[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0645594A1 - Apparatus for self-contained cooling of high temperature superconducting components, preferably sensors - Google Patents

Apparatus for self-contained cooling of high temperature superconducting components, preferably sensors Download PDF

Info

Publication number
EP0645594A1
EP0645594A1 EP94114258A EP94114258A EP0645594A1 EP 0645594 A1 EP0645594 A1 EP 0645594A1 EP 94114258 A EP94114258 A EP 94114258A EP 94114258 A EP94114258 A EP 94114258A EP 0645594 A1 EP0645594 A1 EP 0645594A1
Authority
EP
European Patent Office
Prior art keywords
cooling
pressure vessel
self
temperature superconducting
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94114258A
Other languages
German (de)
French (fr)
Inventor
Armin Dr. Binneberg
Johannes Dr. Neubert
Gabriele Dr. Spörl
Walter Dipl.-Ing. Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0645594A1 publication Critical patent/EP0645594A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Definitions

  • a cooling device for electronic components was proposed in DE-OS 40 33 383, in which a storage container for the Cryogenic fluid is present.
  • An evaporation chamber is assigned to the storage container, in which there is a so-called cooling finger, which feeds the evaporation temperature generated to the cooling point at which the component to be cooled is arranged.
  • the temperature is regulated via a heater in the area of the cooling finger and a return of the evaporated refrigerant to the storage container. Due to the rising evaporated coolant in the form of bubbles, in the described case nitrogen, undesirable vibrations occur which have a negative effect on the functioning of the electronic components.
  • Another disadvantage of these cooling devices is that it is necessary to add coolant after certain operating times.
  • a cooling device for sensors has been proposed in which a condenser for nitrogen is arranged on the cold head of a Stirling engine and an evaporator for sensor cooling is connected via lines for the liquid and gaseous nitrogen.
  • the lines which have a capillary size, achieve extensive decoupling of the vibrations of the Stirling engine, but this device is too complex for certain applications and complete freedom from vibration at the measuring point is not achieved.
  • the object of the invention is to provide a simple, self-sufficient cooling device for sensors, in which no vibrations of the refrigerating machine occur at the measuring point.
  • the object of the invention is solved by the features of the claims.
  • the invention is based on the fact that discontinuous cooling meets the requirements in a large part of the applications.
  • the latent storage for cryogenic temperatures according to the invention is characterized by the alternating mode of operation between the performance of the refrigerator with the freezing of the working fluid and the storage of the "cooling energy" as latent conversion energy and the actual useful phase when the machine is at rest and the melting of the working fluid.
  • the dimensioning of the device is chosen so that the cooling capacity of the machine is significantly greater than the required useful power, so that the useful phase becomes large compared to the storage phase.
  • Fig. 1 the structure of the device according to the invention is shown schematically and in Fig. 2 the process flow.
  • a spherical pressure vessel 2 is arranged in the housing 1. It is made of copper and has a wall thickness of 0.4 mm with a diameter of 50 mm.
  • the pressure vessel is thermally conductively connected to the cold head 4 of a split Stirling engine via an adapter 3.
  • the sensor cooling surface 5 is coupled via the contact surface 6.
  • a suitable amount of propane 8 is condensed into the evacuated pressure vessel 2 in a suitable manner via the filler neck 7 and the filler neck 7 is hermetically sealed.
  • the cold head 4, the pressure vessel 2 with the sensor cooling surface 5 are located inside the housing 1 in an insulation vacuum 10 and are protected by radiation shields 9.
  • the device according to the invention has the following process flow: After switching on the Split Stirling machine, the first cooling takes place until the liquid-solid temperature falls below 85.5 K by approx. 8 K (subcooling).
  • the latent storage warms up to an almost constant temperature until the propane melts. This represents the actual work area of the trouble-free use. After the complete melting, the vessel continues to heat up.
  • the ratio of machine runtime to trouble-free usage time depends on the ratio of machine performance to loss plus useful performance. Typical is, for example, a machine power of 1 W and a loss plus useful power of 0.2 W. With the specified dimensions, the maximum storage capacity is approximately 1.28 Wh. With a charging time of approximately 10 minutes, 50 minutes and after one maximum charging time of approximately one hour can be 5 hours of use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

The object of the invention is to provide a cooling device for sensors, in which no fluctuations at all of the cooling machine take place at the measurement site. On the basis that discontinuous cooling satisfies requirements in a large proportion of application cases, an accumulator vessel, preferably a conical pressure vessel, which is filled with a working material, preferably Progan 8, is arranged according to the invention on the cooling head 4 of a coolant-gas cooling machine. The sensor-cooling surface 5 is likewise located on the pressure vessel 2. The measurement process takes place with the cooling machine switched off. <IMAGE>

Description

An die Kühlung von hochtemperatursupraleitenden, mikroelektronischen Bauelementen werden hinsichtlich der Temperaturkonstanz und einer möglichst geringen Belastung durch elektromagnetische und mechanische Schwingungen sehr hohe Anforderungen gestellt.Very high demands are placed on the cooling of high-temperature superconducting, microelectronic components with regard to temperature constancy and the lowest possible exposure to electromagnetic and mechanical vibrations.

