EP0640759B1 - Partially reinforced aluminium cast construction part and method of manufacturing same - Google Patents
Partially reinforced aluminium cast construction part and method of manufacturing same Download PDFInfo
- Publication number
- EP0640759B1 EP0640759B1 EP94112615A EP94112615A EP0640759B1 EP 0640759 B1 EP0640759 B1 EP 0640759B1 EP 94112615 A EP94112615 A EP 94112615A EP 94112615 A EP94112615 A EP 94112615A EP 0640759 B1 EP0640759 B1 EP 0640759B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- casting
- reinforcing member
- aluminium
- spray
- cast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 239000004411 aluminium Substances 0.000 title claims abstract 13
- 238000010276 construction Methods 0.000 title claims description 6
- 239000000463 material Substances 0.000 claims abstract description 53
- 238000005266 casting Methods 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 22
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 22
- 239000002131 composite material Substances 0.000 claims description 12
- 238000011049 filling Methods 0.000 claims description 2
- 230000006698 induction Effects 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims 2
- 238000013019 agitation Methods 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 abstract description 20
- 239000000956 alloy Substances 0.000 abstract description 20
- 239000000155 melt Substances 0.000 abstract description 8
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 238000003780 insertion Methods 0.000 abstract description 2
- 230000037431 insertion Effects 0.000 abstract description 2
- 238000007711 solidification Methods 0.000 abstract 1
- 230000008023 solidification Effects 0.000 abstract 1
- 230000002787 reinforcement Effects 0.000 description 15
- 238000002485 combustion reaction Methods 0.000 description 11
- 238000005304 joining Methods 0.000 description 9
- 238000003466 welding Methods 0.000 description 9
- 229910000838 Al alloy Inorganic materials 0.000 description 8
- 239000011148 porous material Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 2
- 229910000735 Pm alloy Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000010943 off-gassing Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910001060 Gray iron Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000006253 efflorescence Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/0009—Cylinders, pistons
- B22D19/0027—Cylinders, pistons pistons
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/123—Spraying molten metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F3/00—Pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F3/00—Pistons
- F02F3/10—Pistons having surface coverings
- F02F3/12—Pistons having surface coverings on piston heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F2200/00—Manufacturing
- F02F2200/04—Forging of engine parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/02—Light metals
- F05C2201/021—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/02—Light metals
- F05C2201/028—Magnesium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0448—Steel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2253/00—Other material characteristics; Treatment of material
- F05C2253/16—Fibres
Definitions
- the invention relates to a partially reinforced Al cast component, consisting of an Al cast part and a reinforcing part, at least partially encased by the base material thereof, and the method for producing such reinforced Al cast components.
- Complicated workpieces such as. B. inexpensive manufacture of pistons for internal combustion engines, cylinder heads or engine blocks.
- Such components in particular certain areas of these components, are subject to high thermal and / or mechanical loads when subjected to operating stress.
- unfavorable constructions with large wall thicknesses are often required or difficult-to-cast aluminum alloys have to be used.
- Such alloys are e.g. B. hypereutectic AlSi cast alloys, which are used to increase the necessary wear resistance and thermal conductivity of cylinder liners.
- these alloys can only be cast with great effort and in small series.
- the wear resistance of the tread is achieved by means of special etching and coating processes, which are also justifiable on a small scale with regard to their environmental impact and the disposal of the chemicals that are produced.
- Another disadvantage of such a method is the complex finishing, which is only possible with diamond tools, and if fibers are cut during machining, these can separate from the matrix over time and lead to damage to the components that come into contact with the fibers .
- Friction welding is, however, limited to simple component geometries, since only axial and no radial welding is possible. In addition, there is the risk that the friction welding creates stresses in the component, which make additional heat treatment necessary for relaxation. Another disadvantage of this method is the number of method steps. Friction welding itself is an additional step, and in order to achieve reproducible results, both the reinforcing part and the cast workpiece must be machined before welding.
- DE-PS 31 00 755 describes a component which has an insert made of dispersion-hardened sintered aluminum, which is introduced into the component by pouring, pressing or welding. Pouring as a manufacturing process of reinforced Al castings is inexpensive, since no additional process step, such as. B. in friction welding, is necessary to produce the composite.
- a disadvantage of the component proposed in DE-PS 31 00 755 is that no perfect connection is achieved in the joining zone. Due to the high gas content of the powder-metallurgically manufactured materials, they are not very suitable for pouring. When contacting a powder metallurgical component, which either consists of an Al sintered material (powder metallurgical molding process) or a PM material (powder metallurgical semi-finished process), which, for. B.
- a component is made available, consisting of an aluminum casting and a reinforcing part, at least partially encapsulated by its base material, which consists of a spray-compacted aluminum material.
- Spray compacting and the further process steps of extrusion or forging can be used to produce aluminum profiles or aluminum forgings that are far superior in their properties to conventional cast aluminum alloys.
- These Al materials have significantly lower gas contents than the Al sintered materials or PM-Al materials, which are even lower than the gas contents of conventional cast aluminum or wrought aluminum alloys.
- this process can be used to produce materials that are similar in mechanical and physical properties to the Al-PM materials produced by spraying.
- the spray compacting method makes it possible to increase the Si content in the Al material to over 35% by weight Si without any problems.
- This makes it possible to set the coefficient of thermal expansion to any value between 23 ⁇ 10 -6 K -1 and 13 ⁇ 10 -6 K -1 .
- the contents of other alloy elements such as Fe, Ni, Cu, Mg can be set within wide limits for technically meaningful and usable alloys, it is very easy to set materials precisely for a given application.
- the low gas contents enable these materials to be poured in without the formation of pores, which enables technically sensible and inexpensive composite components.
- Such composite components are produced by positioning the reinforcing component, for example an extruded section, a forging or a component produced using a machining process, from a spray-compacted Al alloy at the point in the casting mold where reinforcement is to take place in the finished casting workpiece.
- the reinforcement component is preheated. With the choice of the preheating temperature, the degree of melting can be adjusted so that the reinforcing component is also complete is melted and this results in complete mixing with the casting material in the area of the reinforcement, as a result of which the latter is partially alloyed on.
- melt flows around the reinforcement component in parallel and at a sufficiently high speed as a result of which the oxide layer which is always present on aluminum is washed off and there is direct contact of the Al melt with the oxide-free Al surface is coming.
