[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0640150A1 - Components based on intermetallic phases of the system titanium-aluminium and process for producing such components - Google Patents

Components based on intermetallic phases of the system titanium-aluminium and process for producing such components

Info

Publication number
EP0640150A1
EP0640150A1 EP93909788A EP93909788A EP0640150A1 EP 0640150 A1 EP0640150 A1 EP 0640150A1 EP 93909788 A EP93909788 A EP 93909788A EP 93909788 A EP93909788 A EP 93909788A EP 0640150 A1 EP0640150 A1 EP 0640150A1
Authority
EP
European Patent Office
Prior art keywords
component
titanium
aluminum
heat treatment
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93909788A
Other languages
German (de)
French (fr)
Other versions
EP0640150B1 (en
Inventor
Willem J. Quadakkers
Alexander Gil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0640150A1 publication Critical patent/EP0640150A1/en
Application granted granted Critical
Publication of EP0640150B1 publication Critical patent/EP0640150B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • the invention relates to a component according to the preamble of claim 1. Furthermore, the invention relates to a method for producing such components based on intermetallic phases of the titanium-aluminum system with an aluminum content between 42 at% and 53 at%. .
  • Intermetallic phases are currently of increasing interest as potentially suitable construction materials for highly stressed components at high operating temperatures.
  • the intermetallic phases based on titanium aluminide have many possible uses, for example due to their good strength at high temperatures in combination with low density, e.g. in cases where the mechanical component load is - partly - due to the occurrence of centrifugal forces.
  • the turbine blades are mentioned here as examples.
  • titanium aluminides with an aluminum content in the range of 42-53 at%, in particular in the range of 45-50 at%, are particularly important with regard to their good mechanical properties.
  • the phase diagram of the titanium-aluminum system shows the intermetallic phases i3Al and TiAl in this aluminum concentration range.
  • these materials show poor oxidation or corrosion resistance disadvantageously at operating temperatures of a component on this basis in the range from 700 ° C. to approximately 900 ° C.
  • This disadvantage is justified by the fact that the titanium aluminides mentioned do not form protective, stable oxide layers based on Al 2 O 3 at these temperatures, despite the high aluminum content. Instead, layers based on iO 2, which have a high oxidation rate, should actually be formed, especially after longer oxidation times. This leads to a rapid loss of wall thickness and thus to damage to a component made from this material.
  • oxidation-inhibiting protective layers e.g. of the type Ni (Co) CrAlY known.
  • protective layers applied to titanium aluminide could adversely affect the material properties of this material, in particular through interdiffusion processes which can greatly reduce the mechanical properties, in particular the resilience of the material.
  • protective layers always show manufacturing and / or operational defects, such as Pores or cracks, which can lead to strong local corrosion of the material covered by this protective layer - here titanium aluminide.
  • the object of the invention is achieved by a component according to claim 1. 20
  • a titanium aluminide with aluminum contents of 42-53 at% aluminum is not only dependent on the active composition of the material or the alloy, but rather on the structure.
  • a titanium aluminide with a given composition can, when aged in the above-mentioned temperature range, up to 900 ° C., in particular 700-900 ° C., both have a slowly growing A ⁇ O ⁇ Layer as well as a fast growing iÜ2 layer.
  • titanium aluminide if, in addition to such a eutectoid structure, there are also primary and secondary precipitated TiAl phases in the surface area, this material locally leads to a TiO 2 layer formation when used at high temperatures up to 900 ° C which spreads over the entire surface of the material in a disadvantageous manner after a longer exposure time.
  • the formation of the A ⁇ O layer which is favorable for the oxidation and corrosion resistance of the material, is ensured if the component made of titanium aluminide shows a structure on the surface with a completely eutectoid surface action, with a lamellar, Ti Al / TiAl structure.
  • the desired structure on the surface of the components produced in this way can be obtained directly by quenching sufficiently quickly.
  • such a component can be suitably used heat treated in such a way that according to subsequent, sufficiently rapid quenching, such a component also has the desired structure on the surface.
  • the component is advantageously heat-treated at a temperature at which, according to the Ti-Al phase diagram, only -Ti is present if possible.
  • the optimal heat treatment temperature should be at least as close as possible to the stability range of the ⁇ -Ti in the phase diagram. If the starting material of the component is not binary titanium aluminide but one with additional ternary or quaternary alloy additives, the most suitable heat treatment temperature can be determined experimentally for this case.
  • the heat treatment temperature is selected in the range from 1300 ° C. to 1430 ° C., in particular at 1400 ° C.
  • the duration of the heat treatment should expediently be up to several hours, e.g. up to 4 hours, in particular 30 minutes to 4 hours.
  • an additional heat treatment of the surface of the already heat-treated component is taught. This is particularly important if the lamellar eutectoid structure generated by the first heat treatment is incomplete on the surface of the component. It is conceivable, for example, that the surface of the initially heat-treated component is still mechanically processed so that the the lamellar structure initially obtained is partly or more mechanically removed from the component in a more or less way. Such an additional heat treatment can be carried out, in particular in the surface area which no longer has this desired structure.
  • a locally defined heat treatment using a laser, an electron beam or a high-frequency induction coil is proposed.
  • a combination of these surface treatment methods can also be used.
  • a surface zone of up to 100 ⁇ m or more can be melted locally or up to sufficiently high temperatures, in particular in the above-mentioned stability range of the ⁇ -Ti, e.g. about 1400 ° C, are heated.
  • the width of the heat-treated surface zone can be set in a targeted manner. For example, A small width of this zone has the advantage that the interior of the component component is influenced as little as possible in its mechanical properties.
  • An advantageous variant of the method according to the invention finally results in the event that the component is heat-treated with the aid of a high-frequency heating, in particular with the aid of a high-frequency induction coil.
  • This component is the desired depth of penetration of the surface structure made of fine lamellar, eutectoidal Ti3Al / TiAl structure is moved through the coil at a suitable speed.
  • the penetration depth of the favorable lamellar structure can be set locally in a defined manner.
  • the surface methods mentioned can also be used for the first coating of a component according to the invention with a structure structured in the desired manner. These methods are therefore not limited to use for a further one after an initial heat treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)

