EP0640198A1 - Heat recovery boiler with induced circulation. - Google Patents
Heat recovery boiler with induced circulation.Info
- Publication number
- EP0640198A1 EP0640198A1 EP93908787A EP93908787A EP0640198A1 EP 0640198 A1 EP0640198 A1 EP 0640198A1 EP 93908787 A EP93908787 A EP 93908787A EP 93908787 A EP93908787 A EP 93908787A EP 0640198 A1 EP0640198 A1 EP 0640198A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- boiler
- water
- ejector
- circulation
- steam generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/18—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
- F22B1/1807—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
- F22B1/1815—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/04—Steam boilers of forced-flow type of combined-circulation type, i.e. in which convection circulation due to the difference in specific gravity between cold and hot water is promoted by additional measures, e.g. by injecting pressure-water temporarily
Definitions
- the invention relates to a heat recovery boiler in which the circulation of water is ensured without recourse to the thermo-siphon effect.
- Heat recovery boilers necessarily include means for ensuring the circulation of fluids. They find industrial application in so-called combined cycle power plants, as well as in so-called cogeneration plants, for the simultaneous production of electricity and steam.
- the boilers are supplied with water by means of a feed pump. They include one or more steam generation circuits, each comprising an evaporator device and a water / steam separation tank. These are connected to each other by pipes where water begins to circulate, followed by a water / steam mixture.
- Several steam generation circuits can be installed in a boiler in order to supply steam with different pressures and thus improve the overall efficiency of the installation.
- the latter consists of finned tube circuits mounted vertically or horizontally depending on the case, and installed in a flow of hot gases originating, for example, from a gas turbine.
- each device the evaporator is supplied with water from the corresponding water / vapor separation flask via a so-called inlet manifold, onto which the inlets of the tubes constituting this evaporator device are welded and a so-called outlet manifold which collects the water / steam mixture obtained.
- This outlet manifold is connected to the same separation tank, thus creating a closed circuit.
- the number of tube circuits connecting the so-called inlet and outlet manifolds depends on the size and operating conditions of the boiler.
- the pressure drop of the water between the inlet and outlet manifolds of the evaporator device depends in particular on the configuration of the pipes.
- the tubes of the evaporator device can be arranged either vertically or horizontally.
- Boilers with natural circulation are for example described in patents US-A-2,031,423 and US-A-2,702,026.
- the device described comprises two independent circuits in which the water to be heated circulates in horizontal tubes from bottom to top while the gases from combustion circulate from top to bottom, said separator tank being mounted above the boiler.
- thermo-siphon As indicated, a circulation is carried out by thermo-siphon under the combined effect of a "natural” and artificially accelerated circulation.
- Patent application EP-A-0357590 describes a boiler with horizontal tubes operating on the basis of natural water circulation, without the application of a circulation pump, thanks to the thermo-siphon effect.
- the water circulates in a loop between the flask and the evaporator device in the various pipes. It descends from the balloon in an unheated branch and rises there in a heated branch where it is in the form of a water / vapor mixture, the evaporator device being inserted in the "rising" branch. In normal operation, the driving force of circulation reaches a maximum value determined by the difference in height between the tank and the outlet manifold of the evaporator device.
- the value of the pressure drop in normal operation is not predetermined to comply with the thermal stability and flow requirements in the boiler, which require, according to. desired pressures maximum circulation rate.
- This circulation rate depends on the value of the force drive and that of the pressure drop in a given circuit.
- the circulation rate of a boiler is the average number of revolutions that a drop of water must make in the evaporative circuit before completely vaporizing and thus leaving the circuit. This rate remains limited in boilers with natural circulation given the low driving forces involved.
- the flow rate may be too low in certain tube circuits, this can result in a loss of overall performance and high risks. corrosion of these tubes by precipitation on the internal wall of all the salts contained in the water, following the total evaporation of the small amount of water included in this circuit.
- a start-up phase of the water circulation is necessary and can be carried out in different ways, for example by the action of an ejector possibly coupled to an additional pump, and mounted in a bypass line and which would be used only for starting, by injecting gas into the risers or by connecting the inlet and outlet manifolds of the evaporator device.
- Boilers of the type described are relatively bulky and their performance depends largely on their configuration.
- Circulation pumps consume energy and sometimes require significant maintenance costs. Aims of the invention
- An essential object of the invention is to combine the advantages of boilers with natural circulation and forced circulation, while not having the disadvantages.