- This washing process can be achieved either by skillful choice of the sprue points, by stirring, by generating eddy currents with the aid of induction coils, or similar means which produce a flow of the melt parallel to the surface of the reinforcing component during or directly after the casting.
- Example 1 Comparison of the composite according to the invention with a composite made of PM-Al material and cast aluminum.
- Example 2 Application of the composite according to the invention to pistons for internal combustion engines.
- Pistons for internal combustion engines are an example of an application for partial reinforcement with the aid of casting. Upper piston parts are shown in FIGS. 4a and 4b. Figure 5 shows the schematic representation of the piston crown.
- Pistons 1 are today mostly made of Si-containing eutectic or hypereutectic cast alloys. Particularly in the case of pistons for direct injection diesel engines that are subjected to high loads, the bowl rim zone 4 is exposed to high temperatures and mechanical loads. In the areas of the piston skirt 5, aluminum cast materials 2 meet the requirements there. By pouring spray-compacted aluminum alloys (e.g. AlSi20Fe5Ni2) into the stressed areas, the bowl rim zone 4 or the entire combustion chamber bowl 7 can be inexpensively strengthened 3, which makes it possible to design the piston 1 with which more effective combustion can be achieved. Further reinforcement options on piston 1 are e.g. the area of the ring groove 6, where some iron-based materials are already poured in to minimize wear due to the movement of the piston rings.
- spray-compacted aluminum alloys e.g. AlSi20Fe5Ni2
- a further reinforcement according to the invention can be provided in the area of the top land (see Figure 5).
- the use of spray-compacted high-performance aluminum at these points results in considerable improvements due to the perfect combination of the casting alloy 2 with the reinforcements 3. It is thereby possible to minimize the distance between the uppermost piston ring and the piston crown 9, which leads to reduced pollutant values.
- Example 3 Application of the composite according to the invention to cylinder heads of internal combustion engines.
- Another example is the reinforcement of cylinder heads of internal combustion engines to the combustion chamber side. Due to the resulting high temperatures and the formation of a temperature gradient, tensions occur in the cylinder head, which usually lead to cracks in the area of the webs between the valves. If a reinforcement is carried out in these areas with a material that on the one hand withstands the thermal and mechanical loads better, and on the other hand has a different coefficient of thermal expansion than the cast alloy of the cylinder head, which has to be used because of the complexity and the mold filling capacity, the tension can induced by the temperature gradient, do not reach critical values for crack formation.
- Example 4 Application of the composite according to the invention in cylinder liners of internal combustion engines
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Forging (AREA)
Abstract
Description
Die Erfindung betrifft ein partiell verstärktes Al-Gußbauteil, bestehend aus einem Al-Gußteil und einem von dessen Grundwerkstoff zumindestens partiell durch Eingießen umschlossenen Verstärkungsteil sowie das Verfahren zur Herstellung derartig verstärkter Al-Gußbauteile.The invention relates to a partially reinforced Al cast component, consisting of an Al cast part and a reinforcing part, at least partially encased by the base material thereof, and the method for producing such reinforced Al cast components.
Al-Gußbauteile finden aufgrund ihres geringen spezifischen Gewichts, der einfachen Formgebung und leichten Verarbeitbarkeit vielseitig Verwendung. Über die verschiedenen Gießverfahren lassen sich komplizierte Werkstücke, wie z. B. Kolben für Verbrennungsmaschinen, Zylinderköpfe oder Motorblöcke kostengünstig herstellen. Solche Bauteile, insbesondere bestimmte Bereiche dieser Bauteile unterliegen bei Betriebsbeanspruchung hohen thermischen und / oder mechanischen Belastungen. Um diesen Belastungen standzuhalten, sind bei der Verwendung konventioneller Al-Gußwerkstoffe häufig ungünstige Konstruktionen mit großen Wandstärken erforderlich oder es müssen schwer gießbare Aluminiumlegierungen eingesetzt werden. Solche Legierungen sind z. B. übereutektische AlSi-Gußlegierungen, die zur Erhöhung der notwendigen Verschleißfestigkeit und Wärmeleitfähigkeit von Zylinderlaufbuchsen eingesetzt werden. Diese Legierungen sind allerdings nur mit großem Aufwand und in kleinen Serien zu gießen. Die Verschleißfestigkeit der Lauffläche wird dabei durch spezielle Ätz- und Beschichtungsverfahren erreicht, die im Hinblick auf ihre Umweltbedenklichkeit und die Entsorgung der entstehenden Chemikalien ebenfalls nur im Kleinserienmaßstab vertretbar sind.Due to their low specific weight, simple shape and easy processability, cast aluminum components are used in many different ways. Complicated workpieces, such as. B. inexpensive manufacture of pistons for internal combustion engines, cylinder heads or engine blocks. Such components, in particular certain areas of these components, are subject to high thermal and / or mechanical loads when subjected to operating stress. In order to withstand these loads, when using conventional aluminum casting materials, unfavorable constructions with large wall thicknesses are often required or difficult-to-cast aluminum alloys have to be used. Such alloys are e.g. B. hypereutectic AlSi cast alloys, which are used to increase the necessary wear resistance and thermal conductivity of cylinder liners. However, these alloys can only be cast with great effort and in small series. The wear resistance of the tread is achieved by means of special etching and coating processes, which are also justifiable on a small scale with regard to their environmental impact and the disposal of the chemicals that are produced.
Da andererseits Al-Gußwerkstoffe in anderen Bereichen der o. g. Bauteile den dortigen Anforderungen genügen, sind verschiedene Verfahren bekannt, Al-Gußbauteile an den stark belasteten Bereichen dieser Bauteile mit Werkstoffen, die die gewünschten mechanischen und physikalischen Eigenschaften besitzen, zu verstärken. So ist u. a. bekannt, Al-Gußwerkstoffe mit Fasern oder Partikeln zu verstärken. Dadurch wird insbesondere eine hohe Verschleißfestigkeit erreicht. Die thermische Belastbarkeit wird dagegen kaum beeinflußt, da die Matrix solcher Werkstoffe die konventionelle Al-Gußlegierung darstellt. Für die Herstellung derartig verstärkter Werkstoffe sind nur spezielle Gießverfahren geeignet, die langsame Taktzeiten und hohe Drücke verlangen.On the other hand, since aluminum casting materials in other areas of the above-mentioned components meet the requirements there, various methods are known for reinforcing aluminum casting components in the highly stressed areas of these components with materials which have the desired mechanical and physical properties. It is known, among other things, to reinforce aluminum casting materials with fibers or particles. This will achieved a high wear resistance in particular. On the other hand, the thermal load capacity is hardly affected, since the matrix of such materials represents the conventional cast aluminum alloy. Only special casting processes that require slow cycle times and high pressures are suitable for the production of such reinforced materials.
