[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0640759B1 - Partially reinforced aluminium cast construction part and method of manufacturing same - Google Patents

Partially reinforced aluminium cast construction part and method of manufacturing same Download PDF

Info

Publication number
EP0640759B1
EP0640759B1 EP94112615A EP94112615A EP0640759B1 EP 0640759 B1 EP0640759 B1 EP 0640759B1 EP 94112615 A EP94112615 A EP 94112615A EP 94112615 A EP94112615 A EP 94112615A EP 0640759 B1 EP0640759 B1 EP 0640759B1
Authority
EP
European Patent Office
Prior art keywords
casting
reinforcing member
aluminium
spray
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94112615A
Other languages
German (de)
French (fr)
Other versions
EP0640759A1 (en
Inventor
Rolf Dipl.-Ing. Schattevoy
Klaus Dipl.-Phys. Hummert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WKW AG
Original Assignee
Peak Werkstoff GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peak Werkstoff GmbH filed Critical Peak Werkstoff GmbH
Publication of EP0640759A1 publication Critical patent/EP0640759A1/en
Application granted granted Critical
Publication of EP0640759B1 publication Critical patent/EP0640759B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0009Cylinders, pistons
    • B22D19/0027Cylinders, pistons pistons
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F2200/00Manufacturing
    • F02F2200/04Forging of engine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/028Magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0448Steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/16Fibres

Definitions

  • the invention relates to a partially reinforced Al cast component, consisting of an Al cast part and a reinforcing part, at least partially encased by the base material thereof, and the method for producing such reinforced Al cast components.
  • Complicated workpieces such as. B. inexpensive manufacture of pistons for internal combustion engines, cylinder heads or engine blocks.
  • Such components in particular certain areas of these components, are subject to high thermal and / or mechanical loads when subjected to operating stress.
  • unfavorable constructions with large wall thicknesses are often required or difficult-to-cast aluminum alloys have to be used.
  • Such alloys are e.g. B. hypereutectic AlSi cast alloys, which are used to increase the necessary wear resistance and thermal conductivity of cylinder liners.
  • these alloys can only be cast with great effort and in small series.
  • the wear resistance of the tread is achieved by means of special etching and coating processes, which are also justifiable on a small scale with regard to their environmental impact and the disposal of the chemicals that are produced.
  • Another disadvantage of such a method is the complex finishing, which is only possible with diamond tools, and if fibers are cut during machining, these can separate from the matrix over time and lead to damage to the components that come into contact with the fibers .
  • Friction welding is, however, limited to simple component geometries, since only axial and no radial welding is possible. In addition, there is the risk that the friction welding creates stresses in the component, which make additional heat treatment necessary for relaxation. Another disadvantage of this method is the number of method steps. Friction welding itself is an additional step, and in order to achieve reproducible results, both the reinforcing part and the cast workpiece must be machined before welding.
  • DE-PS 31 00 755 describes a component which has an insert made of dispersion-hardened sintered aluminum, which is introduced into the component by pouring, pressing or welding. Pouring as a manufacturing process of reinforced Al castings is inexpensive, since no additional process step, such as. B. in friction welding, is necessary to produce the composite.
  • a disadvantage of the component proposed in DE-PS 31 00 755 is that no perfect connection is achieved in the joining zone. Due to the high gas content of the powder-metallurgically manufactured materials, they are not very suitable for pouring. When contacting a powder metallurgical component, which either consists of an Al sintered material (powder metallurgical molding process) or a PM material (powder metallurgical semi-finished process), which, for. B.
  • a component is made available, consisting of an aluminum casting and a reinforcing part, at least partially encapsulated by its base material, which consists of a spray-compacted aluminum material.
  • Spray compacting and the further process steps of extrusion or forging can be used to produce aluminum profiles or aluminum forgings that are far superior in their properties to conventional cast aluminum alloys.
  • These Al materials have significantly lower gas contents than the Al sintered materials or PM-Al materials, which are even lower than the gas contents of conventional cast aluminum or wrought aluminum alloys.
  • this process can be used to produce materials that are similar in mechanical and physical properties to the Al-PM materials produced by spraying.
  • the spray compacting method makes it possible to increase the Si content in the Al material to over 35% by weight Si without any problems.
  • This makes it possible to set the coefficient of thermal expansion to any value between 23 ⁇ 10 -6 K -1 and 13 ⁇ 10 -6 K -1 .
  • the contents of other alloy elements such as Fe, Ni, Cu, Mg can be set within wide limits for technically meaningful and usable alloys, it is very easy to set materials precisely for a given application.
  • the low gas contents enable these materials to be poured in without the formation of pores, which enables technically sensible and inexpensive composite components.
  • Such composite components are produced by positioning the reinforcing component, for example an extruded section, a forging or a component produced using a machining process, from a spray-compacted Al alloy at the point in the casting mold where reinforcement is to take place in the finished casting workpiece.
  • the reinforcement component is preheated. With the choice of the preheating temperature, the degree of melting can be adjusted so that the reinforcing component is also complete is melted and this results in complete mixing with the casting material in the area of the reinforcement, as a result of which the latter is partially alloyed on.
  • melt flows around the reinforcement component in parallel and at a sufficiently high speed as a result of which the oxide layer which is always present on aluminum is washed off and there is direct contact of the Al melt with the oxide-free Al surface is coming.
  • This washing process can be achieved either by skillful choice of the sprue points, by stirring, by generating eddy currents with the aid of induction coils, or similar means which produce a flow of the melt parallel to the surface of the reinforcing component during or directly after the casting.
  • Example 1 Comparison of the composite according to the invention with a composite made of PM-Al material and cast aluminum.
  • Example 2 Application of the composite according to the invention to pistons for internal combustion engines.
  • Pistons for internal combustion engines are an example of an application for partial reinforcement with the aid of casting. Upper piston parts are shown in FIGS. 4a and 4b. Figure 5 shows the schematic representation of the piston crown.
  • Pistons 1 are today mostly made of Si-containing eutectic or hypereutectic cast alloys. Particularly in the case of pistons for direct injection diesel engines that are subjected to high loads, the bowl rim zone 4 is exposed to high temperatures and mechanical loads. In the areas of the piston skirt 5, aluminum cast materials 2 meet the requirements there. By pouring spray-compacted aluminum alloys (e.g. AlSi20Fe5Ni2) into the stressed areas, the bowl rim zone 4 or the entire combustion chamber bowl 7 can be inexpensively strengthened 3, which makes it possible to design the piston 1 with which more effective combustion can be achieved. Further reinforcement options on piston 1 are e.g. the area of the ring groove 6, where some iron-based materials are already poured in to minimize wear due to the movement of the piston rings.
  • spray-compacted aluminum alloys e.g. AlSi20Fe5Ni2
  • a further reinforcement according to the invention can be provided in the area of the top land (see Figure 5).
  • the use of spray-compacted high-performance aluminum at these points results in considerable improvements due to the perfect combination of the casting alloy 2 with the reinforcements 3. It is thereby possible to minimize the distance between the uppermost piston ring and the piston crown 9, which leads to reduced pollutant values.
  • Example 3 Application of the composite according to the invention to cylinder heads of internal combustion engines.
  • Another example is the reinforcement of cylinder heads of internal combustion engines to the combustion chamber side. Due to the resulting high temperatures and the formation of a temperature gradient, tensions occur in the cylinder head, which usually lead to cracks in the area of the webs between the valves. If a reinforcement is carried out in these areas with a material that on the one hand withstands the thermal and mechanical loads better, and on the other hand has a different coefficient of thermal expansion than the cast alloy of the cylinder head, which has to be used because of the complexity and the mold filling capacity, the tension can induced by the temperature gradient, do not reach critical values for crack formation.
  • Example 4 Application of the composite according to the invention in cylinder liners of internal combustion engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Forging (AREA)

