[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0535421B1 - Method and device for manufacturing of component parts - Google Patents

Method and device for manufacturing of component parts Download PDF

Info

Publication number
EP0535421B1
EP0535421B1 EP92115545A EP92115545A EP0535421B1 EP 0535421 B1 EP0535421 B1 EP 0535421B1 EP 92115545 A EP92115545 A EP 92115545A EP 92115545 A EP92115545 A EP 92115545A EP 0535421 B1 EP0535421 B1 EP 0535421B1
Authority
EP
European Patent Office
Prior art keywords
mould
filling
melt
filling chamber
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92115545A
Other languages
German (de)
French (fr)
Other versions
EP0535421A1 (en
Inventor
Friedhelm Prof. Dr.-Ing. Kahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0535421A1 publication Critical patent/EP0535421A1/en
Application granted granted Critical
Publication of EP0535421B1 publication Critical patent/EP0535421B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/12Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with vertical press motion

Definitions

  • the invention relates to a method and a device for producing components, in which liquid or partially liquid material is introduced into a mold cavity formed at least from two mold halves.
  • the causes of defects are mainly the large number of manufacturing parameters, which usually come into effect at the same time in the shortest possible time, often with mutual influence, and thus largely elude both detection and regulation.
  • the manufacturing process essentially consists of only two steps.
  • the first step is the preparation of the shaping tool and the melting of the material batch.
  • the melt is then transported from the separate furnace via distribution systems into the mold cavity, where it should solidify to the desired component under controlled thermal conditions and under sufficiently high supply pressure.
  • the decisive second step leads to largely unsteady conditions, which lead to a wide range of parameters with serious effects on the product properties.
  • the component quality is determined by the additional occurrence of structural porosity, which is caused by the separation of gases dissolved in the melt, e.g. Hydrogen, or the inclusion of gases in the mold cavity during solidification is reduced.
  • the batch of alloy to be processed is melted in a separate premelting furnace and then transferred to the holding furnace on the die casting machine by means of transport pans. From there, the melt quantity required for a cast reaches the mostly horizontal shot chamber with a ladle or other metering device via a freely falling pouring jet, where the melt first forms a pool with a large surface area and cools down rapidly.
  • the shot piston pushes the melt together in the shot chamber in accelerated movement, preferably avoiding splashes and air pockets, until it reaches the gate leading upwards into the mold cavity. From that point onwards the melt is sprayed at high speed into the mold cavity, which it fills in a fraction of a second.
  • melts In vacuum die casting, process variants are known in which the melt is sucked out of the holding furnace into the shot chamber in connection with the evacuation of the mold cavity before the shot.
  • additional melt formation occurs in the intake pipe due to the melt column falling back when the mold is opened, which leads to corresponding inclusions in the cast product.
  • a vacuum application with certain melts (e.g. magnesium alloys) or alloy additives due to a higher vapor pressure can cause problems.
  • the melt is pressed from below into the casting mold from the holding furnace by means of gas pressure via a riser pipe and is held in the mold under a slight excess pressure of maximum 1 bar until the solidification is complete.
  • This process enables a small amount of circulation in the cast production, but requires special measures against oxide formation in the riser pipe and, due to its convection-related long cycle times, proves to be disadvantageous compared to other casting processes.
  • the melt is poured from above with a freely falling pouring jet into an initially open die, the lower one Part of it completely or partially filled out.
  • a stamp moves into the die from above and displaces the melt to completely fill all the shape contours.
  • the solidification takes place under the further pressure of the punch, so that a workpiece with a dense structure can be obtained if sufficient ventilation of the mold cavity has been achieved. This process could not prevail in production technology because it is cumbersome and time-consuming and only supplies simple, thick-walled workpieces.
  • the melt is conveyed from a swiveling casting unit from below into a die.
  • Disadvantages also appear here: the necessary filling of the casting chamber swung out together with the piston and drive via the free-falling pouring jet by means of scoop dosing from a separate holding oven, the additional steps of pivoting back and coupling the casting unit to the mold, and the complex and expensive overall construction.
  • US-A-4 436 140 a device is known which is suitable for carrying out the classic vertical cold chamber die casting method.
  • This device consists of two mold halves, with a gate system being used for the mold filling, which is fed via a filling chamber located laterally below the mold, which has a stamp for expressing the melt.
  • the filling chamber is filled via a funnel-shaped sprue cup with a free falling pouring stream.
  • a second piston is inserted into it, which closes the pouring opening of the pouring cup and serves to maintain a pressure after the mold has been filled.
  • the object of the present invention is to create a novel method and a novel device which enable the production of heavy-duty components, in particular also with large dimensions, complex shapes and multiple functions, in a compact system with tightest coupling and control of the production steps with simultaneous cycle shortening in a particularly efficient manner.
  • the conditions for the processes during melting, mold filling and solidification are to be optimized, so that components with a particularly fine-grained and dense structure with a high degree of uniformity are obtained.
  • the method according to the invention is distinguished by a number of considerable advantages.
  • the charging bodies can be optimally matched to the component weight, so that the material expenditure which is considerable in the conventional working method is avoided. So there is the possibility that the plunger end face can be used as a molded wall part.
  • the filling chamber is formed directly adjacent to the mold cavity, there are minimal transport or conveying paths for the melt, so that the disadvantages known from the prior art are avoided.
  • First of all there are no disadvantageous temperature fluctuations, uncontrollable oxide formation and loss of burn-up.
  • Due to the possibility of suitable Setting mold filling temperatures in the filling chamber with the appropriate heating can also process supercooled or partially solidified material.
  • Due to the large filling cross-sections and short flow paths, a strongly calmed mold filling with a compact melt volume is achieved without spraying and swirling. Since there is no atomization of the melt during mold filling due to the low filling pressure and the possible large cross-sections compared to the die-casting process, lost cores can also be used in a similar way to gravity die casting.
  • the present invention is furthermore suitable for introducing prefabricated solid bodies into the mold cavity which are to be connected to the melt material or to be integrated into the component.
  • the solid bodies can consist, for example, of semi-finished profiles, which are then connected during the filling process by the melt, which then solidifies to form nodes.
  • the possible melting of the profile ends to be connected ensures an optimal bond.
  • prefabricated reinforcements made of high-strength materials can be fixed in a suitable manner in the mold cavity and integrated into a heavy-duty component by the melt after solidification. In a similar way, it is possible to include packing elements remaining in the component for the production of box-shaped structures with high structural strength.
  • metallic coatings or layers, fire-resistant reinforcements of combustion chamber walls are further examples of the various problem-solving options provided by composite materials using the new process and in particular the simultaneous filling of a mold cavity with melts from different materials.
  • the latter also offers particular advantages in the manufacture of components with particular local stress.
  • the distribution of several filling chambers over larger areas allows the production of particularly large shapes for correspondingly larger components or for the production of several parts at the same time.
  • the subdivision of the filling chamber into the melting and pressing chamber enables the use of different materials for these different functional areas, for example ceramics or cermets for the melting chamber and hot-work steel for the pressing chamber.
  • ceramics or cermets for the melting chamber and hot-work steel for the pressing chamber.
  • highly refractory, electrically non-conductive materials for the melting chamber wall when using induction heating advantages.
  • the proposed complete closing of the mold immediately before the build-up of a higher pressure, as proposed at the end of the mold filling, also enables a free extraction for the gases which are present in the mold cavity or in contact of the melt with the mold wall size during the mold filling. These can escape before the melt flowing in compactly, so that the extremely disadvantageous gas inclusions occurring in known, similar processes in the component structure are prevented.
  • the required enlargement of the mold space can be achieved, for example, by an elastic bulge that can be regulated via the mold wall thickness, caused by pressure increase in the filler material, and limited by pressure elements, which then also provide the provision.
  • the pressure elements can also take on a cooling function and implement a solidification control by suitable timing of the activation.
  • the melt located in the narrowing feed channels is moved. This can also be achieved with the help of the pressure elements in cooperation with the plunger by using pulsating pressure at a suitable frequency.
  • the charging bodies with the aid of a feed device and the plunger - in the case of multiple melting chambers also directly - transported into the melting chambers, which had previously been flushed with protective gas together with the press chambers and the mold cavity.
  • the plungers push the melt through the press chambers to fill the mold into the mold cavity. This is initially opened to the outside in the sense of an optimized mold filling without spraying and gas interlacing with sufficiently large ventilation channels or, depending on the particular component geometry, is not yet completely closed at the beginning and during the mold filling.
  • the gases located in the mold cavity or additionally generated by the melt coming into contact with the mold release agent can completely escape upwards before the melt, which essentially flows in compactly from below, or can be suctioned off by applying negative pressure.
  • the mold can only be fully closed during mold filling, for example by lowering a bale part or completely retracting core slides, these measures also improve mold ventilation and further increase the filling speed due to the additional displacement effect with short flow paths . Both increase the mold filling capacity of the melt in a special way, so that the feared cold running risk is eliminated.
  • the mold is then completely closed, which in the case of use of ventilation channels by covering them takes place, for example, with the aid of slides, which can also stop any melt emerging.
  • the plunger and other pressure elements installed in a suitable place in the mold walls, such as, for example, movable mold inserts, ejector pins or mold components a local elastic mold wall deformation to exert pressure, the cooling and solidifying component to compensate for the volume deficit caused by the solidification shrinkage under a corresponding pressing pressure.
  • the melt volume required for the compensation is kept ready at the respective points of contact of the melt with the pressure elements by the enlargement of the mold space set there at the end of the mold filling.
  • the pressure can be from all pressure elements simultaneously, for. B. jerky, exercised and maintained until the component completely solidifies.
  • a pressing pressure pulsating with a suitable frequency can also prove to be particularly advantageous for the sealing supply of the structure in complex-shaped components with larger wall thickness differences and material accumulations.
  • two pressure transmitters can correspond to one another over a suitable distance in such a way that the melt is reversibly displaced during the solidification within a feed channel connecting them, which significantly improves the feed conditions.
  • pressure transmitters can be used in conjunction with mold cooling, for example the swell sequence cooling according to DE-PS 26 46 060, which has been used successfully in the mold casting process, a significant reduction in cycle times being achievable.
  • the mold cavity is formed by an upper mold part 3 and a lower mold part 4.
  • the upper mold part 3 is fastened to a clamping plate 15 and is arranged such that it can be displaced in height by means of a locking device 10 in the form of a toggle lever.
  • the toggle lever is actuated via a hydraulic drive 16 which is attached to the machine frame 9b.
  • the lower mold part 4 is carried by the machine frame 9a and has 3 openings 5 on its underside, via which the liquefied material is pressed into the mold cavity 1.
  • Filling chambers 2 are connected to the openings 5 and penetrate the machine frame 9 and form two regions, namely an upper pressing chamber 23 and a lower melting chamber 24.
  • a feed table 12 for feeding blanks 11 into the filling chambers 2.
  • the blanks 11 are introduced into the melting chamber 24 with the aid of plungers 7, each plunger 2 being assigned a plunger 7.
  • the plungers 7 are arranged on a plunger plate 18 which is displaced via a hydraulic drive 17 which is fastened to the machine frame 9c.
  • the blanks 11 are, as shown in Fig. 1, pushed over the downward moving plunger and inserted into the melting chamber 24 via this. After the blanks have melted, the melt is moved upwards into the press chamber 23 by means of the plunger 7, whereupon the latter can exit into the mold cavity 1. Because of the large cross sections of the openings 5, this insertion can take place without great turbulence and with a relatively low pressure.
  • the upper part of the mold is lifted slightly from the lower part of the mold, so that the air in the mold cavity can escape through the gap between the upper part 3 and the lower part 4.
  • the upper part 3 is sealingly lowered onto the lower part 4, whereupon the melt solidifies with the application of the high pressure, for example by the plunger 7.
  • the melting chamber 24 is advantageously heated via an induction heater 8, with the hollow cylinder consisting of high-strength steel having to pass through both areas in the case of a one-piece design of the filling chamber 2 as a pressing chamber and melting chamber.
  • the blank 11 or the charging bolt is melted in a low-pressure melting furnace 13, with the blanks 11 being a Feed pipe 21 are introduced into the furnace 13.
  • the feed pipe 21 is sealed by means of a seal 26 which is arranged between the blank 11 and the inner wall of the feed pipe 21.
  • a riser pipe 14 which is provided with a level sensor 22, the melt is pressed into the filling chamber 6 via an opening 20.
  • the plunger 7 is moved upward, the opening 20 being closed, so that no further material can flow into the filling chamber 6.
  • the melt material 19 is then pressed through the openings 5 according to FIG. 1 into the mold cavity.
  • the melting and dosing device according to FIG. 2 is also particularly suitable for the production of particularly large components with increased material requirements.
  • the melt can be pressed from the melting furnace 13 through the metering gap 20 and the filling chamber 6 into the mold cavity, in which case the plunger 7 merely ends the mold filling and takes over the make-up - if necessary in conjunction with further pressure elements in the mold wall.
  • these can be supplied with melt via branches or multiple arrangement of the filling tube 14.
  • This embodiment differs from that of FIG. 1 essentially in that the filling chamber 2 is formed in two parts and is divided into a separate press chamber 23 and melting chamber 24.
  • the melting chamber 24 can be displaced relative to the pressing chamber 23, so that the melting process of the blank 11 can take place elsewhere, wherein the individual melting chambers can, for example, also be arranged in a carousel.
  • the inner sleeve of the melting chamber 24 can also be produced from an insulating material which then does not necessarily have to withstand high compressive forces. This sleeve made of insulating material 27 is then surrounded by the induction heater 8.
  • the plunger 7 Since the plunger 7 is inserted into the movable melting chamber from below, either a displaceable base 28 must be inserted into the melting chamber, which prevents the melting material from escaping, or the heating device is arranged so that the lower area of the blank does not melt, so that the blank itself forms the bottom closure.
  • An insulating ring 29 is arranged to hinder the flow of heat from the melting chamber 24 into the plate 9a.
  • the upper mold part 3 is supported by a spring 33 with respect to the platen 15.
  • This spring has the effect that, on the one hand, the upper mold part rests with sufficient pressure on the lower mold part 4 during mold filling, but on the other hand the openings 31 are not yet closed by the slide 32. After the openings 31 have been closed and during solidification under high pressure, the clamping plate 15 lies with the slide plate 41 frictionally on the upper mold part 3, so that the upper mold part and lower mold part are then pressed against one another with the desired pressure.
  • the pressure maintained during the solidification process can be applied either by the plunger 7 or by a further plunger 30, whereby a reversible flow of the melt in the mold cavity 1 can also be obtained by the interaction of both pistons during the solidification process.
  • This embodiment differs from that according to FIG. 3 in that the charging material is introduced into the melting chamber 24 in a cup 35 made of refractory material and is melted therein. Following this, the cup including all or part of the melted material is pushed into the press chamber 23 by means of the plunger 7. The actual introduction of the melt material into the mold cavity 1 then takes place by means of a plunger 34 which dips into the cup from above, the melt being displaced from this and reaching the mold cavity 1 between the piston wall and the cup inner wall.
  • the exemplary embodiment according to FIG. 5 shows a wall section 36, for example of the upper or lower mold part, this wall section 36 being formed from a relatively thin material, so that it deforms during the filling process of the mold cavity 1.
  • a plunger 37 Arranged behind this flexible wall section 36 is a plunger 37 which can be provided, for example, with bores 38 for a coolant or heating medium. During the solidification process the plunger 37 is pressed against the flexible wall section 36, so that the pressure in the material can be maintained even during the solidification process.
  • the embodiment according to FIG. 6 likewise shows a flexible wall section 36, behind which a pressure chamber 39 is arranged.
  • This wall section can also be deformed away from the mold space - to enlarge it - during the mold filling, this deformation then being reversed again during the solidification process due to a pressure medium introduced through a pipe 40, wherein a deformation of the wall section 36 towards the molding space is likewise obtained can.
  • the pressure medium can also be used for cooling or heating the corresponding wall section 36.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds, Cores, Or Mandrels (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Forging (AREA)

