36 39 881 and DE-PS 34 45 674 are described, are characterized by complex measures to compensate for the vibrations generated by the refrigerator.
Aufbauend auf einer Reihe bekannter Lösungen, die mit einen Vorratsbehälter für die Kryoflüssigkeit ausgerüstet sind und bei denen die Kryoflüssigkeit definiert der Kühlstelle zugeführt wird, wurde in der DE-OS 40 33 383 eine Kühlvorrichtung für elektronische Bauelemente vorgeschlagen, bei der ebenfalls ein Vorratsbehälter für die Kryoflüssigkeit vorhanden ist. Dem Vorratsbehälter ist eine Verdampfungskammer zugeordnet, in der sich ein sogenannter Kühlfinger befindet, der die erzeugte Verdampfungstemperatur der Kühlstelle zuführt, an der das zu kühlende Bauelement angeordnet ist. Die Regelung der Temperatur erfolgt über eine Heizung im Bereich des Kühlfingers und einer Rückführung des verdampften Kältemittels in den Vorratsbehälter. Durch das aufsteigende verdampfte Kühlmittel in Blasenform, im beschriebenen Fall Stickstoff, treten aber unerwünschte Erschütterungen auf, die die Arbeitsweise der elektronischen Bauelemente negativ beeinflussen. Ein weiterer Nachteil dieser Kühleinrichtungen besteht darin, daß es erforderlich ist, nach bestimmten Betriebszeiten Kühlflüssigkeit nachzufüllen.Building on a number of known solutions, which are equipped with a storage container for the cryogenic liquid and in which the cryogenic liquid is supplied to the cooling point, a cooling device for electronic components was proposed in DE-OS 40 33 383, in which a storage container for the Cryogenic fluid is present. An evaporation chamber is assigned to the storage container, in which there is a so-called cooling finger, which feeds the evaporation temperature generated to the cooling point at which the component to be cooled is arranged. The temperature is regulated via a heater in the area of the cooling finger and a return of the evaporated refrigerant to the storage container. Due to the rising evaporated coolant in the form of bubbles, in the described case nitrogen, undesirable vibrations occur which have a negative effect on the functioning of the electronic components. Another disadvantage of these cooling devices is that it is necessary to add coolant after certain operating times.
Außerdem wurde eine Kühlvorrichtung für Sensoren vorgeschlagen, bei der am Kaltkopf einer Stirling-Maschine ein Verflüssiger für Stickstoff angeordnet ist und über Leitungen für den flüssigen und gasförmigen Stickstoff ein Verdampfer für die Sensorkühlung angeschlossen ist. Durch die Leitungen, die Kapillargröße besitzen, wird zwar eine weitgehende Entkopplung der Schwingungen der Stirling-Maschine erreicht, für bestimmte Einsatzfälle ist diese Vorrichtung jedoch zu aufwendig und eine vollständige Schwingungsfreiheit an der Meßstelle wird nicht erreicht.In addition, a cooling device for sensors has been proposed in which a condenser for nitrogen is arranged on the cold head of a Stirling engine and an evaporator for sensor cooling is connected via lines for the liquid and gaseous nitrogen. The lines, which have a capillary size, achieve extensive decoupling of the vibrations of the Stirling engine, but this device is too complex for certain applications and complete freedom from vibration at the measuring point is not achieved.
Aufgabe der Erfindung ist es, eine einfache, autarke Kühleinrichtung für Sensoren zu schaffen, bei der an-der Meßstelle keinerlei Schwingungen des Kältemaschine auftreten.The object of the invention is to provide a simple, self-sufficient cooling device for sensors, in which no vibrations of the refrigerating machine occur at the measuring point.
