[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0526393B1 - mixing-in device - Google Patents

mixing-in device Download PDF

Info

Publication number
EP0526393B1
EP0526393B1 EP92810504A EP92810504A EP0526393B1 EP 0526393 B1 EP0526393 B1 EP 0526393B1 EP 92810504 A EP92810504 A EP 92810504A EP 92810504 A EP92810504 A EP 92810504A EP 0526393 B1 EP0526393 B1 EP 0526393B1
Authority
EP
European Patent Office
Prior art keywords
deflectors
mixing
channel
cross
guide surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92810504A
Other languages
German (de)
French (fr)
Other versions
EP0526393A1 (en
Inventor
Felix Streiff
Markus Fleischli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Chemtech AG
Original Assignee
Sulzer Chemtech AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Chemtech AG filed Critical Sulzer Chemtech AG
Publication of EP0526393A1 publication Critical patent/EP0526393A1/en
Application granted granted Critical
Publication of EP0526393B1 publication Critical patent/EP0526393B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43161Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod composed of consecutive sections of flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4315Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being deformed flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431973Mounted on a support member extending transversally through the mixing tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43163Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod in the form of small flat plate-like elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4319Tubular elements

Definitions

  • the invention relates to a mixing device for mixing a small amount of a fluid into a main stream of another fluid.
  • Simple static mixing elements with baffles are known, but they still have a very limited mixing and homogenizing effect and still cause a relatively high pressure drop.
  • More complex static mixers, for example consisting of intersecting subchannels of fins (Sulzer SMV mixers) probably have very good mixing properties, but are often still relatively expensive to manufacture.
  • a good mixing action is also particularly necessary when mixing a small amount of one fluid into a main stream of another fluid in a flow channel with a nozzle system.
  • a very good homogeneity (with a maximum deviation of less than 5% based on the mean value) must be achieved so that the reaction of NH3 with NOX takes place as completely as possible everywhere in the subsequent catalyst, in order to be able to comply with low nitrogen oxide limit values and also on the other hand no excess ammonia breaks through.
  • the stoichiometric mixing ratios must therefore be met uniformly and continuously over the entire channel cross section. This mixing quality must also be achieved over short distances and with a low pressure drop, for which known mixing devices are not yet sufficient.
  • a mixing device According to claim 1.
  • the baffles By attaching baffles to brackets at a distance from the channel wall, the baffles are completely flowed around on the front and rear side as loss-free as possible, thus creating an efficient deflection and swirling in the direction of the angle W.
  • intersecting partial flows are generated in the radial direction in the simplest possible manner and with little pressure loss.
  • a relatively large turbulence cone is generated in the main stream by the guide surfaces and deflected in the direction of W1.
  • the metering tube feeds the admixing fluid in the direction of its axis at the same location into this deflected turbulence cone.
  • the device according to the invention thus achieves both intensive mixing of the two fluids in the region of the injection and good homogenization over the entire channel cross section with simple means and a low pressure drop.
  • the dependent claims relate to advantageous developments of the invention.
  • the projection FZ of the guide surfaces in the main flow direction can only be 5% to 25% of the channel cross section and thus achieve an optimal mixing with very little effort and pressure drop.
  • the guide surfaces can be rectangular, triangular, trapezoidal, round, kinked, curved, cylindrical and also perforated, they can be against each other be staggered and also cover the entire channel cross-section in a substantially uniform manner.
  • At least two consecutive mixing elements of this type can form a mixer arrangement, the elements being able to have guide surfaces which are offset or rotated relative to one another.
  • a post-mixing section can be provided after a mixing element, which further increases the mixing effect.
  • the guide surfaces can be at least ten times as large as the outlet cross section of a metering tube, and the angle W2 to the tube axis can be between 0 ° and 15 °.
  • the devices according to the invention are also particularly well suited for mixing ammonia into the flue gas stream of a denitrification plant.
  • FIG. 1 shows a mixing element 4 with two guide surfaces 30 fixed to a holder 20 in a flow channel 7 in two views.
  • the rectangular guiding surfaces are offset from one another and each by an angle W of, for example, 30 ° to the main flow direction Z of the fluid 2 inclined with opposite orientations.
  • the guide surfaces 30 produce corresponding, in the directions 16, 17 deflected, turbulent flow cones 26, 27, which intersect offset.
  • the projection FZ of both guide surfaces in the flow direction Z is less than 50% of the cross-sectional area F of the flow channel (FIG. 1b). Even with a proportion FZ of, for example, 10% to 20% of F, turbulent, intensely mixing cross flows can be generated according to the invention.
  • FIG. 2 shows an analogous example with a plurality of guide surfaces 30 on two brackets 20 which regularly cover an entire channel cross section F with (in the figure) alternating upward and downward partial streams 16, 17 of the cross currents generated.
  • the guide surfaces 30 can have different shapes according to FIGS. 3a to d and, for example, have a trapezoidal shape 31 or around 32 or can be perforated 24.
  • the holder is formed here from tubes which have a relatively high inherent rigidity. Bracket and guide surface can also be formed from one piece, for example according to FIG. 3c as a bent stamped part 33 welded to the channel wall, in which the narrow extension 23 of the wide guide surface 30 serves as a holder.
  • a similar, curved version 34 is shown in Fig. 3d. 4a with two smaller guide surfaces 35 pointing to the left and an approximately twice as large central guide surface 36 facing to the right, FIG. 4b shows a version with two different guide surfaces 37, 38.
  • the bracket can also have reinforcements and stiffeners, particularly for high flow velocities and heavy loads on the guide surfaces. Together with the guide surfaces, these can form lattice-like or truss-like structures, as shown, for example, with the struts 22 in FIGS. 4b and 5.
  • the bracket can also consist of ropes on which the guide surfaces are set like sails in the desired optimal direction W.
  • FIG. 5 shows a mixer arrangement with guide surfaces in two cross-sectional planes 41, 42.
  • the guide surfaces of plane 42 are offset from those of the first plane 41. They can also be twisted against one another, for example by 90 °.
  • the arrangement of the guide surfaces 30, 39 in one plane corresponds to the illustration in FIG. 2, but here larger rectangular guide surfaces are used with a total surface FZ (one plane) projected in the Z direction, which amounts to 50% of the cross-sectional area F. . 5 can be punched and folded from sheet metal strips according to FIG. 6a very easily, inexpensively and without cutting losses.
  • the guide surfaces 30 and 39 are alternately bent to one or the other side, while the remaining strip 21 serves as a holder 20.
  • the guide surface arrangement of FIG. 2 can also be produced from a sheet metal strip by trapezoidal toothed punching. This creates two rows of guide surfaces 30, 31 with brackets 20 from a sheet metal strip.
  • FIG. 7 shows a mixer arrangement with two mixing elements 3, 4, with at least the first mixing element 3 being followed by a post-mixing section N which enables further cross-mixing by the turbulent, intersecting partial flows generated in the mixing element.
  • the mixing elements 3, 4 are here rotated 90 ° relative to each other.
  • FIGS. 8a, b shows a mixing device according to the invention with two metering tubes 21 on a main tube 20 as holders at the outlet openings 28 of which a guide surface 30 is attached at an acute angle W to the main flow direction Z.
  • the length L of the metering tubes 21 is at least as large as their diameter D.
  • the guide surfaces 30 form an angle W2 of 0 ° to 45 ° to the tube axis 25 and are oriented in opposite directions with respect to Z.
  • the guide surfaces produce deflected turbulent flow cones 26, 27 of the main flow fluid 2, which intersect with the injection cones 8 of the admixing fluid 1 and thereby mix intensively.
  • the two guide surfaces 30 and the metering tubes 21 are oriented in opposite directions with respect to Z and are arranged offset with respect to one another along the main tube 20. This creates intersecting partial flows 16, 17, which cause intensive mixing and homogenization of the two fluids 1 and 2 and across the main channel cross section.
  • 9a, b show an example with only one metering tube 21 running parallel to the main flow direction Z, to the outlet opening 28 of which two guide surfaces 30 are attached. These guiding surfaces are again opposite oriented and offset from one another to produce intersecting partial streams 16, 17.
  • the 10 shows a further injection device with a plurality of metering tubes 21 and guide surfaces 30 on two main tubes 20 as holders, which are evenly distributed over the entire channel cross section F.
  • the main stream is evenly divided into intersecting partial streams by the offset and oppositely directed guide surfaces.
  • the partial flow directions 16, 17 run alternately upwards and downwards.
  • the guide surfaces 30 can be dimensioned relatively large, their total surface FZ projected in the Z direction preferably being between 5% and 50% of the cross-sectional surface F. Particularly good mixing effects with minimal pressure drop are often achieved with an area ratio of 10% to 15%.
  • 11a to d show various examples of suitable shapes of guide surfaces on the metering tubes: rectangular 43, triangular 44, round 45 or bent as a tube piece 46.
  • the metering tubes 21 shows an arrangement with metering tubes 21 as holders and guide surfaces 30 in two levels 41 and 42, the metering tubes with guide surfaces of the second level being arranged offset from those of the first level.
  • the direction of the metering tubes with guide surfaces W in the second level can also be rotated relative to that in the first level, preferably by 90 °.
  • the mixing quality can be improved from 4% to just 2% concentration fluctuation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The static mixing element in a flow channel (7) has at least two baffles (30) on mounts (20) at a distance from the wall of the channel. The baffles form an angle W from 10 DEG to 45 DEG with the main flow direction Z. They have different orientations, and the projection FZ of the baffles in the main flow direction is from 5% to 50% of the channel cross section F. As a result, very efficiently cross-mixing cross flows are generated in a simple manner. If dosing tubes (20, 21) are used as mounts, a very effective mixing-in device is produced. <IMAGE>