Abstract

The invention relates to a method and devices for manufacturing component parts, in which molten metal is introduced into a mould cavity (1) formed by at least two mould halves (3, 4) and solidified under pressure. To create monitorable and controllable production conditions for optimisation of the product properties, it is envisaged, according to the invention, that the material to be liquefied, for example in the form of solid billets (11), be introduced into filling chambers (6) connected directly to the mould cavity (1) via large cross-sections (5) of flow with the aid of press plungers (7), melted, pushed further into the mould cavity (1), in a compact flow, with the aid of the press plungers (7) and, after complete closure of the mould cavity (1), made to solidify under pressure in the cavity. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Erzeugung von Bauteilen, bei welchen flüssiges oder teilflüssiges Material in einen zumindest aus zwei Formhälften gebildeten Formhohlraum eingebracht wird.The invention relates to a method and a device for producing components, in which liquid or partially liquid material is introduced into a mold cavity formed at least from two mold halves.

Bei der Formgebung von Bauelementen aus dem flüssigen oder teilflüssigen Werkstoffzustand sind eine Vielzahl unterschiedlichster Verfahren und Vorrichtungen bekannt, die mit mehr oder weniger großem Erfolg die an ein hochwertiges Werkstück zu stellenden Anforderungen im Hinblick auf Gestaltungsfreizügigkeit, Oberflächengüte und insbesondere optimale Werkstoffeigenschaften bei möglichst rationeller Fertigung erfüllen.In the shaping of components from the liquid or partially liquid material state, a variety of different methods and devices are known, which more or less successfully meet the requirements placed on a high-quality workpiece with regard to freedom of design, surface quality and in particular optimal material properties with the most rational production possible .

Die Mängelursachen liegen hauptsächlich in der großen Zahl der Fertigungsparameter, die zumeist in kürzester Zeit gleichzeitig, häufig mit wechselseitiger Beeinflussung zur Wirkung kommen und sich damit zum großen Teil sowohl einer Erfassung als auch einer Regelung entziehen.The causes of defects are mainly the large number of manufacturing parameters, which usually come into effect at the same time in the shortest possible time, often with mutual influence, and thus largely elude both detection and regulation.

Der Fertigungsablauf besteht im wesentlichen aus lediglich zwei Schritten. Erster Schritt ist die Vorbereitung des formgebenden Werkzeuges und die Erschmelzung der Werkstoffcharge. Im zweiten Schritt erfolgt dann der Transport der Schmelze vom separaten Ofen über Verteilersysteme in den Hohlraum des Formwerkzeuges, wo sie möglichst unter gelenkten thermischen Bedingungen und unter ausreichend hohem Speisungsdruck zu dem gewünschten Bauelement erstarren soll.The manufacturing process essentially consists of only two steps. The first step is the preparation of the shaping tool and the melting of the material batch. In the second step, the melt is then transported from the separate furnace via distribution systems into the mold cavity, where it should solidify to the desired component under controlled thermal conditions and under sufficiently high supply pressure.

Während die Fertigungsparameter im ersten Schritt noch relativ gut kontrolliert und bis kurz vor Beginn der eigentlichen Formgebung auch optimiert werden können, kommt es im entscheidenden zweiten Schritt zu weitgehend instationären Bedingungen, die zu einer großen Streubreite der Parameter mit gravierenden Auswirkungen auf die Produkteigenschaften führen.While the manufacturing parameters can still be checked relatively well in the first step and can also be optimized shortly before the actual shaping begins, the decisive second step leads to largely unsteady conditions, which lead to a wide range of parameters with serious effects on the product properties.

Verursacht werden diese Schwankungen der Fertigungsbedingungen bei den bekannten Gießverfahren zunächst einmal durch den Einsatz eines frei fallenden Gießstrahls beim Transport der Schmelze vom Schmelzofen zur Gießeinrichtung und überwiegend auch bei der Formfüllung. Hier treten intensive Reaktionen mit den Gasen der Atmosphäre und des Formhohlraumes auf, die zu einer ausgeprägten Minderung der Werkstoffqualität führen. Daneben kommt es am Gießstrahl zu unkontrollierbaren Temperaturverlusten, was die Formfüll- und Erstarrungsbedingungen beeinträchtigt und ebenfalls das Ausschußrisiko bei der Fertigung erhöht. Weitere starke Schwankungen bei den Formfüllbedingungen resultieren aus den ungleichmäßigen Fließvorgängen beim Einsatz des frei fallenden Gießstrahles, die gleichermaßen auch den Erstarrungsablauf beeinflussen. Maßgeblich für den Erstarrungsablauf des Werkstückes in der Form sind eine Reihe weiterer Parameter, die in der herkömmlichen Fertigungspraxis ebenfalls großen Schwankungen unterliegen. Besonders zu erwähnen sind hier die Wärmeübergangsbedingungen von der Schmelze zur Formwand sowie die mit der Abkühlung und Erstarrung der Schmelze und des soeben gebildeten Festkörpers gekoppelten Schrumpfungs- und Schwindungsvorgänge. Letztere sind die Ursache der in Gußstücken häufig auftretenden Fehlstellen wie Lunker und Schrumpfungsporosität, während die Schwindung gerade erstarrter Werkstückbereiche durch Luftspaltbildung den Wärmeübergang in die Formwand großen Schwankungen unterwirft und die Maßhaltigkeit beeinträchtigt. Zur Eliminierung oder Minimierung dieser Fehler muß insbesondere durch das Positionieren von Speisern am Gußstück in Verbindung mit einer Erstarrungslenkung ein erheblicher fertigungstechnischer Aufwand getrieben werden.These fluctuations in the production conditions in the known casting processes are initially caused by the use of a free-falling pouring jet when transporting the melt from the melting furnace to the casting device and predominantly also when filling the mold. Here, intensive reactions with the gases in the atmosphere and the mold cavity occur, which lead to a marked reduction in the material quality. In addition, there are uncontrollable temperature losses on the pouring jet, which affects the mold filling and solidification conditions and also increases the risk of rejects during production. Further strong fluctuations in the mold filling conditions result from the uneven flow processes when using the free-falling pouring stream, which also influence the solidification process. A number of other parameters, which are also common in conventional manufacturing practice, are decisive for the solidification process of the workpiece in the mold are subject to large fluctuations. Particularly noteworthy here are the heat transfer conditions from the melt to the mold wall and the shrinkage and shrinkage processes coupled with the cooling and solidification of the melt and the solid body just formed. The latter are the cause of the defects that often occur in castings, such as cavities and shrinkage porosity, while the shrinkage of just solidified workpiece areas due to the formation of air gaps subjects the heat transfer into the mold wall to large fluctuations and impairs dimensional accuracy. In order to eliminate or minimize these errors, in particular by positioning feeders on the casting in connection with a solidification steering, a considerable manufacturing effort has to be made.