Insbesondere im Hinblick auf die geringe Belastbarkeit der Bauelemente durch Schwingungen sind bisher keine praktischen Lösungen bekannt geworden, bei denen zur Kälteerzeugung Verdichterkälteanlagen eingesetzt werden. Bekannte Lösungen mit Kältemaschinen wie sie z.B. in der DE-PS 36 39 881 und DE-PS 34 45 674 beschrieben sind, sind durch aufwendige Maßnahmen zur Kompensation der von der Kältemaschine erzeugten Schwingungen gekennzeichnet.In particular with regard to the low load-bearing capacity of the components due to vibrations, no practical solutions have hitherto been known in which compressor cooling systems are used to generate refrigeration. Known solutions with chillers such as e.g. in DE-PS 36 39 881 and DE-PS 34 45 674 are described, are characterized by complex measures to compensate for the vibrations generated by the refrigerator.

Aufbauend auf einer Reihe bekannter Lösungen, die mit einen Vorratsbehälter für die Kryoflüssigkeit ausgerüstet sind und bei denen die Kryoflüssigkeit definiert der Kühlstelle zugeführt wird, wurde in der DE-OS 40 33 383 eine Kühlvorrichtung für elektronische Bauelemente vorgeschlagen, bei der ebenfalls ein Vorratsbehälter für die Kryoflüssigkeit vorhanden ist. Dem Vorratsbehälter ist eine Verdampfungskammer zugeordnet, in der sich ein sogenannter Kühlfinger befindet, der die erzeugte Verdampfungstemperatur der Kühlstelle zuführt, an der das zu kühlende Bauelement angeordnet ist. Die Regelung der Temperatur erfolgt über eine Heizung im Bereich des Kühlfingers und einer Rückführung des verdampften Kältemittels in den Vorratsbehälter. Durch das aufsteigende verdampfte Kühlmittel in Blasenform, im beschriebenen Fall Stickstoff, treten aber unerwünschte Erschütterungen auf, die die Arbeitsweise der elektronischen Bauelemente negativ beeinflussen. Ein weiterer Nachteil dieser Kühleinrichtungen besteht darin, daß es erforderlich ist, nach bestimmten Betriebszeiten Kühlflüssigkeit nachzufüllen.Building on a number of known solutions, which are equipped with a storage container for the cryogenic liquid and in which the cryogenic liquid is supplied to the cooling point, a cooling device for electronic components was proposed in DE-OS 40 33 383, in which a storage container for the Cryogenic fluid is present. An evaporation chamber is assigned to the storage container, in which there is a so-called cooling finger, which feeds the evaporation temperature generated to the cooling point at which the component to be cooled is arranged. The temperature is regulated via a heater in the area of the cooling finger and a return of the evaporated refrigerant to the storage container. Due to the rising evaporated coolant in the form of bubbles, in the described case nitrogen, undesirable vibrations occur which have a negative effect on the functioning of the electronic components. Another disadvantage of these cooling devices is that it is necessary to add coolant after certain operating times.

Außerdem wurde eine Kühlvorrichtung für Sensoren vorgeschlagen, bei der am Kaltkopf einer Stirling-Maschine ein Verflüssiger für Stickstoff angeordnet ist und über Leitungen für den flüssigen und gasförmigen Stickstoff ein Verdampfer für die Sensorkühlung angeschlossen ist. Durch die Leitungen, die Kapillargröße besitzen, wird zwar eine weitgehende Entkopplung der Schwingungen der Stirling-Maschine erreicht, für bestimmte Einsatzfälle ist diese Vorrichtung jedoch zu aufwendig und eine vollständige Schwingungsfreiheit an der Meßstelle wird nicht erreicht.In addition, a cooling device for sensors has been proposed in which a condenser for nitrogen is arranged on the cold head of a Stirling engine and an evaporator for sensor cooling is connected via lines for the liquid and gaseous nitrogen. The lines, which have a capillary size, achieve extensive decoupling of the vibrations of the Stirling engine, but this device is too complex for certain applications and complete freedom from vibration at the measuring point is not achieved.