Description

Die Erfindung betrifft eine Einmischvorrichtung zum Einmischen einer kleinen Menge eines Fluids in einen Hauptstrom eines anderen Fluids. Es sind einfache statische Mischelemente mit Leitflächen bekannt, welche jedoch noch eine sehr beschränkte Misch- und Homogenisierungswirkung aufweisen und dabei immer noch einen relativ hohen Druckabfall bewirken. Aufwendigere statische Mischer, z.B. bestehend aus sich kreuzenden Teilkanälen von Lamellen (Sulzer-SMV-Mischer) weisen wohl sehr gute Mischeigenschaften auf, sind aber oft noch relativ aufwendig herzustellen. Eine gute Mischwirkung ist insbesondere auch erforderlich beim Einmischen einer kleinen Menge eines Fluids in einen Hauptstrom eines anderen Fluids in einem Strömungskanal mit einem Eindüsesystem. Beim Zumischen relativ kleiner Mengen, von beispielsweise weniger als 10 %, eines Gases bzw. einer Flüssigkeit zum Strom eines anderen Gases bzw. einer anderen Flüssigkeit werden sehr lange Mischstrecken im Leerrohr benötigt, um eine homogene Vermischung zu erreichen. Herkömmliche Einmischvorrichtungen mit komplizierten einstellbaren Eindüsesystemen vermögen aber hohe Anforderungen an die Mischgüte in einem weiten Lastbereich und vor allem auch bei sehr kleinen Volumenstromverhältnissen nicht zu erreichen. Beispielsweise wird in Denox-Anlagen eine Entstickung durch Zumischung von gasförmigem Ammoniak in den Rauchgasstrom in einem sehr niedrigen Verhältnis von 1:1000 bis 1:10000 durchgeführt. Dabei muss eine sehr gute Homogenität (mit maximaler Abweichung von weniger als 5 % bezogen auf den Mittelwert) erreicht werden, damit im anschliessenden Katalysator einerseits die Reaktion von NH3 mit NOX überall möglichst vollständig abläuft, um niedrige Stickoxyd-Grenzwerte einhalten zu können und andererseits auch kein überschüssiges Ammoniak durchbricht. Die stöchiometrischen Mischverhältnisse müssen also über den ganzen Kanalquerschnitt gleichmassig und dauernd erfüllt sein. Diese Mischgüte muss zudem auf kurzen Strecken und mit geringem Druckabfall erreicht werden, wozu bekannte Einmischvorrichtungen noch nicht genügen.The invention relates to a mixing device for mixing a small amount of a fluid into a main stream of another fluid. Simple static mixing elements with baffles are known, but they still have a very limited mixing and homogenizing effect and still cause a relatively high pressure drop. More complex static mixers, for example consisting of intersecting subchannels of fins (Sulzer SMV mixers) probably have very good mixing properties, but are often still relatively expensive to manufacture. A good mixing action is also particularly necessary when mixing a small amount of one fluid into a main stream of another fluid in a flow channel with a nozzle system. When relatively small amounts, for example less than 10%, of a gas or a liquid are added to the flow of another gas or another liquid, very long mixing sections are required in the empty tube in order to achieve homogeneous mixing. Conventional mixing devices with complicated adjustable injection systems are not able to meet high demands on the mixing quality in a wide load range and, above all, even with very low volume flow ratios. In Denox plants, for example, denitrification is carried out by adding gaseous ammonia to the flue gas stream in a very low ratio of 1: 1000 to 1: 10000. A very good homogeneity (with a maximum deviation of less than 5% based on the mean value) must be achieved so that the reaction of NH3 with NOX takes place as completely as possible everywhere in the subsequent catalyst, in order to be able to comply with low nitrogen oxide limit values and also on the other hand no excess ammonia breaks through. The stoichiometric mixing ratios must therefore be met uniformly and continuously over the entire channel cross section. This mixing quality must also be achieved over short distances and with a low pressure drop, for which known mixing devices are not yet sufficient.