Nachteilig bei einem derartigen Verfahren ist desweiteren die aufwendige Fertigbearbeitung, die nur mit Diamantwerkzeugen möglich ist und werden bei der spanenden Bearbeitung Fasern durchtrennt, können sich diese mit der Zeit aus der Matrix lösen und zu Schädigungen der Bauteile führen, die mit den Fasern in Berührung kommen.Another disadvantage of such a method is the complex finishing, which is only possible with diamond tools, and if fibers are cut during machining, these can separate from the matrix over time and lead to damage to the components that come into contact with the fibers .
Es ist auch bereits bekannt, pulvermetallurgische Al-Werkstoffe mit Al-Gußwerkstoffen zu verbinden. Dies ist u. a. mit Hilfe des Reibschweißverfahrens möglich. Sowohl der pulvermetallurgische Verstärkungswerkstoff als auch der Gußwerkstoff kann jeweils nach optimalen Parametern hergestellt werden. Beim Verbinden dieser Werkstoffe durch Reibschweißen erfolgt nur eine kurzzeitige Temperaturbelastung, so daß die Werkstoffeigenschaften des Verstärkungswerkstoffs kaum herabgesetzt werden. Das Reibschweißen ist allerdings auf einfache Bauteilgeometrien beschränkt, da nur axiale und keine radialen Verschweißungen möglich sind. Darüberhinaus besteht die Gefahr, daß durch das Reibschweißen Spannungen im Bauteil erzeugt werden, die eine zusätzliche Wärmebehandlung zum Entspannen erforderlich machen. Nachteilig bei diesem Verfahren ist weiterhin die Anzahl der Verfahrensschritte. Das Reibschweißen selbst ist ein zusätzlicher Arbeitsschritt und um reproduzierbare Ergebnisse zu erreichen, sind desweiteren sowohl Verstärkungsteil als auch das Gußwerkstück vor der Verschweißung spanend zu bearbeiten.It is also already known to combine powder-metallurgical aluminum materials with aluminum casting materials. This is u. a. possible with the help of the friction welding process. Both the powder metallurgical reinforcement material and the cast material can each be produced according to optimal parameters. When these materials are joined by friction welding, there is only a brief temperature load, so that the material properties of the reinforcing material are hardly reduced. Friction welding is, however, limited to simple component geometries, since only axial and no radial welding is possible. In addition, there is the risk that the friction welding creates stresses in the component, which make additional heat treatment necessary for relaxation. Another disadvantage of this method is the number of method steps. Friction welding itself is an additional step, and in order to achieve reproducible results, both the reinforcing part and the cast workpiece must be machined before welding.
In der DE-PS 31 00 755 ist ein Bauteil beschrieben, das einen Einsatz aus disperionsgehärtetem Sinteraluminium besitzt, welcher durch Eingießen, Einpressen oder Einschweißen in das Bauteil eingebracht wird. Das Eingießen als Herstellungsverfahren von verstärkten Al-Gußteilen ist kostengünstig, da kein zusätzlicher Verfahrensschritt, wie z. B. beim Reibschweißen, notwendig ist, um den Verbund herzustellen. Nachteilig bei dem in der DE-PS 31 00 755 vorgeschlagenen Bauteil ist, daß keine einwandfreie Verbindung in der Fügezone erreicht wird. Aufgrund der verfahrensbedingten hohen Gasgehalte der pulvermetallurgisch hergestellten Werkstoffe, sind diese für ein Eingießen wenig geeignet. Beim Kontakt eines pulvermetallurgischen Bauteils, welches entweder aus einem Al-Sinterwerkstoff besteht (pulvermetallurgisches Formteilverfahren) oder aus einem PM-Werkstoff (pulvermetallurgisches Halbzeugverfahren), welcher z. B. durch Verdüsen von Aluminiumschmelze, kaltisostatischem Pressen und anschließendes Warmstrangpressen zu voller Dichte hergestellt wurde, mit der Schmelze der konventionellen Al-Gußlegierung, kommt es zu sofortigem Ausgasen mit starker Porenbildung in der Fügezone und im pulvermetallurgischen Bauteil. Diese Porenbildung verhindert einen guten Werkstoffverbund.DE-PS 31 00 755 describes a component which has an insert made of dispersion-hardened sintered aluminum, which is introduced into the component by pouring, pressing or welding. Pouring as a manufacturing process of reinforced Al castings is inexpensive, since no additional process step, such as. B. in friction welding, is necessary to produce the composite. A disadvantage of the component proposed in DE-PS 31 00 755 is that no perfect connection is achieved in the joining zone. Due to the high gas content of the powder-metallurgically manufactured materials, they are not very suitable for pouring. When contacting a powder metallurgical component, which either consists of an Al sintered material (powder metallurgical molding process) or a PM material (powder metallurgical semi-finished process), which, for. B. was produced by atomizing aluminum melt, cold isostatic pressing and subsequent hot extrusion to full density, with the melt of the conventional cast aluminum alloy, there is immediate outgassing with strong pore formation in the joining zone and in the powder metallurgical component. This pore formation prevents a good material composite.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein Bauteil aus partiell verstärktem Al-Guß zu schaffen, welches auf einfache und kostengünstige Weise herstellbar ist und einen vollständigen Materialverbund zwischen Al-Guß und Verstärkungsteil aufweist.It is therefore the object of the present invention to create a component made of partially reinforced aluminum casting which can be produced in a simple and inexpensive manner and which has a complete material composite between aluminum casting and reinforcing part.