Aufgabe der Erfindung ist es, eine einfache, autarke Kühleinrichtung für Sensoren zu schaffen, bei der an-der Meßstelle keinerlei Schwingungen des Kältemaschine auftreten.The object of the invention is to provide a simple, self-sufficient cooling device for sensors, in which no vibrations of the refrigerating machine occur at the measuring point.

Die Aufgabe der Erfindung wird durch die Merkmale der Patentansprüche gelöst. Die Erfindung geht davon aus, daß bei einen großen Teil der Einsatzfälle eine diskontinuierliche Kühlung den Anforderungen genügt. Der erfindungsgemäße Latentspeicher für kryogene Temperaturen ist durch die alternierende Arbeitsweise zwischen der Leistung der Kältemaschine mit dem Gefrieren des Arbeitsstoffes und der Speicherung der "Kälteenergie" als latente Umwandlungsenergie und der eigentlichen Nutzphase bei ruhender Maschine und dem Schmelzen des Arbeitsstoffes gekennzeichnet. Die Dimensionierung der Einrichtung wird so gewählt, daß die Kälteleistung der Maschine wesentlich größer ist als die erforderliche Nutzleistung, so daß die Nutzphase groß gegen die Speicherphase wird.The object of the invention is solved by the features of the claims. The invention is based on the fact that discontinuous cooling meets the requirements in a large part of the applications. The latent storage for cryogenic temperatures according to the invention is characterized by the alternating mode of operation between the performance of the refrigerator with the freezing of the working fluid and the storage of the "cooling energy" as latent conversion energy and the actual useful phase when the machine is at rest and the melting of the working fluid. The dimensioning of the device is chosen so that the cooling capacity of the machine is significantly greater than the required useful power, so that the useful phase becomes large compared to the storage phase.

Die Nutzung des Umwandlungspunktes fest-flüssig bietet wegen der sehr geringen Abhängigkeit der Schmelztemperatur vom Druck günstige apparative Möglichkeiten.The use of the solid-liquid transition point offers favorable equipment options because of the very low dependence of the melting temperature on the pressure.

Die sonst übliche Nutzung der Verdampfungswärme von Stickstoff durch Kondensation und Verdampfung erfordert für die entstehende Gasphase des erforderlichen geschlossenen Systems ein relativ großes äußeres Konstantdruck-Puffer-Gefäß, so daß Stickstoff als Arbeitsstoff für die erfindungsgemäße Einrichtung nicht geeignet ist.The otherwise customary use of the heat of vaporization of nitrogen by condensation and evaporation requires a relatively large external constant pressure buffer vessel for the resulting gas phase of the required closed system, so that nitrogen is not suitable as a working substance for the device according to the invention.

Der Arbeitsstoff bzw. das Arbeitsstoffgemisch muß über folgende Eigenschaften verfügen:

  • Die Temperatur des Tripelpunktes muß für den Arbeitsbereich hochtemperatursupraleitender Bauteile im Bereich 60 K bis 90 K liegen.
  • Die kritische Temperatur muß so hoch liegen, daß bei maximaler Raumtemperatur die flüssige Phase noch existiert.
  • In einem gegebenen Volumen ist eine möglichst große Speicherkapazität unterzubringen, d.h. das Produkt aus Schmelzenthalpie und Dichte am Schmelzpunkt muß möglichst groß sein.
The working substance or working substance mixture must have the following properties:
  • The temperature of the triple point must be in the range of 60 K to 90 K for the working area of high-temperature superconducting components.
  • The critical temperature must be so high that the liquid phase still exists at maximum room temperature.
  • The largest possible storage capacity must be accommodated in a given volume, ie the product of enthalpy of fusion and density at the melting point must be as large as possible.

An nachfolgendem Ausführungsbeispiel soll die Erfindung näher erläutert werden:The invention will be explained in more detail using the following exemplary embodiment:

In Fig. 1 ist schematisch der Aufbau der erfindungsgemäßen Einrichtung und in Fig. 2 der Prozeßablauf dargestellt.In Fig. 1 the structure of the device according to the invention is shown schematically and in Fig. 2 the process flow.