Schließlich wird die Bauteilqualität durch das zusätzliche Auftreten von Gefügeporosität, die durch die Ausscheidung von in der Schmelze gelösten Gasen, z.B. Wasserstoff, oder den Einschluß von Gasen des Formhohlraumes während der Erstarrung verursacht wird, vermindert.Finally, the component quality is determined by the additional occurrence of structural porosity, which is caused by the separation of gases dissolved in the melt, e.g. Hydrogen, or the inclusion of gases in the mold cavity during solidification is reduced.

Beim bekannten Druckgießverfahren wird die zu verarbeitende Legierungscharge in einem separaten Vorschmelzofen erschmolzen und anschließend mit Transportpfannen in den Warmhalteofen an der Druckgießmaschine überführt. Von dort gelangt das für einen Abguß erforderliche Schmelzequantum mit einer Schöpfkelle oder sonstigen Dosiervorrichtungen über einen frei fallenden Gießstrahl in die zumeist horizontale Schußkammer, wo die Schmelze zunächst eine Lache mit großer Oberfläche bildet und rasch abkühlt. Zum umgehend eingeleiteten Gießvorgang schiebt der Schußkolben in beschleunigter Bewegung möglichst unter Vermeidung von Spritzern und Lufteinschlüssen die Schmelze in der Schußkammer zusammen, bis sie den nach oben in den Formhohlraum führenden Anschnitt erreicht. Von diesem Zeitpunkt an wird die Schmelze mit Höchstgeschwindigkeit in den Formhohlraum hinein verdüst, den sie in Bruchteilen einer Sekunde ausfüllt. Hierbei ist der Einschluß von Gasresten aus dem Formhohlraum in das Gefüge des sehr rasch erstarrenden Gußstückes praktisch unvermeidbar, was zu den bekannten Nachteilen des Druckgußproduktes wie Dehnungsdefizit, Mangel an Schweißbarkeit und Aushärtbarkeit führt.In the known die casting process, the batch of alloy to be processed is melted in a separate premelting furnace and then transferred to the holding furnace on the die casting machine by means of transport pans. From there, the melt quantity required for a cast reaches the mostly horizontal shot chamber with a ladle or other metering device via a freely falling pouring jet, where the melt first forms a pool with a large surface area and cools down rapidly. For the casting process which is initiated immediately, the shot piston pushes the melt together in the shot chamber in accelerated movement, preferably avoiding splashes and air pockets, until it reaches the gate leading upwards into the mold cavity. From that point onwards the melt is sprayed at high speed into the mold cavity, which it fills in a fraction of a second. In this case, the inclusion of gas residues from the mold cavity in the structure of the very rapidly solidifying casting is practically unavoidable, which leads to the known disadvantages of the die-cast product, such as a lack of elongation, lack of weldability and curability.

Beim Vakuumdruckguß sind Verfahrensvarianten bekannt, bei denen in Verbindung mit dem Evakuieren des Formhohlraumes vor dem Schuß die Schmelze aus dem Warmhalteofen in die Schußkammer eingesaugt wird. Neben den bereits beim Standard-Druckgießen, insbesondere mit der horizontalen Schußkammer auftretenden Nachteilen kommt es hier durch die beim Öffnen der Form zurückfallende Schmelzesäule im Ansaugrohr zu zusätzlicher Oxidbildung, was zu entsprechenden Einschlüssen im Gußprodukt führt. Außerdem kann auch eine Vakuumanwendung bei bestimmten Schmelzen (z.B. Magnesium-Legierungen) oder Legierungszusätzen aufgrund eines höheren Dampfdruckes zu Problemen führen.In vacuum die casting, process variants are known in which the melt is sucked out of the holding furnace into the shot chamber in connection with the evacuation of the mold cavity before the shot. In addition to the disadvantages already encountered with standard die casting, especially with the horizontal shot chamber, additional melt formation occurs in the intake pipe due to the melt column falling back when the mold is opened, which leads to corresponding inclusions in the cast product. In addition, a vacuum application with certain melts (e.g. magnesium alloys) or alloy additives due to a higher vapor pressure can cause problems.

Beim bekannten Niederdruck-Kokillengießverfahren wird die Schmelze mit Hilfe von Gasdruck über ein Steigrohr aus dem Warmhalteofen von unten in die Gießform gedrückt und bis zum Abschluß der Erstarrung in der Form unter einem geringen Überdruck von maximal 1 bar gehalten. Dieses Verfahren ermöglicht einen geringen Kreislaufanteil bei der Gußproduktion, erfordert jedoch besondere Maßnahmen gegen die Oxidbildung im Steigrohr und erweist sich durch seine konvektionsbedingten langen Taktzeiten gegenüber anderen Gießverfahren als benachteiligt.In the known low-pressure die-casting process, the melt is pressed from below into the casting mold from the holding furnace by means of gas pressure via a riser pipe and is held in the mold under a slight excess pressure of maximum 1 bar until the solidification is complete. This process enables a small amount of circulation in the cast production, but requires special measures against oxide formation in the riser pipe and, due to its convection-related long cycle times, proves to be disadvantageous compared to other casting processes.

Beim Flüssigpressen, Preßgießen oder Verdrängungsgießen wird Schmelze von oben mit frei fallendem Gießstrahl in ein zunächst offenes Preßgesenk eingegossen, dessen unteren Teil sie ganz oder teilweise ausfüllt. Nach Entfernen der Gießkelle fährt ein Stempel von oben in das Gesenk und verdrängt die Schmelze zur vollständigen Füllung aller Formkonturen. Die Erstarrung verläuft unter dem weiteren Druck des Stempels, so daß ein Werkstück mit dichtem Gefüge erhalten werden kann, sofern eine ausreichende Entlüftung des Formhohlraumes erreicht wurde. Dieses Verfahren konnte sich in der Produktionstechnik nicht durchsetzen, da es umständlich und zeitraubend ist und nur einfache, dickwandige Werkstücke liefert.In liquid pressing, press casting or displacement casting, the melt is poured from above with a freely falling pouring jet into an initially open die, the lower one Part of it completely or partially filled out. After removing the pouring trowel, a stamp moves into the die from above and displaces the melt to completely fill all the shape contours. The solidification takes place under the further pressure of the punch, so that a workpiece with a dense structure can be obtained if sufficient ventilation of the mold cavity has been achieved. This process could not prevail in production technology because it is cumbersome and time-consuming and only supplies simple, thick-walled workpieces.

Die verschiedenen oben beschriebenen Druck- und Preßgießverfahren sind insbesondere aus dem Gießerei-Lexikon, Ausgabe 1991, Fachverlag Schiele und Schön, Berlin bekannt.The various pressure and pressure casting processes described above are known in particular from the Gießerei-Lexikon, 1991 edition, specialist publisher Schiele and Schön, Berlin.

Bei einer Vorrichtung gemäß der DE-PS 30 23 917 wird die Schmelze aus einem ausschwenkbaren Gießaggregat von unten in eine Druckgießform gefördert. Als Nachteile erscheinen auch hier die erforderliche Befüllung der samt Kolben und Antrieb ausgeschwenkten Gießkammer über den frei fallenden Gießstrahl mittels Schöpfdosierung aus einem separaten Warmhalteofen, die zusätzlichen Schritte des Zurückschwenkens und Ankoppelns des Gießaggregates an die Form sowie die aufwendige und teure Gesamtkonstruktion.In a device according to DE-PS 30 23 917, the melt is conveyed from a swiveling casting unit from below into a die. Disadvantages also appear here: the necessary filling of the casting chamber swung out together with the piston and drive via the free-falling pouring jet by means of scoop dosing from a separate holding oven, the additional steps of pivoting back and coupling the casting unit to the mold, and the complex and expensive overall construction.

Aus der US-A-4 436 140 ist eine Vorrichtung bekannt, die für die Durchführung des klassischen Vertikalen-Kaltkammer-Druckgießverfahrens geeignet ist. Diese Vorrichtung besteht aus zwei Gießformhälften, wobei zur Formfüllung ein Anschnittsystem verwendet wird, das über eine seitlich unterhalb der Gießform liegende Füllkammer beschickt wird, die zum Ausdrücken der Schmelze über einen Stempel verfügt. Das Befüllen der Füllkammer erfolgt über eine trichterförmige Einguß tasse mit einem frei fallenden Gießstrahl. Hierbei treten nachteilige Temperaturverluste sowie Oxidbildung, Lufteinschlüsse und deren Verwirbelung auf, die zu den bekannten Problemen hinsichtlich der Bauteileigenschaften führen. Im Anschluß an die Füllung der Kammer wird ein zweiter Kolben in diese eingeführt, der die Eingießöffnung der Eingußtasse verschließt und dazu dient, nach erfolgter Füllung der Gießform einen Nachdruck aufrechtzuerhalten. Bei der Aufbringung des Nachpreßdruckes wird gleichzeitig Luft komprimiert, die wiederum in die Schmelze und damit in die Gießform gelangt und hier zu nachteiligen Lufteinschlüssen führt. Sowohl die Formfüllung wie auch die Nachverdichtung wird über ein Anschnittsystem bewirkt, das beim Einfüllvorgang eine Umlenkung des Materialflusses bedingt und damit gleichfalls zu nachteiligen Verwirbelungen und zur Strömungsbehinderung führt. Hierdurch erhöht sich zwangsweise auch der benötigte Einspritzdruck. Ein weiterer Nachteil besteht darin, daß auch die Dichtspeisung über diesen Anschnitt erfolgen muß, was nur eine beschränkte Zeit möglich ist. Dieser Anschnitt bewirkt ferner, daß über eine Nachverdichtung eine Lunkerung nur bedingt zu vermeiden ist, wobei besonders kritische Produktbereiche wie beispielsweise Materialanhäufungen nicht beeinflußt werden können.From US-A-4 436 140 a device is known which is suitable for carrying out the classic vertical cold chamber die casting method. This device consists of two mold halves, with a gate system being used for the mold filling, which is fed via a filling chamber located laterally below the mold, which has a stamp for expressing the melt. The filling chamber is filled via a funnel-shaped sprue cup with a free falling pouring stream. In this case, disadvantageous temperature losses and oxide formation, air pockets and their swirling occur, which lead to the known problems with regard to the component properties. Following the filling of the chamber, a second piston is inserted into it, which closes the pouring opening of the pouring cup and serves to maintain a pressure after the mold has been filled. When the repressing pressure is applied, air is compressed at the same time, which in turn gets into the melt and thus into the casting mold and leads to disadvantageous air pockets. Both the mold filling and the recompression are effected via a gate system, which causes a deflection of the material flow during the filling process and thus also leads to disadvantageous turbulence and a flow restriction. This inevitably increases the injection pressure required. Another disadvantage is that the sealing feed must also take place via this gate, which is only possible for a limited time. This bleed also means that shrinkage can only be avoided to a limited extent by means of post-compaction, and particularly critical product areas such as, for example, material accumulations, cannot be influenced.