Abstract

A component based on intermetallic phases of the system titanium-aluminium has an aluminium content between 42 at % and 53 at %. A process is also disclosed for producing such mechanically highly stressable, oxidation and corrosion-resistant components. The object of the invention is to obtain such a component in which the good mechanical properties of the titanium-aluminium system remain well defined and the requirement of an oxidation and corrosion-resistance at service temperatures of up to 900 °C is satisfied. This problem is solved by a component having at its surface a lamellar, eutectoid Ti3Al/TiAl structure.

Description

B e s c h r e i b u n gDescription
Komponente auf der Basis intermetallischer Phasen des Systems Titan-Aluminium und Verfahren zur Herstellung solcher KomponenteComponent based on intermetallic phases of the titanium-aluminum system and method for producing such a component
Die Erfindung betrifft eine Komponente gemäß dem Ober¬ begriff des Anspruchs 1. Des weiteren betrifft die Er¬ findung ein Verfahren zur Herstellung solcher Komponen¬ ten auf der Basis intermetallischer Phasen des Systems Titan-Aluminium mit einem Aluminiumgehalt zwischen 42 At% und 53 At%.The invention relates to a component according to the preamble of claim 1. Furthermore, the invention relates to a method for producing such components based on intermetallic phases of the titanium-aluminum system with an aluminum content between 42 at% and 53 at%. .
Intermetallische Phasen finden gegenwärtig zunehmendes Interesse als potentiell geeignete Kons ruktionswerk- Stoffe für hochbelastete Komponenten bei hohen Betrieb¬ stemperaturen. Insbesondere die intermetallischen Pha¬ sen auf der Basis Titan-Aluminid besitzen aufgrund ih¬ rer guten Festigkeit bei hohen Temperaturen in Kombina¬ tion mit geringer Dichte vielfache Anwendungsmöglich- keiten, z.B. in solchen Fällen, bei der die mechanische Komponentenbelastung - teilweise - mit dem Auftreten von Fliehkräften bedingt ist. Beispielhaft seien hier die Turbinenschaufeln erwähnt.Intermetallic phases are currently of increasing interest as potentially suitable construction materials for highly stressed components at high operating temperatures. In particular, the intermetallic phases based on titanium aluminide have many possible uses, for example due to their good strength at high temperatures in combination with low density, e.g. in cases where the mechanical component load is - partly - due to the occurrence of centrifugal forces. The turbine blades are mentioned here as examples.
In diesem Zusammenhang sind vor allem Titanaluminide mit einem Alumiriiumgehalt im Bereich von 42 - 53 At%, insbesondere im Bereich von 45 - 50 At%, im Hinblick auf ihre guten mechanischen Eigenschaften von Bedeu¬ tung. Das Phasendiagramm des Systems Titan-Aluminium zeigt in diesem Aluminium-Konzentrationsbereich die in¬ termetallischen Phasen i3Al und TiAl. Diese Werkstoffe zeigen jedoch eine mangelhafte Oxidations- bzw. Korro¬ sionsbeständigkeit in nachteiliger Weise bei Betriebs- temperaturen einer Komponente auf dieser Basis im Be¬ reich von 700°C bis etwa 900°C. Begründet wird dieser Nachteil damit, daß die genannten Titanaluminide bei diesen Temperaturen, trotz des hohen Aluminiumgehaltes, keine schützenden, stabilen Oxidschichten auf Al2θ3~Ba- sis bilden. Statt dessen sollen tatsächlich, insbeson¬ dere nach längeren Oxidationszeiten, Schichten auf iθ2~Basis, die eine hohe Oxidationsrate aufweisen, entstehen. Dies führe zu einem schnellen Verlust an Wandstärke und damit zu einer Schädigung einer aus die- sem Material hergestellten Komponente.In this context, titanium aluminides with an aluminum content in the range of 42-53 at%, in particular in the range of 45-50 at%, are particularly important with regard to their good mechanical properties. The phase diagram of the titanium-aluminum system shows the intermetallic phases i3Al and TiAl in this aluminum concentration range. However, these materials show poor oxidation or corrosion resistance disadvantageously at operating temperatures of a component on this basis in the range from 700 ° C. to approximately 900 ° C. This disadvantage is justified by the fact that the titanium aluminides mentioned do not form protective, stable oxide layers based on Al 2 O 3 at these temperatures, despite the high aluminum content. Instead, layers based on iO 2, which have a high oxidation rate, should actually be formed, especially after longer oxidation times. This leads to a rapid loss of wall thickness and thus to damage to a component made from this material.