- the object of the invention is to provide compact heat recovery boilers, that is to say with a height of water in the rising branch above the outlet manifold which may be of no importance.
- a further object of the invention is to provide such boilers in which circulation is ensured by an economical device, more reliable since it is less complex and requires little maintenance costs.
- a final object of the invention is to make it possible to limit the number of evaporator circuits and to select tubes of small diameter, less sensitive to thermal stresses, and to obtain a simpler construction of the collectors, which have fewer tube connections. and can also be smaller and lower water volume in the evaporator, resulting in improved dynamic behavior and reduced time constants.
- the subject of the invention is a heat recovery boiler comprising one or more steam generation circuits, optionally at different pressures, each comprising
- At least one steam generation circuit includes an ejector capable of ensuring an induced circulation of water in the boiler during normal operation, the corresponding water / steam separation tank then being able to be arranged at a any height relative to the outlet manifold of the evaporator device of this circuit.
- the induced circulation of water can be maintained in a regular manner.
- each steam generation circuit includes an ejector capable of ensuring the induced circulation of water in the boiler during normal operation.
- the boiler can then be devoid of a circulation pump.
- the ejector is preferably placed on a supply line.
- Each steam generation circuit comprising an ejector can be provided with means for ensuring a minimum flow rate of this ejector during the start-up phase of the boiler. It may be an auxiliary starter pump provided on a line mounted in diversion between a point of the downpipe and a point of the supply line located upstream of the ejector. Alternatively, the balloon of the steam generation circuit concerned can be provided, in its water zone, with a device capable of allowing its emptying during the start-up phase.
- each ejector is provided at its conical nozzle with a movable needle. This needle allows adjustment of the characteristics of the ejector.
- the difference in height between the tank of a steam generation circuit and the outlet manifold of the corresponding evaporator device is zero.
- the tank of a circuit can be disposed at a height less than that of the outlet manifold of the corresponding evaporator device.
- the invention also relates to a method for the use of a boiler as described above in which the following steps are carried out: - water is introduced into the evaporator device and the flask of at least one steam generation circuit, by means of a feed pump, up to a so-called start level; - a means is actuated to ensure a minimum flow allowing the operation of the ejector during the start-up phase;
- the supply pump is actuated again so as to allow the ejector to ensure the circulation induced during normal operation of the boiler.
- a movable needle is introduced into a part of the ejector, and it is actuated in order to regulate the flow of water as required.
- FIG. 1 is a schematic view of a first embodiment of a boiler with induced circulation according to the invention
- Figure 2 is a schematic view of a second embodiment of an induced circulation boiler according to the invention
- Figure 3 is a sectional view of an ejector provided with a needle which can be used in a boiler according to the invention.
- Figure 1 shows a schematic view of a boiler 1 according to the invention arranged between a gas turbine and a steam turbine not shown, as for example in a power plant.
- the boiler 1 is supplied by means of a reservoir 3 and a supply pump 5.
- the supply line 7 is provided with a control valve 9 which can be actuated according to the water requirements of the boiler 1.
- a evaporator device 11 consisting of finned tubes arranged horizontally in a hot gas exhaust channel 12 is conventionally provided.
- FIG. 1 three circuits of finned tubes are shown in parallel, but in practice, thanks to the invention, it is possible to limit our to 200 to 300 circuits, which is a small number compared to boilers with state-of-the-art natural circulation, which usually comprises around 800 circuits.
- This evaporator device 11 comprises strictly ⁇ ment an inlet manifold 13 and an outlet manifold 15. The r both are connected to a separation tank water / steam inlet 17.
- the manifold 13 is connected to the water zone of said balloon 17 via a so-called down pipe 19, while the outlet manifold 15 is connected to the vapor zone of the balloon 17 by a so-called up pipe 21.
- a pipe 23 for the departure of the steam from the balloon 17 is provided at the top in the vapor zone.
- An ejector 25 is placed at the intersection of the supply line 7 and the downpipe 19.
- water is introduced into the evaporator device 11 and into the tank 17 by means of the pump d 'power 5, up to a so-called start level.
- the regulating valve 9 is closed.
- the supply water is then used as the working fluid, it passes through the ejector 25 with a certain pressure drop increasing its speed, which induces a suction of water in the downpipe 19 and therefore the circulation movement some water. For this reason, we speak of induced circulation in the boiler.
- the feed water / water mixture from the flask is discharged to the inlet manifold 13 with a determined overpressure.
