[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0526508B1 - Rotor nozzle for a high-pressure cleaning device - Google Patents

Rotor nozzle for a high-pressure cleaning device Download PDF

Info

Publication number
EP0526508B1
EP0526508B1 EP91908065A EP91908065A EP0526508B1 EP 0526508 B1 EP0526508 B1 EP 0526508B1 EP 91908065 A EP91908065 A EP 91908065A EP 91908065 A EP91908065 A EP 91908065A EP 0526508 B1 EP0526508 B1 EP 0526508B1
Authority
EP
European Patent Office
Prior art keywords
casing
nozzle body
longitudinal axis
rotor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91908065A
Other languages
German (de)
French (fr)
Other versions
EP0526508A1 (en
Inventor
Johann G. Wesch
Gerhard Dellert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alfred Kaercher SE and Co KG
Original Assignee
Alfred Kaercher SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfred Kaercher SE and Co KG filed Critical Alfred Kaercher SE and Co KG
Publication of EP0526508A1 publication Critical patent/EP0526508A1/en
Application granted granted Critical
Publication of EP0526508B1 publication Critical patent/EP0526508B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/16Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening having selectively- effective outlets
    • B05B1/1627Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening having selectively- effective outlets with a selecting mechanism comprising a gate valve, a sliding valve or a cock
    • B05B1/1636Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening having selectively- effective outlets with a selecting mechanism comprising a gate valve, a sliding valve or a cock by relative rotative movement of the valve elements
    • B05B1/1645Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening having selectively- effective outlets with a selecting mechanism comprising a gate valve, a sliding valve or a cock by relative rotative movement of the valve elements the outlets being rotated during selection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/04Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
    • B05B3/0409Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements
    • B05B3/0463Rotor nozzles, i.e. nozzles consisting of an element having an upstream part rotated by the liquid flow, and a downstream part connected to the apparatus by a universal joint

Definitions

  • the invention relates to a rotor nozzle for a high-pressure cleaning device with a cylindrical housing, which has a pan-shaped, centrally perforated depression in an end wall, with a nozzle body provided with a through-bore, which is supported with a spherical end in the pan-shaped depression, in the longitudinal direction extends a part of the housing and has an outer diameter which is smaller than the inner diameter of the housing, and with a tangential opening into the housing for a liquid, through which the liquid in the housing can be rotated about the longitudinal axis, so that the nozzle body rotates together with the rotating liquid and thereby lies against the inner wall of the housing with a contact surface on its circumference, the longitudinal axis of the nozzle body being inclined relative to the longitudinal axis of the housing.
  • a mechanically relatively complex method provides for a rotor to be rotatably mounted in a housing about the longitudinal axis of the housing, which rotor is driven by means of the liquid jet entering the housing.
  • a nozzle body which can also be rotated about the longitudinal axis of the housing and is arranged at an angle to the longitudinal axis, is driven via a gear, for example a gearwheel gear (EP-A2-153129).
  • a gear transmission leads to considerable design effort, there is also the risk that only a short service life can be achieved by continued use of the intermeshing gear parts during continuous use.
  • a structurally simple, yet functional rotor nozzle is known from DE-OS 31 50 879.
  • a pan-supported nozzle body is provided in the housing, which is placed in a circulation on a conical shell in that it is carried along by a liquid column rotating around the longitudinal axis inside the housing.
  • the liquid column is excited to rotate about the longitudinal axis by the tangential inlet of the liquid into the interior of the housing.
  • this rotor nozzle is to be charged with liquid under high pressure.
  • the liquid column rotating about the longitudinal axis acts in particular in the front region of the nozzle body, in which it is mounted in the central, pan-shaped depression, as a rotary drive for the nozzle body, so that it is set into a strong self-rotation about its own longitudinal axis.
  • This self-rotation about the longitudinal axis is superimposed on the movement of the nozzle body on the conical surface, and this self-rotation leads to the jet emerging from the nozzle body also rotating about its longitudinal axis.
  • the jet fans out very strongly so that the cleaning effect diminishes at a short distance from the nozzle body.
  • the increased friction between the nozzle body and the inner wall of the housing in the area of the contact surface leads to the nozzle body is at least partially rolled on the inner wall.
  • This rolling movement leads to a rotation of the nozzle body about its own axis, whereby, however, the direction of rotation is opposite to the direction of rotation which forces the rotating liquid column inside the housing onto the nozzle body. Due to the increased friction, it is therefore possible to counteract the forced rotation caused by the rotating liquid column and in this way largely to avoid the undesired rotation of the nozzle body.
  • the nozzle body can be made of a corresponding material, for example an elastomeric plastic.
  • the nozzle body in the region of the contact surface with a material whose coefficient of friction compared to the material of the housing inner wall is> 0.25 and in particular> 0.5; a corresponding coating can of course also carry the inner wall of the housing.
  • This coating can have the shape of an O-ring, which is inserted into a circumferential groove of the nozzle body or a circumferential groove of the housing and consists of an elastomer material that has the required friction values.
  • This solution has the additional advantage that when the contact surface area is worn, the O-ring forming the contact surface can be easily replaced.
  • radially protruding braking elements are arranged, which are preferably walls which are arranged in radial planes of the housing and surround the range of motion of the nozzle body.
  • Such braking elements counteract the rotational movement of the liquid around the longitudinal axis of the housing in the area near the outlet, and precisely in this area the rotation of the liquid column leads to the undesired self-rotation of the nozzle body.
  • These braking elements also act in such a way that the undesirable excitation of self-rotation of the nozzle body is reduced. This measure is particularly advantageous in combination with the increase in the coefficient of friction in the contact area, since both effects act in the same direction, however, these braking elements can also develop the effect mentioned for themselves, that is, without increasing the friction in the contact area.
  • the inlet is arranged on the side facing away from the pan-shaped recess of the housing in a region of the housing into which the nozzle body supported by the pan-shaped recess does not extend. If an inlet opens into the housing in an area in which the nozzle body is located, this incoming flow can also increase the self-rotation of the nozzle body. By spatially separating the inlet of the liquid and the nozzle body, this undesirable stimulation of the self-rotation of the nozzle body is largely avoided.
  • the tangential Inlet must be arranged both in the jacket and in the bottom of the housing, it is important in this context that the incoming liquid does not directly touch the side wall of the nozzle body
  • the length of the nozzle body is preferably> 3/4 of the inside length of the housing; with shorter nozzle bodies there is a risk that the nozzle bodies will vibrate and produce an unsteady, fanned out jet.
  • the end wall of the housing opposite the pan-shaped recess carries a central projection which projects into the interior of the housing and which forms an annular space in the interior of the housing, into which the end of the nozzle body facing away from the spherical end is immersed when it engages with it supports the spherical end in the pan-shaped recess.
  • Such an annular space, into which the tangential inlet opens, produces a rotation of the liquid column in the interior of the housing, the liquid particles preferably being in the area near the wall.
  • this arrangement of the projection results in a pre-orientation of the nozzle body even before a liquid flow begins, so that when the liquid flow is switched on, the nozzle body already assumes an inclined position and is thereby pressed securely against the inner wall of the housing as soon as the liquid flows through the housing.
  • the nozzle body has a smaller outer diameter at the end immersed in the annular space than at the remaining part of its overall length, for example the nozzle body can only carry a central extension pin at its end opposite the spherical end, which protrudes into the annular space.
  • a second inlet for liquid opens into the housing parallel to the longitudinal axis, and a distributor is provided which optionally supplies the liquid to one or the other inlet or to both inlets at the same time.
  • a distributor is provided which optionally supplies the liquid to one or the other inlet or to both inlets at the same time.
  • a further nozzle body is arranged stationary next to the housing, which is connected to a liquid supply, which also leads to the inlet or the inlets of the housing, and that a switchover the flow path to the stationary nozzle body is optional releases or closes. In this way, the user can choose whether he wants to generate a rotating beam or a stationary beam.
  • adjustable support surfaces are provided in the interior of the housing, on which the nozzle body rests with its contact surface, and if the angle of inclination of the longitudinal axis of the nozzle body relative to the longitudinal axis of the housing is different at different positions of the support surfaces. Simply by moving the support surfaces, it is therefore possible to vary the opening angle of the circulating point beam.
  • the rotor nozzle 1 shown in Figure 1 is screwed onto the jet pipe 2 of a high-pressure cleaner not shown in the drawing;
  • This jet pipe can be connected to the pressure-side outlet of a high-pressure pump by means of a flexible high-pressure line and then supplies a cleaning liquid which may have been mixed with chemicals under high pressure, for example below 100 bar.
  • a hood-shaped base part 3 is screwed onto the end of the jet pipe 2 and has a step-like narrowing interior 4, in the end part of which the jet pipe 2 opens.
  • the base part 3 forms the base 5 of a cylindrical interior 6 of a housing 7 screwed onto the base part 3, the interior 6 of which narrows conically towards the end wall 8 opposite the base 5.
  • a central opening 9 which is surrounded by a pan-shaped depression 10, that is to say a shoulder which surrounds the opening 9 on the inside of the housing 7 in a ring shape and has a circular cross section in cross section.
  • the housing 7 is overlaid by a hood 11 which is open towards the front and extends to the free end of the housing 7 to such an extent that it protrudes beyond the end wall 8.
  • channels 12 enter the base part 3 in the radial direction, which lead into the interior 6 with a component running tangentially in the circumferential direction. You get there into an annular space 13 adjacent to the base 5, which is formed between a central projection 14 projecting into the interior 6 and the inner wall 15 of the interior 6.
  • an essentially tubular nozzle body 16 Arranged in the interior of the interior is an essentially tubular nozzle body 16 with a longitudinal opening 17 which is spherical at its end facing the end wall 8. This spherical end 18 dips into the pan-shaped recess 10 and is supported in this. At its opposite end, the nozzle body 16 carries a central, pin-shaped extension 19 which plunges into the annular space 13.
  • an O-ring 22 made of elastomeric material is inserted in a circumferential groove, which is not clearly visible from the drawing, and which, when the nozzle body is correspondingly inclined, contacts the inner wall 15 of the interior 6 creates.
  • the O-ring consists of an elastomer material whose coefficient of friction is relatively large compared to the material of the inner wall 15, for example> 0.25 and in particular> 0.5.
  • liquid is introduced into the interior 4 under high pressure via the jet pipe 2 and from there passes into the interior 6 via the channels 12.
  • the liquid passes through the corresponding guidance of the channels 12 tangentially to the circumferential direction in the interior 6, so that a liquid column rotating about the longitudinal axis is formed within the interior 6.
  • this liquid column also entrains the nozzle body 16, which in this way rotates along a conical surface, the opening angle being determined by the contact of the O-ring 22 on the inner wall 15 of the interior 6.
  • the liquid column rotating about the longitudinal axis of the housing 7 tries to force the nozzle body 16 to rotate in the same direction, but in the area of the O-ring 22 the nozzle body experiences an opposite drive torque due to the rolling movement on the inner wall 15 of the interior 6 , whereby the two opposite tendencies largely cancel each other out.
  • the emerging liquid jet thus remains compact over a longer distance and does not fan out as a result of a high self-rotation.
  • the rotor nozzle of FIG. 2 molded into the hood 11, carries a stationary nozzle body 25 which is held on the hood 11 laterally offset with respect to the housing 7.
  • a third peripheral seal 31 is arranged upstream of the two peripheral seals 29 and 30.
  • the hood 11 can be displaced in the axial direction relative to the housing 7 in the exemplary embodiment of FIG. 2, so that a connecting line 26 arranged in the radial direction and arranged in the hood 11 is connected via an axial connecting line 27 leads to the stationary nozzle body 25, can optionally be arranged between the peripheral seals 29 and 30 or between the peripheral seals 30 and 31.
  • a connecting line 26 arranged in the radial direction and arranged in the hood 11 is connected via an axial connecting line 27 leads to the stationary nozzle body 25, can optionally be arranged between the peripheral seals 29 and 30 or between the peripheral seals 30 and 31.
  • the connecting line 26 ends bluntly on the outer jacket of the jet pipe 2, the bore 28, however, is sealed off from the hood 11 covering it by the two adjacent peripheral seals 29 and 30.
  • a spring-loaded locking ball 32 in the hood 11 which can dip into an opening 33 in the jet pipe 2 and thus allows the hood 11 to be displaced relative to the housing 7 only when a certain force is exceeded.
  • the user has the option of choosing between the delivery of a rotating point beam rotating on a conical jacket and the delivery of a stationary beam by moving the hood 11 relative to the housing 7. If the connecting line 26 and the radial bore 28 are in alignment with one another, the vast majority of the liquid only reaches the nozzle body 25, since the flow resistance through the interior 6 is significantly greater than that when passing through the stationary nozzle body 25. If the bore 28 closed, on the other hand, the entire amount of liquid passes through the interior 6 in the manner described with reference to the exemplary embodiment in FIG. 1, where it produces a compact point jet running around a cone jacket.
  • the interior space 6 is cylindrical over its entire length; in the downstream region, the interior space also has walls 35 which are arranged in radial planes and which run with their inner edge 36 obliquely inward in the direction of flow. These walls 35 form a vortex brake for the liquid column rotating in the interior around the longitudinal axis, that is to say they brake the rotational movement of the liquid column in this area close to the outlet. This leads to less self-rotation being transmitted to the nozzle body 16 in this area, that is to say the tendency for undesired self-rotation of the nozzle body about its longitudinal axis is reduced by this measure.
  • This measure is particularly advantageous in combination with the driving force generated by the rolling movement of the nozzle body, which counteracts the undesired intrinsic rotation, which is favored by the increased friction value of the system material, but this measure can also be used in all exemplary embodiments alone to counteract the undesired intrinsic rotation of the nozzle body 16 to suppress its longitudinal axis.
  • walls extending in radial planes are used as a vortex brake, other projections projecting into the interior could also be used for this, so that in the region of the interior close to the outlet it alternately has a large and a small inside diameter. It is essential that the rotation of the liquid column in the interior is reduced only in the area close to the outlet, since this rotation in the area remote from the outlet is necessary in order to take the nozzle body with it and to let it circulate on the surface of the cone.
  • FIG. 3 again largely corresponds to that of FIG. 1, corresponding parts therefore also have the same reference numerals here.
  • the embodiment of Figure 3 differs from that 1 essentially by the fact that from the interior 4 of the base part 3 emerge both those channels 42 which open tangentially into the interior 6 in the circumferential direction, and also those channels 43 which open into the interior 6 in the axial direction.
  • the channels 42 emerge from this in the outer peripheral region of the interior 4, namely upstream of a step 44 which separates the upstream part of the interior 4 with a larger diameter from the downstream part 45 with a smaller diameter.
  • the channel 43, which axially enters the interior 6, emerges from this part 45.
  • the jet pipe 2 is closed on the end face and there has a central projection 46 which is sealingly applied to the step 44, so that the projection 46 separates the downstream part 45 of the interior 4 from the rest of the interior.
  • the interior of the jet pipe 2 is connected to the part of the interior 4 arranged upstream of the step 44 via bores 47 which are guided obliquely outwards.
  • the liquid which is brought in via the jet pipe 2 passes through the channels 42 which open into the interior 6 in the circumferential direction, so that a liquid column rotating about its longitudinal axis is formed in the interior 6 in the manner described, which column forms the nozzle body 16 takes along and thus forms a compact jet rotating on a cone jacket.
  • the jet pipe 2 can be moved in the axial direction relative to the base part 3 by screwing it out of the base part 3.
  • the projection 46 lifts off from the step 44 and thus establishes a connection to part 45 of the interior 4 via an annular gap formed between the step 44 and the projection 46.
  • Liquid brought in through the jet pipe 2 can now additionally enter the interior via the axial channel 43, which does not produce any rotation of the liquid column in the interior 6.
  • a bypass is thus opened, through which a part of the liquid which has been brought through passes without contributing to the conical surface circulation movement of the compact jet.
  • the ratio of the division results on the one hand from the size of the axial displacement of the jet pipe 2 relative to the base part 3, that is to say by more or less unscrewing the jet tube 2 from the base part 3, and on the other hand through the flow cross sections of the channels 42 and 43. If one If a large proportion of the supplied liquid enters the interior space 6 via the channel 43, the rotation of the liquid column in the interior space 6 is weakened, with the result that the rotational speed of the nozzle body 16 is reduced. In this way, the operator can influence the rotational speed of the point beam generated.
  • FIG. 4 The exemplary embodiment shown in FIG. 4 is also very similar to that of FIG. 1, so that corresponding parts also have the same reference numbers here.
  • channels 52 are provided, which open tangentially to the circumferential direction in the interior 6, and channels 53, which open axially.
  • the channel 53 emerges in the radial direction from the interior 4, in the area of the outlet is a sealing valve body 51 guided across the interior 4, which closes the channel 53 when it is fully inserted, but opens it when it is inserted is pulled out.
  • the immersion depth of the needle valve body 51 is determined by its abutment on an eccentric control track 54, which is located on the inside of the hood 11 rotatably arranged on the base part 3. In the exemplary embodiment shown, this extends only over the height of the base part 3.
  • the housing 7 is not screwed onto the base part 3, but screwed into it, but the rest of the construction is similar, since in this exemplary embodiment there is also a nozzle body 16 in the interior 6, which has a spherical end 18 in the pan-shaped depression 10 rests and rotates along the inside wall 6 along a cone shell by the liquid column rotating about the longitudinal axis in the interior 6.
  • No central projection 14 is provided in the bottom part, but the bottom 5 is flat.
  • a support ring 55 is arranged in the interior 6, which carries an obliquely inward-facing support surface 56.
  • the upper edge 57 of the nozzle body 16 lies against this supporting surface during its conical casing circulation movement on, whereby this system limits the maximum inclination of the nozzle body.
  • the support ring 55 is mounted displaceably in the axial direction in the interior 6.
  • push rods 58 passing through the end wall 8 are supported on the ring 55 and lie with their outer end on a slideway 60 on the inside of a hood 59 overlapping the housing 7, which is screwed onto the housing 7 and thus by twisting in the axial direction can be moved relative to the housing 7.
  • the hood 59 is screwed in further, it pushes the push rods 58 into the interior 6 and thereby displaces the support ring 55 against the direction of flow of the liquid.
  • the user can control the ratio of the liquid which rotates with component in the circumferential direction into the interior 6 or only in the axial direction by rotating the hood 11 and thus the control path 54, that is to say thereby the circulation speed can be described regulate the nozzle body 16.
  • the hood 59 is the Opening angle adjustable, it being advantageous to let the flow essentially enter through the axial channels 53 when the opening angle of the nozzle body 16 tends towards 0, in order to avoid an undesired rotation of the nozzle body and thus also an undesirable fanning out of the compact jet.