Abstract

The invention relates to a partially reinforced aluminium cast component comprising an aluminium casting and a spray-compacted aluminium reinforcing part at least partially enclosed, by being cast in, by the base material of the casting. The method for manufacturing such a component comprises the formation of a reinforcing element from spray-compacted material, the insertion of this element into the casting mould, the surrounding of the reinforcing element with an aluminium casting alloy and the solidification of the melt. A component of this kind is distinguished by the fact that a complete, strong material bond is present in the joints between the aluminium casting and the reinforcing part.

Description

Die Erfindung betrifft ein partiell verstärktes Al-Gußbauteil, bestehend aus einem Al-Gußteil und einem von dessen Grundwerkstoff zumindestens partiell durch Eingießen umschlossenen Verstärkungsteil sowie das Verfahren zur Herstellung derartig verstärkter Al-Gußbauteile.The invention relates to a partially reinforced Al cast component, consisting of an Al cast part and a reinforcing part, at least partially encased by the base material thereof, and the method for producing such reinforced Al cast components.

Al-Gußbauteile finden aufgrund ihres geringen spezifischen Gewichts, der einfachen Formgebung und leichten Verarbeitbarkeit vielseitig Verwendung. Über die verschiedenen Gießverfahren lassen sich komplizierte Werkstücke, wie z. B. Kolben für Verbrennungsmaschinen, Zylinderköpfe oder Motorblöcke kostengünstig herstellen. Solche Bauteile, insbesondere bestimmte Bereiche dieser Bauteile unterliegen bei Betriebsbeanspruchung hohen thermischen und / oder mechanischen Belastungen. Um diesen Belastungen standzuhalten, sind bei der Verwendung konventioneller Al-Gußwerkstoffe häufig ungünstige Konstruktionen mit großen Wandstärken erforderlich oder es müssen schwer gießbare Aluminiumlegierungen eingesetzt werden. Solche Legierungen sind z. B. übereutektische AlSi-Gußlegierungen, die zur Erhöhung der notwendigen Verschleißfestigkeit und Wärmeleitfähigkeit von Zylinderlaufbuchsen eingesetzt werden. Diese Legierungen sind allerdings nur mit großem Aufwand und in kleinen Serien zu gießen. Die Verschleißfestigkeit der Lauffläche wird dabei durch spezielle Ätz- und Beschichtungsverfahren erreicht, die im Hinblick auf ihre Umweltbedenklichkeit und die Entsorgung der entstehenden Chemikalien ebenfalls nur im Kleinserienmaßstab vertretbar sind.Due to their low specific weight, simple shape and easy processability, cast aluminum components are used in many different ways. Complicated workpieces, such as. B. inexpensive manufacture of pistons for internal combustion engines, cylinder heads or engine blocks. Such components, in particular certain areas of these components, are subject to high thermal and / or mechanical loads when subjected to operating stress. In order to withstand these loads, when using conventional aluminum casting materials, unfavorable constructions with large wall thicknesses are often required or difficult-to-cast aluminum alloys have to be used. Such alloys are e.g. B. hypereutectic AlSi cast alloys, which are used to increase the necessary wear resistance and thermal conductivity of cylinder liners. However, these alloys can only be cast with great effort and in small series. The wear resistance of the tread is achieved by means of special etching and coating processes, which are also justifiable on a small scale with regard to their environmental impact and the disposal of the chemicals that are produced.

Da andererseits Al-Gußwerkstoffe in anderen Bereichen der o. g. Bauteile den dortigen Anforderungen genügen, sind verschiedene Verfahren bekannt, Al-Gußbauteile an den stark belasteten Bereichen dieser Bauteile mit Werkstoffen, die die gewünschten mechanischen und physikalischen Eigenschaften besitzen, zu verstärken. So ist u. a. bekannt, Al-Gußwerkstoffe mit Fasern oder Partikeln zu verstärken. Dadurch wird insbesondere eine hohe Verschleißfestigkeit erreicht. Die thermische Belastbarkeit wird dagegen kaum beeinflußt, da die Matrix solcher Werkstoffe die konventionelle Al-Gußlegierung darstellt. Für die Herstellung derartig verstärkter Werkstoffe sind nur spezielle Gießverfahren geeignet, die langsame Taktzeiten und hohe Drücke verlangen.On the other hand, since aluminum casting materials in other areas of the above-mentioned components meet the requirements there, various methods are known for reinforcing aluminum casting components in the highly stressed areas of these components with materials which have the desired mechanical and physical properties. It is known, among other things, to reinforce aluminum casting materials with fibers or particles. This will achieved a high wear resistance in particular. On the other hand, the thermal load capacity is hardly affected, since the matrix of such materials represents the conventional cast aluminum alloy. Only special casting processes that require slow cycle times and high pressures are suitable for the production of such reinforced materials.

