[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0536185B1 - Procede de rechauffage d'un bain d'acier liquide - Google Patents

Procede de rechauffage d'un bain d'acier liquide Download PDF

Info

Publication number
EP0536185B1
EP0536185B1 EP91910980A EP91910980A EP0536185B1 EP 0536185 B1 EP0536185 B1 EP 0536185B1 EP 91910980 A EP91910980 A EP 91910980A EP 91910980 A EP91910980 A EP 91910980A EP 0536185 B1 EP0536185 B1 EP 0536185B1
Authority
EP
European Patent Office
Prior art keywords
injection
bath
oxidizing gas
gas
fact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91910980A
Other languages
German (de)
English (en)
Other versions
EP0536185A1 (fr
Inventor
Jacques Defays
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal Liege Upstream SA
Original Assignee
Cockerill Sambre SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cockerill Sambre SA filed Critical Cockerill Sambre SA
Priority to AT9191910980T priority Critical patent/ATE105025T1/de
Publication of EP0536185A1 publication Critical patent/EP0536185A1/fr
Application granted granted Critical
Publication of EP0536185B1 publication Critical patent/EP0536185B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/005Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using exothermic reaction compositions

Definitions

  • the present invention relates to a method for heating a bath of liquid steel contained in a metallurgical vessel.
  • Such a bath can be heated with a flame, or electrically.
  • a single consumable lance injects, under the liquid steel, oxidizing agents, in particular gaseous oxygen, and an inert gas, which are introduced, separately or as a mixture, at a depth of 15 to 40% of the bath, by a plurality of parallel channels.
  • oxidizing agents in particular gaseous oxygen, and an inert gas, which are introduced, separately or as a mixture, at a depth of 15 to 40% of the bath, by a plurality of parallel channels.
  • Aluminum is also introduced into the bath as close as possible to the oxygen injection point.
  • Also known from document EP-A-0352254 is a device for reheating a bath of liquid steel during filling from the top of a metallurgical container. This bath is covered with a slag rich in iron oxide. During the filling of the bag, a metal or an alloy capable of reacting with slag iron oxide and the bath oxides is injected through its bottom, on the one hand, and an inert gas on the other hand. In addition, the reheating is completed by the presence of a burner at the level of the pocket cover.
  • Such a device does not provide for the direct injection of oxidizing gas into the steel bath and is not intended to be used to heat the steel contained in an already filled pocket.
  • Document JP-A-5989708 describes a process by which a current is induced in a bath of liquid steel. An oxygen lance is introduced into the bath, and a stirring gas is injected into the bottom of the container by a porous brick located just in front of the oxygen lance. We observe uncontrollable turbulence in the steel, an imperfect distribution of the fuel and therefore a relatively low efficiency.
  • Patent CH-A-486935 discloses a pocket containing liquid steel above the surface of which is placed a bell surrounding a lance non-consumable which projects gaseous oxygen therein in a determined quantity.
  • a metallic fuel is introduced simultaneously, also in a determined quantity, and the exothermic reaction takes place above the bath.
  • an inert gas is injected by another lance, introduced obliquely to a depth of about 50% of the steel bath, and causes movements therein.
  • a device as described above has a low thermal efficiency and even if it avoids the problems of lance wear, it requires a lot of maintenance, does not ensure a perfect distribution of the temperature in the the entire bath of liquid steel and requires perfect mastery of a complex and expensive technology and process.
  • the object of the present invention is to provide a perfectly controlled metallothermic process for efficiently heating a bath of liquid steel already contained in a pocket.
  • Another object of the invention is to provide a process in which the yield relating to the consumption of oxygen and of combustible metal is constant and better than in the processes known from the prior art.
  • a further object of the invention is to provide a method making it possible to obtain a very homogeneous distribution of the metallic fuel and thereby of the temperature in the bath of liquid steel, and this in a satisfactory period of time, and using simple and economical means.
  • Another object of the invention is to provide a method by which good cleanliness of the liquid steel bath can be easily obtained.
  • a final object of the invention is to provide a process by which there is practically no release of fumes above the bath and which does not add pollution to the environment.
  • the subject of the invention is a method for metallothermic heating of a bath of liquid steel contained in a metallurgical container, into which a metallic fuel is introduced and under the surface of which an oxidizing gas and a stirring gas are injected into which creates in the bath a current resulting from the injection of a stirring gas, by a means distinct from the means for injecting the oxidizing gas, and in which the metallic fuel is introduced into the current, so that it is brought into contact with the oxidizing gas, this process being characterized in that the axes of injection of the oxidizing gas and of the stirring gas are offset with respect to each other, and in that the injection of the gas stirring generates an ascending current in the liquid steel, this current becoming descending at the place of injection of the oxidizing gas.
  • a controllable current is created in the bath resulting from the injection of a stirring gas, by a means distinct from the means for injecting the oxidizing gas, and the metallic fuel is introduced into this current, so that it is brought into contact with the oxidizing gas.
  • the axes of injection of the stirring gas and the oxidizing gas offset from one another may for example be parallel to each other. They are also in this case perpendicular to the surface of the steel bath.
  • This procedure in fact makes it possible to distribute the fuel more regularly, to improve the settling of the products of the reaction and to standardize the temperature of the liquid steel bath, by promoting the exothermic reaction throughout the bath.
  • the streams of liquid steel thus generated entail impurities constituted in particular by the reaction products which can cause inclusions towards the upper part of the bath, more particularly the slag.