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß ein Bauteil zur Verfügung gestellt wird, bestehend aus einem Al-Gußteil und einem von dessen Grundwerkstoff zumindest partiell durch Eingießen umschlossenen Verstärkungsteil, das aus einem sprühkompaktierten Aluminium-Werkstoff besteht. Über das Sprühkompaktieren und die weiteren Verfahrensschritte Strangpressen bzw. Schmieden können Aluminiumprofile oder Aluminiumschmiedestücke hergestellt werden, die in ihren Eigenschaften konventionellen Al-Gußlegierungen weit überlegen sind. Diese Al-Werkstoffe weisen gegenüber den Al-Sinterwerkstoffen oder PM-Al-Werkstoffen erheblich niedrigere Gasgehalte auf, die sogar noch unter den Gasgehalten von konventionellen Al-Guß- oder Al-Knetlegierungen liegen. Darüber hinaus sind mit diesem Verfahren Werkstoffe herstellbar, die in ihren mechanischen und physikalischen Eigenschaften ähnlich den über Verdüsung hergestellten Al-PM-Werkstoffen sind. Im Vergleich zu konventionell gegossenen Al-Werkstoffen ist es mittels des Sprühkompaktierverfahrens ohne Probleme möglich, den Si-Gehalt im Al-Werkstoff auf Gehalte von über 35 Gew.% Si zu erhöhen. Damit ist es möglich den Wärmeausdehnungskoeffizient auf beliebige Werte zwischen 23 · 10-6K-1 und 13 · 10-6K-1 einzustellen. Da auch die Gehalte anderer Legierungselemente wie z.B. Fe, Ni, Cu, Mg für technisch sinnvolle und verwendbare Legierungen in weiten Grenzen eingestellt werden können, ist es sehr leicht möglich Werkstoffe auf einen vorgegebenen Anwendungsfall genau einzustellen. Die niedrigen Gasgehalte ermöglichen ein Eingießen dieser Werkstoffe, ohne daß es zu einer Porenbildung kommt, was technisch sinnvolle und kostengünstige Verbundbauteile ermöglicht.This object is achieved in that a component is made available, consisting of an aluminum casting and a reinforcing part, at least partially encapsulated by its base material, which consists of a spray-compacted aluminum material. Spray compacting and the further process steps of extrusion or forging can be used to produce aluminum profiles or aluminum forgings that are far superior in their properties to conventional cast aluminum alloys. These Al materials have significantly lower gas contents than the Al sintered materials or PM-Al materials, which are even lower than the gas contents of conventional cast aluminum or wrought aluminum alloys. In addition, this process can be used to produce materials that are similar in mechanical and physical properties to the Al-PM materials produced by spraying. In comparison to conventionally cast Al materials, the spray compacting method makes it possible to increase the Si content in the Al material to over 35% by weight Si without any problems. This makes it possible to set the coefficient of thermal expansion to any value between 23 · 10 -6 K -1 and 13 · 10 -6 K -1 . Since the contents of other alloy elements such as Fe, Ni, Cu, Mg can be set within wide limits for technically meaningful and usable alloys, it is very easy to set materials precisely for a given application. The low gas contents enable these materials to be poured in without the formation of pores, which enables technically sensible and inexpensive composite components.
Die Herstellung solcher Verbundbauteile erfolgt, indem das Verstärkungsbauteil, z.B. ein Strangpreßprofilabschnitt, ein Schmiedestück oder ein über zerspanende Verfahren hergestelltes Bauteil, aus einer sprühkompaktierten Al-Legierung, an der Stelle in der Gießform positioniert wird, an der die Verstärkung im fertigen Gußwerkstück erfolgen soll. Je nach Masse des Verstärkungsbauteils im Verhältnis zur Masse des Gußwerkstücks ist es erforderlich, um eine gute Verbindung durch partielles Anschmelzen zu erreichen, daß das Verstärkungsbauteil vorgewärmt wird. Mit der Wahl der Vorwärmtemperatur kann der Grad des Anschmelzens so eingestellt werden, daß das Verstärkungsbauteil auch vollständig aufgeschmolzen wird und es dadurch im Bereich der Verstärkung zu einer vollständigen Durchmischung mit dem Gußwerkstoff kommt, wodurch dieser partiell auflegiert wird. Weiterhin ist es für eine besonders gute Verbindung hilfreich, wenn das Verstärkungsbauteil von der Schmelze parallel und mit ausreichend großer Geschwindigkeit umströmt wird, wodurch die auf Aluminium immer vorhandene Oxidschicht abgewaschen wird und es zu einem direkten Kontakt der Al-Schmelze mit der oxidfreien Al-Oberfläche kommt. Dieser Abwaschvorgang kann entweder durch geschickte Wahl der Angußstellen, durch Rühren, durch Erzeugung von Wirbelströmen mit Hilfe von Induktionsspulen, oder ähnlichen Mitteln, die eine Strömung der Schmelze parallel zur Oberfläche des Verstärkungsbauteils während oder direkt nach dem Abguß erzeugen, erreicht werden.Such composite components are produced by positioning the reinforcing component, for example an extruded section, a forging or a component produced using a machining process, from a spray-compacted Al alloy at the point in the casting mold where reinforcement is to take place in the finished casting workpiece. Depending on the mass of the reinforcement component in relation to the mass of the cast workpiece, it is necessary, in order to achieve a good connection by partial melting, that the reinforcement component is preheated. With the choice of the preheating temperature, the degree of melting can be adjusted so that the reinforcing component is also complete is melted and this results in complete mixing with the casting material in the area of the reinforcement, as a result of which the latter is partially alloyed on. Furthermore, it is helpful for a particularly good connection if the melt flows around the reinforcement component in parallel and at a sufficiently high speed, as a result of which the oxide layer which is always present on aluminum is washed off and there is direct contact of the Al melt with the oxide-free Al surface is coming. This washing process can be achieved either by skillful choice of the sprue points, by stirring, by generating eddy currents with the aid of induction coils, or similar means which produce a flow of the melt parallel to the surface of the reinforcing component during or directly after the casting.