Allen bekannten Verfahren gemeinsam ist schließlich ein Mangel an ausreichenden Kontrollmöglichkeiten für die beim Verfahrensablauf zur Wirkung kommenden Parameter, so daß die notwendige Einengung ihrer Streubreiten behindert wird und damit die für eine rationelle Fertigung unverzichtbare Treffsicherheit bzw. Reproduzierbarkeit bei der Produktqualität nicht erreicht werden kann.Finally, all the known methods have in common a lack of sufficient control options for the parameters that come into effect during the course of the method, so that the necessary narrowing of their spreading widths is hindered and the accuracy or reproducibility in product quality that is indispensable for rational production cannot be achieved.

Aufgabe der vorliegenden Erfindung ist die Schaffung eines neuartigen Verfahrens und einer neuartigen Vorrichtung, die die Fertigung von hochbeanspruchbaren Bauteilen insbesondere auch mit großen Dimensionen, komplexer Formgebung und Mehrfachfunktion in einer Kompaktanlage mit engster Kopplung und Steuerung der Fertigungsschritte bei gleichzeitiger Taktverkürzung auf besonders rationelle Weise ermöglichen. Dabei sollen insbesondere die Bedingungen für die Vorgänge beim Schmelzen, Formfüllen und Erstarren optimiert werden, so daß Bauteile mit besonders feinkörnigem und dichtem Gefüge mit hohem Gleichmäßigkeitsgrad erhalten werden.The object of the present invention is to create a novel method and a novel device which enable the production of heavy-duty components, in particular also with large dimensions, complex shapes and multiple functions, in a compact system with tightest coupling and control of the production steps with simultaneous cycle shortening in a particularly efficient manner. In particular, the conditions for the processes during melting, mold filling and solidification are to be optimized, so that components with a particularly fine-grained and dense structure with a high degree of uniformity are obtained.

Diese Aufgabe wird mit den Merkmalen des Anspruches 1 oder 21 gelöst.This object is achieved with the features of claim 1 or 21.

Das erfindungsgemäße Verfahren zeichnet sich durch eine Reihe erheblicher Vorteile aus.The method according to the invention is distinguished by a number of considerable advantages.

Die Chargierkörper können optimal auf das Bauteilgewicht abgestimmt werden, so daß der bei konventioneller Arbeitsweise erhebliche Materialaufwand vermieden wird. So besteht die Möglichkeit, daß die Preßkolbenstirnfläche als Formwandteil genutzt werden kann.The charging bodies can be optimally matched to the component weight, so that the material expenditure which is considerable in the conventional working method is avoided. So there is the possibility that the plunger end face can be used as a molded wall part.

Da erfindungsgemäß die Füllkammer direkt angrenzend an den Formhohlraum ausgebildet ist, ergeben sich minimale Transport- oder Förderwege für die Schmelze, so daß die aus dem Stand der Technik bekannten Nachteile vermieden werden. Zunächst kommt es insbesondere nicht zu den nachteiligen Temperaturschwankungen, unkontrollierbaren Oxidbildungen und Abbrandverlusten. Durch die Möglichkeit, geeignete Formfülltemperaturen in der Füllkammer mit entsprechender Heizung einzustellen, kann auch unterkühltes oder teilerstarrtes Material verarbeitet werden. Aufgrund der großen Füllquerschnitte und kurzen Fließwege wird eine stark beruhigte Formfüllung mit kompakt gehaltenem Schmelzevolumen ohne Spritzen und Verwirbeln erreicht. Da es hier gegenüber dem Druckgießverfahren auch zu keinerlei Verdüsen der Schmelze während der Formfüllung infolge des niedrigen Fülldruckes und der möglichen großen Querschnitte kommt, können grundsätzlich auch verlorene Kerne ähnlich wie beim Kokillenguß eingesetzt werden.Since, according to the invention, the filling chamber is formed directly adjacent to the mold cavity, there are minimal transport or conveying paths for the melt, so that the disadvantages known from the prior art are avoided. First of all, there are no disadvantageous temperature fluctuations, uncontrollable oxide formation and loss of burn-up. Due to the possibility of suitable Setting mold filling temperatures in the filling chamber with the appropriate heating can also process supercooled or partially solidified material. Due to the large filling cross-sections and short flow paths, a strongly calmed mold filling with a compact melt volume is achieved without spraying and swirling. Since there is no atomization of the melt during mold filling due to the low filling pressure and the possible large cross-sections compared to the die-casting process, lost cores can also be used in a similar way to gravity die casting.

Die vorliegende Erfindung eignet sich weiterhin dazu, in den Formhohlraum vorgefertigte Festkörper einzubringen, die mit dem Schmelzematerial zu verbinden oder in das Bauteil zu integrieren sind. Die Festkörper können beispielsweise aus Halbzeugprofilen bestehen, die dann beim Füllvorgang durch die Schmelze, die anschließend zu Knotenpunkten erstarrt, verbunden werden. Das hierbei mögliche Anschmelzen der zu verbindenden Profilenden gewährleistet einen optimalen Verbund. Auf diese Weise wird die Herstellung größerer Rahmenkonstruktionen beispielsweise für den Chassis- oder Karosseriebau ermöglicht. Nach dem Vorbild armierter Betonkonstruktionen können vorgefertigte Armierungen aus hochfesten Materialien im Formhohlraum in geeigneter Weise fixiert und durch die Schmelze nach Erstarrung zu einem hochbelastbaren Bauteil integriert werden. In ähnlicher Weise ist es möglich, für die Herstellung kastenförmiger Konstruktionen mit hoher Gestaltfestigkeit im Bauteil verbleibende Füllkörper einzubeziehen.The present invention is furthermore suitable for introducing prefabricated solid bodies into the mold cavity which are to be connected to the melt material or to be integrated into the component. The solid bodies can consist, for example, of semi-finished profiles, which are then connected during the filling process by the melt, which then solidifies to form nodes. The possible melting of the profile ends to be connected ensures an optimal bond. In this way, the production of larger frame structures is made possible, for example, for chassis or body construction. Following the example of reinforced concrete structures, prefabricated reinforcements made of high-strength materials can be fixed in a suitable manner in the mold cavity and integrated into a heavy-duty component by the melt after solidification. In a similar way, it is possible to include packing elements remaining in the component for the production of box-shaped structures with high structural strength.

Als weitere Beispiele zu den vielfältigen Problemlösungsmöglichkeiten durch Verbundmaterialien unter Einsatz des neuen Verfahrens seien das Aufbringen metallischer Überzüge oder Schichten, feuerfeste Armierungen von Brennraumwänden und insbesondere die gleichzeitige Füllung eines Formhohlraumes mit Schmelzen aus unterschiedlichen Materialien genannt. Letzteres bietet ebenfalls besondere Vorteile bei der Herstellung von Bauteilen mit besonderer lokaler Beanspruchung. Die Verteilung mehrerer Füllkammern über größere Flächen erlaubt die Herstellung besonders großer Formen für entsprechend größere Bauteile oder für die Fertigung mehrerer Teile gleichzeitig.The application of metallic coatings or layers, fire-resistant reinforcements of combustion chamber walls are further examples of the various problem-solving options provided by composite materials using the new process and in particular the simultaneous filling of a mold cavity with melts from different materials. The latter also offers particular advantages in the manufacture of components with particular local stress. The distribution of several filling chambers over larger areas allows the production of particularly large shapes for correspondingly larger components or for the production of several parts at the same time.

In beiden Fällen werden die Fließwege während der Formfüllung deutlich verkürzt, so daß örtliche Überhitzungen und zu kühle Bereiche sowie ein materialintensives, verzweigtes Anschnitt- und Speisesystem vermieden werden.In both cases, the flow paths are significantly shortened during mold filling, so that local overheating and areas that are too cool as well as a material-intensive, branched gate and feed system are avoided.

Weitere Vorteile liegen in der Möglichkeit, die Füllkammer in einen unteren Schmelz- und einen oberen Preßbereich zu unterteilen und die Schmelzkammer dann mit Hilfe eines entsprechenden Manipulators auszuwechseln. Bei Zuordnung mehrerer Schmelzkammern zu der mit der Form fest verbundenen Preßkammer wird einmal die Schmelzzeit deutlich verkürzt, zum anderen ist bei auftretendem Verschleiß ein rasches Auswechseln möglich. Der bei mobiler Schmelzkammer erforderliche Boden kann auf verschiedene Weise realisiert werden, wie z. B. Einsatz einer verschiebbaren Scheibe, die gegebenenfalls mit zusätzlicher Funktion am Bauteil verbleibt; fest verbleibender Boden am aufgeschmolzenen Chargierkörper als "Preßkolben"; becherförmige nicht schmelzende Umhüllung des Chargierkörpers; zusätzlicher Preßkolben.Further advantages lie in the possibility of dividing the filling chamber into a lower melting and an upper pressing area and then exchanging the melting chamber with the aid of an appropriate manipulator. If several melting chambers are assigned to the pressing chamber that is firmly connected to the mold, the melting time is shortened significantly on the one hand, and on the other hand rapid replacement is possible if wear occurs. The floor required for a mobile melting chamber can be realized in various ways, such as. B. Use of a movable disc, which may remain on the component with additional function; solid bottom on the melted charging body as a "plunger"; cup-shaped, non-melting casing of the charging body; additional plunger.

Darüberhinaus ermöglicht die Unterteilung der Füllkammer in Schmelz- und Preßkammer den Einsatz unterschiedlicher Werkstoffe für diese differierenden Funktionsbereiche beispielsweise Keramik oder Cermets für die Schmelzkammer und Warmarbeitsstahl für die Preßkammer. Schließlich bringt auch die mögliche Verwendung hochfeuerfester, elektrisch nicht leitender Materialien für die Schmelzkammerwand bei Verwendung einer Induktionsheizung Vorteile.In addition, the subdivision of the filling chamber into the melting and pressing chamber enables the use of different materials for these different functional areas, for example ceramics or cermets for the melting chamber and hot-work steel for the pressing chamber. Finally brings also the possible use of highly refractory, electrically non-conductive materials for the melting chamber wall when using induction heating advantages.