Es ist daher Aufgabe der vorliegenden Erfindung mit möglichst einfachen Mitteln eine sehr gute Mischwirkung bei relativ geringem Druckabfall zu erreichen und gegenüber den bekannten Mischerarten Vorteile in der Summe aller Eigenschaften zu erreichen und es ist eine weitere Aufgabe mit dem statischen Mischelement eine einfache Einmischvorrichtung zu schaffen, welche bei geringem Druckabfall und auf kurzen Strecken eine hohe Mischgüte über den ganzen Kanalquerschnitt und in einem weiten Bereich von Lastfällen sicherstellt.It is therefore an object of the present invention to achieve a very good mixing effect with a relatively low pressure drop using the simplest possible means and to achieve advantages over the known mixer types in the sum of all properties, and it is another object to create a simple mixing device with the static mixing element, which ensures a high mixing quality across the entire duct cross-section and in a wide range of load cases with a low pressure drop and short distances.

Diese Aufgaben werden erfindungsgemäss gelöst durch eine Einmischvorrichtung nach Anspruch 1. Durch das Anbringen von Leitflächen an Halterungen in einem Abstand von der Kanalwand werden die Leitflächen möglichst verlustfrei vollständig auf Vorder- und Rückseite umströmt, womit in Richtung des Winkels W gleichzeitig eine effiziente Ablenkung und eine Verwirbelung entsteht. Durch die Anordnung von wenigen Leitflächen mit unterschiedlichen Orientierungen werden sich kreuzende Teilströme in radialer Richtung auf möglichst einfache Art und mit wenig Druckverlust erzeugt. Durch die Leitflächen wird ein relativ grosser Turbulenzkegel im Hauptstrom erzeugt und in Richtung W1 abgelenkt. Gleichzeitig speist das Dosierrohr das Zumischfluid in Richtung seiner Achse am gleichen Ort in diesen abgelenkten Turbulenzkegel ein. Dadurch wird eine sofortige intensive Vermischung der beiden Fluide erzwungen und durch die lokale Ablenkung in die Richtungen W, der mindestens zwei entgegengesetzt orientierten Leitflächen wird ein Kreuzstrom erzeugt, welcher eine intensive Vermischung über den ganzen Querschnitt des Strömungskanals bewirkt. Insgesamt wird mit der erfindungsgemässen Vorrichtung also sowohl eine intensive Vermischung der beiden Fluide im Bereiche der Eindüsung als auch eine gute Homogenisierung über den ganzen Kanalquerschnitt mit einfachen Mitteln und geringem Druckabfall erreicht. Die abhängigen Ansprüche betreffen vorteilhafte Weiterbildungen der Erfindung. Die Projektion FZ der Leitflächen in Hauptströmungsrichtung kann nur 5 % bis 25 % des Kanalquerschnitts betragen und damit schon bei sehr geringem Aufwand und Druckabfall eine optimale Vermischung erzielen. Die Leitflächen können rechteckig, dreieckförmig, trapezförmig, rund, geknickt, gebogen, zylindrisch und auch gelocht sein, sie können gegeneinander versetzt angeordnet sein und auch im wesentlichen gleichmässig verteilt den ganzen Kanalquerschnitt überdecken. Mindestens zwei aufeinanderfolgende Mischelemente dieser Art können eine Mischeranordnung bilden, wobei die Elemente gegeneinander versetzte oder verdrehte Leitflächen aufweisen können. Nach einem Mischelement kann eine Nachmischstrecke vorgesehen sein, welche die Mischwirkung weiter erhöht.According to the invention, these objects are achieved by a mixing device According to claim 1. By attaching baffles to brackets at a distance from the channel wall, the baffles are completely flowed around on the front and rear side as loss-free as possible, thus creating an efficient deflection and swirling in the direction of the angle W. By arranging a few guide surfaces with different orientations, intersecting partial flows are generated in the radial direction in the simplest possible manner and with little pressure loss. A relatively large turbulence cone is generated in the main stream by the guide surfaces and deflected in the direction of W1. At the same time, the metering tube feeds the admixing fluid in the direction of its axis at the same location into this deflected turbulence cone. This forces an immediate intensive mixing of the two fluids and, due to the local deflection in the directions W, the at least two oppositely oriented guide surfaces, a cross flow is generated, which causes intensive mixing over the entire cross section of the flow channel. Overall, the device according to the invention thus achieves both intensive mixing of the two fluids in the region of the injection and good homogenization over the entire channel cross section with simple means and a low pressure drop. The dependent claims relate to advantageous developments of the invention. The projection FZ of the guide surfaces in the main flow direction can only be 5% to 25% of the channel cross section and thus achieve an optimal mixing with very little effort and pressure drop. The guide surfaces can be rectangular, triangular, trapezoidal, round, kinked, curved, cylindrical and also perforated, they can be against each other be staggered and also cover the entire channel cross-section in a substantially uniform manner. At least two consecutive mixing elements of this type can form a mixer arrangement, the elements being able to have guide surfaces which are offset or rotated relative to one another. A post-mixing section can be provided after a mixing element, which further increases the mixing effect.

Bei besonders wirksamen Ausführungen können die Leitflächen mindestens zehnmal so gross sein wie der Austrittsquerschnitt eines Dosierrohrs, und der Winkel W2 zur Rohrachse kann zwischen 0° und 15° betragen. Die erfindungsgemässen Vorrichtungen eignen sich auch besonders gut zum Einmischen von Ammoniak in den Rauchgasstrom einer Entstickungsanlage.In particularly effective designs, the guide surfaces can be at least ten times as large as the outlet cross section of a metering tube, and the angle W2 to the tube axis can be between 0 ° and 15 °. The devices according to the invention are also particularly well suited for mixing ammonia into the flue gas stream of a denitrification plant.