Nachteilig bei einem derartigen Verfahren ist desweiteren die aufwendige Fertigbearbeitung, die nur mit Diamantwerkzeugen möglich ist und werden bei der spanenden Bearbeitung Fasern durchtrennt, können sich diese mit der Zeit aus der Matrix lösen und zu Schädigungen der Bauteile führen, die mit den Fasern in Berührung kommen.Another disadvantage of such a method is the complex finishing, which is only possible with diamond tools, and if fibers are cut during machining, these can separate from the matrix over time and lead to damage to the components that come into contact with the fibers .

Es ist auch bereits bekannt, pulvermetallurgische Al-Werkstoffe mit Al-Gußwerkstoffen zu verbinden. Dies ist u. a. mit Hilfe des Reibschweißverfahrens möglich. Sowohl der pulvermetallurgische Verstärkungswerkstoff als auch der Gußwerkstoff kann jeweils nach optimalen Parametern hergestellt werden. Beim Verbinden dieser Werkstoffe durch Reibschweißen erfolgt nur eine kurzzeitige Temperaturbelastung, so daß die Werkstoffeigenschaften des Verstärkungswerkstoffs kaum herabgesetzt werden. Das Reibschweißen ist allerdings auf einfache Bauteilgeometrien beschränkt, da nur axiale und keine radialen Verschweißungen möglich sind. Darüberhinaus besteht die Gefahr, daß durch das Reibschweißen Spannungen im Bauteil erzeugt werden, die eine zusätzliche Wärmebehandlung zum Entspannen erforderlich machen. Nachteilig bei diesem Verfahren ist weiterhin die Anzahl der Verfahrensschritte. Das Reibschweißen selbst ist ein zusätzlicher Arbeitsschritt und um reproduzierbare Ergebnisse zu erreichen, sind desweiteren sowohl Verstärkungsteil als auch das Gußwerkstück vor der Verschweißung spanend zu bearbeiten.It is also already known to combine powder-metallurgical aluminum materials with aluminum casting materials. This is u. a. possible with the help of the friction welding process. Both the powder metallurgical reinforcement material and the cast material can each be produced according to optimal parameters. When these materials are joined by friction welding, there is only a brief temperature load, so that the material properties of the reinforcing material are hardly reduced. Friction welding is, however, limited to simple component geometries, since only axial and no radial welding is possible. In addition, there is the risk that the friction welding creates stresses in the component, which make additional heat treatment necessary for relaxation. Another disadvantage of this method is the number of method steps. Friction welding itself is an additional step, and in order to achieve reproducible results, both the reinforcing part and the cast workpiece must be machined before welding.

In der DE-PS 31 00 755 ist ein Bauteil beschrieben, das einen Einsatz aus disperionsgehärtetem Sinteraluminium besitzt, welcher durch Eingießen, Einpressen oder Einschweißen in das Bauteil eingebracht wird. Das Eingießen als Herstellungsverfahren von verstärkten Al-Gußteilen ist kostengünstig, da kein zusätzlicher Verfahrensschritt, wie z. B. beim Reibschweißen, notwendig ist, um den Verbund herzustellen. Nachteilig bei dem in der DE-PS 31 00 755 vorgeschlagenen Bauteil ist, daß keine einwandfreie Verbindung in der Fügezone erreicht wird. Aufgrund der verfahrensbedingten hohen Gasgehalte der pulvermetallurgisch hergestellten Werkstoffe, sind diese für ein Eingießen wenig geeignet. Beim Kontakt eines pulvermetallurgischen Bauteils, welches entweder aus einem Al-Sinterwerkstoff besteht (pulvermetallurgisches Formteilverfahren) oder aus einem PM-Werkstoff (pulvermetallurgisches Halbzeugverfahren), welcher z. B. durch Verdüsen von Aluminiumschmelze, kaltisostatischem Pressen und anschließendes Warmstrangpressen zu voller Dichte hergestellt wurde, mit der Schmelze der konventionellen Al-Gußlegierung, kommt es zu sofortigem Ausgasen mit starker Porenbildung in der Fügezone und im pulvermetallurgischen Bauteil. Diese Porenbildung verhindert einen guten Werkstoffverbund.DE-PS 31 00 755 describes a component which has an insert made of dispersion-hardened sintered aluminum, which is introduced into the component by pouring, pressing or welding. Pouring as a manufacturing process of reinforced Al castings is inexpensive, since no additional process step, such as. B. in friction welding, is necessary to produce the composite. A disadvantage of the component proposed in DE-PS 31 00 755 is that no perfect connection is achieved in the joining zone. Due to the high gas content of the powder-metallurgically manufactured materials, they are not very suitable for pouring. When contacting a powder metallurgical component, which either consists of an Al sintered material (powder metallurgical molding process) or a PM material (powder metallurgical semi-finished process), which, for. B. was produced by atomizing aluminum melt, cold isostatic pressing and subsequent hot extrusion to full density, with the melt of the conventional cast aluminum alloy, there is immediate outgassing with strong pore formation in the joining zone and in the powder metallurgical component. This pore formation prevents a good material composite.