In dem Gehäuse 1 ist ein kugelförmiges Druckgefäß 2 angeordnet. Es besteht aus Kupfer und hat bei einem Durchmesser von 50 mm eine Wandstärke von 0,4 mm. Über einen Adapter 3 ist das Druckgefäß mit dem Kaltkopf 4 einer Split-Stirling-Maschine wärmeleitend verbunden. Die Ankopplung der Sensorkühlfläche 5 erfolgt über die Kontaktfläche 6. Über den Füllstutzen 7 wird in das evakuierte Druckgefäß 2 in geeigneter Weise eine angemessene Menge Propan 8 einkondensiert und der Füllstutzen 7 wird hermetisch verschlossen.A spherical pressure vessel 2 is arranged in the housing 1. It is made of copper and has a wall thickness of 0.4 mm with a diameter of 50 mm. The pressure vessel is thermally conductively connected to the cold head 4 of a split Stirling engine via an adapter 3. The sensor cooling surface 5 is coupled via the contact surface 6. A suitable amount of propane 8 is condensed into the evacuated pressure vessel 2 in a suitable manner via the filler neck 7 and the filler neck 7 is hermetically sealed.

In nicht dargestellter Weise ist es auch möglich, am Füllstutzen 7 einen Druckausgleichsbehälter anzuordnen.In a manner not shown, it is also possible to arrange a surge tank on the filler neck 7.

Der Kaltkopf 4, das Druckgefäß 2 mit der Sensorkühlfläche 5 befinden sich innerhalb des Gehäuses 1 in einem Isolationsvakuum 10 und werden durch Strahlungsschutzschirme 9 geschützt.The cold head 4, the pressure vessel 2 with the sensor cooling surface 5 are located inside the housing 1 in an insulation vacuum 10 and are protected by radiation shields 9.

Die erfindungsgemäße Einrichtung hat folgenden Prozeßablauf:
Nach dem Einschalten der Split-Stirling-Maschine erfolgt die erste Abkühlung bis zum Unterschreiten der Umwandlungstemperatur flüssig-fest von 85,5 K um ca. 8 K (Unterkühlung).
The device according to the invention has the following process flow:
After switching on the Split Stirling machine, the first cooling takes place until the liquid-solid temperature falls below 85.5 K by approx. 8 K (subcooling).

Nach dem Kristallisationsbeginn und dem Anstieg der Temperatur auf die Umwandlungstemperatur erfolgt die weitere Kristallisation bei annähernd konstanter Temperatur bis zur vollständigen Umwandlung und dann weiterer Abkühlung des festen Progans.After the start of crystallization and the increase in temperature to the conversion temperature, the further crystallization takes place at an approximately constant temperature until the complete conversion and then further cooling of the solid program.

Nach dem Abschalten der Maschine erwärmt sich der Latentspeicher bis zum Schmelzen des Propans bei annähernd konstanter Temperatur. Dies stellt den eigentlichen Arbertsbereich der störungsfreien Nutzung dar. Nach dem vollständigen Schmelzen erwärmt sich das Gefäß weiter.After the machine has been switched off, the latent storage warms up to an almost constant temperature until the propane melts. This represents the actual work area of the trouble-free use. After the complete melting, the vessel continues to heat up.

Nach dem erneuten Einschalten der Maschine wird der Speicher wieder geladen und nach dem Ausschalten kann bei annähernd konstanter Temperatur erneut gemessen werden.After the machine is switched on again, the memory is loaded again and after switching off, measurements can be carried out again at an approximately constant temperature.

Das Verhältnis von Maschinenlaufzeit zu störungsfreier Nutzzeit hängt vom Verhältnis der Maschinenleistung zur Verlust- plus Nutzleistung ab. Typisch ist zum Beispiel eine Maschinenleistung von 1 W und eine Verlust- plus Nutzleistung von 0,2 W. Mit den angegebenen Abmessungen beträgt die maximale Speicherkapazität ca. 1,28 Wh. Bei einer Ladezeit von ca. 10 min kann 50 min und nach einer maximalen Ladezeit von ca. einer Stunde kann 5 Stunden Nutzung erfolgen.The ratio of machine runtime to trouble-free usage time depends on the ratio of machine performance to loss plus useful performance. Typical is, for example, a machine power of 1 W and a loss plus useful power of 0.2 W. With the specified dimensions, the maximum storage capacity is approximately 1.28 Wh. With a charging time of approximately 10 minutes, 50 minutes and after one maximum charging time of approximately one hour can be 5 hours of use.