- the ejector continues to operate continuously during the normal market of the boiler, that is to say from the moment when the flow of the working fluid entering it reaches a certain value.
- the supply water flow will be zero. However, an ejector can only operate if it has a minimum flow rate.
- the closing of the regulation valve 9 is in principle necessary to ensure a correct start: before the boiler works, there is no water consumption. It is therefore necessary to avoid overfilling the balloon 17, to prevent water from flowing to the steam outlet pipe 23, which would be inadmissible.
- a branch line 27 can be provided on the downpipe 19, terminating on the supply line 7 upstream of the ejector 25.
- a pump is then provided. starting aid 29 and an auxiliary valve 31; the latter is opened when the valve 9 is closed.
- the pump 29 temporarily ensures the circulation of the working fluid from the water coming from the balloon 17.
- This pump 29 may be of low capacity.
- the drop in water level in the balloon 17 will induce a call for water which will force the regulating valve 9 to open and the supply pump 5 to ensure a motor flow, which will allow normal operation of the 'ejector 25.
- the valve 9 therefore remains open even at start-up, and it is possible to admit feed water into the boiler without risk of drowning the latter.
- the boiler 1 can be heated, either by starting the gas turbine, or by operating the smoke registers (not shown), depending on the installation.
- the first bubbles of vapor will quickly form in the lower part of the evaporator device 11, pushing the water towards the balloon 17 via the rising pipe 21.
- the water level in the balloon will therefore increase. It will then gradually decrease, depending on the steam produced and sent to the user.
- feed water must be introduced into the boiler 1, in quantities equal to the steam produced: the control valve 9 is fully open and the ejector 25 then works in steady state normal.
- the starting circuit can then be cut.
- FIG. 3 is a detailed view of an improved ejector according to the invention. It conventionally comprises a body 35, a suction flange 37, a mixing zone 39, a diffuser 41 and a conical nozzle 43. The latter is advantageously provided with a movable needle 45. During the start-up phase, the needle 45 is introduced inside the conical nozzle 43, which makes it possible to limit the flow of working fluid while maintaining the induced flow capacities of the ejector 25.
- the needle 45 In normal operation of the boiler 1, the needle 45 is withdrawn from the nozzle 43 and the ejector 25 operates according to its initial characteristics.
- either an ejector can be used.
- standard i.e. an improved ejector such as that shown in FIG. 3.
- a current combined cycle power plant comprises one or two gas turbines of 100 and 500 M, each equipped with a heat recovery boiler with two pressure levels, producing high pressure steam (about 80 to 100 kg / cm 2 ) and low pressure steam (about 8 to 10 kg / cm 2 ), feeding a steam turbine with two pressure levels with a power of 100 to 150 MW.
- Each boiler has two steam generation circuits, each provided with three heat exchangers, namely an evaporator, an economizer and a superheater, and a water / steam separation tank.
- the two steam generation circuits are independent and each of them can operate in induced circulation according to the invention. It will not, however, depart from the scope of the invention if, while a given steam generation circuit of a boiler comprises an ejector which ensures the induced circulation of the working fluid, another circuit of the same boiler operates according to another type of circulation, for example forced circulation by means of a circulation pump.
- the pressure drop in the evaporator device will be chosen as a function of the flow and heat exchange stabilities, ie 3 to 5 kg / cm 2 .
- the finned tubes will then be of small diameter (approximately 32 to 38 mm).
- the volume of water in the evaporator device can also be relatively small (around 10 to 15 m3). This capacity will be sufficient to accept the transfer of water from the evaporator device during start-ups.