Für die Formfüllung ist besonders vorteilhaft, wenn zum einen mehrere große Einströmöffnungen für die Schmelze direkt in dem Formhohlraum vorhanden sind und zum anderen dieser unter Ausnutzung der jeweiligen Bauteilgeometrie erst während seiner Füllung auf die festgelegten Bauteildimensionen verkleinert wird, so daß genügend große Durchflußquerschnitte auch im Formhohlraum bestehen. Diese Verkleinerung des Formhohlraumvolumens kann beispielsweise durch Absenken eines Formballenteiles und vollständiges Einrücken von Kernschiebern oder geeigneten Formteilen erfolgen. Diese Maßnahmen unterstützen die Verdrängungswirkung der Preßkolben, verkürzen die Fließwege und erhöhen die Füllgeschwindigkeit. Beeinträchtigungen des Formfüllvermögens der Schmelze durch Abkühlung und teilweise Erstarrung werden vermieden, so daß das gefürchtete Kaltlaufproblem beseitigt ist. Das vorschlagsgemäß erst am Ende der Formfüllung erfolgende vollständige Schließen der Form unmittelbar vor dem Aufbau eines höheren Druckes ermöglicht auch während der Formfüllung einen freien Abzug für die im Formhohlraum befindlichen oder im Kontakt der Schmelze mit der Formwandschlichte zusätzlich entstehenden Gase. Diese können vor der kompakt einströmenden Schmelze entweichen, so daß die bei bekannten, ähnlichen Verfahren auftretenden, außerordentlich nachteiligen Gaseinschlüsse im Bauteilgefüge verhindert werden.For mold filling, it is particularly advantageous if, on the one hand, there are several large inflow openings for the melt directly in the mold cavity and, on the other hand, this is reduced to the specified component dimensions only while it is being filled, taking advantage of the respective component geometry, so that sufficiently large flow cross sections also in the mold cavity consist. This reduction in the volume of the mold cavity can take place, for example, by lowering a molded ball part and fully inserting core slides or suitable molded parts. These measures support the displacement effect of the plunger, shorten the flow paths and increase the filling speed. Impairment of the form filling capacity of the melt by cooling and partial solidification are avoided, so that the dreaded cold running problem is eliminated. The proposed complete closing of the mold immediately before the build-up of a higher pressure, as proposed at the end of the mold filling, also enables a free extraction for the gases which are present in the mold cavity or in contact of the melt with the mold wall size during the mold filling. These can escape before the melt flowing in compactly, so that the extremely disadvantageous gas inclusions occurring in known, similar processes in the component structure are prevented.

Die nach beendeter Formfüllung verstärkt ablaufende Erstarrung des Bauteiles verursacht bekanntlich aufgrund der Erstarrungsschrumpfung ein beträchtliches Volumendefizit, das in Form von Gefügeauflockerungen, Innen- und Außenlunkern sowie Maßabweichungen die Bauteileigenschaften erheblich beeinträchtigen kann. Hier sind zur Fehlereinschränkung Materialzugaben erforderlich, die beim Stand der Technik als mit dem Bauteil erstarrende Speiser zur Anwendung kommen. Ihre Wirksamkeit ist jedoch erfahrungsgemäß beschränkt, der Materialaufwand erheblich. Vorteilhafter ist hier nach der Erfindung eine gleichmäßigere über das Bauteil verteilte Materialzugabe, die durch Formraum-Vergrößerung an den dafür besonders geeigneten Stellen im wesentlichen am Ende der Formfüllung einsetzt und deren Volumenrückstellung auf Bauteil-Sollmaße im Verlauf der Erstarrung erfolgt. Die erforderliche Formraum-Vergrößerung kann beispielsweise durch eine über die Formwanddicke regulierbare elastische Ausbauchung verursacht durch Druckanstieg im Füllmaterial erreicht und durch Druckelemente begrenzt werden, die anschließend auch die Rückstellung besorgen. Die Druckelemente können zusätzlich auch bei entsprechender Ausbildung eine Kühlfunktion übernehmen und durch geeignete zeitliche Abstimmung der Aktivierung eine Erstarrungslenkung realisieren. Für die Gefüge-Dichtspeisung während des Erstarrungsablaufes ist weiterhin von Vorteil, wenn die in den sich verengenden Speisungskanälen befindliche Schmelze bewegt wird. Dies kann ebenfalls mit Hilfe der Druckelemente im Zusammenwirken mit den Preßkolben erreicht werden, indem mit geeigneter Frequenz pulsierender Druck zur Anwendung kommt. Die genannten Maßnahmen ergeben in ihrer Koordination eine Optimierung des Erstarrungsablaufes und erreichen nicht zuletzt auch durch die Eliminierung des nachteiligen frühzeitigen Freischwindens von der Formwand mit lokaler Unterbrechung des Wärmeflusses eine deutliche Taktzeitverkürzung.The solidification of the component, which increases after the mold filling, is known to cause a considerable volume deficit due to the solidification shrinkage, which considerably affects the component properties in the form of loosening of the structure, internal and external cavities and dimensional deviations can affect. In order to limit errors, material additions are required which are used in the prior art as feeders that solidify with the component. Experience has shown that their effectiveness is limited and the cost of materials is considerable. According to the invention, a more uniform material addition distributed over the component is more advantageous, which essentially starts at the end of the mold filling by increasing the mold space at the locations particularly suitable for this purpose, and the volume of which is reset to the desired component dimensions during the solidification. The required enlargement of the mold space can be achieved, for example, by an elastic bulge that can be regulated via the mold wall thickness, caused by pressure increase in the filler material, and limited by pressure elements, which then also provide the provision. With appropriate training, the pressure elements can also take on a cooling function and implement a solidification control by suitable timing of the activation. For the structural sealing feed during the solidification process, it is also advantageous if the melt located in the narrowing feed channels is moved. This can also be achieved with the help of the pressure elements in cooperation with the plunger by using pulsating pressure at a suitable frequency. The coordination of the above-mentioned measures results in an optimization of the solidification process and, last but not least, a clear reduction in cycle times due to the elimination of the disadvantageous early shrinkage from the mold wall with local interruption of the heat flow.

Zum Start des Verfahrensablaufes z. B nach Fig. 1 werden die Chargierkörper mit Hilfe einer Zuführeinrichtung und der Preßkolben - bei Mehrfachschmelzkammern auch direkt - in die Schmelzkammern befördert, die kurz zuvor zusammen mit den Preßkammern und dem Formhohlraum mit Schutzgas gespült worden sind. Nach dem Aufschmelzen schieben die Preßkolben die Schmelze durch die Preßkammern zur Formfüllung in den Formhohlraum. Dieser ist zunächst im Sinne einer optimierten Formfüllung ohne Spritzen und Gaseinwirbelung mit genügend großen Entlüftungskanälen nach außen geöffnet bzw. je nach Maßgabe der jeweiligen Bauteilgeometrie zu Beginn und während der Formfüllung noch nicht vollständig geschlossen. So können während der Formfüllung die im Formhohlraum befindlichen oder durch die Berührung der Schmelze mit dem Formtrennmittel zusätzlich entstehenden Gase vor der im wesentlichen von unten kompakt einströmenden Schmelze nach oben vollständig entweichen bzw. durch Anlegen von Unterdruck abgesaugt werden. Besteht die Möglichkeit, die Form bei entsprechend geeigneter Bauteilgeometrie erst während der Formfüllung vollständig zu schließen, beispielsweise durch Absenken eines Ballenteiles oder vollständiges Einfahren von Kernschiebern, so wird mit diesen Maßnahmen ebenfalls die Formentlüftung verbessert und darüberhinaus durch die zusätzliche Verdrängungswirkung bei kurzen Fließwegen die Füllgeschwindigkeit gesteigert. Beides erhöht in besonderer Weise das Formfüllvermögen der Schmelze, so daß das gefürchtete Kaltlaufrisiko eliminiert wird.To start the process flow z. B according to FIG. 1, the charging bodies with the aid of a feed device and the plunger - in the case of multiple melting chambers also directly - transported into the melting chambers, which had previously been flushed with protective gas together with the press chambers and the mold cavity. After melting, the plungers push the melt through the press chambers to fill the mold into the mold cavity. This is initially opened to the outside in the sense of an optimized mold filling without spraying and gas interlacing with sufficiently large ventilation channels or, depending on the particular component geometry, is not yet completely closed at the beginning and during the mold filling. Thus, during the mold filling, the gases located in the mold cavity or additionally generated by the melt coming into contact with the mold release agent can completely escape upwards before the melt, which essentially flows in compactly from below, or can be suctioned off by applying negative pressure. If there is the possibility, with a suitable component geometry, that the mold can only be fully closed during mold filling, for example by lowering a bale part or completely retracting core slides, these measures also improve mold ventilation and further increase the filling speed due to the additional displacement effect with short flow paths . Both increase the mold filling capacity of the melt in a special way, so that the feared cold running risk is eliminated.

Am Ende der Formfüllung ist dann die Form vollständig geschlossen, was im Falle der Anwendung von Entlüftungskanälen durch deren Abdeckung beispielsweise mit Hilfe von Schiebern erfolgt, die auch gegebenenfalls austretende Schmelze stoppen können. Zu diesem Zeitpunkt wird mit Hilfe der Preßkolben und weiterer in die Formwände an geeigneter Stelle eingebaute Druckelemente, wie beispielsweise beweglicher Formeinsätze, Auswerferstifte oder Formbauteile, die eine lokale elastische Formwandverformung zur Druckausübung ermöglichen, das abkühlende und erstarrende Bauteil zum Ausgleich des durch die Erstarrungsschrumpfung entstehenden Volumendefizits unter einen entsprechenden Preßdruck gesetzt. Das für den Ausgleich erforderliche Schmelzevolumen wird an den jeweiligen Berührungsstellen der Schmelze mit den Druckelementen durch die dort am Ende der Formfüllung eingestellte Formraumvergrößerung bereitgehalten.At the end of the mold filling, the mold is then completely closed, which in the case of use of ventilation channels by covering them takes place, for example, with the aid of slides, which can also stop any melt emerging. At this time, with the help of the plunger and other pressure elements installed in a suitable place in the mold walls, such as, for example, movable mold inserts, ejector pins or mold components a local elastic mold wall deformation to exert pressure, the cooling and solidifying component to compensate for the volume deficit caused by the solidification shrinkage under a corresponding pressing pressure. The melt volume required for the compensation is kept ready at the respective points of contact of the melt with the pressure elements by the enlargement of the mold space set there at the end of the mold filling.