Landscapes

  • Nozzles (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

PCT No. PCT/EP91/00714 Sec. 371 Date Oct. 26, 1992 Sec. 102(e) Date Oct. 26, 1992 PCT Filed Apr. 15, 1991 PCT Pub. No. WO91/16989 PCT Pub. Date Nov. 14, 1991.In order to reduce the undesired rotation of the nozzle body about its own longitudinal axis in a rotor nozzle for a high-pressure cleaning device comprising a casing having in a front wall a pot-shaped recess with a central opening therein, a nozzle body with a bore extending through it, the nozzle body being supported at a spherical end in the pot-shaped recess, extending in the longitudinal direction over part of the casing and having an outside diameter which is smaller than the inside diameter of the casing, and an inlet for a liquid opening tangentially into the casing and causing the liquid to rotate about the longitudinal axis in the casing so that the nozzle body rotates together with the rotating liquid and when doing so bears with a bearing surface at its circumference on the inside wall of the casing with the longitudinal axis of the nozzle body at an incline to the longitudinal axis of the casing, it is proposed that the bearing surface of the nozzle body consist of a material with a coefficient of friction in relation to the material of the inside wall of the casing of > 0.25.

Description

Die Erfindung betrifft eine Rotordüse für ein Hochdruckreinigungsgerät mit einem zylindrischen Gehäuse, das in einer Stirnwand eine pfannenförmige, zentral durchbrochene Vertiefung aufweist, mit einem mit einer Durchgangsbohrung versehenen Düsenkörper, der sich mit einem kugelig ausgebildeten Ende in der pfannenförmigen Vertiefung abstützt, sich in Längsrichtung über einen Teil des Gehäuses erstreckt und einen Außendurchmesser aufweist, der kleiner ist als der Innendurchmesser des Gehäuses, und mit einem tangential in das Gehäuse einmündenden Einlaß für eine Flüssigkeit, durch den die Flüssigkeit im Gehäuse um die Längsachse in Rotation versetzbar ist, so daß der Düsenkörper zusammen mit der rotierenden Flüssigkeit umläuft und sich dabei mit einer Anlagefläche an seinem Umfang an die Innenwand des Gehäuses anlegt, wobei die Längsachse des Düsenkörpers gegenüber der Längsachse des Gehäuses geneigt ist.The invention relates to a rotor nozzle for a high-pressure cleaning device with a cylindrical housing, which has a pan-shaped, centrally perforated depression in an end wall, with a nozzle body provided with a through-bore, which is supported with a spherical end in the pan-shaped depression, in the longitudinal direction extends a part of the housing and has an outer diameter which is smaller than the inner diameter of the housing, and with a tangential opening into the housing for a liquid, through which the liquid in the housing can be rotated about the longitudinal axis, so that the nozzle body rotates together with the rotating liquid and thereby lies against the inner wall of the housing with a contact surface on its circumference, the longitudinal axis of the nozzle body being inclined relative to the longitudinal axis of the housing.

Bei Hochdruckreinigungsgeräten und anderen Sprühgeräten, die einen auf einer sich in Strahlrichtung öffnenden Kegelfläche umlaufenden Strahl erzeugen, sind verschiedene Antriebsmöglichkeiten bekannt, um in der Rotordüse einen solchen bewegten Strahl zu erzielen.In the case of high-pressure cleaning devices and other spraying devices which generate a jet rotating on a conical surface opening in the jet direction, various drive options are known in order to achieve such a moving jet in the rotor nozzle.