Die Erfindung wird im folgenden anhand von Figuren und Ausführungsbeispielen weiter erläutert. Es zeigt:

Fig. 1a, b
ein Mischelement mit zwei Leitflächen an einer Halterung in zwei Ansichten;
Fig. 2
ein Beispiel mit mehreren Leitflächen, welche den Kanalquerschnitt F regelmässig überdecken;
Fig. 3a bis d
Beispiele von Leitflächenformen;
Fig. 4a, b
Beispiele mit unterschiedlichen Leitflächen in runden Strömungskanälen;
Fig. 5
eine Mischeranordnung mit Leitflächen in zwei Querschnittsebenen des Strömungskanals;
Fig. 6a, b
Beispiele von aus Blechstreifen gestanzten Leitflächen mit Halterungen;
Fig. 7
eine Mischeranordnung mit zwei Mischelementen und einer Nachmischstrecke;
Fig. 8a, b
eine erfindungsgemässe Einmischvorrichtung mit zwei Dosierrohren als Halterungen und zwei Leitflächen in zwei Ansichten;
Fig. 9a, b
ein weiteres Beispiel mit einem Dosierrohr und zwei Leitflächen;
Fig. 10
ein Beispiel mit mehreren Dosierrohren und Leitflächen;
Fig. 11a, b, c, d
verschiedene Beispiele von Leitflächen an Dossierrohren;
Fig. 12
eine Einmischvorrichtung mit Dosierrohren und Leitflächen in zwei Ebenen.
The invention is explained in more detail below with reference to figures and exemplary embodiments. It shows:
Fig. 1a, b
a mixing element with two guide surfaces on a holder in two views;
Fig. 2
an example with several baffles that regularly cover the channel cross-section F;
3a to d
Examples of control surface shapes;
4a, b
Examples with different baffles in round flow channels;
Fig. 5
a mixer arrangement with baffles in two cross-sectional planes of the flow channel;
6a, b
Examples of guiding surfaces stamped from sheet metal strips with holders;
Fig. 7
a mixer arrangement with two mixing elements and a post-mixing section;
8a, b
a mixing device according to the invention with two metering tubes as holders and two guide surfaces in two views;
9a, b
another example with a metering tube and two guide surfaces;
Fig. 10
an example with several dosing tubes and guide surfaces;
11a, b, c, d
various examples of guide surfaces on dossier tubes;
Fig. 12
a mixing device with metering tubes and guide surfaces in two levels.

Fig. 1 zeigt ein Mischelement 4 mit zwei an einer Halterung 20 fixierten Leitflächen 30 in einem Strömungskanal 7 in zwei Ansichten. Die rechteckförmigen Leitflächen sind gegeneinander versetzt und je um einen Winkel W von z.B. 30° gegen die Hauptströmungsrichtung Z des Fluids 2 geneigt mit entgegengesetzten Orientierungen. Die Leitflächen 30 erzeugen entsprechende, in die Richtungen 16, 17 abgelenkte, turbulente Strömungskegel 26, 27, welche sich versetzt kreuzen. Die Projektion FZ beider Leitflächen in Strömungsrichtung Z beträgt weniger als 50 % der Querschnittsfläche F des Strömungskanals (Fig. 1b). Schon mit einem Anteil FZ von z.B. 10 % bis 20 % von F können erfindungsgemäss turbulente, sich intensiv vermischende Kreuzströmungen erzeugt werden.1 shows a mixing element 4 with two guide surfaces 30 fixed to a holder 20 in a flow channel 7 in two views. The rectangular guiding surfaces are offset from one another and each by an angle W of, for example, 30 ° to the main flow direction Z of the fluid 2 inclined with opposite orientations. The guide surfaces 30 produce corresponding, in the directions 16, 17 deflected, turbulent flow cones 26, 27, which intersect offset. The projection FZ of both guide surfaces in the flow direction Z is less than 50% of the cross-sectional area F of the flow channel (FIG. 1b). Even with a proportion FZ of, for example, 10% to 20% of F, turbulent, intensely mixing cross flows can be generated according to the invention.

Fig. 2 zeigt ein analoges Beispiel mit mehreren Leitflächen 30 an zwei Halterungen 20, welche einen ganzen Kanalquerschnitt F regelmässig überdecken mit (in der Figur) abwechselnd nach oben und nach unten gerichteten Teilströmen 16, 17 der erzeugten Kreuzströmungen. Die Leitflächen 30 können nach Fig. 3a bis d verschiedene Formen aufweisen und beispielsweise trapezförmig 31 oder rund 32 ausgebildet oder auch gelocht sein 24. Die Halterung wird hier aus Rohren gebildet, welche eine relativ hohe Eigensteifigkeit aufweisen. Halterung und Leitfläche können auch aus einem Stück gebildet sein, z.B. nach Fig. 3c als geknicktes, an die Kanalwand geschweisstes Stanzteil 33, bei dem die schmale Verlängerung 23 der breiten Leitfläche 30 als Halterung dient. Eine ähnliche, gebogene Version 34 zeigt Fig. 3d. Leitflächen mit unterschiedlichen Formen, z.B. in runden Strömungskanälen zeigen die Figuren 4a mit zwei kleineren nach links gerichteten Leitflächen 35 und einer etwa doppelt so grossen mittleren nach rechts gerichteten Leitfläche 36. Fig. 4b zeigt eine Version mit zweimal zwei unterschiedlichen Leitflächen 37, 38.2 shows an analogous example with a plurality of guide surfaces 30 on two brackets 20 which regularly cover an entire channel cross section F with (in the figure) alternating upward and downward partial streams 16, 17 of the cross currents generated. The guide surfaces 30 can have different shapes according to FIGS. 3a to d and, for example, have a trapezoidal shape 31 or around 32 or can be perforated 24. The holder is formed here from tubes which have a relatively high inherent rigidity. Bracket and guide surface can also be formed from one piece, for example according to FIG. 3c as a bent stamped part 33 welded to the channel wall, in which the narrow extension 23 of the wide guide surface 30 serves as a holder. A similar, curved version 34 is shown in Fig. 3d. 4a with two smaller guide surfaces 35 pointing to the left and an approximately twice as large central guide surface 36 facing to the right, FIG. 4b shows a version with two different guide surfaces 37, 38.

Besonders für hohe Strömungsgeschwindigkeiten und starke Belastungen der Leitflächen kann die Halterung auch Verstärkungen und Versteifungen aufweisen. Diese können mit den Leitflächen zusammen gitterartige oder fachwerkartige Strukturen bilden wie beispielsweise mit den Verstrebungen 22 in den Figuren 4b und 5 dargestellt. Die Halterung kann auch aus Seilen bestehen, an denen die Leitflächen wie Segel in die gewünschte optimale Richtung W gesetzt sind.The bracket can also have reinforcements and stiffeners, particularly for high flow velocities and heavy loads on the guide surfaces. Together with the guide surfaces, these can form lattice-like or truss-like structures, as shown, for example, with the struts 22 in FIGS. 4b and 5. The bracket can also consist of ropes on which the guide surfaces are set like sails in the desired optimal direction W.