Die Erfindung wird im folgenden anhand von Ausführungsbeispielen erläutert:The invention is explained below using exemplary embodiments:
Es zeigen:
- Fig. 1-
- ein Schliffbild einer Fügezone zwischen sprühkompaktiertem Al-Werkstoff (AlSi20Fe5Ni2) und Al-Guß (AlSi18CuMgNi)
- Fig. 2 -
- ein Schliffbild einer Fügezone zwischen PM-Al-Werkstoff (AlSi20Fe5Ni2) und Al-Guß (AlSi18CuMgNi)
- Fig. 3 -
- ein Schliffbild einer Fügezone zwischen PM-AL-Werkstoff (AlSi35Fe2Ni1) und Al-Guß (AlSi9Cu3)
- Fig. 4 a,b -
- schematische Darstellung von Kolbenoberteilen
- Fig. 5 -
- schematische Darstellung des Kolbenbodens
- Fig. 1-
- a micrograph of a joining zone between spray-compacted Al material (AlSi20Fe5Ni2) and Al casting (AlSi18CuMgNi)
- Fig. 2 -
- a micrograph of a joining zone between PM-Al material (AlSi20Fe5Ni2) and Al casting (AlSi18CuMgNi)
- Fig. 3 -
- a micrograph of a joining zone between PM-AL material (AlSi35Fe2Ni1) and Al casting (AlSi9Cu3)
- 4 a, b -
- schematic representation of upper piston parts
- Fig. 5 -
- schematic representation of the piston crown
Es wurden strangepreßte Rundstangenabschnitte ¢ 85 mm x 55 mm aus der Legierung AlSi20Fe5Ni2 in einer Stahlkokille eingegossen. Dabei wurde zu Vergleichszwecken einerseits eine sprühkompaktierte Legierung und andererseits eine PM-Legierung gleicher Zusammensetzung verwendet. Als Gußwerkstoff wurde eine Kolbenlegierung AlSi18CuMgNi verwendet. Die Strangpreßabschnitte wurden in die offene Kokille eingelegt und auf 450°C vorgeheizt. Die Schmelzentemperatur betrug 720°C. Die Schmelze wurde in die oben offene Kokille auf die Strangpreßabschnitte aufgegossen und der Abwaschvorgang wurde durch Rühren nach dem Abgießen unterstützt. Bei Verwendung der sprühkompaktierten Legierung (Fig. 1) konnte eine einwandfreie Verbindung ohne Poren in der Fügezone erreicht werden. Bei der PM-Legierung (Fig. 2) entstanden in der Verbindungszone und im PM-Material große Poren durch das Ausgasen und "Ausblühungen" an der Aussenseite. An Zugproben aus der sprühkompaktierten Variante, bei denen die Fügezone in der Mitte der Meßlänge lag, wurden Werte nach der Wärmebehandlung ermittelt, wie sie die Gußlegierung in diesem Zustand erreicht. Der Bruch erfolgte immer im Gußmaterial deutlich neben der Fügezone.Extruded round bar sections ¢ 85 mm x 55 mm made of the alloy AlSi20Fe5Ni2 were cast in a steel mold. For comparison purposes, on the one hand a spray-compacted alloy and on the other hand a PM alloy became the same Composition used. A piston alloy AlSi18CuMgNi was used as the casting material. The extrusion sections were placed in the open mold and preheated to 450 ° C. The melt temperature was 720 ° C. The melt was poured into the mold open on top of the extrusion sections and the washing-off process was supported by stirring after the pouring. When using the spray-compacted alloy (Fig. 1), a perfect connection without pores in the joining zone could be achieved. In the case of the PM alloy (FIG. 2), large pores formed in the connection zone and in the PM material due to the outgassing and "efflorescence" on the outside. On tensile samples from the spray-compacted variant, in which the joining zone was in the middle of the measuring length, values were determined after the heat treatment as the cast alloy achieved in this state. The break always occurred in the casting material, clearly next to the joining zone.
Weitere Versuche wurden mit Ringen (Außendurchmesser = 48 mm, Innendurchmesser = 37 mm, Höhe = 7 mm) aus der sprühkompaktierten Legierung AlSi35Fe2Ni1 durchgeführt. Diese Ringe wurden über einen Dorn in einer oben offenen Stahlkokille gelegt und mit der Zylinderkopflegierung G-AlSi9Cu3 umgossen. Die Schmelzentemperatur betrug 720°C. Die Ringe wurden entweder kalt direkt vor dem Abguß in eine vorgeheizte Kokille eingelegt, oder mit der Kokille zusammen aufgeheizt. Zusätzlich wurde bei einigen Versuchen die Schmelze direkt nach dem Abguß umgerührt. Es konnten mit allen Versuchen porenfreie Verbindungen hergestellt werden. Als besonders günstig erwies sich das Einlegen von kalten Ringen in eine auf 400°C vorgeheizte Matrize mit nachfolgendem Abguß. Durch Rühren direkt nach dem Abguß konnte so eine einwandfreie Verbindung mit extrem feinem Gefüge auf der Ringseite erzielt werden (Fig. 3). Aber porenfreie Fügezonen konnten auch mit anderen Versuchsbedingungen erreicht werden. So führt ein Aufheizen der Ringe auf 500°C mit anschließendem Abguß zu einer ebenfalls sehr guten Verbindung, wobei es bei den Si-Primärausscheidungen im Gegensatz zu den oben genannten Bedingungen zu einer Vergröberung (von 3-7 µm auf 10 - 20 µm) kommt.Further tests were carried out with rings (outer diameter = 48 mm, inner diameter = 37 mm, height = 7 mm) made of the spray-compacted alloy AlSi35Fe2Ni1. These rings were placed over a mandrel in a steel mold open at the top and cast with the cylinder head alloy G-AlSi9Cu3. The melt temperature was 720 ° C. The rings were either placed cold in a preheated mold directly before casting, or heated together with the mold. In addition, in some experiments, the melt was stirred immediately after the casting. Pore-free connections could be made with all experiments. The insertion of cold rings in a die preheated to 400 ° C. with subsequent casting proved to be particularly favorable. By stirring directly after the casting, a perfect connection with an extremely fine structure on the ring side could be achieved (FIG. 3). But pore-free joining zones could also be achieved with other test conditions. Heating the rings to 500 ° C with subsequent casting also leads to a very good connection, whereby the Si primary precipitates, in contrast to the conditions mentioned above, become coarser (from 3-7 µm to 10 - 20 µm) .
Ein Anwendungsbeispiel für eine partielle Verstärkung mit Hilfe des Eingießens sind Kolben für Verbrennungskraftmaschinen. Kolbenoberteile sind in den Figuren 4a und 4b dargestellt. Die Figur 5 zeigt die schematische Darstellung des Kolbenbodens.Pistons for internal combustion engines are an example of an application for partial reinforcement with the aid of casting. Upper piston parts are shown in FIGS. 4a and 4b. Figure 5 shows the schematic representation of the piston crown.