Eine mechanisch relativ aufwendige Methode sieht vor, in einem Gehäuse einen Rotor um die Längsachse des Gehäuses drehbar zu lagern, der mittels des in das Gehäuse eintretenden Flüssigkeitsstrahles angetrieben wird. Über ein Getriebe, beispielsweise ein Zahnradgetriebe, wird ein im Gehäuse ebenfalls um die Längsachse des Gehäuses drehbarer, schräg zur Längsachse angeordneter Düsenkörper angetrieben (EP-A2-153129). Die Verwendung eines Zahnradgetriebes führt zu erheblichem konstruktivem Aufwand, außerdem besteht hier die Gefahr, daß beim fortlaufenden Gebrauch durch Abnützung der ineinandergreifenden Getriebeteile nur eine kurze Lebensdauer erreicht werden kann.A mechanically relatively complex method provides for a rotor to be rotatably mounted in a housing about the longitudinal axis of the housing, which rotor is driven by means of the liquid jet entering the housing. A nozzle body, which can also be rotated about the longitudinal axis of the housing and is arranged at an angle to the longitudinal axis, is driven via a gear, for example a gearwheel gear (EP-A2-153129). The use of a gear transmission leads to considerable design effort, there is also the risk that only a short service life can be achieved by continued use of the intermeshing gear parts during continuous use.

Es ist auch bekannt, das Getriebe bei einer solchen Konstruktion prinzipiell dadurch zu vermeiden, daß der Rotor selbst einen schräg verlaufenden Düsenkanal trägt (DE-PS 34 19 964). Auch diese Konstruktion benötigt eine beidseitige Lagerung des Rotors, die storanfällig sein kann; ausserdem können sich ausgangsseitig Dichtungsprobleme ergeben, insbesondere bei der Verwendung in Hochdruckreinigungsgeräten.It is also known to avoid the transmission in principle in such a construction in that the rotor itself carries an oblique nozzle channel (DE-PS 34 19 964). This construction also requires a bilateral bearing of the rotor, which can be susceptible to faults; In addition, sealing problems can arise on the outlet side, particularly when used in high-pressure cleaning devices.

Aus diesem Grunde sind bei weiteren bekannten Rotordüsen pfannengelagerte Druckstelzen verwendet worden, die durch einen im Gehäuse um die Längsachse desselben gelagerten Rotor angetrieben werden (DE-PS 36 23 368). Bei dieser Konstruktion sind Dichtungsprobleme in Auslaßbereich vermieden, es ergibt sich jedoch trotzdem ein relativ großer Aufwand, da neben dem pfannenförmig gelagerten Düsenkörper zusätzlich ein drehbarer Rotor vorgesehen sein muß.For this reason, pinned pressure stilts have been used in other known rotor nozzles a rotor mounted in the housing about the longitudinal axis of the same rotor (DE-PS 36 23 368). With this construction, sealing problems in the outlet area are avoided, but there is nevertheless a relatively large outlay, since in addition to the pan-shaped nozzle body, a rotatable rotor must also be provided.

Bei einer aus dem deutschen GM 89 09 876 bekannten Konstruktion wird ein um die Längsachse des Gehäuses drehbar gelagerter Rotor dadurch vermieden, daß an den Düsenkörper selbst Rotorschaufeln angeformt werden, auf die ein zentral axial in das Gehäuse einmündender Flüssigkeitsstrahl auftrifft. Der Düsenkörper wälzt sich unter dem Einfluß dieses zentralen Strahls an der Innenfläche des Gehäuses ab, vorzugsweise kämmt dabei der mit einem Zahnkranz versehene Außenumfang des Düsenkörpers mit einem Zahnkranz an der Innenwand des Gehäuses. Auch diese Konstruktion ist durch die Notwendigkeit der Rotorschaufeln und der Zahnkränze relativ aufwendig.In a construction known from German GM 89 09 876, a rotor which is rotatably mounted about the longitudinal axis of the housing is avoided in that rotor blades themselves are formed on the nozzle body, which impinges on a liquid jet which flows centrally axially into the housing. The nozzle body rolls under the influence of this central jet on the inner surface of the housing, the outer periphery of the nozzle body provided with a toothed ring preferably meshing with a toothed ring on the inner wall of the housing. This construction is also relatively complex due to the necessity of the rotor blades and the toothed rings.

Eine konstruktiv einfache und trotzdem funktionsgerechte Rotordüse ist aus der DE-OS 31 50 879 bekannt. Bei dieser Konstruktion ist in dem Gehäuse ein pfannengestützter Düsenkörper vorgesehen, der dadurch in einen Umlauf auf einem Kegelmantel versetzt wird, daß er von einer im Gehäuseinneren um die Längsachse rotierenden Flüssigkeitssäule mitgenommen wird. Die Flüssigkeitssäule wird durch den tangentialen Einlaß der Flüssigkeit in das Gehäuseinnere zu einer Drehung um die Längsachse angeregt. Bei dieser Konstruktion ergeben sich jedoch dann Schwierigkeiten, wenn diese Rotordüse mit Flüssigkeit unter hohem Druck beschickt werden soll. Die um die Längsachse rotierende Flüssigkeitssäule wirkt nämlich insbesondere im vorderen Bereich des Düsenkörpers, in dem dieser in der zentralen, pfannenförmigen Vertiefung gelagert ist, als Drehantrieb für den Düsenkörper, so daß dieser in eine starke Eigenrotation um seine eigene Längsachse versetzt wird. Diese Eigenrotation um die Längsachse überlagert sich mit der Bewegung des Düsenkörpers auf dem Kegelmantel, und diese Eigenrotation führt dazu, daß auch der aus dem Düsenkörper austretende Strahl um seine Längsachse in Rotation gelangt. Sobald die entsprechend in Umfangsrichtung beschleunigten Flüssigkeitsteilchen den Düsenkörper verlassen, fächert daher der Strahl sehr stark auf, so daß die Reinigungswirkung bereits in kurzem Abstand vom Düsenkörper nachläßt.A structurally simple, yet functional rotor nozzle is known from DE-OS 31 50 879. In this construction, a pan-supported nozzle body is provided in the housing, which is placed in a circulation on a conical shell in that it is carried along by a liquid column rotating around the longitudinal axis inside the housing. The liquid column is excited to rotate about the longitudinal axis by the tangential inlet of the liquid into the interior of the housing. However, with this construction there are difficulties if this rotor nozzle is to be charged with liquid under high pressure. The liquid column rotating about the longitudinal axis acts in particular in the front region of the nozzle body, in which it is mounted in the central, pan-shaped depression, as a rotary drive for the nozzle body, so that it is set into a strong self-rotation about its own longitudinal axis. This self-rotation about the longitudinal axis is superimposed on the movement of the nozzle body on the conical surface, and this self-rotation leads to the jet emerging from the nozzle body also rotating about its longitudinal axis. As soon as the correspondingly accelerated liquid particles leave the nozzle body in the circumferential direction, the jet fans out very strongly, so that the cleaning effect diminishes at a short distance from the nozzle body.

Es ist Aufgabe der Erfindung, eine gattungsgemäße Rotordüse derart auszubilden, daß diese unerwünschte Eigenrotation des Düsenkörpers verringert wird, so daß dadurch die Kompaktheit des abgegebenen Strahl erhöht werden kann.It is an object of the invention to design a generic rotor nozzle in such a way that this undesirable intrinsic rotation of the nozzle body is reduced, so that the compactness of the jet emitted can be increased.

Diese Aufgabe wird bei einer Rotordüse der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, daß die Anlagefläche des Düsenkörpers aus einem Material besteht, dessen Reibungskoeffizient gegenüber dem Material der Gehäuseinnenwand > 0,25 ist, insbesondere > 0,5.This object is achieved according to the invention in a rotor nozzle of the type described in the introduction in that the contact surface of the nozzle body consists of a material whose coefficient of friction compared to the material of the housing inner wall is> 0.25, in particular> 0.5.

Die erhöhte Reibung zwischen Düsenkörper und Gehäuseinnenwand im Bereich der Anlagefläche führt dazu, daß der Düsenkörper zumindest teilweise an der Innenwand abgewälzt wird. Diese Abwälzbewegung führt zu einer Drehung des Düsenkörpers um die eigene Achse, wobei jedoch die Drehrichtung der Drehrichtung entgegengesetzt ist, die die rotierende Flüssigkeitssäule im Gehäuseinneren dem Düsenkörper aufzwingt. Durch die erhöhte Reibung gelingt es daher, der aufgezwängten Eigendrehung durch die rotierende Flüssigkeitssäule entgegenzuwirken und auf diese Weise die unerwünschte Eigendrehung des Düsenkörpers weitgehend zu vermeiden.The increased friction between the nozzle body and the inner wall of the housing in the area of the contact surface leads to the nozzle body is at least partially rolled on the inner wall. This rolling movement leads to a rotation of the nozzle body about its own axis, whereby, however, the direction of rotation is opposite to the direction of rotation which forces the rotating liquid column inside the housing onto the nozzle body. Due to the increased friction, it is therefore possible to counteract the forced rotation caused by the rotating liquid column and in this way largely to avoid the undesired rotation of the nozzle body.

Der Düsenkörper kann insgesamt aus einem entsprechenden Material gefertigt werden, beispielsweise einem elastomeren Kunststoff.Overall, the nozzle body can be made of a corresponding material, for example an elastomeric plastic.

Bevorzugt wird jedoch, den Düsenkörper im Bereich der Anlagefläche mit einem Material zu beschichten, dessen Reibungskoeffizient gegenüber dem Material der Gehäuseinnenwand > 0,25 und insbesondere > 0,5 ist; eine entsprechende Beschichtung kann natürlich auch die Innenwand des Gehäuses tragen.However, it is preferred to coat the nozzle body in the region of the contact surface with a material whose coefficient of friction compared to the material of the housing inner wall is> 0.25 and in particular> 0.5; a corresponding coating can of course also carry the inner wall of the housing.

Dabei kann diese Beschichtung die Form eines O-Ringes haben, der in eine Umfangsnut des Düsenkörpers oder eine Umfangsnut dem Gehäuses eingelegt ist und aus einem Elastomermaterial besteht, das die geforderten Reibungswerte aufweist. Diese Lösung hat zusätzlich den Vorteil, daß bei einer Abnützung des Anlageflächenbereiches der die Anlagefläche bildende O-Ring leicht ausgetauscht werden kann.This coating can have the shape of an O-ring, which is inserted into a circumferential groove of the nozzle body or a circumferential groove of the housing and consists of an elastomer material that has the required friction values. This solution has the additional advantage that when the contact surface area is worn, the O-ring forming the contact surface can be easily replaced.