Aus der Werkstofftechnologie im Bereich der Hochtempe¬ ratur-Werkstoffe, wie z.B. solche auf NiCrAl-Basis, sind oxidationshemmenden Schutzschichten, z.B. vom Typ Ni(Co)CrAlY bekannt. Solche Schutzschichten könnten je¬ doch auf Titanaluminid aufgebracht die Materialeigen¬ schaften dieses Materials ungünstig beeinflussen, ins¬ besondere durch Interdiffusions orgänge, die die mecha¬ nischen Eigenschaften, insbesondere die Belastbarkeit des Materials stark herabsetzen können. Darüber hinaus zeigen derartige Schutzschichten immer herstellungs- und/oder betriebsbedingte Fehlstellen, wie z.B. Poren oder Risse, die dazu führen können, daß eine starke lo¬ kale Korrosion des von dieser Schutzschicht abgedeckten Materials - hier Titanaluminid -erfolgt.From material technology in the field of high-temperature materials, such as those based on NiCrAl are oxidation-inhibiting protective layers, e.g. of the type Ni (Co) CrAlY known. However, such protective layers applied to titanium aluminide could adversely affect the material properties of this material, in particular through interdiffusion processes which can greatly reduce the mechanical properties, in particular the resilience of the material. In addition, such protective layers always show manufacturing and / or operational defects, such as Pores or cracks, which can lead to strong local corrosion of the material covered by this protective layer - here titanium aluminide.
Schließlich ist es bekannt, Werkstoffoberflächen durch sog. Alitierverfahren dahingehend zu verbessern, daß der Aluminiumgehalt einer solchen Oberfläche angerei- chert wird. Dies führt zunächst zwar zu besseren Oxida- tionseigenschaften, es bildet sich dabei in nachteili- ger Weise die intermetallische Phase T1AI3, die zu sehr starker Rißbildung führt. Infolgedessen tritt eine Riß-Finally, it is known to improve material surfaces by means of the so-called alitation process in such a way that the aluminum content of such a surface is enriched. Initially, this leads to better oxidation properties. The intermetallic phase T1AI3, which leads to very severe crack formation. As a result, a crack
-> anfälligkeit bzw. Versprödung der so oberflächenbehan¬ delten Komponente auf.-> susceptibility or embrittlement of the surface-treated component.
* 5 * 5
Es ist somit Aufgabe der Erfindung, eine Komponente der eingangs bezeichneten Art zu schaffen, bei der die guten mechanischen Eigenschaften des Titanaluminids de¬ finiert und die Anforderungen der Oxidations- und Kor- 10 rosionsbeständigkeit bei Einsatztemperaturen bis zuIt is therefore an object of the invention to provide a component of the type described in the introduction, in which the good mechanical properties of the titanium aluminide are defined and the requirements for resistance to oxidation and corrosion at operating temperatures up to
900°C gewährleistet sind. Darüber hinaus ist es Aufgabe der Erfindung, ein Verfahren zur Herstellung einer sol¬ chen Komponente der eingangs bezeichneten Art zu schaf¬ fen, bei dem ohne die vorher gezeigten Nachteile eine 15 reproduzierbare Herstellung solcher Komponente ermög¬ licht wird.900 ° C are guaranteed. In addition, it is an object of the invention to provide a method for producing such a component of the type described at the outset, in which a reproducible production of such a component is made possible without the disadvantages previously shown.
Die erfindungsgemäße Aufgabe wird gelöst durch eine Komponente gemäß Anspruch 1. 20The object of the invention is achieved by a component according to claim 1. 20
Ferner wird die erfindungsgemäße Aufgabe gelöst durch ein Verfahren gemäß Anspruch 2 oder Anspruch 3.Furthermore, the object according to the invention is achieved by a method according to claim 2 or claim 3.
Es wurde gefunden, daß die Oxidationsbeständigkeit von 25 Titanaluminiden mit Aluminiumgehalten von 42 - 53 At% Aluminium nicht nur von der exaktiven Zusammensetzung des Werkstoffes bzw. der Legierung, sondern vielmehr vom Gefüge abhängig ist. Ein Titanaluminid mit vorgege¬ bener Zusammensetzung kann, abhängig vom jeweiligen Ge- 30 füge, bei Auslagerung in dem oben genannten Temperatur- v, bereich von bis zu 900°C, insbesondere von 700 - 900°C, sowohl eine langsam wachsende A^O^-Schicht als auch eine schnellwachsende iÜ2-Schicht bilden.It was found that the oxidation resistance of 25 titanium aluminides with aluminum contents of 42-53 at% aluminum is not only dependent on the active composition of the material or the alloy, but rather on the structure. Depending on the particular structure, a titanium aluminide with a given composition can, when aged in the above-mentioned temperature range, up to 900 ° C., in particular 700-900 ° C., both have a slowly growing A ^ O ^ Layer as well as a fast growing iÜ2 layer.
35 Es wurde gefunden, daß durch eine eutektoide Reaktion35 It has been found that by a eutectoid reaction
(TinAl und TiAl) ein Legierungsgefüge entsteht, das bei Hochtemperatureinsatz des aus diesem Material herge¬ stellten Komponenten zur Bildung einer AI O3-Schicht führt.(TinAl and TiAl) an alloy structure is created, which at High temperature use of the components made from this material leads to the formation of an Al O3 layer.