Kolben 1 werden heute meistens aus Si-haltigen eutektischen oder übereutektischen Gußlegierungen hergestellt. Insbesondere bei hochbelasteten Kolben für direkteinspritzende Dieselmotoren ist die Muldenrandzone 4 hohen Temperaturen und mechanischen Belastungen ausgesetzt. In den Bereichen des Kolbenhemds 5 genügen Al-Gußwerkstoffe 2 den dortigen Anforderungen. Mit Hilfe des Eingießens von sprühkompaktierten Aluminiumlegierungen (z.B. AlSi20Fe5Ni2) an den belasteten Stellen kann kostengünstig eine Verstärkung 3 der Muldenrandzone 4 oder der gesamten Brennraummulde 7 erfolgen, wodurch eine Konstruktion des Kolbens 1 möglich wird, mit der eine effektivere Verbrennung realisiert werden kann. Weitere Verstärkungsmöglichkeiten am Kolben 1 sind z.B. der Bereich der Ringnut 6, wo zum Teil heute schon Eisenbasis-Werkstoffe eingegossen werden, um den Verschleiß durch die Bewegung der Kolbenringe zu minimieren.
Eine weitere erfindungsgemäße Verstärkung kann im Bereich des Feuersteges vorgesehen werden (siehe hierzu Bild 5). Durch die Verwendung von sprühkompaktiertem Hochleistungsaluminium an diesen Stellen ergeben sich erhebliche Verbesserungen durch den vollkommenen Verbund der Gußlegierung 2 mit den Verstärkungen 3. Es wird dadurch möglich, den Abstand des obersten Kolbenringes zum Kolbenboden 9 zu minimieren, was zu reduzierten Schadstoffwerten führt.A further reinforcement according to the invention can be provided in the area of the top land (see Figure 5). The use of spray-compacted high-performance aluminum at these points results in considerable improvements due to the perfect combination of the casting alloy 2 with the
Ein weiteres Beispiel ist die Verstärkung von Zylinderköpfen von Verbrennungskraftmaschinen zur Brennraumseite. Auf Grund der hier entstehenden hohen Temperaturen und der Ausbildung eines Temperaturgradienten kommt es im Zylinderkopf zu Spannungen, die zu Rissen zumeist im Bereich der Stege zwischen den Ventilen führen. Wird in diesen Bereichen eine Verstärkung mit einem Werkstoff vorgenommen, der einerseits den thermischen und mechanischen Belastungen besser standhält, und der andererseits einen anderen Wärmeausdehnungskoeffizienten besitzt als die Gußlegierung des Zylinderkopfes, die wegen der Komplexität und des Formfüllungsvermögens verwendet werden muß, kann die Spannung, die durch den Temperaturgradienten induziert wird, keine kritischen Werte zur Rißentstehung erreichen.Another example is the reinforcement of cylinder heads of internal combustion engines to the combustion chamber side. Due to the resulting high temperatures and the formation of a temperature gradient, tensions occur in the cylinder head, which usually lead to cracks in the area of the webs between the valves. If a reinforcement is carried out in these areas with a material that on the one hand withstands the thermal and mechanical loads better, and on the other hand has a different coefficient of thermal expansion than the cast alloy of the cylinder head, which has to be used because of the complexity and the mold filling capacity, the tension can induced by the temperature gradient, do not reach critical values for crack formation.
Ein weiteres Beispiel ist die Zylinderlaufbuchse von Verbrennungskraftmaschinen. Um kostengünstig in einer Großserie Motorenblöcke aus Aluminium fertigen zu können, ist die Verwendung gut gießbarer Al-Legierungen zwingend notwendig. Diese Legierungen erfordern jedoch aufgrund ihrer unzureichenden Verschleißfestigkeit eine Armierung der Kolbenlauffläche. Dies wird heute durch das Eingießen einer Graugußzylinderlaufbuchse erreicht. Der Nachteil hierbei ist eine schlechte Wärmeleitfähigkeit und eine stark unterschiedliche Wärmeausdehnung. Auch entsteht kein vollständiger Stoffverbund zwischen Buchse und Block (Gießspalt), was die Wärmeleitfähigkeit und mechanische Belastbarkeit ebenfalls beeinflußt. Die Verwendung von übereutektischen AlSi-Gußlegierungen ermöglicht zwar die gewünschte Verschleißfestigkeit und Wärmeleitfähigkeit ohne den Einsatz von Laufbuchsen, jedoch sind solche Legierungen nur mit großem Aufwand und in Kleinen Serien zu gießen (wie oben beschrieben).Another example is the cylinder liner of internal combustion engines. In order to be able to mass-produce aluminum engine blocks in a large series at low cost, the use of easily castable aluminum alloys is imperative. However, due to their insufficient wear resistance, these alloys require reinforcement of the piston running surface. This is achieved today by casting a cast iron cylinder liner. The disadvantage here is poor thermal conductivity and a very different thermal expansion. There is also no complete material bond between the bushing and the block (casting gap), which also influences the thermal conductivity and mechanical strength. The use of hypereutectic AlSi cast alloys enables the desired wear resistance and thermal conductivity without the use of liners, but such alloys can only be cast with great effort and in small series (as described above).
Bei der Verwendung von Laufbuchsen aus sprühkompaktiertem Material ist es einerseits möglich, leicht gießbare Legierungen für den Motorblock zu verwenden und andererseits eine verschleißfeste Lauffläche ohne besondere Ätzverfahren zu erhalten. Dabei ist durch den vollständigen Stoffverbund und die gute Wärmeleitfähigkeit des Laufbuchsenwerkstoffes die gesamte Wärmeleitfähigkeit erheblich besser als bei der Verwendung von Graugußbuchsen.When using bushings made of spray-compacted material, it is possible on the one hand to use easily castable alloys for the engine block and on the other hand to obtain a wear-resistant running surface without special etching processes. Due to the complete material composite and the good thermal conductivity of the liner material, the overall thermal conductivity is considerably better than when using gray cast iron bushings.
- 11
- erfindungsgemäßes Bauteilcomponent according to the invention
- 22nd
- Al-GußAl cast
- 33rd
- VerstärkungsteilReinforcement part
- 44th
- MuldenrandverstärkungTrough edge reinforcement
- 55
- KolbenhemdPiston shirt
- 66
- RingträgerRing bearer
- 77
- BrennraummuldeCombustion chamber trough
- 88th
- KühlkanalCooling channel
- 99
- KolbenbodenPiston crown
Claims (8)
- Construction part (1), comprising an aluminium casting (2) and a reinforcing member (3), which is surrounded by the base material of said casting at least partially by integral casting, said reinforcing member being formed from a spray-compacted aluminium material and forming a full, solid composite material with the aluminium casting (2) in the joint zones.