Bei einem bevorzugten Ausführungsbeispiel ist vorgesehen, daß im Bereich der pfannenförmigen Vertiefung radial von der Gehäuseinnenwand vorstehende Bremselemente angeordnet sind, die vorzugsweise Wände sind, die in Radialebenen des Gehäuses angeordnet sind und den Bewegungsbereich des Düsenkörpers umgeben. Derartige Bremselemente wirken der Rotationsbewegung der Flüssigkeit um die Längsachse des Gehäuses im auslaßnahen Bereich entgegen, und gerade in diesem Bereich führt die Rotation der Flüssigkeitssäule zu der unerwünschten Eigenrotation des Düsenkörpers. Diese Bremselemente wirken also auch in der Weise, daß die unerwünschte Anregung einer Eigenrotation des Düsenkörpers verringert wird. Diese Maßnahme ist besonders vorteilhaft in Kombination mit der Erhöhung des Reibungskoeffizienten im Anlagebereich, da beide Effekte in derselben Richtung wirken, jedoch können diese Bremselemente die genannte Wirkung auch für sich entfalten, also ohne Erhöhung der Reibung im Anlagebereich.In a preferred embodiment, it is provided that in the region of the pan-shaped depression radially protruding braking elements are arranged, which are preferably walls which are arranged in radial planes of the housing and surround the range of motion of the nozzle body. Such braking elements counteract the rotational movement of the liquid around the longitudinal axis of the housing in the area near the outlet, and precisely in this area the rotation of the liquid column leads to the undesired self-rotation of the nozzle body. These braking elements also act in such a way that the undesirable excitation of self-rotation of the nozzle body is reduced. This measure is particularly advantageous in combination with the increase in the coefficient of friction in the contact area, since both effects act in the same direction, however, these braking elements can also develop the effect mentioned for themselves, that is, without increasing the friction in the contact area.

Sehr vorteilhaft ist es, wenn der Einlaß an dem der pfannenförmigen Vertiefung des Gehäuses abgewandten Seite in einem Bereich des Gehäuses angeordnet ist, in den der von der pfannenförmigen Vertiefung abgestützte Düsenkörper nicht hineinreicht. Wenn ein Einlaß in einem Bereich in das Gehäuse einmündet, in dem sich der Düsenkörper befindet, kann auch diese eintretende Strömung die Eigendrehung des Düsenkörpers verstärken. Dadurch, daß man den Einlaß der Flüssigkeit und den Düsenkörper räumlich voneinander trennt, wird diese unerwünschte Anregung der Eigenrotation des Düsenkörpers weitgehend vermieden. Dabei kann der tangentiale Einlaß sowohl im Mantel als auch im Boden des Gehäuses angeordnet sein, wesentlich ist in diesem Zusammenhang, daß die eintretende Flüssigkeit nicht tangential auf die Seitenwand des Düsenkörpers unmittelbar auftrifft`It is very advantageous if the inlet is arranged on the side facing away from the pan-shaped recess of the housing in a region of the housing into which the nozzle body supported by the pan-shaped recess does not extend. If an inlet opens into the housing in an area in which the nozzle body is located, this incoming flow can also increase the self-rotation of the nozzle body. By spatially separating the inlet of the liquid and the nozzle body, this undesirable stimulation of the self-rotation of the nozzle body is largely avoided. The tangential Inlet must be arranged both in the jacket and in the bottom of the housing, it is important in this context that the incoming liquid does not directly touch the side wall of the nozzle body

Vorzugsweise ist die Länge des Düsenkörpers > 3/4 der Gehäuseinnenlänge; bei kürzeren Düsenkörpern besteht die Gefahr, daß die Düsenkörper in Schwingungen geraten und einen unruhigen, aufgefächerten Strahl erzeugen.The length of the nozzle body is preferably> 3/4 of the inside length of the housing; with shorter nozzle bodies there is a risk that the nozzle bodies will vibrate and produce an unsteady, fanned out jet.

Bei einem bevorzugten Ausführungsbeispiel ist vorgesehen, daß die der pfannenförmigen Vertiefung gegenüberliegende Stirnwand des Gehäuses einen zentralen, in das Gehäuseinnere hineinragenden Vorsprung trägt, der im Gehäuseinneren einen Ringraum ausbildet, in den das dem kugeligen Ende abgewandte Ende des Düsenkörpers eintaucht, wenn er sich mit seinem kugeligen Ende in der pfannenförmigen Vertiefung abstützt. Ein solcher Ringraum, in den der tangentiale Einlaß einmündet, erzeugt eine Drehung der Flüssigkeitssäule im Gehäuseinneren, wobei sich die Flüssigkeitsteilchen bevorzugt im wandnahen Bereich aufhalten. Dadurch wird am auslaßseitigen Ende, an dem der Düsenkörper zentral gelagert ist, die Wahrscheinlichkeit einer Übertragung einer Eigenrotation geringer. Außerdem ergibt sich durch diese Anordnung des Vorsprunges eine Vororientierung des Düsenkörpers bereits vor Beginn einer Flüssigkeitsströmung, so daß beim Einschalten der Flüssigkeitsströmung der Düsenkörper bereits eine Schräglage einnimmt und dadurch sicher gegen die Innenwand des Gehäuses gedrückt wird, sobald die Flüssigkeit das Gehäuse durchströmt.In a preferred embodiment it is provided that the end wall of the housing opposite the pan-shaped recess carries a central projection which projects into the interior of the housing and which forms an annular space in the interior of the housing, into which the end of the nozzle body facing away from the spherical end is immersed when it engages with it supports the spherical end in the pan-shaped recess. Such an annular space, into which the tangential inlet opens, produces a rotation of the liquid column in the interior of the housing, the liquid particles preferably being in the area near the wall. As a result, the probability of a self-rotation being transmitted is reduced at the outlet-side end at which the nozzle body is mounted centrally. In addition, this arrangement of the projection results in a pre-orientation of the nozzle body even before a liquid flow begins, so that when the liquid flow is switched on, the nozzle body already assumes an inclined position and is thereby pressed securely against the inner wall of the housing as soon as the liquid flows through the housing.

Dabei ist es vorteilhaft, wenn der Düsenkörper an dem in den Ringraum eintauchenden Ende einen geringeren Außendurchmesser aufweist als am übrigen Teil seiner Baulänge, beispielsweise kann der Düsenkörper nur einen zentralen Verlängerungsstift an seinem dem kugeligen Ende gegenüberliegenden Ende tragen, der in den Ringraum hineinragt.It is advantageous if the nozzle body has a smaller outer diameter at the end immersed in the annular space than at the remaining part of its overall length, for example the nozzle body can only carry a central extension pin at its end opposite the spherical end, which protrudes into the annular space.

Bei einem weiteren bevorzugten Ausführungsbeispiel mündet ein zweiter Einlaß für Flüssigkeit parallel zur Längsachse in das Gehäuse ein, und es ist ein Verteiler vorgesehen, der die Flüssigkeit wahlweise dem einen oder dem anderen Einlaß oder beiden Einlässen gleichzeitig zuführt. Beim Eintritt durch den tangentialen Einlaß ergibt sich ein Umlauf des Düsenkörpers auf dem Kegelmantel, beim Einlaß durch den axialen Einlaß dagegen nicht. Durch entsprechende Aufteilung kann auf diese Weise die Drehzahl variiert werden, mit welcher der Düsenkörper auf dem Kegelmantel umläuft.In a further preferred embodiment, a second inlet for liquid opens into the housing parallel to the longitudinal axis, and a distributor is provided which optionally supplies the liquid to one or the other inlet or to both inlets at the same time. When entering through the tangential inlet there is a circulation of the nozzle body on the conical surface, but not when entering through the axial inlet. The speed at which the nozzle body rotates on the cone jacket can be varied in this way by appropriate division.

Bei einem weiteren bevorzugten Ausführungsbeispiel ist vorgesehen, daß neben dem Gehäuse ein weiterer Düsenkörper stationär angeordnet ist, der mit einer Flüssigkeitszufuhr in Verbindung steht, die auch zu dem Einlaß oder den Einlässen des Gehäuses führt, und daß eine Umschaltung den Strömungsweg zu dem stationären Düsenkörper wahlweise freigibt oder verschließt. Auf diese Weise kann der Benutzer wählen, ob er einen umlaufenden Strahl oder einen stationären Strahl erzeugen will.In a further preferred embodiment it is provided that a further nozzle body is arranged stationary next to the housing, which is connected to a liquid supply, which also leads to the inlet or the inlets of the housing, and that a switchover the flow path to the stationary nozzle body is optional releases or closes. In this way, the user can choose whether he wants to generate a rotating beam or a stationary beam.

Besonders vorteilhaft ist es, wenn im Inneren des Gehäuses verstellbare Stützflächen vorgesehen sind, an denen der Düsenkörper mit seiner Anlagefläche anliegt, und wenn der Neigungswinkel der Längsachse des Düsenkörpers gegenüber der Längsachse des Gehäuses bei unterschiedlichen Positionen der Stützflächen verschieden ist. Allein durch Verschieben der Stützflächen ist es daher möglich, den Öffnungswinkel des umlaufenden Punkstrahles zu variieren.It is particularly advantageous if adjustable support surfaces are provided in the interior of the housing, on which the nozzle body rests with its contact surface, and if the angle of inclination of the longitudinal axis of the nozzle body relative to the longitudinal axis of the housing is different at different positions of the support surfaces. Simply by moving the support surfaces, it is therefore possible to vary the opening angle of the circulating point beam.

Die nachfolgende Beschreibung bevorzugter Ausführungsformen der Erfindung dient im Zusammenhang mit der Zeichnung der näheren Erläuterung. Es zeigen:

Figur 1:
eine Längsschnittansicht einer Rotordüse mit auf einem Kegelmantel umlaufendem Düsenkörper;
Figur 2:
eine Längsschnittansicht eines weiteren bevorzugten Ausführungsbeispiels einer Rotordüse mit zusätzlicher Umschaltung auf einen stationären Düsenkörper;
Figur 3:
eine Längsschnittansicht eines weiteren bevorzugten Ausführungsbeispiels einer Rotordüse mit Drehzahlvariation des Düsenkörpers und
Figur 4:
eine Längsschnittansicht eines weiteren bevorzugten Ausführungsbeispiels einer Rotordüse mit einer Öffnungswinkelverstellung des Düsenkörpers.
The following description of preferred embodiments of the invention serves in conjunction with the drawing for a more detailed explanation. Show it:
Figure 1:
a longitudinal sectional view of a rotor nozzle with a rotating nozzle body on a cone jacket;
Figure 2:
a longitudinal sectional view of a further preferred embodiment of a rotor nozzle with additional switching to a stationary nozzle body;
Figure 3:
a longitudinal sectional view of a further preferred embodiment of a rotor nozzle with speed variation of the nozzle body and
Figure 4:
a longitudinal sectional view of a further preferred embodiment of a rotor nozzle with an opening angle adjustment of the nozzle body.

Die in Figur 1 dargestellte Rotordüse 1 ist auf das Strahlrohr 2 eines in der Zeichnung nicht dargestellten Hochdruckreinigers aufgeschraubt; dieses Strahlrohr kann mittels einer flexiblen Hochdruckleitung mit dem druckseitigen Ausgang einer Hochdruckpumpe verbunden werden und führt dann unter hohem Druck, beispielsweise unter 100 bar, eine gegebenenfalls mit Chemikalien versetzte Reinigungsflüssigkeit zu.The rotor nozzle 1 shown in Figure 1 is screwed onto the jet pipe 2 of a high-pressure cleaner not shown in the drawing; This jet pipe can be connected to the pressure-side outlet of a high-pressure pump by means of a flexible high-pressure line and then supplies a cleaning liquid which may have been mixed with chemicals under high pressure, for example below 100 bar.

Auf das Ende des Strahlrohres 2 ist ein haubenförmiges Bodenteil 3 aufgeschraubt, welches einen sich stufenförmig verengenden Innenraum 4 aufweist, in dessen Endteil das Strahlrohr 2 einmündet.A hood-shaped base part 3 is screwed onto the end of the jet pipe 2 and has a step-like narrowing interior 4, in the end part of which the jet pipe 2 opens.