  • the relative positions of the axes of injection of the stirring gas and of the oxidizing gas and that of the metallic fuel can be defined as follows: the injection of the stirring gas generates a theoretical cone metal suction pipe, the top of which is at the injection site. Its generator extends the injection axis; its taper is a function of the gas flow rate, and the height of liquid steel in the metallurgical vessel. This cone has a base defining on the liquid steel surface a theoretical circle, the dimensions of which can be calculated.
  • the oxidizing gas reacts with the fuel in a substantially spherical area.
  • a corresponding second theoretical circle can be defined on the surface of the steel bath, the center of which is the axis of injection of oxidizing gas, and the dimensions of which can be calculated.
  • the two theoretical circles generated respectively by the injection of the stirring gas and by the injection of the oxidizing gas partially overlap by defining between them an intersection zone, into which the metallic fuel, preferably aluminum under wire form.
  • the metallic fuel is preferably introduced into the intersection zone, at a point of intersection between the circumferences of the two theoretical circles.
  • the means for injecting oxidizing gas is preferably a consumable lance which can be plunged to a lesser depth compared to the state of the art. Particularly advantageous results are obtained if the depth of the lance is maintained between 0 and 15% of the height of the bath of liquid steel contained in the metallurgical vessel, preferably between 3 and 30 cm.
  • the oxidizing gas is generally oxygen and the stirring gas is preferably a neutral gas, generally argon.
  • the stirring gas is injected at a depth greater than 60% of the height of the bath, and preferably as close as possible to the bottom of the pocket.
  • a porous element placed in the bottom coating of the metallurgical container.
  • a second lance immersed at great depth preferably greater than 60% of the height of the bath.
  • Figures 1 and 2 show a metallurgical container such as for example a ladle 1, coated with a refractory material 3 and having, at its lower part, a tap hole 5 provided with equipment 7 for opening and closing said hole.
  • a stirring gas in this case argon, is injected by a porous element 9 placed in the bottom of the ladle 1.
  • the injection axis 91 constitutes the axis of a suction cone of metal 92.
  • the argon rises to the surface of the bath 11 and then escapes freely into the atmosphere.
  • the base of the cone 92 is located at the level of the surface of the bath. It has the shape of a circle 93 and is represented by a solid line in FIG. 2.
  • An aluminum wire 13 serving as metallic fuel is introduced into the bath 11.
  • This fuel reacts with oxygen which is then injected into the bath.
  • the reaction is highly exothermic and will advantageously be used to heat the bath efficiently and quickly and by obtaining an excellent distribution of the temperature, thanks to the relative arrangement of the various elements.
  • the oxygen is injected by a consumable lance 15, made of refractory material, which plunges into the bath of liquid steel 11 over a depth which can range from 0 to 15% of the height of the bath, considered under the slag zone 12 present at the surface.
  • Maintaining the immersion depth of the lance 15 is advantageously controlled by means known per se, and adapted as a function of the average wear speed of the lance.
  • a theoretical axis of injection of the oxidizing gas 151 can be defined in the liquid steel bath, this axis being located in the extension of the consumable lance 15.
  • the stirring gas drives the aluminum in the downward movement which it imposes on the liquid steel near the surface of the bath 11, and brings it near the end of the lance. 15 injection of the oxidizing gas. It reacts exothermically with the latter.
  • the reaction takes place in a substantially spherical zone 152 whose dimensions depend on the flow rate of the oxidizing gas, on its purity and on the local content of combustible metal.
  • FIG. 1 shows a reaction zone 152 which has a substantially ellipsoidal shape.
  • the ellipsoidal character is more or less marked depending on the importance of the flow rate of the oxidizing gas.
  • the fuel and the oxidizing gas are introduced with a slight time difference, which is taken into account in the calculation.
  • a second theoretical circle 153 whose center corresponds to the axis of injection of the oxidizing gas and whose diameter is that of the sphere.
  • Such a circle is shown in dotted lines in fig. 2. It can also be defined in the case of an ellipsoidal reaction zone.
  • the diameter of the circle 93 defined by the base of the cone generated by the stirring gas can be determined with precision. Studies give a value of about 10 ° for the half angle at the top of the cone 92.
  • the circles 93 and 153 define between them an intersection zone 915 into which the aluminum wire 13 is introduced; preferably at one of the points of intersection between the two circumferences. This arrangement makes it possible to obtain a maximum yield and an excellent distribution of the temperature in the bath.
  • Fig.3 illustrates the course of a heating operation of a bath of liquid steel according to the method of the invention.
  • the graph shows the evolution over time of the flows of the mixing gas, in this case argon (Ar), of the fuel in this case of aluminum (Al) and of the oxidizing gas, in this case oxygen (O2).
  • the injection of the stirring gas is started, then the metal fuel wire is introduced and finally the oxygen injection is started.
  • the downdraft induced by the stirring gas perpetually brings new quantities of aluminum-charged liquid steel near the injection point of the oxidizing gas, which reacts with oxygen.
  • a rotating movement is generated in the bath and in particular allows the migration of impurities towards the slag.
  • the injections are continued until the desired temperature is obtained. Once this temperature has been reached, the oxygen lance is removed while maintaining a slight flow rate until this lance is removed from the bath, thus avoiding blockage of the insufflation duct.
  • the mixing with neutral gas is also maintained for a certain time so as to favor removal of impurities resulting from the reaction as well as debris due to erosion of the lance.
  • an additional lance for injecting stirring gas can be provided instead of or in addition to the porous element 15.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Gas Burners (AREA)