- Method of producing a partially reinforced aluminium cast construction part (1) according to claim 1, characterised by the following method steps:- providing a reinforcing member (3), which is formed from spray-compacted material and defines at least one portion of the finished construction part (1);- inserting the reinforcing member (3), in a compact, solid form, into the intended space in the casting mould, which forms the construction part (1);- filling the remaining space of the casting mould with the molten mass of the conventional cast aluminium material; and- subsequently solidifying the molten mass.
- Method according to claim 2, characterised in that the reinforcing member (3), formed from spray-compacted material, is configured as an extruded profile portion.
- Method according to claim 2, characterised in that the reinforcing member (3), formed from spray-compacted material, is configured as a forged piece.
- Method according to claims 2 - 4, characterised in that the reinforcing member (3), inserted into the casting mould, is preheated.
- Method according to claim 5, characterised in that the preheating temperature is so selected that the reinforcing member (3) is completely fused.
- Method according to claims 2 - 6, characterised in that the molten mass of cast aluminium is poured into the casting mould parallel to the surface of the reinforcing member (3) and at such a great speed that it washes away the oxide layer existing on the aluminium of the reinforcing member (3).
- Method according to claim 7, characterised in that the washing operation is achieved by the selection of the sprue locations and/or by agitation and/or by the production of eddy currents by means of induction coils.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4328619A DE4328619C2 (en) | 1993-08-26 | 1993-08-26 | Partially reinforced cast aluminum component and process for its production |
DE4328619 | 1993-08-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0640759A1 EP0640759A1 (en) | 1995-03-01 |
EP0640759B1 true EP0640759B1 (en) | 1997-03-05 |
Family
ID=6496011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94112615A Expired - Lifetime EP0640759B1 (en) | 1993-08-26 | 1994-08-12 | Partially reinforced aluminium cast construction part and method of manufacturing same |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0640759B1 (en) |
AT (1) | ATE149637T1 (en) |
DE (1) | DE4328619C2 (en) |
ES (1) | ES2098085T3 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103221673A (en) * | 2010-11-17 | 2013-07-24 | 戴姆勒股份公司 | Cooling duct piston and method for producing the same |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5660156A (en) * | 1996-05-16 | 1997-08-26 | Zollner Corporation | Cast piston having reinforced combustion bowl edge |
BR9601835A (en) * | 1996-06-14 | 1998-09-29 | Metal Leve Sa | Internal combustion engine piston |
DE19634504A1 (en) | 1996-08-27 | 1997-12-04 | Daimler Benz Ag | Manufacture of blank of a light-metal component to be incorporated into a light-metal casting |
DE19712624C2 (en) * | 1997-03-26 | 1999-11-04 | Vaw Motor Gmbh | Aluminum matrix composite and process for its manufacture |
DE19733205B4 (en) * | 1997-08-01 | 2005-06-09 | Daimlerchrysler Ag | Coating for a cylinder surface of a reciprocating engine of a hypereutectic aluminum / silicon alloy, spray powder for their production and their use |
DE19733204B4 (en) | 1997-08-01 | 2005-06-09 | Daimlerchrysler Ag | Coating of a hypereutectic aluminum / silicon alloy, spray powder for their production and their use |
DE19748144C2 (en) * | 1997-10-31 | 2000-04-27 | Daimler Chrysler Ag | Process for the production of base bodies from metal chips |
DE19836706B4 (en) * | 1998-04-17 | 2008-11-20 | Audi Ag | Cast iron blank to be cast in an aluminum casting and corresponding casting process |
DE10012787B4 (en) * | 2000-03-16 | 2008-04-10 | Volkswagen Ag | Process for producing light metal castings with cast-in bushings |
DE10129046B4 (en) * | 2001-06-15 | 2006-01-05 | Ks Kolbenschmidt Gmbh | Piston for an internal combustion engine with a sprue |
DE10235911B3 (en) * | 2002-08-06 | 2004-04-15 | Peak-Werkstoff Gmbh | Cast composite of hollow profiles made of light metal alloy and process for its production |
FR2849899B1 (en) * | 2003-01-14 | 2006-07-14 | Renault Sa | PISTON COMPRISING AN ALUMINUM ALLOY INSERT AND METHOD FOR MANUFACTURING THE SAME |
DE10316002B3 (en) * | 2003-04-08 | 2004-10-28 | Federal-Mogul Nürnberg GmbH | Method of manufacturing a piston for an internal combustion engine |
DE10353473B4 (en) * | 2003-11-15 | 2007-02-22 | Daimlerchrysler Ag | Component of an internal combustion engine and method for its production |
DE102004029070B4 (en) * | 2004-06-16 | 2009-03-12 | Daimler Ag | Method of pouring an iron alloy blank into an aluminum casting |
DE102005042857A1 (en) | 2005-09-08 | 2007-03-22 | Ks Kolbenschmidt Gmbh | Piston for an internal combustion engine |
DE102005061060A1 (en) * | 2005-12-21 | 2007-06-28 | Mahle International Gmbh | Piston for internal combustion engine has cavity wall consisting of reinforcement ring formed from oxidation-resistant material of low thermal conductivity |
DE102007052498A1 (en) * | 2007-11-02 | 2009-05-07 | Mahle International Gmbh | Manufacturing forged piston for internal combustion engine with piston shaft and piston head, comprises inserting holder for insert parts into a casting mold, fixing the insert part in the holder by retaining means, and casting a cast part |
DE102012204947A1 (en) * | 2012-03-28 | 2013-10-02 | Mahle International Gmbh | Method for producing an aluminum piston |
DE102012208860A1 (en) * | 2012-05-25 | 2013-11-28 | Peak-Werkstoff Gmbh | Method for producing piston rings |
DE102012104820B4 (en) * | 2012-06-04 | 2014-10-09 | Actech Gmbh | Process for the production of composite castings |
DE102021112326A1 (en) | 2021-05-11 | 2022-11-17 | Volkswagen Aktiengesellschaft | Cylinder housing and engine block for an internal combustion engine |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1431895A (en) * | 1972-06-30 | 1976-04-14 | Alcan Res & Dev | Production of aluminium alloy products |