Das Bodenteil 3 bildet den Boden 5 eines zylindrischen Innenraumes 6 eines auf das Bodenteil 3 aufgeschraubten Gehäuses 7, dessen Innenraum 6 sich zu der dem Boden 5 gegenüberliegenden Stirnwand 8 hin konisch verengt. In der Stirnwand 8 befindet sich eine zentrale Durchbrechung 9, die umgeben wird von einer pfannenförmigen Vertiefung 10, das heißt einer die Durchbrechung 9 auf der Innenseite des Gehäuses 7 ringförmig umgebenden Schulter mit im Querschnitt kreisbogenförmigem Querschnitt.The base part 3 forms the base 5 of a cylindrical interior 6 of a housing 7 screwed onto the base part 3, the interior 6 of which narrows conically towards the end wall 8 opposite the base 5. In the end wall 8 there is a central opening 9 which is surrounded by a pan-shaped depression 10, that is to say a shoulder which surrounds the opening 9 on the inside of the housing 7 in a ring shape and has a circular cross section in cross section.

Das Gehäuse 7 wird überfangen von einer nach vorne offenen Haube 11, die sich zum freien Ende des Gehäuses 7 hin soweit erstreckt, daß sie über die Stirnwand 8 hervorsteht.The housing 7 is overlaid by a hood 11 which is open towards the front and extends to the free end of the housing 7 to such an extent that it protrudes beyond the end wall 8.

Aus dem tiefsten Teil des Innenraumes 4 treten in radialer Richtung Kanäle 12 in das Bodenteil 3 ein, die mit einer tangential in Umfangsrichtung verlaufenden Komponente in den Innenraum 6 führen. Sie gelangen dort in einen dem Boden 5 benachbarten Ringraum 13, der zwischen einem zentralen, in den Innenraum 6 hineinragenden Vorsprung 14 und der Innenwand 15 des Innenraumes 6 ausgebildet ist.From the deepest part of the interior 4, channels 12 enter the base part 3 in the radial direction, which lead into the interior 6 with a component running tangentially in the circumferential direction. You get there into an annular space 13 adjacent to the base 5, which is formed between a central projection 14 projecting into the interior 6 and the inner wall 15 of the interior 6.

Im Inneren des Innenraumes ist ein im wesentlichen rohrförmiger Düsenkörper 16 mit einer in Längsrichtung verlaufenden Durchgangsöffnung 17 angeordnet, der an seinem der Stirnwand 8 zugewandten Ende kugelig ausgebildet ist. Dieses kugelige Ende 18 taucht in die pfannenförmige Vertiefung 10 ein und wird in dieser abgestützt. An seinem gegenüberliegenden Ende trägt der Düsenkörper 16 eine zentrale, stiftförmige Verlängerung 19, die in den Ringraum 13 eintaucht. An der Außenwand 20 des Düsenkörpers 16 ist an dem dem pfannenförmigen Ende 18 gegenüberliegenden Ende 21 in einer aus der Zeichnung nicht deutlich ersichtbaren Umfangsnut ein O-Ring 22 aus elastomerem Material eingelegt, der sich bei entsprechender Schrägstellung des Düsenkörpers an die Innenwand 15 des Innenraumes 6 anlegt. Der O-Ring besteht aus einem Elastomermaterial, dessen Reibungskoeffizient gegenüber dem Material der Innenwand 15 relativ groß ist, beispielsweise > 0,25 und insbesondere > 0,5.Arranged in the interior of the interior is an essentially tubular nozzle body 16 with a longitudinal opening 17 which is spherical at its end facing the end wall 8. This spherical end 18 dips into the pan-shaped recess 10 and is supported in this. At its opposite end, the nozzle body 16 carries a central, pin-shaped extension 19 which plunges into the annular space 13. On the outer wall 20 of the nozzle body 16, at the end 21 opposite the pan-shaped end 18, an O-ring 22 made of elastomeric material is inserted in a circumferential groove, which is not clearly visible from the drawing, and which, when the nozzle body is correspondingly inclined, contacts the inner wall 15 of the interior 6 creates. The O-ring consists of an elastomer material whose coefficient of friction is relatively large compared to the material of the inner wall 15, for example> 0.25 and in particular> 0.5.

Im Betrieb wird Flüssigkeit unter hohem Druck über das Strahlrohr 2 in den Innenraum 4 eingeführt und gelangt von dort über die Kanäle 12 in den Innenraum 6. Dabei tritt die Flüssigkeit durch die entsprechende Führung der Kanäle 12 tangential zur Umfangsrichtung in den Innenraum 6 ein, so daß innerhalb des Innenraumes 6 eine um die Längsachse rotierende Flüssigkeitssäule ausgebildet wird. Diese Flüssigkeitssäule nimmt bei ihrer Rotation um die Längsachse auch den Düsenkörper 16 mit, der auf diese Weise längs eines Kegelmantels umläuft, wobei der Öffnungswinkel durch die Anlage des O-Ringes 22 an der Innenwand 15 des Innenraumes 6 bestimmt wird.In operation, liquid is introduced into the interior 4 under high pressure via the jet pipe 2 and from there passes into the interior 6 via the channels 12. The liquid passes through the corresponding guidance of the channels 12 tangentially to the circumferential direction in the interior 6, so that a liquid column rotating about the longitudinal axis is formed within the interior 6. When rotating around the longitudinal axis, this liquid column also entrains the nozzle body 16, which in this way rotates along a conical surface, the opening angle being determined by the contact of the O-ring 22 on the inner wall 15 of the interior 6.

In dem der Vertiefung 10 naheliegenden Bereich versucht die um die Längsachse des Gehäuses 7 rotierende Flüssigkeitssäule dem Düsenkörper 16 eine gleichsinnige Drehung aufzuzwingen, im Bereich des O-Ringes 22 erfährt jedoch der Düsenkörper durch die abwälzende Bewegung an der Innenwand 15 des Innenraumes 6 ein entgegengesetztes Antriebsmoment, wobei sich die beiden entgegengesetzten Tendenzen weitgehend aufheben. Dies führt dazu, daß der Düsenkörper 16 bei seiner Kegelmantelumlaufbewegung um seine eigene Achse nur eine sehr geringe Drehung ausführt, so daß durch die Durchgangsöffnung 17 hindurchtretende Flüssigkeit im wesentlichen eine Beschleunigung in Längsrichtung des Düsenkörpers 16 erfährt, nicht jedoch eine Drehbeschleunigung um die Längsachse des Düsenkörpers 16. Der austretende Flüssigkeitsstrahl bleibt somit über eine größere Strecke kompakt und fächert nicht infolge einer hohen Eigenrotation auf.In the area near the recess 10, the liquid column rotating about the longitudinal axis of the housing 7 tries to force the nozzle body 16 to rotate in the same direction, but in the area of the O-ring 22 the nozzle body experiences an opposite drive torque due to the rolling movement on the inner wall 15 of the interior 6 , whereby the two opposite tendencies largely cancel each other out. This leads to the fact that the nozzle body 16 executes only a very slight rotation about its own axis during its conical casing circulation movement, so that liquid passing through the passage opening 17 essentially undergoes an acceleration in the longitudinal direction of the nozzle body 16, but not a rotational acceleration about the longitudinal axis of the nozzle body 16. The emerging liquid jet thus remains compact over a longer distance and does not fan out as a result of a high self-rotation.

Das in Figur 2 dargestellte Ausführungsbeispiel ist ähnlich dem der Figur 1 ausgebildet, einander entsprechende Teile tragen daher dieselben Bezugszeichen.The embodiment shown in Figure 2 is similar to that of Figure 1, corresponding parts therefore have the same reference numerals.

Zusätzlich trägt die Rotordüse der Figur 2 eingeformt in die Haube 11 einen stationären Düsenkörper 25, der seitlich versetzt gegenüber dem Gehäuse 7 an der Haube 11 gehalten ist. Im Strahlrohr 2 befindet sich eine radiale Bohrung 28, die zwischen zwei in das Strahlrohr 2 eingelegten Umfangsdichtungen 29 und 30 aus dem Strahlrohr 2 austritt. Eine dritte Umfangsdichtung 31 ist stromaufwärts der beiden Umfangsdichtungen 29 und 30 angeordnet.In addition, the rotor nozzle of FIG. 2, molded into the hood 11, carries a stationary nozzle body 25 which is held on the hood 11 laterally offset with respect to the housing 7. There is a radial bore 28 in the jet pipe 2, which emerges from the jet pipe 2 between two peripheral seals 29 and 30 inserted into the jet pipe 2. A third peripheral seal 31 is arranged upstream of the two peripheral seals 29 and 30.

Die Haube 11 kann im Gegensatz zu dem Ausführungsbeispiel der Figur 1 bei dem Ausführungsbeispiel der Figur 2 gegenüber dem Gehäuse 7 in axialer Richtung verschoben werden, so daß eine in der Haube 11 angeordnete, in radialer Richtung verlaufende Verbindungsleitung 26, die über eine axiale Verbindungsleitung 27 zu dem stationären Düsenkörper 25 führt, wahlweise zwischen den Umfangsdichtungen 29 und 30 oder zwischen den Umfangsdichtungen 30 und 31 angeordnet werden kann. Im ersten Falle ergibt sich eine Verbindung mit der radialen Bohrung 28, so daß über diese radiale Bohrung 28 sowie die beiden Verbindungsleitungen 26 und 27 ein Strömungsweg zum stationären Düsenkörper 25 hergestellt wird. Im anderen Falle endet die Verbindungsleitung 26 stumpf auf dem Außemantel des Strahlrohres 2, die Bohrung 28 hingegen wird durch die beiden benachbarten Umfangsdichtungen 29 und 30 gegenüber der sie überdeckenden Haube 11 abgedichtet.In contrast to the exemplary embodiment of FIG. 1, the hood 11 can be displaced in the axial direction relative to the housing 7 in the exemplary embodiment of FIG. 2, so that a connecting line 26 arranged in the radial direction and arranged in the hood 11 is connected via an axial connecting line 27 leads to the stationary nozzle body 25, can optionally be arranged between the peripheral seals 29 and 30 or between the peripheral seals 30 and 31. In the first case, there is a connection with the radial bore 28, so that a flow path to the stationary nozzle body 25 is established via this radial bore 28 and the two connecting lines 26 and 27. In the other case, the connecting line 26 ends bluntly on the outer jacket of the jet pipe 2, the bore 28, however, is sealed off from the hood 11 covering it by the two adjacent peripheral seals 29 and 30.

Um die Haube 11 in der Position festzulegen, in der die Verbindungsleitung 26 mit der Bohrung 28 ausgerichtet ist, befindet sich in der Haube 11 zusätzlich eine federbelastete Rastkugel 32, die in eine Öffnung 33 im Strahlrohr 2 eintauchen kann und somit eine Verschiebung der Haube 11 gegenüber dem Gehäuse 7 nur unter Überschreiten einer bestimmten Kraft ermöglicht.In order to fix the hood 11 in the position in which the connecting line 26 is aligned with the bore 28, there is also a spring-loaded locking ball 32 in the hood 11, which can dip into an opening 33 in the jet pipe 2 and thus allows the hood 11 to be displaced relative to the housing 7 only when a certain force is exceeded.