Es wurde ferner gefunden, daß das Titanaluminid für den Fall, daß neben einem solchen eutektoiden Gefüge auch primär und sekundär ausgeschiedene TiAl-Phasen im Ober¬ flächenbereich vorhanden sind, dieses Material bei Hochtemperatureinsatz bis zu 900°C lokal zu einer Ti02- Schichtbildung führt, die sich nach längerer Auslage¬ rungszeit über die gesamte Oberfläche des Materials in nachteiliger Weise ausbreitet.It was also found that the titanium aluminide, if, in addition to such a eutectoid structure, there are also primary and secondary precipitated TiAl phases in the surface area, this material locally leads to a TiO 2 layer formation when used at high temperatures up to 900 ° C which spreads over the entire surface of the material in a disadvantageous manner after a longer exposure time.
Es hat sich gezeigt, daß die Bildung der für die Oxida- tions- und Korrosionsbeständigkeit des Materials gün¬ stige A^O -Schicht gewährleistet ist, wenn die aus Ti¬ tanaluminid hergestellte Komponente an der Oberfläche eine Gefüge zeigt mit einer vollständig eutektoiden Re¬ aktion, mit einer lamellaren, Ti Al/TiAl-Struktur.It has been shown that the formation of the A ^ O layer, which is favorable for the oxidation and corrosion resistance of the material, is ensured if the component made of titanium aluminide shows a structure on the surface with a completely eutectoid surface action, with a lamellar, Ti Al / TiAl structure.
Es ergeben sich dabei zwei alternative Möglichkeiten, eine solche Komponente zu erhalten:There are two alternative ways of obtaining such a component:
Ausgehend von einer Titan-Aluminium-Schmelze mit einem Aluminiumgehalt zwischen 42 - 53 At% kann durch ausreichend schnellem Abschrecken direkt die erwünschte Struktur an der Oberfläche des so hergestellten Komponenten erhalten werden.Starting from a titanium-aluminum melt with an aluminum content between 42-53 at%, the desired structure on the surface of the components produced in this way can be obtained directly by quenching sufficiently quickly.
_ Für den Fall, daß die Komponente aus der Schmelze hergestellt durch langsames Abschrecken noch nicht die erwünschte lamellare eutektovide Struktur auf¬ weist, wie dies auch beim durch Gießen oder Schmieden gefertigten Materials bzw. Bauteils der Fall ist, kann eine solche Komponente in geeigne¬ ter Weise so wärmebehandelt werden, daß nach an- schließendem, ausreichend schnellem Abschrecken auch eine solche Komponente die gewünschte Struk¬ tur auf der Oberfläche aufweist.In the event that the component produced from the melt by slow quenching does not yet have the desired lamellar eutectovide structure, as is also the case with the material or component produced by casting or forging, such a component can be suitably used heat treated in such a way that according to subsequent, sufficiently rapid quenching, such a component also has the desired structure on the surface.
Dazu wird in vorteilhaf er Weise die Komponente bei ei¬ ner Temperatur wärmebehandelt, bei der lt. Ti-Al-Pha- sendiagramm nur noch -Ti nach Möglichkeit vorliegt. Die optimale Wärmebehandlungstemperatur soll je nach Zusammensetzung des Titanaluminids zumindest möglichst nahe dem Stabilitätsbereich des α-Ti im Phasendiagramm liegen. Sollte es sich beim Ausgangswerkstoff der Kom¬ ponente nicht um binäres Titanaluminid, sondern um eine solche mit weiterer ternärer oder quaternärer Legie¬ rungszusätze handeln, kann für diesen Fall die ge- eignetste Wärmebehandlungstemperatur experimentell er¬ mittelt werden.For this purpose, the component is advantageously heat-treated at a temperature at which, according to the Ti-Al phase diagram, only -Ti is present if possible. Depending on the composition of the titanium aluminide, the optimal heat treatment temperature should be at least as close as possible to the stability range of the α-Ti in the phase diagram. If the starting material of the component is not binary titanium aluminide but one with additional ternary or quaternary alloy additives, the most suitable heat treatment temperature can be determined experimentally for this case.
Bei einer zweckmäßigen Ausbildung des erfindungsgemäßen Verfahrens wird die Wärmebehandlungstemperatur im Be- reich von 1300°C - 1430°C, insbesondere bei 1400°C ge¬ wählt.In an expedient embodiment of the method according to the invention, the heat treatment temperature is selected in the range from 1300 ° C. to 1430 ° C., in particular at 1400 ° C.
Je nach Wahl der Wärmebehandlungstemperatur soll die Dauer der Wärmebehandlung zweckmäßigerweise bis zu meh- reren Stunden, z.B. bis zu 4 Stunden, insbesondere 30 min bis 4 Stunden betragen.Depending on the choice of heat treatment temperature, the duration of the heat treatment should expediently be up to several hours, e.g. up to 4 hours, in particular 30 minutes to 4 hours.