JPS56166368A (en) * | 1980-05-22 | 1981-12-21 | Toyota Motor Corp | Sliding member |
DE3100755A1 (en) * | 1981-01-13 | 1982-09-02 | Klöckner-Humboldt-Deutz AG, 5000 Köln | CYLINDER HEAD FOR AN INTERNAL COMBUSTION ENGINE |
JPS59231163A (en) * | 1983-06-13 | 1984-12-25 | Yamaha Motor Co Ltd | Cylinder head for internal-combustion engine |
DD222930A1 (en) * | 1983-12-19 | 1985-05-29 | Druckguss & Kolbenwerke Veb | WEAR-RESISTANT LIGHT METAL PISTON AND METHOD FOR THE PRODUCTION THEREOF |
SE444032B (en) * | 1984-06-01 | 1986-03-17 | Kanthal Ab | MAKE MANUFACTURING PISTON FOR COMBUSTION ENGINE |
NL191928C (en) * | 1985-12-24 | 1996-11-04 | Efteling Bv De | Device for controlling the upper arm of a remotely controlled doll. |
GB8622949D0 (en) * | 1986-09-24 | 1986-10-29 | Alcan Int Ltd | Alloy composites |
DE4005097A1 (en) * | 1990-02-17 | 1991-08-29 | Bayerische Motoren Werke Ag | Producing composite castings of light metal clad with copper - by protecting clad layer from oxidn. with protective layer, which is removed by melting during casting |
DE4010474A1 (en) * | 1990-03-31 | 1991-10-02 | Kolbenschmidt Ag | LIGHT METAL PISTON |
JPH0636984B2 (en) * | 1990-04-27 | 1994-05-18 | 東海カーボン株式会社 | Method for manufacturing partial composite member |
DD294646A5 (en) * | 1990-05-22 | 1991-10-10 | Schwermaschinenbau-Kombinat "Ernst Thaelmann" Magdeburg,De | METHOD FOR AVOIDING GAS BLOWERING AT THE BORDER INTERFACE BETWEEN ATTACHING PARTS AND STARTERING METAL |
-
1993
- 1993-08-26 DE DE4328619A patent/DE4328619C2/en not_active Expired - Lifetime
-
1994
- 1994-08-12 AT AT94112615T patent/ATE149637T1/en active
- 1994-08-12 EP EP94112615A patent/EP0640759B1/en not_active Expired - Lifetime
- 1994-08-12 ES ES94112615T patent/ES2098085T3/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103221673A (en) * | 2010-11-17 | 2013-07-24 | 戴姆勒股份公司 | Cooling duct piston and method for producing the same |
CN103221673B (en) * | 2010-11-17 | 2015-08-12 | 戴姆勒股份公司 | Cooling duct piston and manufacture method thereof |
Also Published As
Publication number | Publication date |
---|---|
ES2098085T3 (en) | 1997-04-16 |
ATE149637T1 (en) | 1997-03-15 |
DE4328619C2 (en) | 1995-08-10 |
EP0640759A1 (en) | 1995-03-01 |
DE4328619A1 (en) | 1995-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0640759B1 (en) | Partially reinforced aluminium cast construction part and method of manufacturing same | |
DE3610856C2 (en) | Composite metal casting | |
DE2642757C2 (en) | ||
EP0504780B1 (en) | Piston for a hydrostatic axial and radial pistonmachine and method for constructing such a piston | |
EP1183120B1 (en) | Casting tool and method of producing a component | |
DE68923921T2 (en) | Piston. | |
DE3607427C2 (en) | Method for producing the piston of an internal combustion engine and this piston | |
DE69303909T2 (en) | Sintered workpieces | |
DE19712624C2 (en) | Aluminum matrix composite and process for its manufacture | |
DE2231807A1 (en) | SLEEVE AS CYLINDRICAL PRESSURE CHAMBER FOR INJECTION MOLDING MACHINES | |
DE19612500A1 (en) | Process for the production of cylinder heads for internal combustion engines | |
EP0937888B1 (en) | Process for making an internal combustion engine piston | |
DE3801847A1 (en) | METHOD FOR PRODUCING PISTON FOR INTERNAL COMBUSTION ENGINES AND PISTON, IN PARTICULAR MANUFACTURED BY THIS METHOD | |
DE69223178T2 (en) | METHOD FOR PRODUCING CAST COMPOSITE CYLINDER HEADS | |
DE4414095A1 (en) | Method for connecting two metal workpieces to form a composite component | |
EP2140042B1 (en) | Production of a partial fiber composite structure in a component using a laser remelting treatment | |
DE10042207C2 (en) | Pistons for an internal combustion engine and method for producing a piston | |
DE102007010839B4 (en) | A method of manufacturing a piston and piston having an annular reinforcement comprising a plurality of reinforcing segments | |
DE69106418T2 (en) | Process for a continuous metal collar between cylinder liner and crankcase casting of an internal combustion engine. | |
DE10048870C2 (en) | Housing for plastic, metal powder, ceramic powder or food processing machines and method for producing such a housing | |
EP1622734B1 (en) | Method for centrifugal casting | |
DE69811753T2 (en) | Internal combustion engine pistons and process for its manufacture | |
EP2089173A1 (en) | Cylinder crankcase for a motor vehicle | |
EP0364028A1 (en) | Tubular camshaft manufacturing process | |
DE19518552A1 (en) | Pistons for internal combustion engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940829 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT ES FR GB IT NL SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19960403 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT ES FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 149637 Country of ref document: AT Date of ref document: 19970315 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
ET | Fr: translation filed |
Free format text: CORRECTIONS |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2098085 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970603 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
NLS | Nl: assignments of ep-patents |
Owner name: ERBSLOEH AKTIENGESELLSCHAFT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20130813 Year of fee payment: 20 Ref country code: NL Payment date: 20130815 Year of fee payment: 20 Ref country code: ES Payment date: 20130829 Year of fee payment: 20 Ref country code: SE Payment date: 20130821 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130821 Year of fee payment: 20 Ref country code: FR Payment date: 20130823 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20130828 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20140812 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20140811 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 149637 Country of ref document: AT Kind code of ref document: T Effective date: 20140812 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20141120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140813 |