Der Benutzer hat bei diesem Ausführungsbeispiel die Möglichkeit, zwischen der Abgabe eines rotierenden, auf einem Kegelmantel umlaufenden Punktstrahles und der Abgabe eines stationären Strahles zu wählen, indem er die Haube 11 gegenüber dem Gehäuse 7 verschiebt. Befinden sich die Verbindungsleitung 26 und die radiale Bohrung 28 in Ausrichtung zueinander, gelangt der allergrößte Teil der Flüssigkeit ausschließlich zum Düsenkörper 25, da der Strömungswiderstand durch den Innenraum 6 wesentlich größer ist, als der beim Durchgang durch den stationären Düsenkörper 25. Ist die Bohrung 28 hingegen verschlossen, tritt die gesamte Flüssigkeitsmenge in der anhand des Ausführungsbeispiels der Figur 1 beschriebenen Weise durch den Innenraum 6 hindurch und erzeugt dort einen auf einem Kegelmantel umlaufenden, kompakten Punktstrahl.In this exemplary embodiment, the user has the option of choosing between the delivery of a rotating point beam rotating on a conical jacket and the delivery of a stationary beam by moving the hood 11 relative to the housing 7. If the connecting line 26 and the radial bore 28 are in alignment with one another, the vast majority of the liquid only reaches the nozzle body 25, since the flow resistance through the interior 6 is significantly greater than that when passing through the stationary nozzle body 25. If the bore 28 closed, on the other hand, the entire amount of liquid passes through the interior 6 in the manner described with reference to the exemplary embodiment in FIG. 1, where it produces a compact point jet running around a cone jacket.

Bei dem Ausführungsbeispiel der Figur 2 ist der Innenraum 6 über seine gesamte Länge zylindrisch ausgebildet, im strömungsabwärts gelegenen Bereich trägt der Innenraum zusätzlich in Radialebenen angeordnete Wände 35, die mit ihrer Innenkante 36 in Strömungsrichtung schräg nach innen laufen. Diese Wände 35 bilden eine Wirbelbremse für die im Innenraum um die Längsachse rotierende Flüssigkeitssäule, das heißt sie bremsen die Rotationsbewegung der Flüssigkeitssäule in diesem austrittsnahen Bereich ab. Dies führt dazu, daß in diesem Bereich weniger Eigenrotation auf den Düsenkörper 16 übertragen wird, das heißt die Tendenz zu einer unerwünschten Eigenrotation des Düsenkörpers um seine Längsachse wird durch diese Maßnahme herabgesetzt. Diese Maßnahme ist besonders vorteilhaft in Kombination mit der durch die Abwälzbewegung des Düsenkörpers erzeugten, der unerwünschten Eigendrehung entgegenwirkenden Antriebskraft, die durch den erhöhten Reibungswert des Anlagematerials begünstigt wird, jedoch kann bei allen Ausführungsbeispielen auch diese Maßnahme allein eingesetzt werden, um die unerwünschte Eigendrehung des Düsenkörpers 16 um seine Längsachse zu unterdrücken.In the exemplary embodiment in FIG. 2, the interior space 6 is cylindrical over its entire length; in the downstream region, the interior space also has walls 35 which are arranged in radial planes and which run with their inner edge 36 obliquely inward in the direction of flow. These walls 35 form a vortex brake for the liquid column rotating in the interior around the longitudinal axis, that is to say they brake the rotational movement of the liquid column in this area close to the outlet. This leads to less self-rotation being transmitted to the nozzle body 16 in this area, that is to say the tendency for undesired self-rotation of the nozzle body about its longitudinal axis is reduced by this measure. This measure is particularly advantageous in combination with the driving force generated by the rolling movement of the nozzle body, which counteracts the undesired intrinsic rotation, which is favored by the increased friction value of the system material, but this measure can also be used in all exemplary embodiments alone to counteract the undesired intrinsic rotation of the nozzle body 16 to suppress its longitudinal axis.

Im dargestellten Ausführungsbeispiel werden in radialen Ebenen verlaufende Wände als Wirbelbremse eingesetzt, es könnten auch andere in den Innenraum ragende Vorsprünge dafür verwendet werden, so daß im austrittsnahen Bereich des Innenraumes dieser abwechselnd einen großen und einen kleinen Innendurchmesser aufweist. Wesentlich ist, daß die Rotation der Flüssigkeitssäule im Innenraum nur im austrittsnahen Bereich herabgesetzt wird, da diese Rotation im austrittsfernen Bereich notwendig ist, um den Düsenkörper mitzunehmen und auf der Kegelmantelfläche umlaufen zu lassen.In the exemplary embodiment shown, walls extending in radial planes are used as a vortex brake, other projections projecting into the interior could also be used for this, so that in the region of the interior close to the outlet it alternately has a large and a small inside diameter. It is essential that the rotation of the liquid column in the interior is reduced only in the area close to the outlet, since this rotation in the area remote from the outlet is necessary in order to take the nozzle body with it and to let it circulate on the surface of the cone.

Das in Figur 3 dargestellte Ausführungsbeispiel entspricht wieder weitgehend dem der Figur 1, entsprechende Teile tragen daher auch hier dieselben Bezugszeichen. Das Ausführungsbeispiel der Figur 3 unterscheidet sich von dem der Figur 1 im wesentlichen dadurch, daß aus dem Innenraum 4 des Bodenteiles 3 sowohl solche Kanäle 42 austreten, die in Umfangsrichtung tangential in den Innenraum 6 einmünden, als auch solche Kanäle 43, die in axialer Richtung in den Innenraum 6 einmünden. Die Kanäle 42 treten dabei im äußeren Umfangsbereich des Innenraumes 4 aus diesem aus, und zwar stromaufwärts einer Stufe 44, die den stromaufwärts gelegenen Teil des Innenraumes 4 mit größerem Durchmesser von dem stromabwärts gelegenen Teil 45 mit geringerem Durchmesser trennt. Aus diesem Teil 45 tritt der axial in den Innenraum 6 eintretende Kanal 43 aus.The exemplary embodiment shown in FIG. 3 again largely corresponds to that of FIG. 1, corresponding parts therefore also have the same reference numerals here. The embodiment of Figure 3 differs from that 1 essentially by the fact that from the interior 4 of the base part 3 emerge both those channels 42 which open tangentially into the interior 6 in the circumferential direction, and also those channels 43 which open into the interior 6 in the axial direction. The channels 42 emerge from this in the outer peripheral region of the interior 4, namely upstream of a step 44 which separates the upstream part of the interior 4 with a larger diameter from the downstream part 45 with a smaller diameter. The channel 43, which axially enters the interior 6, emerges from this part 45.

Das Strahlrohr 2 ist bei diesem Ausführungsbeispiel stirnseitig verschlossen und weist dort einen zentralen Vorsprung 46 auf, der dichtend an die Stufe 44 angelegt ist, so daß der Vorsprung 46 den stromabwärts gelegenen Teil 45 des Innenraumes 4 vom übrigen Innenraum abtrennt.In this exemplary embodiment, the jet pipe 2 is closed on the end face and there has a central projection 46 which is sealingly applied to the step 44, so that the projection 46 separates the downstream part 45 of the interior 4 from the rest of the interior.

Der Innenraum des Strahlrohres 2 steht über schräg nach außen geführte Bohrungen 47 mit dem stromaufwärts der Stufe 44 angeordneten Teil des Innenraumes 4 in Verbindung. In dieser Position des Strahlrohres 2 gelangt die über das Strahlrohr 2 herbeigeführte Flüssigkeit über die in Umfangsrichtung in den Innenraum 6 einmündenden Kanäle 42 in denselben, so daß in der beschriebenen Weise im Innenraum 6 eine um ihre Längsachse rotierende Flüssigkeitssäule ausgebildet wird, die den Düsenkörper 16 mitnimmt und somit einen auf einem Kegelmantel umlaufenden Kompaktstrahl ausbildet.The interior of the jet pipe 2 is connected to the part of the interior 4 arranged upstream of the step 44 via bores 47 which are guided obliquely outwards. In this position of the jet pipe 2, the liquid which is brought in via the jet pipe 2 passes through the channels 42 which open into the interior 6 in the circumferential direction, so that a liquid column rotating about its longitudinal axis is formed in the interior 6 in the manner described, which column forms the nozzle body 16 takes along and thus forms a compact jet rotating on a cone jacket.

Das Strahlrohr 2 läßt sich in axialer Richtung gegenüber dem Bodenteil 3 dadurch verschieben, daß es aus dem Bodenteil 3 herausgeschraubt wird. Dabei hebt der Vorsprung 46 von der Stufe 44 ab und stellt somit über einen zwischen der Stufe 44 und dem Vorsprung 46 ausgebildeten Ringspalt eine Verbindung zum Teil 45 des Innenraumes 4 her. Über das Strahlrohr 2 herbeigeführte Flüssigkeit kann nunmehr zusätzlich auch über den axialen Kanal 43 in den Innenraum eintreten, der keinerlei Drehung der Flüssigkeitssäule im Innenraum 6 erzeugt. Es wird also ein Bypass geöffnet, durch den ein Teil der herbeigeführten Flüssigkeit hindurchtritt, ohne zu der Kegelmantelumlaufbewegung des Kompaktstrahles beizutragen. Das Verhältnis der Aufteilung ergibt sich einmal durch die Größe der axialen Verschiebung des Strahlrohres 2 gegenüber dem Bodenteil 3, das heißt durch mehr oder weniger starkes Herausschrauben des Strahlrohres 2 aus dem Bodenteil 3, zum anderen durch die Strömungsquerschnitte der Kanäle 42 beziehungsweise 43. Wenn ein großer Anteil der zugeführten Flüssigkeit über den Kanal 43 in den Innenraum 6 eintritt, wird die Rotation der Flüssigkeitssäule im Innenraum 6 geschwächt mit dem Ergebnis, daß die Umlaufgeschwindigkeit des Düsenkörpers 16 herabgesetzt wird. Die Bedienungsperson kann auf diese Weise die Umlaufgeschwindigkeit des erzeugten Punktstrahles beeinflussen.The jet pipe 2 can be moved in the axial direction relative to the base part 3 by screwing it out of the base part 3. The projection 46 lifts off from the step 44 and thus establishes a connection to part 45 of the interior 4 via an annular gap formed between the step 44 and the projection 46. Liquid brought in through the jet pipe 2 can now additionally enter the interior via the axial channel 43, which does not produce any rotation of the liquid column in the interior 6. A bypass is thus opened, through which a part of the liquid which has been brought through passes without contributing to the conical surface circulation movement of the compact jet. The ratio of the division results on the one hand from the size of the axial displacement of the jet pipe 2 relative to the base part 3, that is to say by more or less unscrewing the jet tube 2 from the base part 3, and on the other hand through the flow cross sections of the channels 42 and 43. If one If a large proportion of the supplied liquid enters the interior space 6 via the channel 43, the rotation of the liquid column in the interior space 6 is weakened, with the result that the rotational speed of the nozzle body 16 is reduced. In this way, the operator can influence the rotational speed of the point beam generated.