Der Preßdruck kann von allen Druckelementen gleichzeitig, z. B. stoßartig, ausgeübt und bis zur vollständigen Erstarrung des Bauteiles aufrecht erhalten werden. Als besonders vorteilhaft für die Dichtspeisung des Gefüges in komplex geformten Bauteilen mit größeren Wanddickenunterschieden und Materialanhäufungen kann sich aber auch ein mit geeigneter Frequenz pulsierender Preßdruck erweisen. Hierbei können beispielsweise zwei Druckgeber über eine geeignete Distanz derart miteinander korrespondieren, daß Schmelze während der Erstarrung innerhalb eines sie verbindenden Speisungskanals reversibel verschoben wird, was die Speisungsbedingungen deutlich verbessert. Schließlich können Druckgeber in Verbindung mit einer Formkühlung, beispielsweise der im Kokillengießverfahren mit Erfolg eingesetzten Schwell-Sequenz-Kühlung nach DE-PS 26 46 060 eingesetzt werden, wobei eine bedeutsame Taktzeitverkürzung erzielbar ist.The pressure can be from all pressure elements simultaneously, for. B. jerky, exercised and maintained until the component completely solidifies. However, a pressing pressure pulsating with a suitable frequency can also prove to be particularly advantageous for the sealing supply of the structure in complex-shaped components with larger wall thickness differences and material accumulations. Here, for example, two pressure transmitters can correspond to one another over a suitable distance in such a way that the melt is reversibly displaced during the solidification within a feed channel connecting them, which significantly improves the feed conditions. Finally, pressure transmitters can be used in conjunction with mold cooling, for example the swell sequence cooling according to DE-PS 26 46 060, which has been used successfully in the mold casting process, a significant reduction in cycle times being achievable.

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung beschrieben, in dieser zeigen:

Fig. 1
eine Seitenansicht, teilweise im Schnitt, eines ersten Ausführungsbeispieles der erfindungsgemäßen Vorrichtung,
Fig. 2
eine Seitenansicht, teils im Schnitt, eines zweiten Ausführungsbeispieles der erfindungsgemäßen Vorrichtung,
Fig. 3
ein weiteres Ausführungsbeispiel gemäß der Erfindung, bei dem die Füllkammer 2 in eine Preßkammer und eine Schmelzkammer unterteilt ist,
Fig. 4
ein weiteres Ausführungsbeispiel gemäß der Erfindung, bei dem das zu verarbeitende Material in einen Behälter eingesetzt, der Füllkammer zugeführt wird,
Fig. 5
ein Detail der Wandausbildung der Gießform mit einem die Wand verformenden Preßkolben und
Fig. 6
ein Detail der Wandausbildung der Gießform, bei dem die Wandverformung über ein Kühl-/Heizmittel erfolgt.
The invention is described below using exemplary embodiments in conjunction with the drawing, in which:
Fig. 1
a side view, partially in section, of a first embodiment of the device according to the invention,
Fig. 2
a side view, partly in section, of a second embodiment of the device according to the invention,
Fig. 3
another embodiment according to the invention, in which the filling chamber 2 is divided into a press chamber and a melting chamber,
Fig. 4
a further embodiment according to the invention, in which the material to be processed is inserted into a container which is fed to the filling chamber,
Fig. 5
a detail of the wall formation of the mold with a plunger deforming the wall and
Fig. 6
a detail of the wall formation of the casting mold, in which the wall deformation takes place via a coolant / heating medium.

Bei dem Ausführungsbeispiel nach der Fig. 1 wird der Formhohlraum durch ein Formoberteil 3 und ein Formunterteil 4 gebildet. Das Formoberteil 3 ist an einer Aufspannplatte 15 befestigt und mittels einer Verriegelungseinrichtung 10 in Form eines Kniehebels höhenverschiebbar angeordnet. Der Kniehebel wird über einen Hydraulikantrieb 16 betätigt, der am Maschinengestell 9b befestigt ist.In the exemplary embodiment according to FIG. 1, the mold cavity is formed by an upper mold part 3 and a lower mold part 4. The upper mold part 3 is fastened to a clamping plate 15 and is arranged such that it can be displaced in height by means of a locking device 10 in the form of a toggle lever. The toggle lever is actuated via a hydraulic drive 16 which is attached to the machine frame 9b.

Das Formunterteil 4 wird vom Maschinengestell 9a getragen und hat auf seiner Unterseite 3 Öffnungen 5, über die das verflüssigte Material in den Formhohlraum 1 eingedrückt wird. An den Öffnungen 5 sind Füllkammern 2 angeschlossen, die das Maschinengestell 9 durchsetzen und zwei Bereiche bilden, und zwar eine obere Preßkammer 23 sowie eine untere Schmelzkammer 24.The lower mold part 4 is carried by the machine frame 9a and has 3 openings 5 on its underside, via which the liquefied material is pressed into the mold cavity 1. Filling chambers 2 are connected to the openings 5 and penetrate the machine frame 9 and form two regions, namely an upper pressing chamber 23 and a lower melting chamber 24.

Unterhalb der Füllkammern 2 ist ein Zuführtisch 12 für die Zuführung von Rohlingen 11 in die Füllkammern 2 vorgesehen.Below the filling chambers 2 there is a feed table 12 for feeding blanks 11 into the filling chambers 2.

Das Einbringen der Rohlinge 11 in die Schmelzkammer 24 erfolgt mit Hilfe von Preßkolben 7, wobei jeder Füllkammer 2 ein Preßkolben 7 zugeordnet ist. Die Preßkolben 7 sind auf einer Preßkolbenplatte 18 angeordnet, die über einen Hydraulikantrieb 17 verschoben wird, der am Maschinengestell 9c befestigt ist. Die Rohlinge 11 werden, wie dies in Fig. 1 dargestellt ist, über die nach unten verfahrenen Preßkolben geschoben und über diese in die Schmelzkammer 24 eingeschoben. Nach dem erfolgten Aufschmelzen der Rohlinge wird die Schmelze mittels der Preßkolben 7 nach oben in die Preßkammer 23 verschoben, worauf diese dann in den Formhohlraum 1 austreten kann. Aufgrund der großen Querschnitte der Öffnungen 5 kann dieses Einschieben ohne große Turbulenzen und mit einem relativ geringen Druck erfolgen. Beim Einschiebvorgang ist bei diesem Ausführungsbeispiel das Formoberteil etwas vom Formunterteil abgehoben, so daß die im Formhohlraum befindliche Luft über den Spalt zwischen Formoberteil 3 und Formunterteil 4 entweichen kann. Nach der vollständigen Formfüllung wird das Oberteil 3 dichtend auf das Unterteil 4 abgesenkt, worauf dann die Erstarrung der Schmelze unter Aufbringung des Hochdruckes beispielsweise durch die Preßkolben 7 erfolgt.The blanks 11 are introduced into the melting chamber 24 with the aid of plungers 7, each plunger 2 being assigned a plunger 7. The plungers 7 are arranged on a plunger plate 18 which is displaced via a hydraulic drive 17 which is fastened to the machine frame 9c. The blanks 11 are, as shown in Fig. 1, pushed over the downward moving plunger and inserted into the melting chamber 24 via this. After the blanks have melted, the melt is moved upwards into the press chamber 23 by means of the plunger 7, whereupon the latter can exit into the mold cavity 1. Because of the large cross sections of the openings 5, this insertion can take place without great turbulence and with a relatively low pressure. In this embodiment, the upper part of the mold is lifted slightly from the lower part of the mold, so that the air in the mold cavity can escape through the gap between the upper part 3 and the lower part 4. After the mold has been completely filled, the upper part 3 is sealingly lowered onto the lower part 4, whereupon the melt solidifies with the application of the high pressure, for example by the plunger 7.

Die Erwärmung der Schmelzkammer 24 erfolgt vorteilhaft über eine Induktionsheizung 8, wobei bei einer einstückigen Ausbildung der Füllkammer 2 als Preßkammer und Schmelzkammer der aus hochfestem Stahl bestehende Hohlzylinder beide Bereiche durchsetzen muß.The melting chamber 24 is advantageously heated via an induction heater 8, with the hollow cylinder consisting of high-strength steel having to pass through both areas in the case of a one-piece design of the filling chamber 2 as a pressing chamber and melting chamber.

Bei dem Ausführungsbeispiel nach Fig. 2 erfolgt das Aufschmelzen des Rohlings 11 bzw. des Chargierbolzens in einem Niederdruck-Schmelzofen 13, wobei die Rohlinge 11 über ein Beschickungsrohr 21 in den Ofen 13 eingebracht werden. Die Abdichtung des Beschickungsrohres 21 erfolgt über eine Dichtung 26, die zwischen Rohling 11 und der Innenwandung des Beschickungsrohres 21 angeordnet ist. Über ein Steigrohr 14, das mit einem Niveausensor 22 versehen ist, wird die Schmelze in die Füllkammer 6 über eine Öffnung 20 eingedrückt. Nach Füllung der Füllkammer 6 wird der Preßkolben 7 nach oben verschoben, wobei die Öffnung 20 verschlossen wird, so daß kein weiteres Material in die Füllkammer 6 nachfließen kann. Das Schmelzematerial 19 wird dann durch die Öffnungen 5 entsprechend der Fig. 1 in den Formhohlraum eingedrückt.In the exemplary embodiment according to FIG. 2, the blank 11 or the charging bolt is melted in a low-pressure melting furnace 13, with the blanks 11 being a Feed pipe 21 are introduced into the furnace 13. The feed pipe 21 is sealed by means of a seal 26 which is arranged between the blank 11 and the inner wall of the feed pipe 21. Via a riser pipe 14, which is provided with a level sensor 22, the melt is pressed into the filling chamber 6 via an opening 20. After the filling chamber 6 has been filled, the plunger 7 is moved upward, the opening 20 being closed, so that no further material can flow into the filling chamber 6. The melt material 19 is then pressed through the openings 5 according to FIG. 1 into the mold cavity.

Die Schmelz- und Dosiereinrichtung nach Fig. 2 eignet sich auch in besonderer Weise für die Herstellung besonders großer Bauteile mit erhöhtem Materialbedarf. So kann hier aus dem Schmelzofen 13 die Schmelze durch den Dosierspalt 20 und die Füllkammer 6 hindurch in den Formhohlraum gedrückt werden, wobei dann der Preßkolben 7 lediglich die Formfüllung beendet und die Nachspeisung - gegebenenfalls in Verbindung mit weiteren Druckelementen in der Formwand - übernimmt. Bei Einsatz von mehreren Füllkammern 6 können diese über Verzweigungen oder Mehrfachanordnung des Füllrohres 14 mit Schmelze versorgt werden.The melting and dosing device according to FIG. 2 is also particularly suitable for the production of particularly large components with increased material requirements. Here, the melt can be pressed from the melting furnace 13 through the metering gap 20 and the filling chamber 6 into the mold cavity, in which case the plunger 7 merely ends the mold filling and takes over the make-up - if necessary in conjunction with further pressure elements in the mold wall. When using a plurality of filling chambers 6, these can be supplied with melt via branches or multiple arrangement of the filling tube 14.