In einer vorteilhaften Aus ührungsform des erfindungs¬ gemäßen Verfahrens wird eine zusätzliche Wärmebehand- lung der Oberfläche der bereits wärmebehandelten Kompo¬ nente gelehrt. Dies ist dann von besonderer Bedeutung, wenn die mittels der ersten Wärmebehandlung erzeugte lamellare eutektoide Struktur an der Oberfläche der Komponente unvollständig ist. Es ist z.B. vorstellbar, daß die Oberfläche der zunächst wärmebehandelten Kompo¬ nente mechanisch noch bearbeitet wird, so daß die zunächst erhaltene lamellare Struktur teilweise in mehr oder minderer Weise von der Komponente z.B. mechanisch entfernt wird. Dabei kann eine solche zusätzliche Wärmebehandlung, insbesondere im Oberflächenbereich, der diese gewünschte Struktur nicht mehr aufweist, vorgenommen werden.In an advantageous embodiment of the method according to the invention, an additional heat treatment of the surface of the already heat-treated component is taught. This is particularly important if the lamellar eutectoid structure generated by the first heat treatment is incomplete on the surface of the component. It is conceivable, for example, that the surface of the initially heat-treated component is still mechanically processed so that the the lamellar structure initially obtained is partly or more mechanically removed from the component in a more or less way. Such an additional heat treatment can be carried out, in particular in the surface area which no longer has this desired structure.
In einer vorteilhaften Variante des erfindungsgemäßen Verfahrens wird eine lokal definierte Wärmebehandlung mit Hilfe eines Lasers, eines Elektronenstrahls oder eine Hochfrequenzinduktionsspule vorgeschlagen. Im üb¬ rigen kann auch eine Kombination dieser Oberflächenbe¬ handlungsmethoden erfolgen. Dabei kann je nach er¬ wünschter Dicke der lamellaren Oberflächenstruktur eine Oberflächenzone von bis zu 100 μm oder mehr lokal auf¬ geschmolzen oder bis auf ausreichend hohe Temperaturen, insbesondere im oben genannten Stabilitätsbereich des α-Ti, wie z.B. etwa 1400°C, erhitzt werden. Je nach geforderten mechanischen und korrosionsbeständigen Eigenschaften der Komponente kann die Breite der wärme¬ behandelten Oberflächenzone gezielt eingestellt werden. Z.B. hat eine geringe Breite dieser Zone den Vorteil, daß das Innere der Bauteilkomponente möglichst wenig in ihren mechanischen Eigenschaften beeinflußt wird. Andererseits wird gleichzeitig gewährleistet, daß durch die geringe Wärmeeinbringung bereits durch eine normale Luftabkühlung die gewünschte hohe Abkühlgeschwindigkeit erreicht wird. Dabei kann es zweckmäßig sein, die Ab¬ kühlgeschwindigkeit durch eine zusätzliche separate Gaskühlung zu erhöhen.In an advantageous variant of the method according to the invention, a locally defined heat treatment using a laser, an electron beam or a high-frequency induction coil is proposed. A combination of these surface treatment methods can also be used. Depending on the desired thickness of the lamellar surface structure, a surface zone of up to 100 μm or more can be melted locally or up to sufficiently high temperatures, in particular in the above-mentioned stability range of the α-Ti, e.g. about 1400 ° C, are heated. Depending on the required mechanical and corrosion-resistant properties of the component, the width of the heat-treated surface zone can be set in a targeted manner. For example, A small width of this zone has the advantage that the interior of the component component is influenced as little as possible in its mechanical properties. On the other hand, it is ensured at the same time that the desired high cooling rate is already achieved by normal air cooling due to the low heat input. It may be expedient to increase the cooling rate by an additional separate gas cooling.
Eine vorteilhafte Variante des erfindungsgemäßen Ver¬ fahrens ergibt sich schließlich für den Fall, daß mit Hilfe einer Hochfrequenzheizung, insbesondere mit Hilfe einer Hochfrequenzinduktionsspule die Komponente wärme¬ behandelt wird. Dabei wird diese Komponente in Abhän- gigkeit der gewünschten Eindringtiefe des Oberflächen- gefüges aus feinlamellaren, eutektoidem Ti3Al/TiAl- Struktur mit einer geeigneten Geschwindigkeit durch die Spule bewegt. Dabei kann je nach geforderten mechani- sehen und/oder korrosionsbeständigen Eigenschaften der Komponente die Eindringtiefe der günstigen lamellaren Struktur lokal definiert eingestellt werden.An advantageous variant of the method according to the invention finally results in the event that the component is heat-treated with the aid of a high-frequency heating, in particular with the aid of a high-frequency induction coil. This component is the desired depth of penetration of the surface structure made of fine lamellar, eutectoidal Ti3Al / TiAl structure is moved through the coil at a suitable speed. Depending on the required mechanical and / or corrosion-resistant properties of the component, the penetration depth of the favorable lamellar structure can be set locally in a defined manner.
Im übrigen können die genannten Oberflächenmethoden auch zur erstmaligen Beschichtung einer erfindungsgemäßen Komponente mit einem in der gewünsch¬ ten Weise strukturierten Gefüge eingesetzt werden. Diese Methoden beschränken sich damit nicht auf den Einsatz für eine weitere nach einer ersten Wärmebehand- lung. Moreover, the surface methods mentioned can also be used for the first coating of a component according to the invention with a structure structured in the desired manner. These methods are therefore not limited to use for a further one after an initial heat treatment.