Abstract

L'invention a pour objet un procédé pour le réchauffage par métallothermie d'un bain d'acier liquide contenu dans un récipient métallurgique, dans lequel on introduit un combustible métallique et sous la surface duquel on injecte un gaz oxydant et un gaz de brassage. Selon l'invention, on créé dans le bain un courant contrôlable résultant de l'injection d'un gaz de brassage, par un moyen distinct du moyen d'injection du gaz oxydant, et on introduit le combustible métallique dans ce courant, de manière qu'il soit amené en contact avec le gaz oxydant.

Description

    Objet de l'invention
  • La présente invention est relative à un procédé pour réchauffer un bain d'acier liquide contenu dans un récipient métallurgique.
  • Arrière-plan technologique
  • En cas de discontinuité accidentelle dans le déroulement du processus métallurgique, entre l'élaboration de l'acier au convertisseur et l'opération de solidification, le bain d'acier liquide contenu dans un récipient métallurgique se refroidit et il est classique de devoir le réchauffer pour permettre la poursuite ultérieure normale du processus.
  • Un tel bain peut être réchauffé à la flamme, ou électriquement.
  • On connaît encore divers procédés faisant appel à la métallothermie, selon lesquels un combustible métallique, par exemple de l'aluminium, est introduit dans le bain d'acier liquide et mis en contact avec un agent oxydant, par exemple de l'oxygène gazeux. La réaction entre le métal combustible et l'oxydant est exothermique, et la chaleur obtenue est utilisée pour le réchauffage du bain.
  • Etat de la technique
  • On connaît, par le brevet-US-A-4 761 178 et son équivalent, la demande WO 89/01984, un récipient contenant un bain d'acier liquide qu'on réchauffe en utilisant un procédé d'aluminothermie, et en injectant un gaz de brassage.
  • Une lance consommable unique injecte, sous l'acier liquide, des agents oxydants, notamment de l'oxygène gazeux, et un gaz inerte, qui sont introduits, séparément ou en mélange, à une profondeur de 15 à 40 % du bain, par une pluralité de canaux parallèles. De l'aluminium est par ailleurs introduit dans le bain aussi près que possible du point d'injection d'oxygène.
  • On a constaté que l'introduction d'une telle lance à cette profondeur en causait une usure importante. De plus, le réchauffement de la partie inférieure du bain n'est pas particulièrement efficace, car les mouvements y sont peu importants, et l'acier liquide n'est homogène ni en température ni en propreté inclusionnaire.
  • On connaît encore, par le document EP-A-0352254, un dispositif pour le réchauffage d'un bain d'acier liquide lors du remplissage par le haut d'un récipient métallurgique. Ce bain est recouvert d'un laitier riche en oxyde de fer. Pendant le remplissage de la poche, on injecte par son fond d'une part un métal ou un alliage susceptible de réagir avec l'oxyde de fer du laitier et les oxydes du bain, et d'autre part un gaz inerte.
    En outre, le réchauffage est complété par la présence d'un brûleur au niveau du couvercle de la poche.
  • Un tel dispositif ne prévoit par l'injection directe de gaz oxydant dans le bain d'acier et n'est pas destiné à être utilisé pour réchauffer l'acier contenu dans une poche déjà remplie.
  • Le document JP-A-5989708 décrit un procédé selon lequel on induit un courant dans un bain d'acier liquide. Une lance à oxygène est introduite dans le bain, et un gaz de brassage est injecté dans le fond du récipient par une brique poreuse située juste en face de la lance à oxygène. On observe des turbulences incontrôlables dans l'acier, une répartition imparfaite du combustible et donc un rendement relativement faible.
  • On connaît par le brevet CH-A-486935 une poche contenant de l'acier liquide au-dessus de la surface duquel est placée une cloche entourant une lance non consommable qui y projette de l'oxygène gazeux en une quantité déterminée. Un combustible métallique est introduit simultanément, également en une quantité déterminée, et la réaction exothermique a lieu au-dessus du bain. Par ailleurs, un gaz inerte est injecté par une autre lance, introduite en oblique à une profondeur d'environ 50 % du bain d'acier, et provoque des mouvements dans celui-ci.