- the sheets constituting the balloon may be reduced in thickness (approximately 30 to 50 mm), allowing high gradients of temperature and / or pressure. In this way, the start-up time of the boiler can be very short, and able to adapt to the very short start-up times of gas turbines. The dynamic behavior of the boiler is significantly improved, with reduced time constants. The traffic rate can also be chosen with a high safety margin.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
- Treatment Of Sludge (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE9200428 | 1992-05-08 | ||
BE9200428A BE1005793A3 (en) | 1992-05-08 | 1992-05-08 | INDUCED CIRCULATION HEAT RECOVERY BOILER. |
PCT/BE1993/000022 WO1993023702A1 (en) | 1992-05-08 | 1993-04-30 | Heat recovery boiler with induced circulation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0640198A1 true EP0640198A1 (en) | 1995-03-01 |
EP0640198B1 EP0640198B1 (en) | 1997-06-11 |
Family
ID=3886257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93908787A Expired - Lifetime EP0640198B1 (en) | 1992-05-08 | 1993-04-30 | Heat recovery boiler with induced circulation |
Country Status (12)
Country | Link |
---|---|
US (1) | US5575244A (en) |
EP (1) | EP0640198B1 (en) |
JP (1) | JPH07506662A (en) |
AT (1) | ATE154426T1 (en) |
AU (1) | AU3946793A (en) |
BE (1) | BE1005793A3 (en) |
DE (1) | DE69311549T2 (en) |
DK (1) | DK0640198T3 (en) |
ES (1) | ES2104144T3 (en) |
GR (1) | GR3024652T3 (en) |
RU (1) | RU2124672C1 (en) |
WO (1) | WO1993023702A1 (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4441008A1 (en) * | 1994-11-17 | 1996-05-23 | Siemens Ag | Plant for steam generation according to the natural circulation principle and method for initiating water circulation in such a plant |
DE19510619A1 (en) * | 1995-03-23 | 1996-09-26 | Abb Management Ag | Method of water supply regulation for waste heat steam generator |
DE19524727C2 (en) * | 1995-07-07 | 1998-04-09 | Nem Bv | Natural heat recovery steam generator |
US5762031A (en) * | 1997-04-28 | 1998-06-09 | Gurevich; Arkadiy M. | Vertical drum-type boiler with enhanced circulation |
US5870977A (en) * | 1997-05-12 | 1999-02-16 | New Devices Engineering A.K.A. Ltd. | Boiler with conductive pipe lining and containing magnetic granules |
IL121546A (en) * | 1997-08-14 | 2003-07-06 | Arie Raz | Compression and condensation of turbine exhaust steam |
US5918570A (en) * | 1997-11-05 | 1999-07-06 | Greenwich Hospital | Deaerated feedwater supply system for a boiler system and a method for deaerating boiler feedwater |
DE19806244A1 (en) * | 1998-02-16 | 1999-08-19 | Babcock Kraftwerkstech Gmbh | Steam generator with several tube bundles |
US6484503B1 (en) | 2000-01-12 | 2002-11-26 | Arie Raz | Compression and condensation of turbine exhaust steam |
GB2374135A (en) * | 2001-04-02 | 2002-10-09 | Autoflame Eng Ltd | Pressurised steam boilers and their control |
DE10117989C1 (en) * | 2001-04-10 | 2002-05-23 | Alstom Power Energy Recovery Gmbh | Steam creating system, for heating by exhaust gas, has two or more water/steam circuits, each with at least one evaporator device |
AU2002342873B2 (en) * | 2001-05-17 | 2007-08-09 | Air Products And Chemicals, Inc. | Apparatus and process for heating steam |
DE10127830B4 (en) * | 2001-06-08 | 2007-01-11 | Siemens Ag | steam generator |
EP1443268A1 (en) * | 2003-01-31 | 2004-08-04 | Siemens Aktiengesellschaft | Steam generator |
US7770544B2 (en) * | 2004-12-01 | 2010-08-10 | Victory Energy Operations LLC | Heat recovery steam generator |
WO2007133071A2 (en) * | 2007-04-18 | 2007-11-22 | Nem B.V. | Bottom-fed steam generator with separator and downcomer conduit |
US20100251976A1 (en) * | 2009-04-02 | 2010-10-07 | Alstom Technology Ltd. | Ejector driven steam generator start up system |
ES2347752B1 (en) * | 2009-04-06 | 2011-09-22 | Abengoa Solar New Technologies, S.A | SOLAR RECEIVER WITH NATURAL CIRCULATION FOR SATURATED VAPOR GENERATION. |
US8490582B1 (en) | 2009-09-24 | 2013-07-23 | Aaladin Industries, Inc. | System for waste heat recovery for a fluid heater |
US9518731B2 (en) | 2011-03-23 | 2016-12-13 | General Electric Technology Gmbh | Method and configuration to reduce fatigue in steam drums |
US20120247406A1 (en) * | 2011-03-28 | 2012-10-04 | Alstom Technology Ltd. | Method of controlling drum temperature transients |
DE102011006390A1 (en) * | 2011-03-30 | 2012-10-04 | Siemens Aktiengesellschaft | Method for operating a continuous steam generator and for carrying out the method designed steam generator |