Claims

P a t e n t a n s p r ü c h eP a t e n t a n s r u c h e
1. Komponente, insbesondere bis zu einer Einsatztemperatur von bis zu 900 °C mechanisch, hoch belastbare und lang¬ zeitig oxidations- und korrosionsbeständige Komponente, auf der Basis intermetallischer Phasen des Systems Titan-Aluminium mit einem Aluminiumgehalt zwischen 42 At-% und 53 At-%, d a d u r c h g e k e n n z e i c h n e t , daß die Komponentenoberfläche eine lammellare, eutek- toide i3Al/ iAl-Struktur aufweist.1. component, in particular up to an operating temperature of up to 900 ° C. mechanical, highly resilient and long-term oxidation and corrosion-resistant component, based on intermetallic phases of the titanium-aluminum system with an aluminum content between 42 at% and 53 at -%, characterized in that the component surface has a lamellar, eutectoid i3Al / iAl structure.
2. Verfahren zur Herstellung von mechanisch hochbelastba¬ ren, oxidations- und korrosionsbeständigen Komponenten auf der Basis intermetallischer Phasen des Systems Ti¬ tan-Aluminium mit einem Aluminiumgehalt zwischen 42 At-% und 53 At-%, d a d u r c h g e k e n n z e i c h n e t , daß die Titan-Aluminium-Schmelze oder eine wärmebehan¬ delte Komponente aus Titan-Aluminid so abgeschreckt wird, daß dabei als Legierungsgefüge an der Komponen- tenoberflache eine lammellare, eutektoide Ti3Al/ iAl- Struktur gebildet wird.2. Process for the production of mechanically highly resilient, oxidation and corrosion-resistant components based on intermetallic phases of the titanium-aluminum system with an aluminum content between 42 at% and 53 at%, characterized in that the titanium-aluminum Melt or a heat-treated component made of titanium aluminide is quenched in such a way that a lamellar, eutectoidal Ti3Al / iAl structure is formed as an alloy structure on the component surface.
3. Verfahren zur Herstellung von mechanisch hochbelastba¬ ren, oxidations- und korrosionsbeständigen Komponenten auf der Basis intermetallischer Phasen des Systems Ti¬ tan-Aluminium mit einem Aluminiumgehalt zwischen 42 At-% und 53 At-%, d a d u r c h g e k e n n z e i c h n e t , daß die aus der Titan-Aluminium-Schmelze hergestellte Komponente einer Wärmebehandlung derart unterzogen wird, daß nach Abschreckung dieser so wärmebehandelten Komponente als Legierungsgefüge an der Komponentenoberfläche eine lammellare, eutektoide Ti3Al/TiAl-Struktur vorliegt.3. Process for the production of mechanically highly resilient, oxidation and corrosion-resistant components based on intermetallic phases of the titanium-aluminum system with an aluminum content between 42 at% and 53 at%, characterized in that the titanium Aluminum melt produced component is subjected to a heat treatment such that after quenching this heat-treated Component as alloy structure on the component surface a lamellar, eutectoid Ti 3 Al / TiAl structure is present.
Verfahren nach Anspruch 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , daß die Wärmebehandlung bei einer Temperatur im oder möglichst nahe am Stabilitätsbereich des α-Titans imThe method of claim 2 or 3, d a d u r c h g e k e n n z e i c h n e t that the heat treatment at a temperature in or as close as possible to the stability range of the α-titanium in
Titan-Aluminium-Phasendiagramm erfolgt.Titanium-aluminum phase diagram is done.
Verfahren nach Anspruch 2, 3 oder 4, d a d u r c h g e k e n n z e i c h n e t , daß eine Wärmebehandlungstemperatur von 1300 °C bisThe method of claim 2, 3 or 4, d a d u r c h g e k e n n z e i c h n e t that a heat treatment temperature of 1300 ° C to