  • L'addition simultanée d'oxygène et de métal au-dessus de la surface du bain requiert l'utilisation d'un dispositif tel qu'une cloche pour récupérer les fumées produites et éviter les pertes de chaleur. Un dispositif tel que décrit ci-dessus présente un faible rendement thermique et même s'il permet d'éviter les problèmes d'usure de lance, il demande beaucoup d'entretien, n'assure pas une parfaite répartition de la température dans l'ensemble du bain d'acier liquide et exige la maîtrise parfaite d'une technologie et d'un procédé complexe et onéreux.
  • Buts de l'invention
  • La présente invention a pour but de fournir un procédé métallothermique parfaitement contrôlé pour réchauffer efficacement un bain d'acier liquide déjà contenu dans une poche.
  • Elle a également pour but de fournir un procédé particulièrement économique qui permet d'utiliser à cette fin une lance consommable placée à l'intérieur d'un bain liquide, tout en réduisant considérablement l'usure et les risques de défaillances.
  • Un autre but de l'invention est de fournir un procédé dans lequel le rendement relatif à la consommation en oxygène et en métal combustible est constant et meilleur que dans les procédés connus de l'état de la technique.
  • Un but supplémentaire de l'invention est de fournir un procédé permettant d'obtenir une répartition fort homogène du combustible métallique et par là de la température dans le bain d'acier liquide, et ce en un laps de temps satisfaisant, et en utilisant des moyens simples et économiques.
  • L'invention a encore pour but de fournir un procédé grâce auquel une bonne propreté du bain d'acier liquide peut être obtenue facilement.
  • Un dernier but de l'invention est de fournir un procédé grâce auquel il n'y a pratiquement pas de dégagement de fumées au-dessus du bain et qui n'ajoute pas de pollution à l'environnement.
  • Eléments essentiels de l'invention
  • L'invention a pour objet un procédé pour le réchauffage par métallothermie d'un bain d'acier liquide contenu dans un récipient métallurgique, dans lequel on introduit un combustible métallique et sous la surface duquel on injecte un gaz oxydant et un gaz de brassage dans lequel on crée dans le bain un courant résultant de l'injection d'un gaz de brassage, par un moyen distinct du moyen d'injection du gaz oxydant, et dans lequel on introduit le combustible métallique dans le courant, de manière qu'il soit amené en contact avec le gaz oxydant, ce procédé étant caractérisé en ce que les axes d'injection du gaz oxydant et du gaz de brassage sont décalés l'un par rapport à l'autre, et en ce que l'injection du gaz de brassage génère un courant ascendant dans l'acier liquide, ce courant devenant descendant à l'endroit d'injection du gaz oxydant.
  • Selon l'invention, on crée dans le bain un courant contrôlable résultant de l'injection d'un gaz de brassage, par un moyen distinct du moyen d'injection du gaz oxydant, et on introduit le combustible métallique dans ce courant, de manière qu'il soit amené en contact avec le gaz oxydant.
  • Les axes d'injection du gaz de brassage et du gaz oxydant décalés l'un par rapport à l'autre, peuvent par exemple être parallèles entre eux. Ils sont également dans ce cas perpendiculaires à la surface du bain d'acier.
  • On a constaté qu'on améliorait de la sorte le rendement de la réaction d'oxydation exothermique pour des quantités de gaz oxydant et de combustible données et qu'on obtenait une excellente répartition de la température dans le bain.
  • Cette façon de procéder permet en effet de distribuer plus régulièrement le combustible, d'améliorer la décantation des produits de la réaction et d'uniformiser la température du bain d'acier liquide, en favorisant la réaction exothermique dans l'ensemble du bain.
  • De plus, les courants d'acier liquide ainsi générés entraînent des impuretés constituées notamment par les produits de réaction qui peuvent amener des inclusions, vers la partie supérieure du bain, plus particulièrement la scorie.
  • Suivant une forme d'exécution préférée de l'invention, les positions relatives des axes d'injection du gaz de brassage et du gaz oxydant et celle du combustible métallique peuvent être définies comme suit: l'injection du gaz de brassage engendre un cône théorique d'aspiration de métal, dont le sommet se trouve à l'endroit où a lieu l'injection. Sa génératrice prolonge l'axe d'injection; sa conicité est fonction du débit du gaz, et de la hauteur d'acier liquide dans le récipient métallurgique. Ce cône à une base définissant sur la surface d'acier liquide un cercle théorique, dont les dimensions peuvent être calculées.