Bei dem Ausführungsbeispiel nach Fig. 3 sind gleiche Teile mit gleichen Bezugszeichen versehen. Dieses Ausführungsbeispiel unterscheidet sich von dem nach Fig. 1 im wesentlichen dadurch, daß die Füllkammer 2 zweiteilig ausgebildet ist und in eine separate Preßkammer 23 und Schmelzkammer 24 unterteilt ist. Die Schmelzkammer 24 kann relativ zur Preßkammer 23 verschoben werden, so daß der Schmelzvorgang des Rohlinges 11 an anderer Stelle erfolgen kann, wobei die einzelnen Schmelzkammern beispielsweise auch in einem Karussell angeordnet sein können. Dies ist vorteilhaft, denn dadurch kann die Leistung der Gießvorrichtung wesentlich erhöht werden, denn die Schmelzzeit verlängert nicht mehr die Formfüll- und Erstarrungszeit für die Herstellung des Bauteiles. Darüberhinaus kann die innere Hülse der Schmelzkammer 24 auch aus einem Isoliermaterial hergestellt werden, das dann nicht notwendigerweise auch hohe Druckkräfte aushalten muß. Diese Hülse aus Isoliermaterial 27 ist dann von der Induktionsheizung 8 umgeben.3, the same parts are provided with the same reference numerals. This embodiment differs from that of FIG. 1 essentially in that the filling chamber 2 is formed in two parts and is divided into a separate press chamber 23 and melting chamber 24. The melting chamber 24 can be displaced relative to the pressing chamber 23, so that the melting process of the blank 11 can take place elsewhere, wherein the individual melting chambers can, for example, also be arranged in a carousel. This is advantageous because this can significantly increase the performance of the casting device, because the melting time no longer extends the mold filling and solidification time for the manufacture of the component. In addition, the inner sleeve of the melting chamber 24 can also be produced from an insulating material which then does not necessarily have to withstand high compressive forces. This sleeve made of insulating material 27 is then surrounded by the induction heater 8.

Da in die bewegliche Schmelzkammer von unten der Preßkolben 7 eingeschoben wird, muß entweder in die Schmelzkammer ein verschiebbarer Boden 28 eingelegt werden, der das Schmelzematerial am Auslaufen hindert, oder aber die Heizeinrichtung wird so angeordnet, daß der untere Bereich des Rohlinges nicht mit aufschmilzt, so daß der Rohling selbst den Bodenabschluß bildet.Since the plunger 7 is inserted into the movable melting chamber from below, either a displaceable base 28 must be inserted into the melting chamber, which prevents the melting material from escaping, or the heating device is arranged so that the lower area of the blank does not melt, so that the blank itself forms the bottom closure.

Zur Behinderung des Wärmeflusses aus der Schmelzkammer 24 in die Platte 9a ist ein Isolierring 29 angeordnet.An insulating ring 29 is arranged to hinder the flow of heat from the melting chamber 24 into the plate 9a.

Zur Entlüftung des Formhohlraumes 1 beim Einschieben des Schmelzematerials dienen Bohrungen 31, die in der Wandung des Formunterteiles 4 oder des Formoberteiles 3 angeordnet sind. Diese Öffnungen 31 werden dann über einen Schieber 32, der durch die Verschiebung der Aufspannplatte 15 in die Schließstellung betätigt wird, verschlossen.Bores 31, which are arranged in the wall of the lower mold part 4 or the upper mold part 3, are used to vent the mold cavity 1 when the melt material is inserted. These openings 31 are then closed by a slide 32 which is actuated by the displacement of the platen 15 into the closed position.

Des weiteren ist das Formoberteil 3 über eine Feder 33 gegenüber der Aufspannplatte 15 abgestützt. Diese Feder bewirkt, daß einerseits das Formoberteil mit einem ausreichenden Druck während der Formfüllung am Formunterteil 4 anliegt, daß andererseits jedoch die Öffnungen 31 noch nicht vom Schieber 32 verschlossen werden. Nach dem Verschließen der Öffnungen 31 und während der Erstarrung unter hohem Druck liegt die Aufspannplatte 15 mit der Schieberplatte 41 kraftschlüssig am Formoberteil 3 an, so daß dann Formoberteil und Formunterteil mit dem gewünschten Druck gegeneinander gepreßt werden.Furthermore, the upper mold part 3 is supported by a spring 33 with respect to the platen 15. This spring has the effect that, on the one hand, the upper mold part rests with sufficient pressure on the lower mold part 4 during mold filling, but on the other hand the openings 31 are not yet closed by the slide 32. After the openings 31 have been closed and during solidification under high pressure, the clamping plate 15 lies with the slide plate 41 frictionally on the upper mold part 3, so that the upper mold part and lower mold part are then pressed against one another with the desired pressure.

Der beim Erstarrungsvorgang aufrechterhaltene Druck kann entweder durch den Preßkolben 7 oder aber durch einen weiteren Preßkolben 30 aufgebracht werden, wobei durch ein Zusammenwirken beider Kolben während des Erstarrungsvorganges auch ein reversibles Fließen der Schmelze im Formhohlraum 1 erhalten werden kann.The pressure maintained during the solidification process can be applied either by the plunger 7 or by a further plunger 30, whereby a reversible flow of the melt in the mold cavity 1 can also be obtained by the interaction of both pistons during the solidification process.

Bei dem Ausführungsbeispiel nach Fig. 4 sind gleiche Teile mit gleichen Bezugszeichen versehen. Dieses Ausführungsbeispiel unterscheidet von dem nach Fig. 3 dadurch, daß das Chargiermaterial in einem Becher 35 aus feuerfestem Material in die Schmelzkammer 24 eingebracht wird und in diesem erschmolzen wird. Im Anschluß hieran wird der Becher einschließlich des ganz oder teilweise geschmolzenen Materials in die Preßkammer 23 mittels des Preßkolbens 7 geschoben. Das eigentliche Einbringen des Schmelzematerials in den Formhohlraum 1 erfolgt dann mittels eines Preßkolbens 34, der von oben in den Becher eintaucht, wobei die Schmelze aus diesem verdrängt wird und zwischen der Kolbenwandung und der Becherinnenwandung nach oben in den Formhohlraum 1 gelangt.4, the same parts are provided with the same reference numerals. This embodiment differs from that according to FIG. 3 in that the charging material is introduced into the melting chamber 24 in a cup 35 made of refractory material and is melted therein. Following this, the cup including all or part of the melted material is pushed into the press chamber 23 by means of the plunger 7. The actual introduction of the melt material into the mold cavity 1 then takes place by means of a plunger 34 which dips into the cup from above, the melt being displaced from this and reaching the mold cavity 1 between the piston wall and the cup inner wall.

Das Ausführungsbeispiel nach Fig. 5 zeigt einen Wandabschnitt 36, beispielsweise des Formober- oder des Formunterteiles, wobei dieser Wandabschnitt 36 aus einem relativ dünnen Material ausgebildet ist, so daß sich dieser beim Füllvorgang des Formhohlraumes 1 verformt. Hinter diesem flexiblen Wandabschnitt 36 ist ein Preßkolben 37 angeordnet, der beispielsweise mit Bohrungen 38 für ein Kühl- oder Heizmittel versehen werden kann. Beim Erstarrungsvorgang wird der Preßkolben 37 gegen den flexiblen Wandabschnitt 36 gedrückt, so daß auch beim Erstarrungsvorgang der Druck im Material aufrechterhalten werden kann.The exemplary embodiment according to FIG. 5 shows a wall section 36, for example of the upper or lower mold part, this wall section 36 being formed from a relatively thin material, so that it deforms during the filling process of the mold cavity 1. Arranged behind this flexible wall section 36 is a plunger 37 which can be provided, for example, with bores 38 for a coolant or heating medium. During the solidification process the plunger 37 is pressed against the flexible wall section 36, so that the pressure in the material can be maintained even during the solidification process.

Das Ausführungsbeispiel nach Fig. 6 zeigt gleichermaßen einen flexiblen Wandabschnitt 36, hinter dem eine Druckkammer 39 angeordnet ist. Dieser Wandabschnitt kann gleichfalls bei der Formfüllung vom Formraum weg - zu dessen Vergrößerung - verformt werden, wobei dann beim Erstarrungsvorgang aufgrund eines durch ein Rohr 40 eingeleiteten Druckmittels diese Verformung wieder rückgängig gemacht wird, wobei gleichermaßen auch eine Verformung des Wandabschnittes 36 zum Formraum hin erhalten werden kann. Diese Formraumvergrößerungen an den dafür geeigneten Bauteilbereichen am Ende der Formfüllung und die entsprechenden Verkleinerungen während der Erstarrung durch die Vorrichtungsbeispiele nach den Fig. 3, 5 und 6 kompensieren das durch die Erstarrungsschrumpfung bedingte Volumendefizit im Bauteil. Das Druckmittel kann darüberhinaus auch zur Kühlung oder zur Heizung des entsprechenden Wandabschnittes 36 herangezogen werden.The embodiment according to FIG. 6 likewise shows a flexible wall section 36, behind which a pressure chamber 39 is arranged. This wall section can also be deformed away from the mold space - to enlarge it - during the mold filling, this deformation then being reversed again during the solidification process due to a pressure medium introduced through a pipe 40, wherein a deformation of the wall section 36 towards the molding space is likewise obtained can. These enlargements of the mold space at the suitable component areas at the end of the mold filling and the corresponding reductions during solidification by the device examples according to FIGS. 3, 5 and 6 compensate for the volume deficit in the component caused by the solidification shrinkage. The pressure medium can also be used for cooling or heating the corresponding wall section 36.

Alle beschriebenen Maßnahmen können durch computergestützte Meß- und Regelungstechnik optimiert, koordiniert und so zu einem besonderen Synergie-Effekt gebracht werden.All of the measures described can be optimized and coordinated using computer-aided measurement and control technology and thus brought about a special synergy effect.