Es ist daher die Aufgabe der vorliegenden Erfindung, ein Bauteil aus partiell verstärktem Al-Guß zu schaffen, welches auf einfache und kostengünstige Weise herstellbar ist und einen vollständigen Materialverbund zwischen Al-Guß und Verstärkungsteil aufweist.It is therefore the object of the present invention to create a component made of partially reinforced aluminum casting which can be produced in a simple and inexpensive manner and which has a complete material composite between aluminum casting and reinforcing part.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß ein Bauteil zur Verfügung gestellt wird, bestehend aus einem Al-Gußteil und einem von dessen Grundwerkstoff zumindest partiell durch Eingießen umschlossenen Verstärkungsteil, das aus einem sprühkompaktierten Aluminium-Werkstoff besteht. Über das Sprühkompaktieren und die weiteren Verfahrensschritte Strangpressen bzw. Schmieden können Aluminiumprofile oder Aluminiumschmiedestücke hergestellt werden, die in ihren Eigenschaften konventionellen Al-Gußlegierungen weit überlegen sind. Diese Al-Werkstoffe weisen gegenüber den Al-Sinterwerkstoffen oder PM-Al-Werkstoffen erheblich niedrigere Gasgehalte auf, die sogar noch unter den Gasgehalten von konventionellen Al-Guß- oder Al-Knetlegierungen liegen. Darüber hinaus sind mit diesem Verfahren Werkstoffe herstellbar, die in ihren mechanischen und physikalischen Eigenschaften ähnlich den über Verdüsung hergestellten Al-PM-Werkstoffen sind. Im Vergleich zu konventionell gegossenen Al-Werkstoffen ist es mittels des Sprühkompaktierverfahrens ohne Probleme möglich, den Si-Gehalt im Al-Werkstoff auf Gehalte von über 35 Gew.% Si zu erhöhen. Damit ist es möglich den Wärmeausdehnungskoeffizient auf beliebige Werte zwischen 23 · 10-6K-1 und 13 · 10-6K-1 einzustellen. Da auch die Gehalte anderer Legierungselemente wie z.B. Fe, Ni, Cu, Mg für technisch sinnvolle und verwendbare Legierungen in weiten Grenzen eingestellt werden können, ist es sehr leicht möglich Werkstoffe auf einen vorgegebenen Anwendungsfall genau einzustellen. Die niedrigen Gasgehalte ermöglichen ein Eingießen dieser Werkstoffe, ohne daß es zu einer Porenbildung kommt, was technisch sinnvolle und kostengünstige Verbundbauteile ermöglicht.This object is achieved in that a component is made available, consisting of an aluminum casting and a reinforcing part, at least partially encapsulated by its base material, which consists of a spray-compacted aluminum material. Spray compacting and the further process steps of extrusion or forging can be used to produce aluminum profiles or aluminum forgings that are far superior in their properties to conventional cast aluminum alloys. These Al materials have significantly lower gas contents than the Al sintered materials or PM-Al materials, which are even lower than the gas contents of conventional cast aluminum or wrought aluminum alloys. In addition, this process can be used to produce materials that are similar in mechanical and physical properties to the Al-PM materials produced by spraying. In comparison to conventionally cast Al materials, the spray compacting method makes it possible to increase the Si content in the Al material to over 35% by weight Si without any problems. This makes it possible to set the coefficient of thermal expansion to any value between 23 · 10 -6 K -1 and 13 · 10 -6 K -1 . Since the contents of other alloy elements such as Fe, Ni, Cu, Mg can be set within wide limits for technically meaningful and usable alloys, it is very easy to set materials precisely for a given application. The low gas contents enable these materials to be poured in without the formation of pores, which enables technically sensible and inexpensive composite components.

Die Herstellung solcher Verbundbauteile erfolgt, indem das Verstärkungsbauteil, z.B. ein Strangpreßprofilabschnitt, ein Schmiedestück oder ein über zerspanende Verfahren hergestelltes Bauteil, aus einer sprühkompaktierten Al-Legierung, an der Stelle in der Gießform positioniert wird, an der die Verstärkung im fertigen Gußwerkstück erfolgen soll. Je nach Masse des Verstärkungsbauteils im Verhältnis zur Masse des Gußwerkstücks ist es erforderlich, um eine gute Verbindung durch partielles Anschmelzen zu erreichen, daß das Verstärkungsbauteil vorgewärmt wird. Mit der Wahl der Vorwärmtemperatur kann der Grad des Anschmelzens so eingestellt werden, daß das Verstärkungsbauteil auch vollständig aufgeschmolzen wird und es dadurch im Bereich der Verstärkung zu einer vollständigen Durchmischung mit dem Gußwerkstoff kommt, wodurch dieser partiell auflegiert wird. Weiterhin ist es für eine besonders gute Verbindung hilfreich, wenn das Verstärkungsbauteil von der Schmelze parallel und mit ausreichend großer Geschwindigkeit umströmt wird, wodurch die auf Aluminium immer vorhandene Oxidschicht abgewaschen wird und es zu einem direkten Kontakt der Al-Schmelze mit der oxidfreien Al-Oberfläche kommt. Dieser Abwaschvorgang kann entweder durch geschickte Wahl der Angußstellen, durch Rühren, durch Erzeugung von Wirbelströmen mit Hilfe von Induktionsspulen, oder ähnlichen Mitteln, die eine Strömung der Schmelze parallel zur Oberfläche des Verstärkungsbauteils während oder direkt nach dem Abguß erzeugen, erreicht werden.Such composite components are produced by positioning the reinforcing component, for example an extruded section, a forging or a component produced using a machining process, from a spray-compacted Al alloy at the point in the casting mold where reinforcement is to take place in the finished casting workpiece. Depending on the mass of the reinforcement component in relation to the mass of the cast workpiece, it is necessary, in order to achieve a good connection by partial melting, that the reinforcement component is preheated. With the choice of the preheating temperature, the degree of melting can be adjusted so that the reinforcing component is also complete is melted and this results in complete mixing with the casting material in the area of the reinforcement, as a result of which the latter is partially alloyed on. Furthermore, it is helpful for a particularly good connection if the melt flows around the reinforcement component in parallel and at a sufficiently high speed, as a result of which the oxide layer which is always present on aluminum is washed off and there is direct contact of the Al melt with the oxide-free Al surface is coming. This washing process can be achieved either by skillful choice of the sprue points, by stirring, by generating eddy currents with the aid of induction coils, or similar means which produce a flow of the melt parallel to the surface of the reinforcing component during or directly after the casting.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen erläutert:The invention is explained below using exemplary embodiments:

Es zeigen:

Fig. 1-
ein Schliffbild einer Fügezone zwischen sprühkompaktiertem Al-Werkstoff (AlSi20Fe5Ni2) und Al-Guß (AlSi18CuMgNi)
Fig. 2 -
ein Schliffbild einer Fügezone zwischen PM-Al-Werkstoff (AlSi20Fe5Ni2) und Al-Guß (AlSi18CuMgNi)
Fig. 3 -
ein Schliffbild einer Fügezone zwischen PM-AL-Werkstoff (AlSi35Fe2Ni1) und Al-Guß (AlSi9Cu3)
Fig. 4 a,b -
schematische Darstellung von Kolbenoberteilen
Fig. 5 -
schematische Darstellung des Kolbenbodens
Show it:
Fig. 1-
a micrograph of a joining zone between spray-compacted Al material (AlSi20Fe5Ni2) and Al casting (AlSi18CuMgNi)
Fig. 2 -
a micrograph of a joining zone between PM-Al material (AlSi20Fe5Ni2) and Al casting (AlSi18CuMgNi)
Fig. 3 -
a micrograph of a joining zone between PM-AL material (AlSi35Fe2Ni1) and Al casting (AlSi9Cu3)
4 a, b -
schematic representation of upper piston parts
Fig. 5 -
schematic representation of the piston crown

Beispiel 1: Vergleich des erfindungsgemäßen Verbundes mit einem Verbund aus PM-Al-Werkstoff und Al-Guß.Example 1: Comparison of the composite according to the invention with a composite made of PM-Al material and cast aluminum.