  • Le gaz oxydant réagit avec le combustible dans une zone en substance sphérique. On peut définir sur la surface du bain d'acier un second cercle théorique correspondant dont l'axe d'injection de gaz oxydant constitue le centre, et dont les dimensions peuvent être calculées.
  • Les deux cercles théoriques engendrés respectivement par l'injection du gaz de brassage et par l'injection du gaz oxydant se recouvrent partiellement en définissant entre eux une zone d'intersection, dans laquelle on introduit le combustible métallique, de préférence de l'aluminium sous forme de fil.
  • Le combustible métallique est de préférence introduit dans la zone d'intersection, à un point d'intersection entre les circonférences des deux cercles théoriques.
  • Le moyen d'injection de gaz oxydant est de préférence une lance consommable qui peut-être plongée à une profondeur moindre par rapport à l'état de la technique. Des résultats particulièrement avantageux sont obtenus si l'on maintient la profondeur de la lance entre 0 et 15 % de la hauteur du bain d'acier liquide contenu dans le récipient métallurgique, de préférence entre 3 et 30 cm.
  • L'usure de cette lance est nettement diminuée par rapport à l'état de la technique et on n'observe pas de remous susceptible d'y provoquer des dégâts.
  • Le gaz oxydant est généralement de l'oxygène et le gaz de brassage est de préférence un gaz neutre, généralement de l'argon.
  • Avantageusement, le gaz de brassage est injecté à une profondeur supérieure à 60 % de la hauteur du bain, et de préférence le plus près possible du fond de la poche.
  • Dans un dispositif convenant pour la mise en oeuvre du procédé de l'invention, il est injecté par un élément poreux disposé dans le revêtement de fond du récipient métallurgique. Pour assurer cette fonction, on peut toutefois également prévoir soit en remplacement, soit en supplément, une seconde lance immergée à grande profondeur, de préférence supérieure à 60 % de la hauteur du bain.
  • Pour la mise en route du processus de réchauffage de l'acier, de préférence on démarre successivement :
    • l'injection du gaz de brassage,
    • l'introduction du combustible métallique dans le courant engendré,
    • l'injection du gaz oxydant qui réagit avec le combustible métallique.
    Brève description des figures
    • La figure 1 est une vue en élévation d'une coupe schématique d'une poche de coulée,
    • la figure 2 est une vue schématique en plan de celle-ci, et
    • la figure 3 est un schéma représentant le déroulement d'une opération de réchauffage suivant le procédé de l'invention.
    Description d'une forme d'exécution préférée
  • Les figures 1 et 2 représentent un récipient métallurgique tel que par exemple une poche de coulée 1, revêtue d'un matériau réfractaire 3 et présentant, à sa partie inférieure, un trou de coulée 5 muni d'un équipement 7 d'ouverture et de fermeture dudit trou.
  • Un gaz de brassage, en l'occurrence de l'argon, est injecté par un élément poreux 9 placé dans le fond de la poche de coulée 1. L'axe d'injection 91 constitue l'axe d'un cône d'aspiration de métal 92. L'argon monte vers la surface du bain 11 et s'évacue ensuite librement dans l'atmosphère. La base du cône 92 est située au niveau de la surface du bain. Elle a la forme d'un cercle 93 et est représentée par un trait continu à la figure 2.
  • Un fil d'aluminium 13 servant de combustible métallique est introduit dans le bain 11.
  • Ce combustible réagit avec l'oxygène qui est ensuite injecté dans le bain. La réaction est fortement exothermique et sera avantageusement utilisée pour réchauffer le bain efficacement et rapidement et en obtenant une excellente répartition de la température et ce grâce à la disposition relative des différents éléments.
  • L'oxygène est injecté par une lance consommable 15, en matériau réfractaire, qui plonge dans le bain d'acier liquide 11 sur une profondeur pouvant aller de 0 à 15 % de la hauteur du bain, considéré sous la zone de scorie 12 présente à la surface.
  • Le maintien de la profondeur d'immersion de la lance 15 est avantageusement contrôlé par des moyens connus en soi, et adapté en fonction de la vitesse d'usure moyenne de la lance.