Auch das in Figur 4 dargestellte Ausführungsbeispiel weist große Ähnlichkeit mit dem der Figur 1 auf, so daß auch hier entsprechende Teile dieselben Bezugszeichen tragen. Wie beim Ausführungsbeispiel der Figur 3 sind bei diesem Ausführungsbeispiel Kanäle 52 vorgesehen, die tangential zur Umfangsrichtung in den Innenraum 6 einmünden, und Kanäle 53, die axial einmünden. Der Kanal 53 tritt dabei in radialer Richtung aus dem Innenraum 4 aus, im Bereich des Austrittes liegt ein quer durch den Innenraum 4 geführten Nadelventilkörper 51 dichtend an, der den Kanal 53 verschließt, wenn er vollständig eingeschoben ist, der ihn aber öffnet, wenn er herausgezogen ist. Die Eintauchtiefe des Nadelventilkörpers 51 wird durch seine Anlage an einer exzentrischen Steuerbahn 54 bestimmt, die sich an der Innenseite der drehbar auf dem Bodenteil 3 angeordneten Haube 11 befindet. Diese erstreckt sich im dargestellten Ausführungsbeispiel nur über die Höhe des Bodenteiles 3.The exemplary embodiment shown in FIG. 4 is also very similar to that of FIG. 1, so that corresponding parts also have the same reference numbers here. As with the embodiment of Figure 3 are in this Embodiment channels 52 are provided, which open tangentially to the circumferential direction in the interior 6, and channels 53, which open axially. The channel 53 emerges in the radial direction from the interior 4, in the area of the outlet is a sealing valve body 51 guided across the interior 4, which closes the channel 53 when it is fully inserted, but opens it when it is inserted is pulled out. The immersion depth of the needle valve body 51 is determined by its abutment on an eccentric control track 54, which is located on the inside of the hood 11 rotatably arranged on the base part 3. In the exemplary embodiment shown, this extends only over the height of the base part 3.

Das Gehäuse 7 ist bei diesem Ausführungsbeispiel nicht auf das Bodenteil 3 dieses überfangend aufgeschraubt, sondern in dieses eingeschraubt, im übrigen ist der Aufbau aber ähnlich, da sich auch bei diesem Ausführungsbeispiel im Innenraum 6 ein Düsenkörper 16 befindet, der mit einem kugeligen Ende 18 in der pfannenförmigen Vertiefung 10 ruht und durch die sich um die Längsachse drehende Flüssigkeitssäule im Innenraum 6 an der Innenwand anliegend längs eines Kegelmantels umläuft. Im Bodenteil ist kein zentraler Vorsprung 14 vorgesehen, sondern der Boden 5 ist eben ausgebildet.In this exemplary embodiment, the housing 7 is not screwed onto the base part 3, but screwed into it, but the rest of the construction is similar, since in this exemplary embodiment there is also a nozzle body 16 in the interior 6, which has a spherical end 18 in the pan-shaped depression 10 rests and rotates along the inside wall 6 along a cone shell by the liquid column rotating about the longitudinal axis in the interior 6. No central projection 14 is provided in the bottom part, but the bottom 5 is flat.

Am stromabwärts gelegenen Ende ist im Innenraum 6 ein Stützring 55 angeordnet, der eine schräg nach innen weisende Stützfläche 56 trägt. An diese Stützfläche legt sich die obere Kante 57 des Düsenkörpers 16 bei dessen Kegelmantelumlaufbewegung an, wobei durch diese Anlage die maximale Schrägstellung des Düsenkörpers begrenzt wird.At the downstream end, a support ring 55 is arranged in the interior 6, which carries an obliquely inward-facing support surface 56. The upper edge 57 of the nozzle body 16 lies against this supporting surface during its conical casing circulation movement on, whereby this system limits the maximum inclination of the nozzle body.

Der Stützring 55 ist im Innenraum 6 in axialer Richtung verschiebbar gelagert. Die Stirnwand 8 durchsetzende Schubstangen 58 stützen sich dazu an dem Ring 55 ab und liegen mit ihrem äußeren Ende an einer Gleitbahn 60 an der Innenseite einer das Gehäuse 7 überfangenden Haube 59 an, die auf das Gehäuse 7 aufgeschraubt ist und somit durch Verdrehen in axialer Richtung gegenüber dem Gehäuse 7 bewegt werden kann. Beim weiteren Einschrauben der Haube 59 drückt diese die Schubstangen 58 in den Innenraum 6 hinein und verschiebt dadurch den Stützring 55 entgegen der Strömungsrichtung der Flüssigkeit. Dies führt dazu, daß der auf einem Kegelmantel umlaufende Düsenkörper 16 bereits bei einer geringeren Schrägstellung an der Stützfläche 56 anschlägt, das heißt der Öffnungswinkel des aus dem Düsenkörper 16 abgegebenen Punktstrahles wird herabgesetzt.The support ring 55 is mounted displaceably in the axial direction in the interior 6. For this purpose, push rods 58 passing through the end wall 8 are supported on the ring 55 and lie with their outer end on a slideway 60 on the inside of a hood 59 overlapping the housing 7, which is screwed onto the housing 7 and thus by twisting in the axial direction can be moved relative to the housing 7. When the hood 59 is screwed in further, it pushes the push rods 58 into the interior 6 and thereby displaces the support ring 55 against the direction of flow of the liquid. This leads to the nozzle body 16 rotating on a conical surface already striking the support surface 56 at a smaller inclined position, that is to say the opening angle of the point jet emitted from the nozzle body 16 is reduced.

Bei der dargestellten Rotordüse kann der Benutzer durch Verdrehung der Haube 11 und damit der Steuerbahn 54 das Verhältnis der Flüssigkeit steuern, das mit Komponente in Umfangsrichtung in den Innenraum 6 oder nur in axialer Richtung eintritt, das heißt dadurch läßt sich in der beschriebenen Weise die Umlaufgeschwindigkeit des Düsenkörpers 16 regulieren. Durch Verdrehung der Haube 59 ist der Öffnungswinkel einstellbar, wobei es vorteilhaft ist, bei gegen 0 tendierendem Öffnungswinkel des Düsenkörpers 16 die Strömung im wesentlichen durch die axialen Kanäle 53 eintreten zu lassen, um eine unerwünschte Drehung des Düsenkörpers und damit eine ebenfalls unerwünschte Auffächerung des Kompaktstrahles zu vermeiden.In the rotor nozzle shown, the user can control the ratio of the liquid which rotates with component in the circumferential direction into the interior 6 or only in the axial direction by rotating the hood 11 and thus the control path 54, that is to say thereby the circulation speed can be described regulate the nozzle body 16. By turning the hood 59 is the Opening angle adjustable, it being advantageous to let the flow essentially enter through the axial channels 53 when the opening angle of the nozzle body 16 tends towards 0, in order to avoid an undesired rotation of the nozzle body and thus also an undesirable fanning out of the compact jet.

Obwohl dies im Ausführungsbeispiel der Figur 4 nicht ausdrücklich beschrieben worden ist, ist es auch hier vorteilhaft, im Anlagebereich, das heißt im Bereich der Stützfläche 56 und der oberen Kante 57, die Reibung durch entsprechende Materialwahl der einander gegenüberstehenden Flächen so zu erhöhen, daß der unerwünschten Eigendrehung des Düsenkörpers in der beschriebenen Weise entgegengewirkt wird.Although this has not been expressly described in the exemplary embodiment in FIG. 4, it is also advantageous here to increase the friction in the contact area, that is to say in the area of the support surface 56 and the upper edge 57, by choosing the appropriate material for the opposing surfaces so that the unwanted internal rotation of the nozzle body is counteracted in the manner described.

Claims (12)

  1. A rotor nozzle for a high-pressure cleaning device, with a casing (7) provided with a centrally pierced pan-shaped depression (10) in a front wall, with a nozzle body (16) which comprises a through bore and is supported at a spherical end in the pan-shaped depression and which extends over part of the casing in the longitudinal direction and has an external diameter smaller than the internal diameter of the casing, and with an inlet which opens tangentially into the casing for a liquid and by which the liquid can be caused to circulate in the casing about the longitudinal axis, so that the nozzle body rotates together with the circulating liquid and rests with an abutment face (22) on the periphery thereof against the inner wall of the casing, wherein the longitudinal axis of the nozzle body is inclined with respect to the longitudinal axis of the casing, characterized in that the abutment face (22) of the nozzle body (16) consists of a material of which the coefficient of friction against the material of the inner wall (15) of the casing is > 0.25.
  2. A rotor nozzle according to Claim 1, characterized in that the nozzle body (16) is coated in the region of the abutment face with a material of which the coefficient of friction against the material of the inner wall of the casing is > 0.25.
  3. A rotor nozzle according to Claim 1, characterized in that in the region of the abutment faces the nozzle body (16) carries an O-ring (22) of an elastomer material which forms the said abutment faces.
  4. A rotor nozzle according to one of the preceding Claims, characterized in that braking members (35) projecting radially from the inner wall (15) of the casing are arranged in the region of the pan-shaped depression (10).
  5. A rotor nozzle according to Claim 4, characterized in that the braking members (35) are walls which are arranged in radial planes of the casing (7) and surround the area of movement of the nozzle body (16).
  6. A rotor nozzle according to one of the preceding Claims, characterized in that the inlet (12; 42; 52) is arranged at the end remote from the pan-shaped depression (10) of the casing (7) and in an area of the casing (7) into which the nozzle body (16) supported in the pan-shaped depression (10) does not reach.
  7. A rotor nozzle according to Claim 6, characterized in that the length of the nozzle body (16) is > 3/4 of the internal length of the casing.
  8. A rotor nozzle according to one of the preceding Claims, characterized in that the base wall (5) of the casing (7) opposite the pan-shaped depression (10) supports a central projection (14) which projects into the interior of the casing and which in the interior (6) of the casing forms an annular space (13) into which the end (21) of the nozzle body (16) remote from the spherical end (18) dips when it is supported by the spherical end (18) thereof in the pan-shaped depression (10).
  9. A rotor nozzle according to Claim 8, characterized in that at its end dipping into the annular space (13) the nozzle body (16) has a smaller external diameter than over the remainder of its structural length.
  10. A rotor nozzle according to one of the preceding Claims, characterized in that a second inlet (43; 53) for liquid opens into the casing (7) parallel to the longitudinal axis, and a distributor (28; 51) is provided which conveys the liquid optionally to one or the other inlet or to both inlets simultaneously.
  11. A rotor nozzle according to one of the preceding Claims, characterized in that the addition to the casing (7) a further nozzle body (25) is arranged so as to be stationary, which is connected to a liquid supply (28, 26, 27) also leading to the inlet or inlets (12) of the casing (7), and a switch optionally opens or closes the flow path to the stationary nozzle body (25).
  12. A rotor nozzle according to one of the preceding Claims, characterized in that support faces (56), against which the nozzle body (16) rests with its abutment face (edge 57), are provided in the interior of the casing (6), and the angle of inclination of the longitudinal axis of the nozzle body (16) with respect to longitudinal axis of the casing (7) is different in different positions of the support face (56).
EP91908065A 1990-04-27 1991-04-15 Rotor nozzle for a high-pressure cleaning device Expired - Lifetime EP0526508B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4013446A DE4013446C1 (en) 1990-04-27 1990-04-27
DE4013446 1990-04-27
PCT/EP1991/000714 WO1991016989A1 (en) 1990-04-27 1991-04-15 Rotor nozzle for a high-pressure cleaning device