Es wurden strangepreßte Rundstangenabschnitte ¢ 85 mm x 55 mm aus der Legierung AlSi20Fe5Ni2 in einer Stahlkokille eingegossen. Dabei wurde zu Vergleichszwecken einerseits eine sprühkompaktierte Legierung und andererseits eine PM-Legierung gleicher Zusammensetzung verwendet. Als Gußwerkstoff wurde eine Kolbenlegierung AlSi18CuMgNi verwendet. Die Strangpreßabschnitte wurden in die offene Kokille eingelegt und auf 450°C vorgeheizt. Die Schmelzentemperatur betrug 720°C. Die Schmelze wurde in die oben offene Kokille auf die Strangpreßabschnitte aufgegossen und der Abwaschvorgang wurde durch Rühren nach dem Abgießen unterstützt. Bei Verwendung der sprühkompaktierten Legierung (Fig. 1) konnte eine einwandfreie Verbindung ohne Poren in der Fügezone erreicht werden. Bei der PM-Legierung (Fig. 2) entstanden in der Verbindungszone und im PM-Material große Poren durch das Ausgasen und "Ausblühungen" an der Aussenseite. An Zugproben aus der sprühkompaktierten Variante, bei denen die Fügezone in der Mitte der Meßlänge lag, wurden Werte nach der Wärmebehandlung ermittelt, wie sie die Gußlegierung in diesem Zustand erreicht. Der Bruch erfolgte immer im Gußmaterial deutlich neben der Fügezone.Extruded round bar sections ¢ 85 mm x 55 mm made of the alloy AlSi20Fe5Ni2 were cast in a steel mold. For comparison purposes, on the one hand a spray-compacted alloy and on the other hand a PM alloy became the same Composition used. A piston alloy AlSi18CuMgNi was used as the casting material. The extrusion sections were placed in the open mold and preheated to 450 ° C. The melt temperature was 720 ° C. The melt was poured into the mold open on top of the extrusion sections and the washing-off process was supported by stirring after the pouring. When using the spray-compacted alloy (Fig. 1), a perfect connection without pores in the joining zone could be achieved. In the case of the PM alloy (FIG. 2), large pores formed in the connection zone and in the PM material due to the outgassing and "efflorescence" on the outside. On tensile samples from the spray-compacted variant, in which the joining zone was in the middle of the measuring length, values were determined after the heat treatment as the cast alloy achieved in this state. The break always occurred in the casting material, clearly next to the joining zone.

Weitere Versuche wurden mit Ringen (Außendurchmesser = 48 mm, Innendurchmesser = 37 mm, Höhe = 7 mm) aus der sprühkompaktierten Legierung AlSi35Fe2Ni1 durchgeführt. Diese Ringe wurden über einen Dorn in einer oben offenen Stahlkokille gelegt und mit der Zylinderkopflegierung G-AlSi9Cu3 umgossen. Die Schmelzentemperatur betrug 720°C. Die Ringe wurden entweder kalt direkt vor dem Abguß in eine vorgeheizte Kokille eingelegt, oder mit der Kokille zusammen aufgeheizt. Zusätzlich wurde bei einigen Versuchen die Schmelze direkt nach dem Abguß umgerührt. Es konnten mit allen Versuchen porenfreie Verbindungen hergestellt werden. Als besonders günstig erwies sich das Einlegen von kalten Ringen in eine auf 400°C vorgeheizte Matrize mit nachfolgendem Abguß. Durch Rühren direkt nach dem Abguß konnte so eine einwandfreie Verbindung mit extrem feinem Gefüge auf der Ringseite erzielt werden (Fig. 3). Aber porenfreie Fügezonen konnten auch mit anderen Versuchsbedingungen erreicht werden. So führt ein Aufheizen der Ringe auf 500°C mit anschließendem Abguß zu einer ebenfalls sehr guten Verbindung, wobei es bei den Si-Primärausscheidungen im Gegensatz zu den oben genannten Bedingungen zu einer Vergröberung (von 3-7 µm auf 10 - 20 µm) kommt.Further tests were carried out with rings (outer diameter = 48 mm, inner diameter = 37 mm, height = 7 mm) made of the spray-compacted alloy AlSi35Fe2Ni1. These rings were placed over a mandrel in a steel mold open at the top and cast with the cylinder head alloy G-AlSi9Cu3. The melt temperature was 720 ° C. The rings were either placed cold in a preheated mold directly before casting, or heated together with the mold. In addition, in some experiments, the melt was stirred immediately after the casting. Pore-free connections could be made with all experiments. The insertion of cold rings in a die preheated to 400 ° C. with subsequent casting proved to be particularly favorable. By stirring directly after the casting, a perfect connection with an extremely fine structure on the ring side could be achieved (FIG. 3). But pore-free joining zones could also be achieved with other test conditions. Heating the rings to 500 ° C with subsequent casting also leads to a very good connection, whereby the Si primary precipitates, in contrast to the conditions mentioned above, become coarser (from 3-7 µm to 10 - 20 µm) .

Beispiel 2: Anwendung des erfindungsgemäßen Verbundes bei Kolben für Verbrennungskraftmaschinen.Example 2: Application of the composite according to the invention to pistons for internal combustion engines.

Ein Anwendungsbeispiel für eine partielle Verstärkung mit Hilfe des Eingießens sind Kolben für Verbrennungskraftmaschinen. Kolbenoberteile sind in den Figuren 4a und 4b dargestellt. Die Figur 5 zeigt die schematische Darstellung des Kolbenbodens.Pistons for internal combustion engines are an example of an application for partial reinforcement with the aid of casting. Upper piston parts are shown in FIGS. 4a and 4b. Figure 5 shows the schematic representation of the piston crown.