  • On peut définir un axe théorique d'injection du gaz oxydant 151 dans le bain d'acier liquide, cet axe se situant dans le prolongement de la lance consommable 15.
  • Comme on le voit à la figure 1, le gaz de brassage entraîne l'aluminium dans le mouvement descendant qu'il impose à l'acier liquide près de la surface du bain 11, et l'amène près de l'extrémité de la lance 15 d'injection du gaz oxydant. Il réagit exothermiquement avec ce dernier.
  • La réaction a lieu dans une zone en substance sphérique 152 dont les dimensions dépendent du débit du gaz oxydant, de sa pureté et de la teneur locale en métal combustible.
  • On peut donc, lorsque les débits d'introduction du combustible et du gaz oxydant sont sensiblement constants et dans le rapport de combustion, calculer le diamètre d'une sphère à la périphérie de laquelle tout l'oxygène a réagi. Sur la figure 1, on a représenté une zone de réaction 152 qui présente une forme en substance ellipsoïdale. Le caractère ellipsoïdal est plus ou moins marqué en fonction de l'importance du débit du gaz oxydant.
  • Comme on le verra plus en détail ci-dessous, on introduit le combustible et le gaz oxydant avec un léger décalage temporel, dont on tient compte dans le calcul.
  • On peut par ailleurs représenter, sur la surface du bain, un second cercle théorique 153 dont le centre correspond à l'axe d'injection du gaz oxydant et dont le diamètre est celui de la sphère. Un tel cercle est représenté en pointillé à la fig.2. Il peut également être défini dans le cas d'une zone de réaction ellipsoïdale.
  • Le diamètre du cercle 93 défini par la base du cône engendré par le gaz de brassage peut être déterminé avec précision. Des études donnent une valeur d'environ 10° pour le demi- angle au sommet du cône 92.
  • En fonction de cette donnée, du débit du gaz et de la valeur moyenne de la hauteur du bain 11 dans la poche, on obtient une excellente approximation des dimensions du cercle 93.
  • Comme on le voit bien à la fig.2, les cercles 93 et 153 définissent entre eux une zone d'intersection 915 dans laquelle on introduit le fil d'aluminium 13; de préférence à un des points d'intersection entre les deux circonférences. Cette disposition permet d'obtenir un rendement maximum et une excellente répartition de la température dans le bain.
  • La fig.3 illustre le déroulement d'une opération de réchauffage d'un bain d'acier liquide selon le procédé de l'invention.
  • Le graphique montre l'évolution dans le temps des débits du gaz de brassage, en l'occurrence de l'argon (Ar), du combustible en l'occurrence de l'aluminium (Al) et du gaz oxydant, en l'occurrence de l'oxygène (O₂).
  • Pour la mise en route du réchauffage du bain fondu, on démarre l'injection du gaz de brassage, puis on introduit le fil de combustible métallique et enfin on démarre l'injection d'oxygène.
  • Le courant descendant induit par le gaz de brassage amène perpétuellement près du point d'injection du gaz oxydant de nouvelles quantités d'acier liquide chargé d'aluminium, qui entre en réaction avec l'oxygène. Un mouvement tournant est engendré dans le bain et permet notamment la migration des impuretés vers la scorie.
  • Bien entendu, le brassage continue ensuite dans le fond de la poche et l'acier liquide ainsi réchauffé se répartit dans les zones moyenne et haute, ce qui permet d'obtenir en fin d'opération une parfaite répartition de la chaleur dans tout le bain.
  • Les injections sont poursuivies jusqu'à l'obtention de la température voulue. Une fois cette température atteinte, on retire la lance à oxygène tout en maintenant un léger débit jusqu'à ce que cette lance soit sortie du bain, évitant ainsi le bouchage de conduit d'insufflation. Le brassage par le gaz neutre est également maintenu pendant un certain temps de manière à favoriser l'élimination des impuretés résultant de la réaction ainsi que les débris dus à l'érosion de la lance.
  • Il est bien entendu que l'invention n'est pas limitée aux formes d'exécution décrites mais qu'elle s'étend au cadre défini par les revendications.
  • Ainsi par exemple, selon une autre variante, on peut prévoir une lance supplémentaire d'injection de gaz de brassage au lieu de ou en plus de l'élément poreux 15.
  • On peut encore utiliser d'autres gaz oxydants que l'oxygène pur, d'autres gaz de brassage que l'argon et d'autres combustibles métalliques que l'aluminium.