1430 °C, insbesondere von 1400 °C gewählt wird.1430 ° C, in particular 1400 ° C is selected.
Verfahren nach einem der Ansprüche 2 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß die Dauer der Wärmebehandlung bis zu vier Stunden, insbesondere 30 Minuten bis vier Stunden beträgt.Method according to one of claims 2 to 5, so that the duration of the heat treatment is up to four hours, in particular 30 minutes to four hours.
7. Verfahren nach einem der Ansprüche 2 bis 6 , d a d u r c h g e k e n n z e i c h n e t , daß die Oberfläche der bereits wärmebehandelten Kompo¬ nente bei unvollständiger, insbesondere bei teilweise entfernter eutektoider Ti3Al/TiAl-Struktur, wärmebehan¬ delt wird.7. The method according to any one of claims 2 to 6, so that the surface of the already heat-treated component is heat-treated with an incomplete, in particular with partially removed, eutectoid Ti3Al / TiAl structure.
8. Verfahren nach einem der Ansprüche 2 bis 7, d a d u r c h g e k e n n z e i c h n e t , daß das die Komponentenoberfläche lokal definiert wärmebehandelt wird.8. The method according to any one of claims 2 to 7, so that the component surface is heat-treated in a locally defined manner.
9. Verfahren nach einem der Ansprüche 2 bis 8, d a d u r c h g e k e n n z e i c h n e t , daß die Wärmebehandlung mit Hilfe eines Lasers, eines Elektronenstrahls oder einer Hochfrequenzinduktions¬ spule oder einer Kombination dieser Methoden erfolgt.9. The method according to any one of claims 2 to 8, characterized in that the heat treatment is carried out with the aid of a laser, an electron beam or a high-frequency induction coil or a combination of these methods.
10. Verfahren nach einem der Ansprüche 2 bis 9, d a d u r c h g e k e n n z e i c h n e t , daß im Falle einer Wärmebehandlung der Komponente mit Hilfe einer Hochfrequenzinduktionsspule, die Komponente in Abhängigkeit der ggfs. lokal definiert gewünschten Eindringtiefe des die fein lammellaren, eutektoiden10. The method according to any one of claims 2 to 9, d a d u r c h g e k e n n z e i c h n e t that in the case of heat treatment of the component with the aid of a high-frequency induction coil, the component depending on the locally defined desired penetration depth of the finely lambellar, eutectoid
Ti3Al/TiAl-Struktur aufweisenden Oberflächengefüges mit geeigneter Geschwindigkeit durch die Spule bewegt wird. Surface structure having a Ti3Al / TiAl structure is moved through the coil at a suitable speed.
EP93909788A 1992-05-12 1993-05-11 Components based on intermetallic phases of the system titanium-aluminium and process for producing such components Expired - Lifetime EP0640150B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4215017A DE4215017C2 (en) 1992-05-12 1992-05-12 Process for the production of a component based on intermetallic phases of the titanium-aluminum system
DE4215017 1992-05-12
PCT/DE1993/000450 WO1993023582A1 (en) 1992-05-12 1993-05-11 Components based on intermetallic phases of the system titanium-aluminium and process for producing such components

Publications (2)

Publication Number Publication Date
EP0640150A1 true EP0640150A1 (en) 1995-03-01
EP0640150B1 EP0640150B1 (en) 2000-03-15

Family

ID=6458327

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93909788A Expired - Lifetime EP0640150B1 (en) 1992-05-12 1993-05-11 Components based on intermetallic phases of the system titanium-aluminium and process for producing such components

Country Status (5)