WO2012148656A1 (en) * | 2011-04-25 | 2012-11-01 | Nooter/Eriksen, Inc. | Multidrum evaporator |
WO2014108980A1 (en) | 2013-01-10 | 2014-07-17 | パナソニック株式会社 | Rankine cycle device and cogeneration system |
CN103162283B (en) * | 2013-04-01 | 2015-04-15 | 上海蕲黄节能环保设备有限公司 | Module-type waste heat vapor generator |
US9945616B1 (en) * | 2013-05-28 | 2018-04-17 | Patrick G. Wingen | Waste heat recovery system for a fluid heater |
KR20160130500A (en) | 2014-03-21 | 2016-11-11 | 아멕 포스터 휠러 에너지아 에스.엘.유. | Evaporation cycle of a natural circulation steam generator in connection with a vertical duct for upward gas flow |
BE1022566A9 (en) * | 2014-11-21 | 2017-07-06 | Cockerill Maintenance & Ingenierie Sa | BALLOON STEAM GENERATOR HAVING REDUCED WALL THICKNESS USING MULTI-BALLOON CONFIGURATION |
US9982881B2 (en) * | 2015-04-22 | 2018-05-29 | General Electric Technology Gmbh | Method and system for gas initiated natural circulation vertical heat recovery steam generator |
US11293375B2 (en) * | 2020-02-12 | 2022-04-05 | General Electric Company | Variable area ejector |
CN112097228A (en) * | 2020-09-17 | 2020-12-18 | 浙江中控太阳能技术有限公司 | Steam generation system for solar photo-thermal power station and operation method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE279427C (en) * | 1900-01-01 | |||
DE308694C (en) * | 1900-01-01 | |||
US2031423A (en) * | 1929-03-15 | 1936-02-18 | Foster Wheeler Corp | Power plant |
US2257358A (en) * | 1939-08-28 | 1941-09-30 | Walter B Kerrick | Steam generator |
US2702026A (en) * | 1952-07-31 | 1955-02-15 | Svenska Maskinverken Ab | Steam generating plant utilizing heat emanating from many different sources |
US4151813A (en) * | 1978-03-27 | 1979-05-01 | Foster Wheeler Energy Corporation | Jet pump in natural circulation fossil fuel fired steam generator |
US4531479A (en) * | 1984-03-16 | 1985-07-30 | Gilbert Lyman F | Monitor system for vertical boilers |
AT392683B (en) * | 1988-08-29 | 1991-05-27 | Sgp Va Energie Umwelt | HEAT STEAM GENERATOR |
-
1992
- 1992-05-08 BE BE9200428A patent/BE1005793A3/en not_active Expired - Fee Related
-
1993
- 1993-04-30 DK DK93908787.0T patent/DK0640198T3/en active
- 1993-04-30 DE DE69311549T patent/DE69311549T2/en not_active Expired - Lifetime
- 1993-04-30 ES ES93908787T patent/ES2104144T3/en not_active Expired - Lifetime
- 1993-04-30 US US08/325,442 patent/US5575244A/en not_active Expired - Fee Related
- 1993-04-30 RU RU94046035A patent/RU2124672C1/en not_active IP Right Cessation
- 1993-04-30 JP JP5519720A patent/JPH07506662A/en not_active Ceased
- 1993-04-30 AU AU39467/93A patent/AU3946793A/en not_active Abandoned
- 1993-04-30 WO PCT/BE1993/000022 patent/WO1993023702A1/en active IP Right Grant
- 1993-04-30 AT AT93908787T patent/ATE154426T1/en not_active IP Right Cessation
- 1993-04-30 EP EP93908787A patent/EP0640198B1/en not_active Expired - Lifetime
-
1997
- 1997-09-09 GR GR970402290T patent/GR3024652T3/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO9323702A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1993023702A1 (en) | 1993-11-25 |
DK0640198T3 (en) | 1997-12-08 |
DE69311549D1 (en) | 1997-07-17 |
US5575244A (en) | 1996-11-19 |
GR3024652T3 (en) | 1997-12-31 |
ATE154426T1 (en) | 1997-06-15 |
EP0640198B1 (en) | 1997-06-11 |
RU94046035A (en) | 1997-06-10 |
DE69311549T2 (en) | 1997-11-13 |
AU3946793A (en) | 1993-12-13 |
ES2104144T3 (en) | 1997-10-01 |
JPH07506662A (en) | 1995-07-20 |
RU2124672C1 (en) | 1999-01-10 |
BE1005793A3 (en) | 1994-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BE1005793A3 (en) | INDUCED CIRCULATION HEAT RECOVERY BOILER. | |
EP2904220B1 (en) | Steam heat storage system | |
EP2201576B1 (en) | Nuclear reactor with improved cooling in an accident situation | |
EP1410401B8 (en) | Method and device for supplying pressurised water to a steam generator of a nuclear reactor during shut-down periods of the reactor | |
EP2935807B1 (en) | Concentrating thermodynamic solar or conventional thermal power plant | |
FR2494765A1 (en) | AUTOMATIC STARTING DEVICE FOR RANKINE CYCLING ENGINE CLUSTER | |
WO2013174901A1 (en) | Coupling of a turbopump for molten salts | |
FR2507373A1 (en) | COOLING DEVICE FOR THE CONFINEMENT ENCLOSURE OF A NUCLEAR REACTOR | |
BE1010594A3 (en) | Process for conducting the boiler boiler and forced circulation for its implementation. | |
EP0032641B1 (en) | Reheating system for a steam-turbine power plant | |
BE1022566B1 (en) | BALLOON STEAM GENERATOR HAVING REDUCED WALL THICKNESS USING MULTI-BALLOON CONFIGURATION | |