Kolben 1 werden heute meistens aus Si-haltigen eutektischen oder übereutektischen Gußlegierungen hergestellt. Insbesondere bei hochbelasteten Kolben für direkteinspritzende Dieselmotoren ist die Muldenrandzone 4 hohen Temperaturen und mechanischen Belastungen ausgesetzt. In den Bereichen des Kolbenhemds 5 genügen Al-Gußwerkstoffe 2 den dortigen Anforderungen. Mit Hilfe des Eingießens von sprühkompaktierten Aluminiumlegierungen (z.B. AlSi20Fe5Ni2) an den belasteten Stellen kann kostengünstig eine Verstärkung 3 der Muldenrandzone 4 oder der gesamten Brennraummulde 7 erfolgen, wodurch eine Konstruktion des Kolbens 1 möglich wird, mit der eine effektivere Verbrennung realisiert werden kann. Weitere Verstärkungsmöglichkeiten am Kolben 1 sind z.B. der Bereich der Ringnut 6, wo zum Teil heute schon Eisenbasis-Werkstoffe eingegossen werden, um den Verschleiß durch die Bewegung der Kolbenringe zu minimieren.Pistons 1 are today mostly made of Si-containing eutectic or hypereutectic cast alloys. Particularly in the case of pistons for direct injection diesel engines that are subjected to high loads, the bowl rim zone 4 is exposed to high temperatures and mechanical loads. In the areas of the piston skirt 5, aluminum cast materials 2 meet the requirements there. By pouring spray-compacted aluminum alloys (e.g. AlSi20Fe5Ni2) into the stressed areas, the bowl rim zone 4 or the entire combustion chamber bowl 7 can be inexpensively strengthened 3, which makes it possible to design the piston 1 with which more effective combustion can be achieved. Further reinforcement options on piston 1 are e.g. the area of the ring groove 6, where some iron-based materials are already poured in to minimize wear due to the movement of the piston rings.

Eine weitere erfindungsgemäße Verstärkung kann im Bereich des Feuersteges vorgesehen werden (siehe hierzu Bild 5). Durch die Verwendung von sprühkompaktiertem Hochleistungsaluminium an diesen Stellen ergeben sich erhebliche Verbesserungen durch den vollkommenen Verbund der Gußlegierung 2 mit den Verstärkungen 3. Es wird dadurch möglich, den Abstand des obersten Kolbenringes zum Kolbenboden 9 zu minimieren, was zu reduzierten Schadstoffwerten führt.A further reinforcement according to the invention can be provided in the area of the top land (see Figure 5). The use of spray-compacted high-performance aluminum at these points results in considerable improvements due to the perfect combination of the casting alloy 2 with the reinforcements 3. It is thereby possible to minimize the distance between the uppermost piston ring and the piston crown 9, which leads to reduced pollutant values.

Beispiel 3: Anwendung des erfindungsgemäßen Verbundes bei Zylinderköpfen von Verbrennungskraftmaschinen.Example 3: Application of the composite according to the invention to cylinder heads of internal combustion engines.

Ein weiteres Beispiel ist die Verstärkung von Zylinderköpfen von Verbrennungskraftmaschinen zur Brennraumseite. Auf Grund der hier entstehenden hohen Temperaturen und der Ausbildung eines Temperaturgradienten kommt es im Zylinderkopf zu Spannungen, die zu Rissen zumeist im Bereich der Stege zwischen den Ventilen führen. Wird in diesen Bereichen eine Verstärkung mit einem Werkstoff vorgenommen, der einerseits den thermischen und mechanischen Belastungen besser standhält, und der andererseits einen anderen Wärmeausdehnungskoeffizienten besitzt als die Gußlegierung des Zylinderkopfes, die wegen der Komplexität und des Formfüllungsvermögens verwendet werden muß, kann die Spannung, die durch den Temperaturgradienten induziert wird, keine kritischen Werte zur Rißentstehung erreichen.Another example is the reinforcement of cylinder heads of internal combustion engines to the combustion chamber side. Due to the resulting high temperatures and the formation of a temperature gradient, tensions occur in the cylinder head, which usually lead to cracks in the area of the webs between the valves. If a reinforcement is carried out in these areas with a material that on the one hand withstands the thermal and mechanical loads better, and on the other hand has a different coefficient of thermal expansion than the cast alloy of the cylinder head, which has to be used because of the complexity and the mold filling capacity, the tension can induced by the temperature gradient, do not reach critical values for crack formation.

Beispiel 4: Anwendung des erfindungsgemäßen Verbundes bei Zylinderlaufbuchsen von VerbrennungskraftmaschinenExample 4: Application of the composite according to the invention in cylinder liners of internal combustion engines

Ein weiteres Beispiel ist die Zylinderlaufbuchse von Verbrennungskraftmaschinen. Um kostengünstig in einer Großserie Motorenblöcke aus Aluminium fertigen zu können, ist die Verwendung gut gießbarer Al-Legierungen zwingend notwendig. Diese Legierungen erfordern jedoch aufgrund ihrer unzureichenden Verschleißfestigkeit eine Armierung der Kolbenlauffläche. Dies wird heute durch das Eingießen einer Graugußzylinderlaufbuchse erreicht. Der Nachteil hierbei ist eine schlechte Wärmeleitfähigkeit und eine stark unterschiedliche Wärmeausdehnung. Auch entsteht kein vollständiger Stoffverbund zwischen Buchse und Block (Gießspalt), was die Wärmeleitfähigkeit und mechanische Belastbarkeit ebenfalls beeinflußt. Die Verwendung von übereutektischen AlSi-Gußlegierungen ermöglicht zwar die gewünschte Verschleißfestigkeit und Wärmeleitfähigkeit ohne den Einsatz von Laufbuchsen, jedoch sind solche Legierungen nur mit großem Aufwand und in Kleinen Serien zu gießen (wie oben beschrieben).Another example is the cylinder liner of internal combustion engines. In order to be able to mass-produce aluminum engine blocks in a large series at low cost, the use of easily castable aluminum alloys is imperative. However, due to their insufficient wear resistance, these alloys require reinforcement of the piston running surface. This is achieved today by casting a cast iron cylinder liner. The disadvantage here is poor thermal conductivity and a very different thermal expansion. There is also no complete material bond between the bushing and the block (casting gap), which also influences the thermal conductivity and mechanical strength. The use of hypereutectic AlSi cast alloys enables the desired wear resistance and thermal conductivity without the use of liners, but such alloys can only be cast with great effort and in small series (as described above).