Publications (2)

Publication Number Publication Date
EP0526508A1 EP0526508A1 (en) 1993-02-10
EP0526508B1 true EP0526508B1 (en) 1995-08-09

Family

ID=6405210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91908065A Expired - Lifetime EP0526508B1 (en) 1990-04-27 1991-04-15 Rotor nozzle for a high-pressure cleaning device

Country Status (7)

Country Link
US (1) US5328097A (en)
EP (1) EP0526508B1 (en)
AT (1) ATE126102T1 (en)
CA (1) CA2080696C (en)
DE (1) DE4013446C1 (en)
DK (1) DK0526508T3 (en)
WO (1) WO1991016989A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1243658B (en) * 1990-10-18 1994-06-16 Interpump DEVICE FOR EMITTING A LIQUID JET WITH ROTATING AXIS ON A CONICAL SURFACE.
DE9108507U1 (en) * 1991-07-10 1991-11-07 Anton Jäger Montagebau, 7913 Senden Rotor nozzle for a high-pressure cleaning device
DE4129026C1 (en) * 1991-08-31 1993-03-04 Alfred Kaercher Gmbh & Co, 7057 Winnenden, De
DE4221587C2 (en) * 1992-07-01 1994-07-14 Anton Jaeger Rotor nozzle, in particular for a high-pressure cleaning device working with cleaning fluid
DE4319743A1 (en) * 1993-06-15 1994-12-22 Anton Jaeger Rotor-type nozzle for a high-pressure cleaning unit
DE4433646C2 (en) * 1993-09-29 1996-10-10 Anton Jaeger Rotor nozzle, in particular for a high-pressure cleaning device
DE4340184A1 (en) * 1993-11-25 1995-06-01 Anton Jaeger Spray nozzle partic. for high pressure cleaning devices
EP0762941B1 (en) * 1994-05-30 1998-08-19 Alfred Kärcher GmbH & Co. Rotary nozzle for high pressure cleaning appliances
DE19612704A1 (en) * 1996-03-29 1997-10-02 Anton Jaeger Rotor nozzle, in particular for a high-pressure cleaning device
DE19626590C2 (en) * 1996-07-02 2000-12-07 Aquaplus Brunnensanierung H Mu Device for cleaning the inner surfaces of pipes, such as well pipes in well shafts
DE19632323A1 (en) * 1996-08-10 1998-02-12 Kaercher Gmbh & Co Alfred Rotor nozzle for a high pressure cleaning device
NL1006604C1 (en) * 1996-10-24 1998-04-27 H T Research B V Apparatus and method for cleaning surfaces.
DE19703043A1 (en) * 1997-01-28 1998-07-30 Anton Jaeger Reinigungstechnik Rotor nozzle head
DE19709120C2 (en) * 1997-03-06 1998-12-17 Kaercher Gmbh & Co Alfred Rotor nozzle for a high pressure cleaning device
DE19742420A1 (en) * 1997-09-25 1999-04-01 Anton Jaeger Rotor jet head for cleaning device
US6092739A (en) * 1998-07-14 2000-07-25 Moen Incorporated Spray head with moving nozzle
US6186414B1 (en) 1998-09-09 2001-02-13 Moen Incorporated Fluid delivery from a spray head having a moving nozzle
DE19832568C2 (en) 1998-07-20 2003-04-30 Anton Jaeger Rotary nozzle
US6199771B1 (en) 1998-11-16 2001-03-13 Moen Incorporated Single chamber spray head with moving nozzle
US6254014B1 (en) 1999-07-13 2001-07-03 Moen Incorporated Fluid delivery apparatus
DE19951823A1 (en) * 1999-07-27 2001-02-01 Wolfgang Suttner Rotor nozzle for a high-pressure cleaner and method for producing a rotor nozzle
EP1072317A3 (en) 1999-07-27 2002-07-03 Wolfgang Suttner Rotor nozzle for a high-pressure cleaning device and method for manufacturing a nozzle
DE20022545U1 (en) * 2000-09-22 2001-12-06 Alfred Kärcher GmbH & Co., 71364 Winnenden Rotor nozzle, in particular for a high-pressure cleaning device
CN1265891C (en) * 2001-02-27 2006-07-26 东陶机器株式会社 Fluid jetting device
US20050028846A1 (en) * 2001-05-04 2005-02-10 Fratello Daniel A. Fluid emitting nozzles for use with vehicle wash apparatus
US6766967B2 (en) 2002-05-07 2004-07-27 Gp Companies, Inc. Magnet-driven rotary nozzle
US7273188B2 (en) * 2003-08-15 2007-09-25 Darrell R Saha Internal self-rotating fluid jetting nozzle
US7118051B1 (en) 2005-08-11 2006-10-10 Anton Jager Rotor nozzle
DE102006019078B4 (en) 2006-04-25 2021-11-11 Anton Jäger Rotor nozzle
DE102006025931A1 (en) * 2006-06-02 2007-12-06 Jäger, Anton Rotor nozzle for high pressure cleaning device, has switching element locking control channel opposite to flow opening in sealing manner and releasing another control channel, and insert body locking rear end of housing in sealing manner
EP2038067B1 (en) 2006-06-30 2017-11-29 Nilfisk A/S Rotating nozzle
US8640973B2 (en) * 2006-09-07 2014-02-04 Briggs And Stratton Corporation Pressure washer wand having a nozzle selector
DE102006053625A1 (en) 2006-11-14 2008-05-15 Jäger, Anton Rotor nozzle for high pressure cleaning device, has switching ball releasing outlet opening and locking functional opening in operating mode, where outlet opening is locked and functional opening is released in another operating mode
DE102007051810A1 (en) * 2007-10-30 2009-05-07 Jäger, Anton Rotor nozzle system for high-pressure cleaning device, has rotors provided with nozzles and different from each other with respect to nozzle sizes, where speed of rotors regulated by ring nut on basis of fuel regulating amount
US8500042B2 (en) * 2008-01-24 2013-08-06 Hydra-Flex Inc. Configurable rotary spray nozzle
DE102009020409A1 (en) 2009-05-08 2010-11-18 Jäger, Anton Rotary nozzle
DE102009023647A1 (en) 2009-05-25 2010-12-02 Alfred Kärcher Gmbh & Co. Kg Rotor nozzle for a high-pressure cleaning device
US8544768B2 (en) * 2009-11-10 2013-10-01 Stoneage, Inc. Self regulating fluid bearing high pressure rotary nozzle with balanced thrust force
US20160243564A1 (en) * 2015-02-23 2016-08-25 Stoneage, Inc. Internally adjustable spray angle rotary nozzle
US9682387B2 (en) * 2015-11-17 2017-06-20 Fna Ip Holdings, Inc. Nozzle
CN107225052A (en) * 2017-07-27 2017-10-03 苏州吉云新材料技术有限公司 A kind of rotary spray fast cooling system
TWI754451B (en) * 2020-11-13 2022-02-01 輝寶實業有限公司 Nozzle structure of cleaning gun and spraying method thereof
WO2022128085A1 (en) 2020-12-16 2022-06-23 Alfred Kärcher SE & Co. KG Rotary nozzle for a high-pressure cleaning device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE153129C (en) *
US2854283A (en) * 1956-07-30 1958-09-30 Rain Jet Corp Sprinkler head and nozzle for producing non-circular spray patterns
NL282715A (en) * 1961-09-08
US4073438A (en) * 1976-09-03 1978-02-14 Nelson Irrigation Corporation Sprinkler head
CA1183888A (en) * 1980-12-22 1985-03-12 Harvey E. Diamond Fluid valve with directional outlet jet of continuously changing direction
GB8404490D0 (en) * 1984-02-21 1984-03-28 Osmond D R C Water sprinklers for lawns &c
DE3419964C2 (en) * 1984-05-29 1986-04-17 Alfred Kärcher GmbH & Co, 7057 Winnenden Spray head of a high pressure cleaning device
DE3532045A1 (en) * 1985-09-09 1987-03-19 Josef Kraenzle ROTATIONAL NOZZLE
DE3623368C2 (en) * 1986-07-11 1993-12-02 Kaercher Gmbh & Co Alfred Rotor nozzle for a high pressure cleaning device
DE8909876U1 (en) * 1989-01-27 1989-10-19 Jäger, Anton, 7913 Senden Rotor nozzle
DE3902478C1 (en) * 1989-01-27 1990-07-19 Josef 7918 Illertissen De Kraenzle

Also Published As

Publication number Publication date
EP0526508A1 (en) 1993-02-10
WO1991016989A1 (en) 1991-11-14
ATE126102T1 (en) 1995-08-15
DE4013446C1 (en) 1991-05-08
DK0526508T3 (en) 1995-09-25
CA2080696C (en) 1998-08-18
CA2080696A1 (en) 1991-10-28
US5328097A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
EP0526508B1 (en) Rotor nozzle for a high-pressure cleaning device
EP0600937B1 (en) Rotor nozzle for a high-pressure cleaning device
DE4328744C1 (en) Nozzle
DE3419964C2 (en) Spray head of a high pressure cleaning device
DE4433646A1 (en) Rotor nozzle, in particular for a high-pressure cleaning unit
DE19821919B4 (en) Rotary nozzle
DE19839142A1 (en) Compressed fluid cylinder
DE9004452U1 (en) Device for improving the effectiveness of a nozzle generating a movable fluid jet
DE2652584B2 (en) Spray device for generating a pulsating jet of liquid
EP1569755A1 (en) Nozzle assembly for a high-pressure cleaning device
EP0734776A1 (en) Rotor nozzle, in particular for a high-pressure cleaning device
EP2251091B1 (en) Rotor nozzle
EP0865827A2 (en) Rotary nozzle for high pressure cleaning appliances
DE4419404C2 (en) Rotor nozzle
DE2844142C2 (en) Flow control valve
DE4319743A1 (en) Rotor-type nozzle for a high-pressure cleaning unit
DE4224664A1 (en) High pressure, cleaning liq. rotor nozzle - has housing formed by front sleeve part with outlet aperture, and rear coupling part with inlet port
DE4220561A1 (en) Rotary nozzle with punctiform jet for high pressure cleaner device - has pin inclined to rotary axis of turbine rotor with freely rotatable bearing head
DE3873261T2 (en) ROTATING NOZZLE.
DE3832035A1 (en) Spot-jet rotary nozzle for high-pressure cleaning devices
DE69103700T2 (en) Hydraulic rotary pulse generator.
EP0891816B1 (en) Rotor nozzle
EP0762941B1 (en) Rotary nozzle for high pressure cleaning appliances
DE19820238A1 (en) Rotor jet for a high pressure cleaner
DE29501036U1 (en) Device for cleaning the inside wall of a wine barrel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920911

17Q First examination report despatched

Effective date: 19940208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950809

Ref country code: BE

Effective date: 19950809

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950809

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950809

REF Corresponds to:

Ref document number: 126102

Country of ref document: AT

Date of ref document: 19950815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950821

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951109

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19960430

Ref country code: LI

Effective date: 19960430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100325

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20100412

Year of fee payment: 20

Ref country code: FR

Payment date: 20100521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100414

Year of fee payment: 20

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110414