Fig. 5 zeigt eine Mischeranordnung mit Leitflächen in zwei Querschnittsebenen 41, 42. Die Leitflächen der Ebene 42 sind gegen jene der ersten Ebene 41 versetzt angeordnet. Sie können auch gegeneinander verdreht sein, z.B. um 90°. Die Anordnung der Leitflächen 30, 39 in einer Ebene entspricht der Darstellung von Fig. 2, wobei hier jedoch grössere rechteckige Leitflächen eingesetzt sind mit einer totalen, in Z-Richtung projizierten Fläche FZ (einer Ebene), welche gegen 50 % der Querschnittsfläche F beträgt. Die Leitflächen von Fig. 5 können sehr einfach, kostengünstig und ohne Schnittverluste aus Blechstreifen gemäss Fig. 6a gestanzt und abgekantet werden. Die Leitflächen 30 und 39 werden dabei abwechselnd nach der einen bzw. der anderen Seite abgebogen, während der Reststreifen 21 als Halterung 20 dient. Ganz analog dazu kann auch die Leitflächenanordnung von Fig. 2 durch trapezförmig gezahntes Stanzen aus einem Blechstreifen produziert werden. Dabei entstehen je zwei Reihen von Leitflächen 30, 31 mit Halterungen 20 aus einem Blechstreifen.FIG. 5 shows a mixer arrangement with guide surfaces in two cross-sectional planes 41, 42. The guide surfaces of plane 42 are offset from those of the first plane 41. They can also be twisted against one another, for example by 90 °. The arrangement of the guide surfaces 30, 39 in one plane corresponds to the illustration in FIG. 2, but here larger rectangular guide surfaces are used with a total surface FZ (one plane) projected in the Z direction, which amounts to 50% of the cross-sectional area F. . 5 can be punched and folded from sheet metal strips according to FIG. 6a very easily, inexpensively and without cutting losses. The guide surfaces 30 and 39 are alternately bent to one or the other side, while the remaining strip 21 serves as a holder 20. Analogously to this, the guide surface arrangement of FIG. 2 can also be produced from a sheet metal strip by trapezoidal toothed punching. This creates two rows of guide surfaces 30, 31 with brackets 20 from a sheet metal strip.

Fig. 7 zeigt eine Mischeranordnung mit zwei Mischelementen 3, 4, wobei mindestens auf das erste Mischelement 3 eine Nachmischstrecke N folgt, welche eine weitergehende Quervermischung durch die im Mischelement erzeugten turbulenten, sich kreuzenden Teilströme ermöglicht. Die Mischelemente 3, 4 sind hier gegeneinander um 90° verdreht angeordnet.7 shows a mixer arrangement with two mixing elements 3, 4, with at least the first mixing element 3 being followed by a post-mixing section N which enables further cross-mixing by the turbulent, intersecting partial flows generated in the mixing element. The mixing elements 3, 4 are here rotated 90 ° relative to each other.

Die Anordnung von Fig. 8a, b zeigt eine erfindungsgemässe Einmischvorrichtung mit zwei Dosierrohren 21 an einem Hauptrohr 20 als Halterungen an deren Ausgangsöffnungen 28 je eine Leitfläche 30 in einem spitzen Winkel W zur Hauptströmungsrichtung Z angebracht ist. Die Länge L der Dosierrohre 21 ist mindestens so gross wie deren Durchmesser D. Die Leitflächen 30 schliessen einen Winkel W2 von 0° bis 45° zur Rohrachse 25 ein und sind bezüglich Z entgegengesetzt orientiert. Die Leitflächen erzeugen abgelenkte turbulente Strömungskegel 26, 27 des Hauptstromfluids 2, welche sich mit den Eindüsekegeln 8 des Zumischfluids 1 kreuzen und dadurch intensiv vermischen. Die beiden Leitflächen 30 und die Dosierrohre 21 sind bezüglich Z entgegengesetzt orientiert und längs des Hauptrohrs 20 gegeneinander versetzt angeordnet. Dadurch entstehen sich kreuzende Teilströme 16, 17, welche eine intensive Vermischung und Homogenisierung der beiden Fluide 1 und 2 und über den Hauptkanalquerschnitt hervorrufen.The arrangement of FIGS. 8a, b shows a mixing device according to the invention with two metering tubes 21 on a main tube 20 as holders at the outlet openings 28 of which a guide surface 30 is attached at an acute angle W to the main flow direction Z. The length L of the metering tubes 21 is at least as large as their diameter D. The guide surfaces 30 form an angle W2 of 0 ° to 45 ° to the tube axis 25 and are oriented in opposite directions with respect to Z. The guide surfaces produce deflected turbulent flow cones 26, 27 of the main flow fluid 2, which intersect with the injection cones 8 of the admixing fluid 1 and thereby mix intensively. The two guide surfaces 30 and the metering tubes 21 are oriented in opposite directions with respect to Z and are arranged offset with respect to one another along the main tube 20. This creates intersecting partial flows 16, 17, which cause intensive mixing and homogenization of the two fluids 1 and 2 and across the main channel cross section.

Fig. 9a, b zeigt ein Beispiel mit nur einem parallel zur Hauptströmungsrichtung Z verlaufendem Dosierrohr 21, an dessen Ausgangsöffnung 28 zwei Leitflächen 30 angebracht sind. Diese Leitflächen sind wiederum entgegengesetzt orientiert und gegeneinander versetzt zur Erzeugung sich kreuzender Teilströme 16, 17.9a, b show an example with only one metering tube 21 running parallel to the main flow direction Z, to the outlet opening 28 of which two guide surfaces 30 are attached. These guiding surfaces are again opposite oriented and offset from one another to produce intersecting partial streams 16, 17.

Fig. 10 zeigt eine weitere Eindüsevorrichtung mit mehreren Dosierrohren 21 und Leitflächen 30 an zwei Hauptrohren 20 als Halterungen, welche über den ganzen Kanalquerschnitt F gleichmässig verteilt sind. Dadurch wird auch der Hauptstrom gleichmässig durch die versetzten und je entgegengesetzt gerichteten Leitflächen in sich kreuzende Teilströme aufgeteilt. Die Teilstromrichtungen 16, 17 verlaufen dabei alternierend nach oben und nach unten. Um möglichst grosse sich kreuzende Teilströme zu erzeugen, können die Leitflächen 30 relativ gross dimensioniert werden, wobei deren gesamte in Z-Richtung projizierte Fläche FZ vorzugsweise zwischen 5 % und 50 % der Querschnittsfläche F beträgt. Besonders gute Mischwirkungen bei minimalem Druckabfall werden oft mit einem Flächenverhältnis von 10 % bis 15 % erreicht.10 shows a further injection device with a plurality of metering tubes 21 and guide surfaces 30 on two main tubes 20 as holders, which are evenly distributed over the entire channel cross section F. As a result, the main stream is evenly divided into intersecting partial streams by the offset and oppositely directed guide surfaces. The partial flow directions 16, 17 run alternately upwards and downwards. In order to generate the largest possible intersecting partial flows, the guide surfaces 30 can be dimensioned relatively large, their total surface FZ projected in the Z direction preferably being between 5% and 50% of the cross-sectional surface F. Particularly good mixing effects with minimal pressure drop are often achieved with an area ratio of 10% to 15%.