Bei der Verwendung von Laufbuchsen aus sprühkompaktiertem Material ist es einerseits möglich, leicht gießbare Legierungen für den Motorblock zu verwenden und andererseits eine verschleißfeste Lauffläche ohne besondere Ätzverfahren zu erhalten. Dabei ist durch den vollständigen Stoffverbund und die gute Wärmeleitfähigkeit des Laufbuchsenwerkstoffes die gesamte Wärmeleitfähigkeit erheblich besser als bei der Verwendung von Graugußbuchsen.When using bushings made of spray-compacted material, it is possible on the one hand to use easily castable alloys for the engine block and on the other hand to obtain a wear-resistant running surface without special etching processes. Due to the complete material composite and the good thermal conductivity of the liner material, the overall thermal conductivity is considerably better than when using gray cast iron bushings.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

11
erfindungsgemäßes Bauteilcomponent according to the invention
22nd
Al-GußAl cast
33rd
VerstärkungsteilReinforcement part
44th
MuldenrandverstärkungTrough edge reinforcement
55
KolbenhemdPiston shirt
66
RingträgerRing bearer
77
BrennraummuldeCombustion chamber trough
88th
KühlkanalCooling channel
99
KolbenbodenPiston crown

Claims (8)

  1. Construction part (1), comprising an aluminium casting (2) and a reinforcing member (3), which is surrounded by the base material of said casting at least partially by integral casting, said reinforcing member being formed from a spray-compacted aluminium material and forming a full, solid composite material with the aluminium casting (2) in the joint zones.
  2. Method of producing a partially reinforced aluminium cast construction part (1) according to claim 1, characterised by the following method steps:
    - providing a reinforcing member (3), which is formed from spray-compacted material and defines at least one portion of the finished construction part (1);
    - inserting the reinforcing member (3), in a compact, solid form, into the intended space in the casting mould, which forms the construction part (1);
    - filling the remaining space of the casting mould with the molten mass of the conventional cast aluminium material; and
    - subsequently solidifying the molten mass.
  3. Method according to claim 2, characterised in that the reinforcing member (3), formed from spray-compacted material, is configured as an extruded profile portion.
  4. Method according to claim 2, characterised in that the reinforcing member (3), formed from spray-compacted material, is configured as a forged piece.
  5. Method according to claims 2 - 4, characterised in that the reinforcing member (3), inserted into the casting mould, is preheated.
  6. Method according to claim 5, characterised in that the preheating temperature is so selected that the reinforcing member (3) is completely fused.
  7. Method according to claims 2 - 6, characterised in that the molten mass of cast aluminium is poured into the casting mould parallel to the surface of the reinforcing member (3) and at such a great speed that it washes away the oxide layer existing on the aluminium of the reinforcing member (3).
  8. Method according to claim 7, characterised in that the washing operation is achieved by the selection of the sprue locations and/or by agitation and/or by the production of eddy currents by means of induction coils.
EP94112615A 1993-08-26 1994-08-12 Partially reinforced aluminium cast construction part and method of manufacturing same Expired - Lifetime EP0640759B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4328619A DE4328619C2 (en) 1993-08-26 1993-08-26 Partially reinforced cast aluminum component and process for its production
DE4328619 1993-08-26

Publications (2)

Publication Number Publication Date
EP0640759A1 EP0640759A1 (en) 1995-03-01
EP0640759B1 true EP0640759B1 (en) 1997-03-05

Family

ID=6496011

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94112615A Expired - Lifetime EP0640759B1 (en) 1993-08-26 1994-08-12 Partially reinforced aluminium cast construction part and method of manufacturing same

Country Status (4)