Claims (8)

  1. Procédé pour le réchauffage par métallothermie d'un bain d'acier liquide (11) contenu dans un récipient métallurgique (1), dans lequel on introduit un combustible métallique et sous la surface duquel on injecte un gaz oxydant et un gaz de brassage, dans lequel on crée dans le bain (11) un courant résultant de l'injection d'un gaz de brassage, par un moyen (9) distinct du moyen d'injection (15) du gaz oxydant, et dans lequel on introduit le combustible métallique (13) dans le courant, de manière qu'il soit amené en contact avec le gaz oxydant, caractérisé en ce que les axes d'injection du gaz oxydant et du gaz de brassage sont décalés l'un par rapport à l'autre, et en ce que l'injection du gaz de brassage génère un courant ascendant dans l'acier liquide, ce courant devenant descendant à l'endroit d'injection du gaz oxydant.
  2. Procédé suivant la revendication 1, caractérisé en ce qu'on choisit comme moyen d'injection de gaz oxydant une lance consommable (15) qu'on maintient à une profondeur de 0 à 15% de la hauteur du bain d'acier liquide contenu dans le récipient métallurgique, de préférence à une profondeur comprise entre 3 et 30 cm.
  3. Procédé suivant l'une quelconque des revendications 1 et 2, caractérisé en ce que le gaz de brassage est injecté à une profondeur supérieure à 60% de la hauteur du bain
  4. Procédé suivant la revendication 1, caractérisé en ce que les axes d'injection du gaz de brassage (91), et du gaz oxydant (151) sont parallèles entre eux.
  5. Procédé suivant la revendication 4, caractérisé en ce que les axes (91, 151) sont perpendiculaires à la surface du bain (11).
  6. Procédé suivant l'une quelconque des revendications 1 à 5, caractérisé en ce que l'injection du gaz de brassage engendre un cône théorique (92) d'aspiration de métal, dont le sommet se trouve à l'endroit où a lieu l'injection, dont la génératrice prolonge l'axe d'injection (91) et dont la base définit sur la surface du bain (11) un cercle (93), en ce que le gaz oxydant réagit avec le combustible (13) dans une zone en substance sphérique (152) dont la projection sur la surface du bain (11) définit un cercle (153), et en ce que les deux cercles (93, 153) se recouvrent partiellement en définissant une zone d'intersection (915) dans laquelle on introduit le combustible (13).
  7. Procédé suivant la revendication 6, caractérisé en ce que le combustible métallique (13), de préférence de l'aluminium sous forme de fil, est introduit dans la zone d'intersection (915), à un point d'intersection entre les circonférences des deux cercles (93, 153).
  8. Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'on démarre successivement les étapes suivantes:
    - l'injection du gaz de brassage,
    - l'introduction du combustible métallique dans le courant engendré,
    - l'injection du gaz oxydant qui réagit avec le combustible métallique.
EP91910980A 1990-06-29 1991-06-28 Procede de rechauffage d'un bain d'acier liquide Expired - Lifetime EP0536185B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT9191910980T ATE105025T1 (de) 1990-06-29 1991-06-28 Verfahren zum wiederaufheizen eines stahlbades.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BE9000673 1990-06-29
BE9000673A BE1004483A3 (fr) 1990-06-29 1990-06-29 Procede de rechauffage d'un bain d'acier liquide.
PCT/BE1991/000044 WO1992000391A1 (fr) 1990-06-29 1991-06-28 Procede de rechauffage d'un bain d'acier liquide et dispositif pour la mise en ×uvre de ce procede

Publications (2)

Publication Number Publication Date
EP0536185A1 EP0536185A1 (fr) 1993-04-14
EP0536185B1 true EP0536185B1 (fr) 1994-04-27

Family

ID=3884855

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91910980A Expired - Lifetime EP0536185B1 (fr) 1990-06-29 1991-06-28 Procede de rechauffage d'un bain d'acier liquide

Country Status (9)