Fig. 11a bis d zeigt verschiedene Beispiele geeigneter Formen von Leitflächen an den Dosierrohren: rechteckförmig 43, dreieckförmig 44, rund 45 oder gebogen als Rohrstück 46.11a to d show various examples of suitable shapes of guide surfaces on the metering tubes: rectangular 43, triangular 44, round 45 or bent as a tube piece 46.

Fig. 12 zeigt eine Anordnung mit Dosierrohren 21 als Halterungen und Leitflächen 30 in zwei Ebenen 41 und 42, wobei die Dosierrohre mit Leitflächen der zweiten Ebene gegenüber jenen der ersten Ebene versetzt angeordnet sind. Die Richtung der Dosierrohre mit Leitflächen W in der zweiten Ebene kann gegenüber jener in der ersten Ebene auch verdreht sein, vorzugsweise um 90°. In einem Versuchsbeispiel konnten mit erfindungsgemässen Mischelementen in Form der Leitflächen an den Dosierrohren eine Verbesserung der Mischgüte von 4 % auf nur noch 2 % Konzentrationsschwankung erreicht werden.12 shows an arrangement with metering tubes 21 as holders and guide surfaces 30 in two levels 41 and 42, the metering tubes with guide surfaces of the second level being arranged offset from those of the first level. The direction of the metering tubes with guide surfaces W in the second level can also be rotated relative to that in the first level, preferably by 90 °. In an experimental example, using mixing elements according to the invention In the form of the guide surfaces on the metering tubes, the mixing quality can be improved from 4% to just 2% concentration fluctuation.

Claims (12)

  1. A device for mixing a small quantity of a fluid (1) into a main flow of another fluid (2) in a flow channel (7), the device having an injection system (3) comprising dispensing tubes (20, 21) and constructed as a static mixing element with the dispensing tubes as mounting for at least two deflectors (30), wherein at least one deflector is disposed at the outlet aperture (28) of each dispensing tube (21) at a distance from the channel wall, each deflector forms an angle W of from 10° to 45° to the main flow direction Z, adjacent deflectors are disposed with different orientations in a substantially crossing arrangement, the surface FZ of the deflectors projected in the main flow direction amounts to from 5% to 50% of the channel cross-section surface F, the length L of each dispensing tube (21) carrying a deflector is at least equal to its internal diameter D, and each deflector forms an angle W2 of from 0° to 45° with the axis 25 of the associated dispensing tube.
  2. A device according to claim 1, characterised in that the projection FZ of the deflectors in the main flow direction amounts to from 5% to 25% of the channel cross-section F.
  3. A device according to claim 1 or 2, characterised in that adjacent deflectors are offset from one another.
  4. A device according to any of claims 1 to 3, characterised in that the deflectors are rectangular or triangular or trapezoidal.
  5. A device according to any of claims 1 to 3, characterised in that the deflectors are round or bent or curved or cylindrical.
  6. A device according to any of the previous claims, characterised in that the deflectors are perforate.
  7. A device according to any of the previous claims, characterised in that the deflectors are disposed substantially in a cross-sectional area F of the channel.
  8. A device according to claim 7, characterised by a number of deflectors distributed uniformly over the channel cross-section.
  9. A device according to any of the previous claims, characterised in that the deflectors are at least ten times as large as the outlet cross-section of the dispensing tube (20).
  10. A device according to any of the previous claims, characterised in that the angle W2 to the tube axis is between 0̸° and 15°.
  11. Use of a device according to any of the previous claims for mixing ammonia into the flue gas flow.
  12. Use according to claim 11 in a denoxing installation.
EP92810504A 1991-07-30 1992-07-01 mixing-in device Expired - Lifetime EP0526393B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH227691 1991-07-30
CH2277/91 1991-07-30
CH2276/91 1991-07-30
CH227791 1991-07-30

Publications (2)

Publication Number Publication Date
EP0526393A1 EP0526393A1 (en) 1993-02-03
EP0526393B1 true EP0526393B1 (en) 1996-08-28

Family

ID=25689980

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92810504A Expired - Lifetime EP0526393B1 (en) 1991-07-30 1992-07-01 mixing-in device

Country Status (5)