Country Link
EP (1) EP0640759B1 (en)
AT (1) ATE149637T1 (en)
DE (1) DE4328619C2 (en)
ES (1) ES2098085T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221673A (en) * 2010-11-17 2013-07-24 戴姆勒股份公司 Cooling duct piston and method for producing the same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660156A (en) * 1996-05-16 1997-08-26 Zollner Corporation Cast piston having reinforced combustion bowl edge
BR9601835A (en) * 1996-06-14 1998-09-29 Metal Leve Sa Internal combustion engine piston
DE19634504A1 (en) 1996-08-27 1997-12-04 Daimler Benz Ag Manufacture of blank of a light-metal component to be incorporated into a light-metal casting
DE19712624C2 (en) * 1997-03-26 1999-11-04 Vaw Motor Gmbh Aluminum matrix composite and process for its manufacture
DE19733205B4 (en) * 1997-08-01 2005-06-09 Daimlerchrysler Ag Coating for a cylinder surface of a reciprocating engine of a hypereutectic aluminum / silicon alloy, spray powder for their production and their use
DE19733204B4 (en) 1997-08-01 2005-06-09 Daimlerchrysler Ag Coating of a hypereutectic aluminum / silicon alloy, spray powder for their production and their use
DE19748144C2 (en) * 1997-10-31 2000-04-27 Daimler Chrysler Ag Process for the production of base bodies from metal chips
DE19836706B4 (en) * 1998-04-17 2008-11-20 Audi Ag Cast iron blank to be cast in an aluminum casting and corresponding casting process
DE10012787B4 (en) * 2000-03-16 2008-04-10 Volkswagen Ag Process for producing light metal castings with cast-in bushings
DE10129046B4 (en) * 2001-06-15 2006-01-05 Ks Kolbenschmidt Gmbh Piston for an internal combustion engine with a sprue
DE10235911B3 (en) * 2002-08-06 2004-04-15 Peak-Werkstoff Gmbh Cast composite of hollow profiles made of light metal alloy and process for its production
FR2849899B1 (en) * 2003-01-14 2006-07-14 Renault Sa PISTON COMPRISING AN ALUMINUM ALLOY INSERT AND METHOD FOR MANUFACTURING THE SAME
DE10316002B3 (en) * 2003-04-08 2004-10-28 Federal-Mogul Nürnberg GmbH Method of manufacturing a piston for an internal combustion engine
DE10353473B4 (en) * 2003-11-15 2007-02-22 Daimlerchrysler Ag Component of an internal combustion engine and method for its production
DE102004029070B4 (en) * 2004-06-16 2009-03-12 Daimler Ag Method of pouring an iron alloy blank into an aluminum casting
DE102005042857A1 (en) 2005-09-08 2007-03-22 Ks Kolbenschmidt Gmbh Piston for an internal combustion engine
DE102005061060A1 (en) * 2005-12-21 2007-06-28 Mahle International Gmbh Piston for internal combustion engine has cavity wall consisting of reinforcement ring formed from oxidation-resistant material of low thermal conductivity
DE102007052498A1 (en) * 2007-11-02 2009-05-07 Mahle International Gmbh Manufacturing forged piston for internal combustion engine with piston shaft and piston head, comprises inserting holder for insert parts into a casting mold, fixing the insert part in the holder by retaining means, and casting a cast part
DE102012204947A1 (en) * 2012-03-28 2013-10-02 Mahle International Gmbh Method for producing an aluminum piston
DE102012208860A1 (en) * 2012-05-25 2013-11-28 Peak-Werkstoff Gmbh Method for producing piston rings
DE102012104820B4 (en) * 2012-06-04 2014-10-09 Actech Gmbh Process for the production of composite castings
DE102021112326A1 (en) 2021-05-11 2022-11-17 Volkswagen Aktiengesellschaft Cylinder housing and engine block for an internal combustion engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1431895A (en) * 1972-06-30 1976-04-14 Alcan Res & Dev Production of aluminium alloy products
JPS56166368A (en) * 1980-05-22 1981-12-21 Toyota Motor Corp Sliding member
DE3100755A1 (en) * 1981-01-13 1982-09-02 Klöckner-Humboldt-Deutz AG, 5000 Köln CYLINDER HEAD FOR AN INTERNAL COMBUSTION ENGINE
JPS59231163A (en) * 1983-06-13 1984-12-25 Yamaha Motor Co Ltd Cylinder head for internal-combustion engine
DD222930A1 (en) * 1983-12-19 1985-05-29 Druckguss & Kolbenwerke Veb WEAR-RESISTANT LIGHT METAL PISTON AND METHOD FOR THE PRODUCTION THEREOF
SE444032B (en) * 1984-06-01 1986-03-17 Kanthal Ab MAKE MANUFACTURING PISTON FOR COMBUSTION ENGINE
NL191928C (en) * 1985-12-24 1996-11-04 Efteling Bv De Device for controlling the upper arm of a remotely controlled doll.
GB8622949D0 (en) * 1986-09-24 1986-10-29 Alcan Int Ltd Alloy composites
DE4005097A1 (en) * 1990-02-17 1991-08-29 Bayerische Motoren Werke Ag Producing composite castings of light metal clad with copper - by protecting clad layer from oxidn. with protective layer, which is removed by melting during casting
DE4010474A1 (en) * 1990-03-31 1991-10-02 Kolbenschmidt Ag LIGHT METAL PISTON
JPH0636984B2 (en) * 1990-04-27 1994-05-18 東海カーボン株式会社 Method for manufacturing partial composite member
DD294646A5 (en) * 1990-05-22 1991-10-10 Schwermaschinenbau-Kombinat "Ernst Thaelmann" Magdeburg,De METHOD FOR AVOIDING GAS BLOWERING AT THE BORDER INTERFACE BETWEEN ATTACHING PARTS AND STARTERING METAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221673A (en) * 2010-11-17 2013-07-24 戴姆勒股份公司 Cooling duct piston and method for producing the same
CN103221673B (en) * 2010-11-17 2015-08-12 戴姆勒股份公司 Cooling duct piston and manufacture method thereof

Also Published As

Publication number Publication date
ES2098085T3 (en) 1997-04-16
ATE149637T1 (en) 1997-03-15
DE4328619C2 (en) 1995-08-10
EP0640759A1 (en) 1995-03-01
DE4328619A1 (en) 1995-03-02

Similar Documents

Publication Publication Date Title
EP0640759B1 (en) Partially reinforced aluminium cast construction part and method of manufacturing same
DE3610856C2 (en) Composite metal casting
DE2642757C2 (en)
EP0504780B1 (en) Piston for a hydrostatic axial and radial pistonmachine and method for constructing such a piston
EP1183120B1 (en) Casting tool and method of producing a component
DE68923921T2 (en) Piston.
DE3607427C2 (en) Method for producing the piston of an internal combustion engine and this piston
DE69303909T2 (en) Sintered workpieces
DE19712624C2 (en) Aluminum matrix composite and process for its manufacture
DE2231807A1 (en) SLEEVE AS CYLINDRICAL PRESSURE CHAMBER FOR INJECTION MOLDING MACHINES
DE19612500A1 (en) Process for the production of cylinder heads for internal combustion engines
EP0937888B1 (en) Process for making an internal combustion engine piston
DE3801847A1 (en) METHOD FOR PRODUCING PISTON FOR INTERNAL COMBUSTION ENGINES AND PISTON, IN PARTICULAR MANUFACTURED BY THIS METHOD
DE69223178T2 (en) METHOD FOR PRODUCING CAST COMPOSITE CYLINDER HEADS
DE4414095A1 (en) Method for connecting two metal workpieces to form a composite component
EP2140042B1 (en) Production of a partial fiber composite structure in a component using a laser remelting treatment
DE10042207C2 (en) Pistons for an internal combustion engine and method for producing a piston
DE102007010839B4 (en) A method of manufacturing a piston and piston having an annular reinforcement comprising a plurality of reinforcing segments
DE69106418T2 (en) Process for a continuous metal collar between cylinder liner and crankcase casting of an internal combustion engine.
DE10048870C2 (en) Housing for plastic, metal powder, ceramic powder or food processing machines and method for producing such a housing
EP1622734B1 (en) Method for centrifugal casting
DE69811753T2 (en) Internal combustion engine pistons and process for its manufacture
EP2089173A1 (en) Cylinder crankcase for a motor vehicle
EP0364028A1 (en) Tubular camshaft manufacturing process
DE19518552A1 (en) Pistons for internal combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT ES FR GB IT NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960403

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 149637

Country of ref document: AT

Date of ref document: 19970315

Kind code of ref document: T

ET Fr: translation filed
ET Fr: translation filed

Free format text: CORRECTIONS

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2098085

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970603

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: ERBSLOEH AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130813

Year of fee payment: 20

Ref country code: NL

Payment date: 20130815

Year of fee payment: 20

Ref country code: ES

Payment date: 20130829

Year of fee payment: 20

Ref country code: SE

Payment date: 20130821

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130821

Year of fee payment: 20

Ref country code: FR

Payment date: 20130823

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130828

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140812

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140811

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 149637

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140812

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20141120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140813