Die Aufgabe der Erfindung wird durch die Merkmale der Patentansprüche gelöst. Die Erfindung geht davon aus, daß bei einen großen Teil der Einsatzfälle eine diskontinuierliche Kühlung den Anforderungen genügt. Der erfindungsgemäße Latentspeicher für kryogene Temperaturen ist durch die alternierende Arbeitsweise zwischen der Leistung der Kältemaschine mit dem Gefrieren des Arbeitsstoffes und der Speicherung der "Kälteenergie" als latente Umwandlungsenergie und der eigentlichen Nutzphase bei ruhender Maschine und dem Schmelzen des Arbeitsstoffes gekennzeichnet. Die Dimensionierung der Einrichtung wird so gewählt, daß die Kälteleistung der Maschine wesentlich größer ist als die erforderliche Nutzleistung, so daß die Nutzphase groß gegen die Speicherphase wird.The object of the invention is solved by the features of the claims. The invention is based on the fact that discontinuous cooling meets the requirements in a large part of the applications. The latent storage for cryogenic temperatures according to the invention is characterized by the alternating mode of operation between the performance of the refrigerator with the freezing of the working fluid and the storage of the "cooling energy" as latent conversion energy and the actual useful phase when the machine is at rest and the melting of the working fluid. The dimensioning of the device is chosen so that the cooling capacity of the machine is significantly greater than the required useful power, so that the useful phase becomes large compared to the storage phase.
Die Nutzung des Umwandlungspunktes fest-flüssig bietet wegen der sehr geringen Abhängigkeit der Schmelztemperatur vom Druck günstige apparative Möglichkeiten.The use of the solid-liquid transition point offers favorable equipment options because of the very low dependence of the melting temperature on the pressure.
Die sonst übliche Nutzung der Verdampfungswärme von Stickstoff durch Kondensation und Verdampfung erfordert für die entstehende Gasphase des erforderlichen geschlossenen Systems ein relativ großes äußeres Konstantdruck-Puffer-Gefäß, so daß Stickstoff als Arbeitsstoff für die erfindungsgemäße Einrichtung nicht geeignet ist.The otherwise customary use of the heat of vaporization of nitrogen by condensation and evaporation requires a relatively large external constant pressure buffer vessel for the resulting gas phase of the required closed system, so that nitrogen is not suitable as a working substance for the device according to the invention.
Der Arbeitsstoff bzw. das Arbeitsstoffgemisch muß über folgende Eigenschaften verfügen:
- Die Temperatur des Tripelpunktes muß für den Arbeitsbereich hochtemperatursupraleitender Bauteile im Bereich 60 K bis 90 K liegen.
- Die kritische Temperatur muß so hoch liegen, daß bei maximaler Raumtemperatur die flüssige Phase noch existiert.
- In einem gegebenen Volumen ist eine möglichst große Speicherkapazität unterzubringen, d.h. das Produkt aus Schmelzenthalpie und Dichte am Schmelzpunkt muß möglichst groß sein.
- The temperature of the triple point must be in the range of 60 K to 90 K for the working area of high-temperature superconducting components.
- The critical temperature must be so high that the liquid phase still exists at maximum room temperature.
- The largest possible storage capacity must be accommodated in a given volume, ie the product of enthalpy of fusion and density at the melting point must be as large as possible.
An nachfolgendem Ausführungsbeispiel soll die Erfindung näher erläutert werden:The invention will be explained in more detail using the following exemplary embodiment:
In Fig. 1 ist schematisch der Aufbau der erfindungsgemäßen Einrichtung und in Fig. 2 der Prozeßablauf dargestellt.In Fig. 1 the structure of the device according to the invention is shown schematically and in Fig. 2 the process flow.