Country Link
US (2) US5456533A (en)
EP (1) EP0526393B1 (en)
JP (1) JP3202798B2 (en)
AT (1) ATE141827T1 (en)
DE (1) DE59206987D1 (en)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0751820T3 (en) * 1994-03-25 1999-04-26 Siemens Ag Combined supply and mixer
DE19604289C2 (en) * 1996-02-07 1998-04-23 Danfoss As Micromixer
EP0800857B1 (en) * 1996-04-12 2003-07-30 Sulzer Chemtech AG Mixer tube for low viscosity fluids
JP3031855U (en) * 1996-05-30 1996-12-03 光正 古矢 Granular drug mixing device
US6015229A (en) * 1997-09-19 2000-01-18 Calgon Carbon Corporation Method and apparatus for improved mixing in fluids
DE19820992C2 (en) * 1998-05-11 2003-01-09 Bbp Environment Gmbh Device for mixing a gas stream flowing through a channel and method using the device
ES2244441T3 (en) 1999-04-19 2005-12-16 Sulzer Chemtech Ag TORBELLINOS STATIC MIXERS AND EMPLOYMENT METHOD FOR THE SAME.
GB9910738D0 (en) * 1999-05-11 1999-07-07 Statiflo International Limited Static miker
EP1166861B1 (en) * 2000-06-19 2003-03-26 Balcke-Dürr Energietechnik GmbH Mixer for mixing at least two gas streams or other Newtonian liquids
US6886973B2 (en) * 2001-01-03 2005-05-03 Basic Resources, Inc. Gas stream vortex mixing system
DE50304588D1 (en) * 2002-06-26 2006-09-21 Axair Ag humidifying
DE10233506B4 (en) * 2002-07-24 2004-12-09 Bayer Technology Services Gmbh Mixer / heat exchanger
US7896264B2 (en) * 2003-06-30 2011-03-01 Boehringer Ingelheim International Gmbh Microstructured high pressure nozzle with built-in filter function
DE10334593B3 (en) * 2003-07-28 2005-04-21 Framatome Anp Gmbh mixing system
MXPA06008819A (en) * 2004-02-09 2007-02-16 Indigo Technologies Group Pty Ltd Improved particle interactions in a fluid flow.
US7448794B2 (en) * 2004-02-27 2008-11-11 Haldor Topsoe A/S Method for mixing fluid streams
EP1568410B1 (en) * 2004-02-27 2010-05-05 Haldor Topsoe A/S Apparatus for mixing fluid streams
KR20070004041A (en) * 2004-04-19 2007-01-05 로버트 우든 Improved water conditioner
PL1681090T3 (en) * 2005-01-17 2007-10-31 Balcke Duerr Gmbh Apparatus and method for mixing of a fluid flow in a flow channel
US7383850B2 (en) 2005-01-18 2008-06-10 Peerless Mfg. Co. Reagent injection grid
DE102006004069A1 (en) * 2006-01-28 2007-09-06 Fisia Babcock Environment Gmbh Method and device for mixing a fluid with a large gas flow rate
DE102006024778B3 (en) * 2006-03-02 2007-07-19 J. Eberspächer GmbH & Co. KG Static mixer for exhaust system of internal combustion engine, has flow conducting surfaces arranged at web materials so that surfaces are arranged with cells at their diverting side and extend in direction of flow in tube
CN101045198B (en) * 2006-03-27 2011-12-21 皮尔莱斯制造公司 Reagent injection grille
US8118477B2 (en) 2006-05-08 2012-02-21 Landmark Structures I, L.P. Apparatus for reservoir mixing in a municipal water supply system
EP1894616A1 (en) * 2006-08-30 2008-03-05 Fachhochschule Zentralschweiz Static mixing device
DE202006017848U1 (en) * 2006-11-24 2007-03-08 Heinrich Gillet Gmbh Exhaust gases mixing device e.g. from combustion engines with additives, has tube and nozzle for additive and in tube several alternating units are provided and arranged one above other
US8083156B2 (en) * 2007-05-18 2011-12-27 Urs Corporation Dispersion lance and shield for dispersing a treating agent into a fluid stream
US8011601B2 (en) * 2007-05-18 2011-09-06 Urs Corporation Dispersion lance for dispersing a treating agent into a fluid stream
WO2009033005A2 (en) * 2007-09-07 2009-03-12 Concord Materials Technologies Llc Dynamic mixing of fluids
US9708185B2 (en) * 2007-09-07 2017-07-18 Turbulent Energy, Llc Device for producing a gaseous fuel composite and system of production thereof
US8715378B2 (en) 2008-09-05 2014-05-06 Turbulent Energy, Llc Fluid composite, device for producing thereof and system of use
US9144774B2 (en) * 2009-09-22 2015-09-29 Turbulent Energy, Llc Fluid mixer with internal vortex
US9310076B2 (en) 2007-09-07 2016-04-12 Turbulent Energy Llc Emulsion, apparatus, system and method for dynamic preparation
US8871090B2 (en) 2007-09-25 2014-10-28 Turbulent Energy, Llc Foaming of liquids
US7770564B2 (en) * 2007-10-31 2010-08-10 Cummins, Inc. Diffuser plate for improved mixing of EGR gas
EP2077132A1 (en) 2008-01-02 2009-07-08 Boehringer Ingelheim Pharma GmbH & Co. KG Dispensing device, storage device and method for dispensing a formulation
EP2093377A1 (en) * 2008-02-19 2009-08-26 Siemens Aktiengesellschaft Cooling conduit for a component to be cooled
US8459017B2 (en) * 2008-04-09 2013-06-11 Woodward, Inc. Low pressure drop mixer for radial mixing of internal combustion engine exhaust flows, combustor incorporating same, and methods of mixing
US8272777B2 (en) * 2008-04-21 2012-09-25 Heinrich Gillet Gmbh (Tenneco) Method for mixing an exhaust gas flow
US8939638B2 (en) 2008-04-21 2015-01-27 Tenneco Automotive Operating Company Inc. Method for mixing an exhaust gas flow
US9095827B2 (en) 2008-04-21 2015-08-04 Tenneco Automotive Operating Company Inc. Exhaust gas flow mixer
US8017084B1 (en) 2008-06-11 2011-09-13 Callidus Technologies, L.L.C. Ammonia injection grid for a selective catalytic reduction system
JP5670421B2 (en) 2009-03-31 2015-02-18 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Component surface coating method
EP3508239B1 (en) 2009-05-18 2020-12-23 Boehringer Ingelheim International GmbH Adapter, inhalant apparatus and atomizer
US8844495B2 (en) 2009-08-21 2014-09-30 Tubulent Energy, LLC Engine with integrated mixing technology
US10016568B2 (en) 2009-11-25 2018-07-10 Boehringer Ingelheim International Gmbh Nebulizer
WO2011064163A1 (en) 2009-11-25 2011-06-03 Boehringer Ingelheim International Gmbh Nebulizer
AU2010323220B2 (en) 2009-11-25 2015-04-23 Boehringer Ingelheim International Gmbh Nebulizer
US9943654B2 (en) 2010-06-24 2018-04-17 Boehringer Ingelheim International Gmbh Nebulizer
CN102000472B (en) * 2010-10-08 2013-03-20 北京大学 Device and method for accelerating particulate matter to interact with each other
KR101198968B1 (en) * 2011-03-02 2012-11-07 주식회사 파나시아 Exhaust gas denitrifing system having noise-reduction structure
EP2694220B1 (en) 2011-04-01 2020-05-06 Boehringer Ingelheim International GmbH Medical device comprising a container
US9827384B2 (en) 2011-05-23 2017-11-28 Boehringer Ingelheim International Gmbh Nebulizer
DE102011078181A1 (en) * 2011-06-28 2013-01-03 Robert Bosch Gmbh Apparatus and method for introducing a reducing agent in an exhaust line
CN102489196A (en) * 2011-12-16 2012-06-13 无锡威孚力达催化净化器有限责任公司 Flow guide atomizing mixer
PL2620208T3 (en) * 2012-01-25 2017-07-31 General Electric Technology Gmbh Gas mixing arrangement
ES2582321T3 (en) * 2012-02-03 2016-09-12 General Electric Technology Gmbh Willingness to inject a reducing agent into a flue gas
WO2013152894A1 (en) 2012-04-13 2013-10-17 Boehringer Ingelheim International Gmbh Atomiser with coding means
US9649604B2 (en) * 2012-05-10 2017-05-16 General Electric Technology Gmbh Injector grid with two stage mixer
KR101724429B1 (en) * 2012-10-11 2017-04-10 주식회사 파나시아 Exhaust gas denitrifing system having noise-reduction structure
US9387448B2 (en) * 2012-11-14 2016-07-12 Innova Global Ltd. Fluid flow mixer
EP3030298B1 (en) 2013-08-09 2017-10-11 Boehringer Ingelheim International GmbH Nebulizer
PL2835146T3 (en) 2013-08-09 2021-04-06 Boehringer Ingelheim International Gmbh Nebulizer
DE102013019213B4 (en) * 2013-11-14 2023-07-13 Audi Ag Drive device and method for operating a drive device
US11040319B2 (en) * 2014-01-07 2021-06-22 Harry Glass Vortex mixing baffle
WO2015169428A2 (en) 2014-05-07 2015-11-12 Boehringer Ingelheim International Gmbh Nebulizer
HUE055604T2 (en) 2014-05-07 2021-12-28 Boehringer Ingelheim Int Nebulizer
JP6580070B2 (en) 2014-05-07 2019-09-25 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Container, nebulizer, and use
DE102014119671A1 (en) * 2014-12-29 2016-06-30 Eberspächer Exhaust Technology GmbH & Co. KG Mixer arrangement for an exhaust system of an internal combustion engine
USD765492S1 (en) 2015-01-20 2016-09-06 David Akers Roof equipment mounting brackets
US9534525B2 (en) 2015-05-27 2017-01-03 Tenneco Automotive Operating Company Inc. Mixer assembly for exhaust aftertreatment system
CN113477115B (en) 2015-11-13 2023-12-05 雷米克瑟斯公司 Static mixer
ES2958487T3 (en) * 2016-10-05 2024-02-09 Covestro Intellectual Property Gmbh & Co Kg Reduced depth mixing elements for static mixers