Claims (4)

Einrichtung zur autarken Kühlung hochtemperatursupraleitender Bauteile, vorzugsweise Sensoren, mittels einer Kaltgas-Kältemaschine, dadurch gekennzeichnet, daß am Kaltkopf (4) der Kaltgas-Kältemaschine ein Speichergefäß, vorzugsweise ein kugelförmiges Druckgefäß (2), angeordnet ist, das mit einem Arbeitsstoff gefüllt ist, dessen Tripelpunkt im Bereich 60 bis 90 K liegt und der sich auch bei maximaler Raumtemperatur in der flüssigen Phase befindet und daß an dem kugelförmigen Druckgefäß (2) eine Sensorkühlfläche (5) angebracht ist,Device for self-sufficient cooling of high-temperature superconducting components, preferably sensors, by means of a cold gas refrigeration machine, characterized in that a storage vessel, preferably a spherical pressure vessel (2), which is filled with a working substance, is arranged on the cold head (4) of the cold gas refrigeration machine. whose triple point is in the range 60 to 90 K and which is in the liquid phase even at maximum room temperature and that a sensor cooling surface (5) is attached to the spherical pressure vessel (2), Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß als Arbeitsstoff Propan (8) eingesetzt wird.Device according to claim 1, characterized in that propane (8) is used as the working substance. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß als Arbeitsstoff ein Gemisch mit eutektischem Schmelzverhalten eingesetzt wird.Device according to claim 1, characterized in that a mixture with eutectic melting behavior is used as the working substance. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß an dem Druckgefäß (2) ein Druckausgleichsbehälter angeordnet ist.Device according to claim 1, characterized in that a pressure compensation container is arranged on the pressure vessel (2).
EP94114258A 1993-09-22 1994-09-10 Apparatus for self-contained cooling of high temperature superconducting components, preferably sensors Withdrawn EP0645594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4332156 1993-09-22
DE4332156A DE4332156A1 (en) 1993-09-22 1993-09-22 Device for self-sufficient cooling of high-temperature superconducting components, preferably sensors

Publications (1)

Publication Number Publication Date
EP0645594A1 true EP0645594A1 (en) 1995-03-29

Family

ID=6498274

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94114258A Withdrawn EP0645594A1 (en) 1993-09-22 1994-09-10 Apparatus for self-contained cooling of high temperature superconducting components, preferably sensors

Country Status (3)

Country Link
US (1) US5615557A (en)
EP (1) EP0645594A1 (en)
DE (1) DE4332156A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816052A (en) * 1997-02-24 1998-10-06 Noran Instruments, Inc. Method and apparatus for mechanically cooling energy dispersive X-ray spectrometers
WO2000020795A2 (en) * 1998-09-14 2000-04-13 Massachusetts Institute Of Technology Superconducting apparatuses and cooling methods
US6330800B1 (en) * 1999-04-16 2001-12-18 Raytheon Company Apparatus and method for achieving temperature stability in a two-stage cryocooler
CA2476945A1 (en) * 2002-02-22 2003-09-04 Chordia Lalit Means and apparatus for microrefrigeration
US7263845B2 (en) * 2004-09-29 2007-09-04 The Boc Group, Inc. Backup cryogenic refrigeration system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2130001A1 (en) * 1971-03-25 1972-11-03 Comp Generale Electricite Solidified gas cryostat - with pressure-regulated equilibrium used to cool electronic components
US3836779A (en) * 1971-12-22 1974-09-17 Honeywell Inc Cooling apparatus for infrared detectors
FR2611973A1 (en) * 1987-03-07 1988-09-09 Messerschmitt Boelkow Blohm Sensor cooling arrangement, esp. for infrared radiation detector
EP0305257A1 (en) * 1987-08-10 1989-03-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the cryogenic cooling of an object
GB2268796A (en) * 1992-07-15 1994-01-19 Outokumpu Instr Oy Mounting of a cooling element