In dem Gehäuse 1 ist ein kugelförmiges Druckgefäß 2 angeordnet. Es besteht aus Kupfer und hat bei einem Durchmesser von 50 mm eine Wandstärke von 0,4 mm. Über einen Adapter 3 ist das Druckgefäß mit dem Kaltkopf 4 einer Split-Stirling-Maschine wärmeleitend verbunden. Die Ankopplung der Sensorkühlfläche 5 erfolgt über die Kontaktfläche 6. Über den Füllstutzen 7 wird in das evakuierte Druckgefäß 2 in geeigneter Weise eine angemessene Menge Propan 8 einkondensiert und der Füllstutzen 7 wird hermetisch verschlossen.A
In nicht dargestellter Weise ist es auch möglich, am Füllstutzen 7 einen Druckausgleichsbehälter anzuordnen.In a manner not shown, it is also possible to arrange a surge tank on the
Der Kaltkopf 4, das Druckgefäß 2 mit der Sensorkühlfläche 5 befinden sich innerhalb des Gehäuses 1 in einem Isolationsvakuum 10 und werden durch Strahlungsschutzschirme 9 geschützt.The
Die erfindungsgemäße Einrichtung hat folgenden Prozeßablauf:
Nach dem Einschalten der Split-Stirling-Maschine erfolgt die erste Abkühlung bis zum Unterschreiten der Umwandlungstemperatur flüssig-fest von 85,5 K um ca. 8 K (Unterkühlung).The device according to the invention has the following process flow:
After switching on the Split Stirling machine, the first cooling takes place until the liquid-solid temperature falls below 85.5 K by approx. 8 K (subcooling).
Nach dem Kristallisationsbeginn und dem Anstieg der Temperatur auf die Umwandlungstemperatur erfolgt die weitere Kristallisation bei annähernd konstanter Temperatur bis zur vollständigen Umwandlung und dann weiterer Abkühlung des festen Progans.After the start of crystallization and the increase in temperature to the conversion temperature, the further crystallization takes place at an approximately constant temperature until the complete conversion and then further cooling of the solid program.
Nach dem Abschalten der Maschine erwärmt sich der Latentspeicher bis zum Schmelzen des Propans bei annähernd konstanter Temperatur. Dies stellt den eigentlichen Arbertsbereich der störungsfreien Nutzung dar. Nach dem vollständigen Schmelzen erwärmt sich das Gefäß weiter.After the machine has been switched off, the latent storage warms up to an almost constant temperature until the propane melts. This represents the actual work area of the trouble-free use. After the complete melting, the vessel continues to heat up.
Nach dem erneuten Einschalten der Maschine wird der Speicher wieder geladen und nach dem Ausschalten kann bei annähernd konstanter Temperatur erneut gemessen werden.After the machine is switched on again, the memory is loaded again and after switching off, measurements can be carried out again at an approximately constant temperature.
Das Verhältnis von Maschinenlaufzeit zu störungsfreier Nutzzeit hängt vom Verhältnis der Maschinenleistung zur Verlust- plus Nutzleistung ab. Typisch ist zum Beispiel eine Maschinenleistung von 1 W und eine Verlust- plus Nutzleistung von 0,2 W. Mit den angegebenen Abmessungen beträgt die maximale Speicherkapazität ca. 1,28 Wh. Bei einer Ladezeit von ca. 10 min kann 50 min und nach einer maximalen Ladezeit von ca. einer Stunde kann 5 Stunden Nutzung erfolgen.The ratio of machine runtime to trouble-free usage time depends on the ratio of machine performance to loss plus useful performance. Typical is, for example, a machine power of 1 W and a loss plus useful power of 0.2 W. With the specified dimensions, the maximum storage capacity is approximately 1.28 Wh. With a charging time of approximately 10 minutes, 50 minutes and after one maximum charging time of approximately one hour can be 5 hours of use.