Country Link
US (1) US5316566A (fr)
EP (1) EP0536185B1 (fr)
JP (1) JP2889901B2 (fr)
AU (1) AU7994191A (fr)
BE (1) BE1004483A3 (fr)
DE (1) DE69101839T2 (fr)
ES (1) ES2051594T3 (fr)
PL (1) PL169724B1 (fr)
WO (1) WO1992000391A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603749A (en) * 1995-03-07 1997-02-18 Bethlehem Steel Corporation Apparatus and method for vacuum treating molten steel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH486935A (de) * 1966-09-02 1970-03-15 Feichtinger Heinrich Ing Dr Verfahren und Einrichtung zum Aufheizen von Schmelzen durch exotherme Reaktionen
SE449373B (sv) * 1977-07-01 1987-04-27 Dso Cherna Metalurgia Sett och anordning for raffinering av jernbaserade smeltor i elektrisk reaktionsugn
US4187102A (en) * 1978-08-24 1980-02-05 Union Carbide Corporation Method for controlling the temperature of the melt during pneumatic refining of steel
LU84472A1 (fr) * 1982-11-17 1984-06-13 Arbed Procede et installation pour le traitement de l'acier en poche
US4761178A (en) * 1987-08-24 1988-08-02 Bethlehem Steel Corporation Process for heating molten steel contained in a ladle
JP2617948B2 (ja) * 1987-10-12 1997-06-11 新日本製鐵株式会社 溶鋼の取鍋精錬法
IN172394B (fr) * 1988-07-22 1993-07-17 Boest Alpine Stahl Donawitz Ge

Also Published As

Publication number Publication date
ES2051594T3 (es) 1994-06-16
JPH05507966A (ja) 1993-11-11
DE69101839T2 (de) 1994-09-15
US5316566A (en) 1994-05-31
BE1004483A3 (fr) 1992-12-01
EP0536185A1 (fr) 1993-04-14
WO1992000391A1 (fr) 1992-01-09
DE69101839D1 (de) 1994-06-01
AU7994191A (en) 1992-01-23
PL169724B1 (pl) 1996-08-30
JP2889901B2 (ja) 1999-05-10

Similar Documents

Publication Publication Date Title
EP1179602A1 (fr) Procédé d'injection d'un gaz à l'aide d'une tuyère
AU2009236006A1 (en) Refining ferroalloys
LU87602A1 (fr) Procede de formation d'une masse refractaire et lance de projection d'un melange de particules
KR20010007296A (ko) 직접적인 제련 용기
FR2601966A1 (fr) Procede d'exploitation d'un four electrique pour la fabrication de l'acier, incorporant une operation de soufflage de gaz par la sole du four.
EP0081448B1 (fr) Procédé et dispositif pour l'affinage d'un bain de métal contenant des matières refroidissantes solides
EP0110809B1 (fr) Procédé et installation pour le traitement de l'acier en poche
FR2518577A1 (fr) Dispositif pour produire de l'acier, notamment convertisseur a soufflage par le haut
BE1006838A3 (fr) Convertisseur et procede pour la purification de matieres non ferreuses.
LU81971A1 (fr) Utilisation d'argon dans le procede d'affinage d'acier en fusion a l'oxygene basique en vue de controler les projections
EP0536185B1 (fr) Procede de rechauffage d'un bain d'acier liquide
FR2525755A1 (fr) Four electrique a arc muni de moyens de brassage du bain metallique
EP0046721B1 (fr) Buse pour lance d'injection d'oxygène pour la décarburation des fontes et application à la décarburation des fontes au chrome
CA1087859A (fr) Procede d'elaboration d'aciers allies au four a arcs, avec chargement continu
LU82069A1 (fr) Procede d'affinage d'un bain de metal
EP1324846A1 (fr) Procede de preparation de particules de metal ou d'alliage de metal nucleaire.
EP0034108B1 (fr) Procédé d'affinage d'un bain de métal
BE565213A (fr)
EP0031776B1 (fr) Procédé de soufflage mixte pour l'affinage des métaux au convertisseur
BE685875A (fr)
BE560723A (fr)
FR2797738A1 (fr) Procede d'injection d'un gaz supersonique dans un four a arc electrique et four a arc pour la mise en oeuvre de ce procede
FR2691163A1 (fr) Procédé et dispositif d'élimination des fumées produites par oxydation d'un métal en fusion au cours de son déversement dans un récipient métallurgique.
FR2476678A1 (fr) Procede et dispositif d'affinage de la fonte par soufflage d'oxygene
BE571111A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT LU NL SE

17Q First examination report despatched

Effective date: 19930621

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 105025

Country of ref document: AT

Date of ref document: 19940515

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 69101839

Country of ref document: DE

Date of ref document: 19940601

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940505

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2051594

Country of ref document: ES

Kind code of ref document: T3

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 91910980.1

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080606

Year of fee payment: 18

Ref country code: LU

Payment date: 20080528

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080526

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080614

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080617

Year of fee payment: 18

Ref country code: NL

Payment date: 20080626

Year of fee payment: 18

Ref country code: SE

Payment date: 20080526

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080630

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080527

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090628

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20100101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090629