Claims (37)

  1. A method for manufacturing component parts, in which fluid or partially fluid substance is poured into a mould cavity formed from at least two mould halves, wherein the material in at least one filling chamber directly below the mould cavity is brought to a level of consistency suitable for mould filling, is subsequently conveyed uphill into the mould cavity which is - for the purpose of ventilation - not yet fully closed, and is held therein, after the mould cavity is closed during hardening, at a pressure which is adjustable in a locally varying manner.
  2. A method according to Claim 1, characterised in that the substance to be reduced to a fluid state is feed into the filling chamber in a solid form.
  3. A method according to Claim 1, characterised in that the material is feed into the filling chamber in fluid form.
  4. A method according to any one of Claims 1 to 3, characterised in that parts of the mould are at least partially open at the start of filling, and are completely closed towards the end of mould filling.
  5. A method according to any one of Claims 1 to 4, characterised in that at least one mould half has ventilation ducts which are closed at the end of mould filling.
  6. A method according to any one of Claims 1 to 5, characterised in that the latest time that the mould space volume is increased in comparison with the volume of the solidified component part is towards the end of mould filling, and during solidification the increase in volume is cancelled.
  7. A method according to any one of Claims 1 to 6, characterised in that for sealed feeding of the component structure during solidification, the pressure is altered intermittently.
  8. A method according to Claim 7, characterised in that when a plurality of pressure members are used which have pressure surges co-ordinated with each other to such an extent that the melt in the feed ducts during solidification is moved in a reversible manner.
  9. A method according to any one of Claims 1 to 8, characterised in that the mould halves are cooled.
  10. A method according to any one of Claims 1 to 9, characterised in that a plurality of cooling zones are activated in the mould halves according to the expansion sequence cooling principle.
  11. A method according to Claim 10, characterised in that the cooling zones in the mould are activated in co-ordination with the pressure members fitted into the wall of the mould halves.
  12. A method according to either Claim 10 or 11, characterised in that that cooling members and pressure members are combined to form a functional unit.
  13. A method according to any one of Claims 1 to 12, characterised in that when a plurality of filling chambers are used, they are charged with different materials.
  14. A method according to any one of Claims 1 to 13, characterised in that the substance to be melted or the melt is charged into the filling chamber in a cup-shaped shell made of fire-resistant material, and is displaced therefrom, for mould filling, by a plunger moving downwardly from or with the mould upper section.
  15. A method according to Claim 14, characterised in that a filled cup is inserted into the filling chamber by a plunger forming an abutment during pressing.
  16. A method according to any one of Claims 1 to 15, characterised in that the filling chamber is subdivided into a melting and pressing area.
  17. A method according to any one of Claims 14 to 16, characterised in that conveying of the cup is performed by the plunger.
  18. A method according to any one of Claims 1 to 17, characterised in that solid structures are inserted into the mould cavity, fixed and - by pouring in the melt - are connected to each other or are integrated in the component.
  19. A method according to any one of Claims 1 to 18, characterised in that the charging structures remain in a solid state in the region of their lower end surface during melting in the filling chamber.
  20. A method according to any one of Claims 1 to 18, characterised in that the melt in the filling chamber is metered with the aid of regulation of the gas pressure above the melt level in the oven and also [with] the volume of the charging structure insert in conjunction with a level sensor.
  21. A device for manufacturing component parts, in particular according to the method according to any one of Claims 1 to 20, with a mould cavity (1) which is formed of at least one mould upper part (3) and a mould lower part (4), wherein the bottom of the mould lower part (4) is provided with at least one opening (5) which is directly connected to a filling chamber (6) which is fillable with charging material, has contents displaceable by a plunger (7) and is provided with a heating mechanism (8), and wherein the material contained in the mould cavity (1) can be pressurised by way of a plurality of pressure members (17, 7; 30; 36, 37; 34), and the device is provided with a closable ventilation opening (3, 4, 31).
  22. A device according to Claim 21, characterised in that a plunger (7) can be inserted into the filling chamber (6) vertically from below.
  23. A device according to either of Claims 21 or 22, characterised in that a plurality of openings (5) each connected to a filling chamber (6) are formed on the mould lower part (4).
  24. A device according to any one of Claims 21 to 23, characterised in that the mould lower part (4) is connected to the rigid clamping plate (9) of the device, while the mould upper part (3) is arranged on the clamping plate (15) so as to be vertically movable, and is provided with closing means (10).
  25. A device according to any one of Claims 21 to 24, characterised in that the filling chamber (6) is provided with an induction heating mechahism (8).
  26. A device according to any one of Claims 21 to 25, characterised in that the filling chamber (6) consists of several parts (melting and pressing part) and may be formed from different materials.
  27. A device according to any one of Claims 21 to 26, characterised in that a solid charging structure (11) can be brought to the filling chamber (6) using feed means.
  28. A device according to Claim 27, characterised in that the feed means is connected to a magazine and comprises a feed table (12).
  29. A device according to any one of Claims 21 to 28, characterised in that a plurality of movable melting chambers (24) each provided with a heating mechanism (8) are associated, as parts of the filling chambers (6), with one of the plungers (7).
  30. A device according to any one of Claims 21 to 29, characterised in that the plunger (7) is displaceable together with a melting chamber (24) between a rigid clamping plate (9a) and a plunger plate (18).
  31. A device according to Claim 29 or 30, characterised in that the filling chamber (6, 24) is provided with a displaceable bottom (28).
  32. A device according to any one of Claims 21 to 26, characterised in that the melt (19) can be poured into the filling chamber (6) by means of a filling pipe (14) from a melt furnace (13) which is supplied with solid charging material by way of a feed pipe (21) with sealing (26).
  33. A device according to any one of Claims 21 to 32, characterised in that the end surface of the plunger (7) is, in its final position, a shaping surface of the mould cavity (1).
  34. A device according to any one of Claims 21 to 33, characterised in that the mould cavity (1) is provided with ventilation openings (31) which are closable, with slide-shaped closing members (32), at the end of mould filling.
  35. A device according to any one of Claims 21 to 34, characterised in that at least one part of the mould wall (36) is flexibly constructed, and can be pressurised on the side facing away from the mould cavity (1) by means of pressure members (30, 37, 39, 40).
  36. A device according to Claim 35, characterised in that the pressure members (30, 37, 39, 40) are provided with a cooling mechanism and/or heating mechanism (38, 39, 40).
  37. A device according to any one of Claims 21 to 36, characterised in that for improving mould filling, vibrators are attached to the mould wall.
EP92115545A 1991-10-01 1992-09-11 Method and device for manufacturing of component parts Expired - Lifetime EP0535421B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4132732 1991-10-01
DE4132732A DE4132732A1 (en) 1991-10-01 1991-10-01 METHOD AND DEVICE FOR PRODUCING COMPONENTS

Publications (2)

Publication Number Publication Date
EP0535421A1 EP0535421A1 (en) 1993-04-07
EP0535421B1 true EP0535421B1 (en) 1997-03-12

Family

ID=6441939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92115545A Expired - Lifetime EP0535421B1 (en) 1991-10-01 1992-09-11 Method and device for manufacturing of component parts

Country Status (4)

Country Link
EP (1) EP0535421B1 (en)
AT (1) ATE149894T1 (en)
DE (2) DE4132732A1 (en)
ES (1) ES2099777T3 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19950037C2 (en) 1999-10-16 2001-12-13 Drm Druckgus Gmbh Method and device for the primary shaping of a material
DE10012787B4 (en) * 2000-03-16 2008-04-10 Volkswagen Ag Process for producing light metal castings with cast-in bushings
DE10043717A1 (en) * 2000-09-04 2002-03-14 Buehler Druckguss Ag Uzwil Process for compressive reforming of aluminum or magnesium alloys comprises conveying the liquid or liquid material from a preparation chamber into a casting chamber of a die casting machine
DE10047735A1 (en) * 2000-09-27 2002-04-11 Rauch Fertigungstech Gmbh Process for die casting and filling sleeve therefor as well as die casting machine
JP4175602B2 (en) * 2001-07-02 2008-11-05 徹一 茂木 Casting pouring equipment
DE10256834A1 (en) * 2002-12-04 2004-07-08 Drm Druckguss Gmbh Process and device for preparation of a large surface workpiece by pressure casting with the aid of a number of casting cylinders useful in automobile manufacture
DE102004008157A1 (en) * 2004-02-12 2005-09-01 Klein, Friedrich, Prof. Dr. Dr. h.c. Casting machine for the production of castings
DE102007062436B4 (en) 2007-12-20 2010-11-11 Gottfried Wilhelm Leibniz Universität Hannover Method for producing a casting
AT517860B1 (en) * 2015-10-27 2020-02-15 Christian Platzer Method and device for producing at least one molded part
DE102016107572B3 (en) 2016-04-22 2017-05-18 Stefan Argirov Apparatus for the production of castings, such as aluminum castings, by low pressure casting

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2128425A1 (en) * 1970-08-21 1973-01-04 Friedhelm Dipl Ing Kahn Metal die casting machine - working on u-tube principle using melt feed
DE2646060A1 (en) * 1976-10-13 1978-04-20 Friedhelm Prof Dr Ing Kahn Foundry moulds and dies - contg. elements which heat the empty die and them provide cooling for directional solidification of a casting
JPS5843177B2 (en) * 1979-01-26 1983-09-26 本田技研工業株式会社 How to fill molten metal in vertical die casting machine
CA1149579A (en) * 1979-07-26 1983-07-12 Toyoaki Ueno Vertical die casting machine

Also Published As

Publication number Publication date
DE4132732A1 (en) 1993-04-08
ATE149894T1 (en) 1997-03-15
EP0535421A1 (en) 1993-04-07
ES2099777T3 (en) 1997-06-01
DE59208164D1 (en) 1997-04-17

Similar Documents

Publication Publication Date Title
DE102006036369B4 (en) Method and device for producing components by integrated melting, casting and forming
EP2848333A1 (en) Method and device for producing a metallic component by means of a casting and mould
DE7532061U (en) DEVICE FOR MECHANIZED LOW PRESSURE CASTING
EP0535421B1 (en) Method and device for manufacturing of component parts
EP0872295B1 (en) Casting mould and method for the production of hollow castings and hollow castings
DE102016123491B4 (en) Casting device, press and method for casting a component
DE69405588T2 (en) METHOD AND DEVICE FOR COMPENSATING SHRINK IN METAL CASTING
EP1940573A1 (en) Diecasting process and diecasting device
DE69124681T2 (en) Horizontal continuous casting device with adjustable mold
AT412763B (en) METHOD AND DEVICE FOR PRODUCING LIGHT METAL CAST PRODUCTS, ESPECIALLY PARTS FROM MAGNESIUM OR MAGNESIUM ALLOYS
WO2015155170A1 (en) Die-casting machine and die-casting process for producing a plurality of castings
DE2028855A1 (en) Method and apparatus for the production of castings of uniform density
WO1997030806A1 (en) Thixoforming device
DE10210259A1 (en) Casting device with a mold positioning device
DE112010004915T5 (en) Die-casting and die-casting.
DE69610550T2 (en) METHOD AND DEVICE FOR PRESS CASTING
DE3873994T2 (en) METHOD AND METHOD FOR METAL CASTING.
DE102012203039B4 (en) Method for operating a die-casting machine with a melt transport device
DE112006003535B4 (en) Lost mold casting apparatus for crystallization under pressure
EP1786576B1 (en) Method and device for casting molten metal
DE19621945C1 (en) Gravity casting light metal components using die
DE102008055506A1 (en) Pressure die-casting the parts made of metal alloy e.g. aluminum using horizontal cold chamber die-casting machine, comprises filling respective dosage of metal melt into casting chamber and subsequently pressing the melt by casting piston
DE3812740C2 (en)
DE60205168T2 (en) Method and device for vertical casting of rough blocks and ingot produced in this way
WO1994029050A2 (en) Process and device for casting components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19930423

17Q First examination report despatched

Effective date: 19950314

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 149894

Country of ref document: AT

Date of ref document: 19970315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWALTSBUREAU BOSSHARD UND LUCHS

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970319

REF Corresponds to:

Ref document number: 59208164

Country of ref document: DE

Date of ref document: 19970417

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2099777

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980814

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990929

EUG Se: european patent has lapsed

Ref document number: 92115545.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000906

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000929

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010828

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010925

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020925

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030911

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061117

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401