FR2696506A1 (en) | Hydroelectric power station with complementary thermal co-generation plant - has some generating sets with disconnectable gas turbine drives also producing thermal energy for district heating | |
EP0658731B1 (en) | Thermal absorption machine with one or several device components placed on rotary systems | |
JPH0118266B2 (en) | ||
BE1024894B1 (en) | STORAGE AND SEPARATION SYSTEM FOR INDUSTRIAL STEAM GENERATOR | |
FR2583912A1 (en) | INSTALLATION FOR COOLING THE HEART OF A NUCLEAR REACTOR WHEN IT IS SHUTDOWN OR IN NORMAL OPERATION | |
CH97507A (en) | Method and device for cooling an internal combustion engine. | |
FR3066256B1 (en) | STATION OF RECOVERY OF GEOTHERMAL ENERGY AND ELECTRICITY PRODUCTION | |
WO2024179834A1 (en) | Compressed gas energy storage and recovery system having a pressure control device | |
BE369736A (en) | ||
FR3138168A1 (en) | Hydro-solar-steam-electric power plant | |
BE353803A (en) | ||
BE483697A (en) | ||
FR2718125A1 (en) | Low pressure distillation of sea water or effluent | |
BE401678A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19941017 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19960326 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COCKERILL MECHANICAL INDUSTRIES S.A. |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE |
|
REF | Corresponds to: |
Ref document number: 154426 Country of ref document: AT Date of ref document: 19970615 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970612 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU |
|
REF | Corresponds to: |
Ref document number: 69311549 Country of ref document: DE Date of ref document: 19970717 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2104144 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19970730 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3024652 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLAV | Examination of admissibility of opposition |
Free format text: ORIGINAL CODE: EPIDOS OPEX |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAV | Examination of admissibility of opposition |
Free format text: ORIGINAL CODE: EPIDOS OPEX |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: BABCOCK KRAFTWERKSTECHNIK GMBH Effective date: 19980311 Opponent name: SIEMENS AG ZENTRALABTEILUNG TECHNIK ABTLG. ZT PA 3 Effective date: 19980227 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: BABCOCK KRAFTWERKSTECHNIK GMBH Opponent name: SIEMENS AG ZENTRALABTEILUNG TECHNIK ABTLG. ZT PA 3 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBO | Opposition rejected |
Free format text: ORIGINAL CODE: EPIDOS REJO |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 19990312 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20080327 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20080326 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20080401 Year of fee payment: 16 Ref country code: DK Payment date: 20080424 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20080424 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20080410 Year of fee payment: 16 Ref country code: IT Payment date: 20080409 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20080429 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDUSTRIELLE S.A.;Y-PARC RUE GALILEE;1400 YVERDON-LES-BAINS (CH) |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20091102 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20100506 Year of fee payment: 18 Ref country code: ES Payment date: 20100428 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100427 Year of fee payment: 18 Ref country code: DE Payment date: 20100423 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20100427 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100421 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20100426 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090501 |
|
BERE | Be: lapsed |
Owner name: S.A. *COCKERILL MECHANICAL INDUSTRIES Effective date: 20110430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69311549 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69311549 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20111101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110430 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: ML Ref document number: 970402290 Country of ref document: GR Effective date: 20111102 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111101 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111102 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20120524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 |