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4332156 | 1993-09-22 | ||
DE4332156A DE4332156A1 (en) | 1993-09-22 | 1993-09-22 | Device for self-sufficient cooling of high-temperature superconducting components, preferably sensors |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0645594A1 true EP0645594A1 (en) | 1995-03-29 |
Family
ID=6498274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94114258A Withdrawn EP0645594A1 (en) | 1993-09-22 | 1994-09-10 | Apparatus for self-contained cooling of high temperature superconducting components, preferably sensors |
Country Status (3)
Country | Link |
---|---|
US (1) | US5615557A (en) |
EP (1) | EP0645594A1 (en) |
DE (1) | DE4332156A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5816052A (en) * | 1997-02-24 | 1998-10-06 | Noran Instruments, Inc. | Method and apparatus for mechanically cooling energy dispersive X-ray spectrometers |
WO2000020795A2 (en) * | 1998-09-14 | 2000-04-13 | Massachusetts Institute Of Technology | Superconducting apparatuses and cooling methods |
US6330800B1 (en) * | 1999-04-16 | 2001-12-18 | Raytheon Company | Apparatus and method for achieving temperature stability in a two-stage cryocooler |
CA2476945A1 (en) * | 2002-02-22 | 2003-09-04 | Chordia Lalit | Means and apparatus for microrefrigeration |
US7263845B2 (en) * | 2004-09-29 | 2007-09-04 | The Boc Group, Inc. | Backup cryogenic refrigeration system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2130001A1 (en) * | 1971-03-25 | 1972-11-03 | Comp Generale Electricite | Solidified gas cryostat - with pressure-regulated equilibrium used to cool electronic components |
US3836779A (en) * | 1971-12-22 | 1974-09-17 | Honeywell Inc | Cooling apparatus for infrared detectors |
FR2611973A1 (en) * | 1987-03-07 | 1988-09-09 | Messerschmitt Boelkow Blohm | Sensor cooling arrangement, esp. for infrared radiation detector |
EP0305257A1 (en) * | 1987-08-10 | 1989-03-01 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for the cryogenic cooling of an object |
GB2268796A (en) * | 1992-07-15 | 1994-01-19 | Outokumpu Instr Oy | Mounting of a cooling element |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE334087A (en) * | 1925-05-20 | |||
US3545226A (en) * | 1969-01-17 | 1970-12-08 | Homer E Newell | Dual solid cryogens for spacecraft refrigeration |
SU386273A1 (en) * | 1971-02-01 | 1973-06-14 | CRYOSTAT WITH REINFORCED GAS | |
US3702932A (en) * | 1971-04-15 | 1972-11-14 | Atomic Energy Commission | Melting cryogen cooling for radiation logging probe |
US3745785A (en) * | 1972-01-17 | 1973-07-17 | Us Air Force | Solid cryogen heat transfer apparatus |
GB8328236D0 (en) * | 1983-10-21 | 1983-11-23 | British Petroleum Co Plc | Cryogenic cell |
US4809133A (en) * | 1986-09-26 | 1989-02-28 | Hypres, Inc. | Low temperature monolithic chip |
DE3639881A1 (en) * | 1986-11-21 | 1988-06-01 | Fraunhofer Ges Forschung | Device for cooling optoelectronic components |
US4756164A (en) * | 1987-04-03 | 1988-07-12 | James Timothy W | Cold plate refrigeration method and apparatus |
US4821907A (en) * | 1988-06-13 | 1989-04-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Surface tension confined liquid cryogen cooler |
US5126830A (en) * | 1989-10-31 | 1992-06-30 | General Electric Company | Cryogenic semiconductor power devices |
US5121292A (en) * | 1990-01-23 | 1992-06-09 | International Business Machines Corporation | Field replaceable cryocooled computer logic unit |
US5099650A (en) * | 1990-04-26 | 1992-03-31 | Boreas Inc. | Cryogenic refrigeration apparatus |
DE4019091A1 (en) * | 1990-06-15 | 1991-12-19 | Battelle Institut E V | HEAT DISCHARGE DEVICE FOR SEMICONDUCTOR COMPONENTS AND METHOD FOR THE PRODUCTION THEREOF |
DE4033383C2 (en) * | 1990-10-20 | 1994-05-11 | Fraunhofer Ges Forschung | Cooling device for electronic components |