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE334087A (en) * 1925-05-20
US3545226A (en) * 1969-01-17 1970-12-08 Homer E Newell Dual solid cryogens for spacecraft refrigeration
SU386273A1 (en) * 1971-02-01 1973-06-14 CRYOSTAT WITH REINFORCED GAS
US3702932A (en) * 1971-04-15 1972-11-14 Atomic Energy Commission Melting cryogen cooling for radiation logging probe
US3745785A (en) * 1972-01-17 1973-07-17 Us Air Force Solid cryogen heat transfer apparatus
GB8328236D0 (en) * 1983-10-21 1983-11-23 British Petroleum Co Plc Cryogenic cell
US4809133A (en) * 1986-09-26 1989-02-28 Hypres, Inc. Low temperature monolithic chip
DE3639881A1 (en) * 1986-11-21 1988-06-01 Fraunhofer Ges Forschung Device for cooling optoelectronic components
US4756164A (en) * 1987-04-03 1988-07-12 James Timothy W Cold plate refrigeration method and apparatus
US4821907A (en) * 1988-06-13 1989-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Surface tension confined liquid cryogen cooler
US5126830A (en) * 1989-10-31 1992-06-30 General Electric Company Cryogenic semiconductor power devices
US5121292A (en) * 1990-01-23 1992-06-09 International Business Machines Corporation Field replaceable cryocooled computer logic unit
US5099650A (en) * 1990-04-26 1992-03-31 Boreas Inc. Cryogenic refrigeration apparatus
DE4019091A1 (en) * 1990-06-15 1991-12-19 Battelle Institut E V HEAT DISCHARGE DEVICE FOR SEMICONDUCTOR COMPONENTS AND METHOD FOR THE PRODUCTION THEREOF
DE4033383C2 (en) * 1990-10-20 1994-05-11 Fraunhofer Ges Forschung Cooling device for electronic components
JPH04350906A (en) * 1991-05-28 1992-12-04 Nippon Steel Corp Method and apparatus for cooling oxide superconducting coil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2130001A1 (en) * 1971-03-25 1972-11-03 Comp Generale Electricite Solidified gas cryostat - with pressure-regulated equilibrium used to cool electronic components
US3836779A (en) * 1971-12-22 1974-09-17 Honeywell Inc Cooling apparatus for infrared detectors
FR2611973A1 (en) * 1987-03-07 1988-09-09 Messerschmitt Boelkow Blohm Sensor cooling arrangement, esp. for infrared radiation detector
EP0305257A1 (en) * 1987-08-10 1989-03-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the cryogenic cooling of an object
GB2268796A (en) * 1992-07-15 1994-01-19 Outokumpu Instr Oy Mounting of a cooling element

Also Published As

Publication number Publication date
US5615557A (en) 1997-04-01
DE4332156A1 (en) 1995-03-30

Similar Documents

Publication Publication Date Title
DE19914778B4 (en) Superconducting magnet device
US2643282A (en) Electronic equipment cooling means
DE10297837B4 (en) Method for fixing a refrigerating machine and fastening device therefor
DE102006046688B3 (en) Cooling system, e.g. for super conductive magnets, gives a non-mechanical separation between the parts to be cooled and the heat sink
DE69838866T2 (en) Improvements in or related to cryostat systems
DE102011078608B4 (en) cryostat assembly
DE102005041383B4 (en) NMR apparatus with co-cooled probe head and cryocontainer and method of operation thereof
JP4494027B2 (en) Cryogenic equipment
EP2821741B1 (en) Method for retrofitting a cryostat assembly for circulation cooling
DE112011100875T5 (en) Method and apparatus for controlling the temperature in a cryostat cooled to cryogenic temperatures using stagnant and moving gas
JPH10282200A (en) Cooler for superconducting magnet system
DE102015215919B4 (en) Method and device for precooling a cryostat
DE3427601A1 (en) SUPRALOWING MAGNETIC DEVICE
WO2018054648A1 (en) Apparatus and method for super-cooled operation of a cryostat with low quantities of coolant
EP1087187A1 (en) Cryogenic container and magnetism measuring apparatus using it
US5551249A (en) Liquid chiller with bypass valves
DE102005005283A1 (en) Machine system with thermosyphon cooling of its superconducting rotor winding
WO2006082138A1 (en) Motor device with thermosiphon cooling of its superconductive rotor winding
DE68907621T2 (en) MAGNET DEVICE USED IN A MAGNETIC RESONANCE IMAGING ARRANGEMENT.
EP0645594A1 (en) Apparatus for self-contained cooling of high temperature superconducting components, preferably sensors
US3643754A (en) Apparatus for cooling a liquid
EP0463481A1 (en) Cooling arrangement for a squid measurement device
DE19612539A1 (en) Multi-stage cryogenic refrigerator
DE69004009T2 (en) Cooling system with additional heat storage.
DE4212162A1 (en) Cooling device for refrigeration compressor electric drive motor - uses refrigerant provided by compressor, with obtained refrigerant combined with outputting evaporator in refrigeration circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

Owner name: INSTITUT FUER LUFT- UND KAELTETECHNIK GEMEINNUETZI

17P Request for examination filed

Effective date: 19951130

17Q First examination report despatched

Effective date: 19971217

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980630