Country Link
US (1) US5540792A (en)
EP (1) EP0640150B1 (en)
AT (1) ATE190672T1 (en)
DE (2) DE4215017C2 (en)
WO (1) WO1993023582A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443147A1 (en) * 1994-12-05 1996-06-27 Dechema Corrosion-resistant material for high-temperature applications in sulfidizing process gases
DE19539303A1 (en) * 1995-10-23 1997-04-24 Dechema Titanium@-aluminium@ alloy powder with improved high temperature corrosion resistance
US6149801A (en) 1997-08-08 2000-11-21 Water Pik, Inc,. Water treatment device with volumetric monitoring features
DE10056617C2 (en) * 2000-11-15 2002-12-12 Forschungszentrum Juelich Gmbh Material for temperature-stressed substrates
US10179377B2 (en) 2013-03-15 2019-01-15 United Technologies Corporation Process for manufacturing a gamma titanium aluminide turbine component
CN113981273B (en) * 2021-11-04 2022-05-27 四川大学 Multi-orientation lamellar structure TiAl alloy with initial solidification phase as alpha phase and preparation method and application thereof
CN114000076B (en) * 2021-11-04 2022-05-27 四川大学 Multi-orientation lamellar structure TiAl alloy with beta-phase as initial solidification phase and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2960068B2 (en) * 1988-10-05 1999-10-06 大同特殊鋼株式会社 TiAl-Ti (3) Al-based composite material
JPH02250931A (en) * 1989-03-23 1990-10-08 Nkk Corp Intermetallic compound ti-al base alloy refined material having excellent fracture toughness
JP2687641B2 (en) * 1989-12-27 1997-12-08 三菱マテリアル株式会社 High toughness TiA (1) Method for producing intermetallic compound-based Ti alloy material
JPH0463237A (en) * 1990-06-29 1992-02-28 Honda Motor Co Ltd High ductility ti-al intermetallic compound
JPH04124236A (en) * 1990-09-14 1992-04-24 Sumitomo Light Metal Ind Ltd Ti-al intermetallic compound excellent in oxidation resistance
JPH04218649A (en) * 1990-12-17 1992-08-10 Kobe Steel Ltd Manufacture of ti-al intermetallic compound type alloy
US5370839A (en) * 1991-07-05 1994-12-06 Nippon Steel Corporation Tial-based intermetallic compound alloys having superplasticity
JP2813516B2 (en) * 1992-11-13 1998-10-22 三菱重工業株式会社 TiAl-based intermetallic compound and its production method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9323582A1 *

Also Published As

Publication number Publication date
EP0640150B1 (en) 2000-03-15
US5540792A (en) 1996-07-30
DE59309979D1 (en) 2000-04-20
DE4215017C2 (en) 2000-01-13
ATE190672T1 (en) 2000-04-15
DE4215017A1 (en) 1993-11-18
WO1993023582A1 (en) 1993-11-25

Similar Documents

Publication Publication Date Title
DE69805148T2 (en) Titanium-based intermetallic alloys of the Ti2AlNb type with high yield strength and good creep resistance
EP0786017B1 (en) Protective layer for protecting parts against corrosion, oxidation and excessive thermal stresses, as well as process for producing the same
DE3621671C2 (en)
DE1964992C3 (en) Process for increasing the ductility and creep rupture strength of a wrought nickel alloy and application of the process
DE2655617C2 (en) Wrought cobalt-based alloy and process for producing a sheet from this alloy
EP2145967B1 (en) Titanium aluminide alloys
DE2717060A1 (en) THERMOMECHANICAL PROCESS FOR IMPROVING THE FUSION STRENGTH OF TITANIUM ALLOYS
DE69325804T2 (en) HIGH-STRENGTH AL-LI ALLOY WITH LOW DENSITY AND HIGH TENSITY AT HIGH TEMPERATURES
DE3535548A1 (en) METAL PROTECTIVE COATING
EP3530763B1 (en) Method forproducing a blade of a turbomachine from a graded tial alloy, and correspondingly produced component
DE69223470T2 (en) Process for the production of amorphous, metallic materials
DE2953182A1 (en) Aluminum alloy
DE69216477T2 (en) Oxidation-resistant coatings made of chromium and tantalum-modified titanium-aluminum alloys of the gamma type
DE3921626C2 (en) High strength component with low fatigue crack propagation speed
DE3504031A1 (en) Coated sleeve for nuclear fuel and manufacturing process therefor
DE4016340C1 (en) Process for the treatment of chrome and niobium-modified titanium-aluminum alloys
DE2442532A1 (en) METHOD OF HEAT-TREATING A NICKEL-CHROME-COBALT CAST ALLOY
WO2013020548A1 (en) Forged tial components, and method for producing same
DE2500084C3 (en) Process for the production of aluminum semi-finished products
EP2851445A1 (en) Creep-resistant TiAl alloy
DE19756354A1 (en) Turbine blade and method for its manufacture
WO1999015708A1 (en) Aluminium based alloy and method for subjecting it to heat treatment
EP3269838A1 (en) High temperature resistant tial alloy and method for production thereof, and component from a corresponding tial alloy
DE3742944C1 (en) Oxidation protection layer
WO1993023582A1 (en) Components based on intermetallic phases of the system titanium-aluminium and process for producing such components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB LI

17Q First examination report despatched

Effective date: 19960307

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI

REF Corresponds to:

Ref document number: 190672

Country of ref document: AT

Date of ref document: 20000415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59309979

Country of ref document: DE

Date of ref document: 20000420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000426

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000428

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000517

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000523

Year of fee payment: 8

Ref country code: BE

Payment date: 20000523

Year of fee payment: 8

Ref country code: AT

Payment date: 20000523

Year of fee payment: 8

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000531

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010511

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010610

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010610

BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM JULICH G.M.B.H.

Effective date: 20010531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301