JPH04350906A (en) * | 1991-05-28 | 1992-12-04 | Nippon Steel Corp | Method and apparatus for cooling oxide superconducting coil |
-
1993
- 1993-09-22 DE DE4332156A patent/DE4332156A1/en not_active Withdrawn
-
1994
- 1994-09-10 EP EP94114258A patent/EP0645594A1/en not_active Withdrawn
- 1994-09-22 US US08/310,831 patent/US5615557A/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2130001A1 (en) * | 1971-03-25 | 1972-11-03 | Comp Generale Electricite | Solidified gas cryostat - with pressure-regulated equilibrium used to cool electronic components |
US3836779A (en) * | 1971-12-22 | 1974-09-17 | Honeywell Inc | Cooling apparatus for infrared detectors |
FR2611973A1 (en) * | 1987-03-07 | 1988-09-09 | Messerschmitt Boelkow Blohm | Sensor cooling arrangement, esp. for infrared radiation detector |
EP0305257A1 (en) * | 1987-08-10 | 1989-03-01 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for the cryogenic cooling of an object |
GB2268796A (en) * | 1992-07-15 | 1994-01-19 | Outokumpu Instr Oy | Mounting of a cooling element |
Also Published As
Publication number | Publication date |
---|---|
US5615557A (en) | 1997-04-01 |
DE4332156A1 (en) | 1995-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19914778B4 (en) | Superconducting magnet device | |
US2643282A (en) | Electronic equipment cooling means | |
DE10297837B4 (en) | Method for fixing a refrigerating machine and fastening device therefor | |
DE102006046688B3 (en) | Cooling system, e.g. for super conductive magnets, gives a non-mechanical separation between the parts to be cooled and the heat sink | |
DE69838866T2 (en) | Improvements in or related to cryostat systems | |
DE102011078608B4 (en) | cryostat assembly | |
DE102005041383B4 (en) | NMR apparatus with co-cooled probe head and cryocontainer and method of operation thereof | |
JP4494027B2 (en) | Cryogenic equipment | |
EP2821741B1 (en) | Method for retrofitting a cryostat assembly for circulation cooling | |
DE112011100875T5 (en) | Method and apparatus for controlling the temperature in a cryostat cooled to cryogenic temperatures using stagnant and moving gas | |
JPH10282200A (en) | Cooler for superconducting magnet system | |
DE102015215919B4 (en) | Method and device for precooling a cryostat | |
DE3427601A1 (en) | SUPRALOWING MAGNETIC DEVICE | |
WO2018054648A1 (en) | Apparatus and method for super-cooled operation of a cryostat with low quantities of coolant | |
EP1087187A1 (en) | Cryogenic container and magnetism measuring apparatus using it | |
US5551249A (en) | Liquid chiller with bypass valves | |
DE102005005283A1 (en) | Machine system with thermosyphon cooling of its superconducting rotor winding | |
WO2006082138A1 (en) | Motor device with thermosiphon cooling of its superconductive rotor winding | |
DE68907621T2 (en) | MAGNET DEVICE USED IN A MAGNETIC RESONANCE IMAGING ARRANGEMENT. | |
EP0645594A1 (en) | Apparatus for self-contained cooling of high temperature superconducting components, preferably sensors | |
US3643754A (en) | Apparatus for cooling a liquid | |
EP0463481A1 (en) | Cooling arrangement for a squid measurement device | |
DE19612539A1 (en) | Multi-stage cryogenic refrigerator | |
DE69004009T2 (en) | Cooling system with additional heat storage. | |
DE4212162A1 (en) | Cooling device for refrigeration compressor electric drive motor - uses refrigerant provided by compressor, with obtained refrigerant combined with outputting evaporator in refrigeration circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FORSCHUNGSZENTRUM JUELICH GMBH Owner name: INSTITUT FUER LUFT- UND KAELTETECHNIK GEMEINNUETZI |
|
17P | Request for examination filed |
Effective date: 19951130 |
|
17Q | First examination report despatched |
Effective date: 19971217 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19980630 |