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1496896A (en) * 1920-08-05 1924-06-10 James F Laffoon Wheat-treating device
US1598352A (en) * 1923-07-05 1926-08-31 Paragon Dishwasher Syndicate I Water-discharging device
US1901954A (en) * 1930-12-10 1933-03-21 Western Electric Co Liquid spray device
GB798983A (en) * 1957-02-08 1958-07-30 Courtaulds Ltd Improvements in and relating to mixing materials
US3494712A (en) * 1968-07-01 1970-02-10 Coen Co Duct burner
US3734111A (en) * 1971-12-20 1973-05-22 Phillips Petroleum Co Apparatus for in-line mixing of fluids
CH581493A5 (en) * 1974-06-24 1976-11-15 Escher Wyss Ag Static mixer for in line mixing - having sudden expansion with secondary fluid injection just prior to it
US3942765A (en) * 1974-09-03 1976-03-09 Hazen Research, Inc. Static mixing apparatus
DE2522106C3 (en) * 1975-05-17 1982-04-15 Bayer Ag, 5090 Leverkusen Device for the continuous mixing of flowable substances and method for producing a mixing insert
CH615113A5 (en) * 1976-04-29 1980-01-15 Sulzer Ag
US4255124A (en) * 1978-10-05 1981-03-10 Baranowski Jr Frank Static fluid-swirl mixing
US4208136A (en) * 1978-12-01 1980-06-17 Komax Systems, Inc. Static mixing apparatus
US4296779A (en) * 1979-10-09 1981-10-27 Smick Ronald H Turbulator with ganged strips
DE3043239C2 (en) * 1980-11-15 1985-11-28 Balcke-Dürr AG, 4030 Ratingen Method and device for mixing at least two fluid partial flows
US4414184A (en) * 1981-02-23 1983-11-08 Union Carbide Corporation Apparatus for mixing chemical components
DE3116557A1 (en) * 1981-04-25 1982-11-11 Basf Ag, 6700 Ludwigshafen DEVICE FOR INVERTING AND MIXING FLOWING SUBSTANCES
CH653565A5 (en) * 1981-07-30 1986-01-15 Sulzer Ag DEVICE FOR FABRIC AND / OR DIRECT HEAT EXCHANGE OR MIXING.
GB8319620D0 (en) * 1983-07-20 1983-08-24 British Petroleum Co Plc Burner
DE3330061A1 (en) * 1983-08-19 1985-02-28 Gebrüder Netzsch, Maschinenfabrik GmbH & Co, 8672 Selb Mixing tube for admixing chemicals to waste waters
FR2562439B1 (en) * 1984-04-06 1989-10-13 Degremont APPARATUS FOR RAPID MIXING OF TWO FLUIDS
US4573803A (en) * 1984-05-15 1986-03-04 Union Oil Company Of California Injection nozzle
US4564298A (en) * 1984-05-15 1986-01-14 Union Oil Company Of California Hydrofoil injection nozzle
US4812049A (en) * 1984-09-11 1989-03-14 Mccall Floyd Fluid dispersing means
SU1368348A1 (en) * 1985-04-10 1988-01-23 Л.И.Пищенко, О.М.Яхно, А.М.Головко, В.И.Коваленко, А.И.Попов, Ю.Л.Романович,А.И.Дзе6а и А.Н.Иванченко(53)676.1.023.8(088.8) Mixer
SU1315392A1 (en) * 1985-07-10 1987-06-07 Воронежский инженерно-строительный институт Device for aerating water
US4753535A (en) * 1987-03-16 1988-06-28 Komax Systems, Inc. Motionless mixer
DE8708201U1 (en) * 1987-06-08 1987-11-12 Hansa Ventilatoren u. Maschinenbau Neumann GmbH & Co KG, 2915 Saterland Air conditioning device
SU1498545A1 (en) * 1987-07-14 1989-08-07 Одесский технологический институт пищевой промышленности им.М.В.Ломоносова Uniflow mixer
US4929088A (en) * 1988-07-27 1990-05-29 Vortab Corporation Static fluid flow mixing apparatus
US4981368A (en) * 1988-07-27 1991-01-01 Vortab Corporation Static fluid flow mixing method
SU1604444A1 (en) * 1988-12-12 1990-11-07 Институт Проблем Механики Ан Ссср Static mixer
US5173007A (en) * 1989-10-23 1992-12-22 Serv-Tech, Inc. Method and apparatus for in-line blending of aqueous emulsion

Also Published As

Publication number Publication date
ATE141827T1 (en) 1996-09-15
JPH05200262A (en) 1993-08-10
USRE36969E (en) 2000-11-28
DE59206987D1 (en) 1996-10-02
EP0526393A1 (en) 1993-02-03
US5456533A (en) 1995-10-10
JP3202798B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
EP0526393B1 (en) mixing-in device
EP0526392B1 (en) Mixing-in device for small amounts of fluid
EP0594657B1 (en) Static mixer
EP0546989B1 (en) Static mixing element with guiding faces
DE60006341T2 (en) STATIC MIXER
DE2635360C2 (en) Damping device for a liquid flow
DE2205371A1 (en) Mixing device
EP1166861B1 (en) Mixer for mixing at least two gas streams or other Newtonian liquids
DE2723056A1 (en) PIPE MIXER
DE4313393A1 (en) Static mixer
EP0776689A1 (en) Mixing device
DE10334593B3 (en) mixing system
EP1170054A1 (en) Mixer for mixing gases and other Newtonian liquids
EP0751820B1 (en) Combined feed and mixing installation
DE4418287C2 (en) Device for mixing two fluids
EP3696383B1 (en) Mixer
DE2622530A1 (en) MIXING DEVICE
EP3812557B1 (en) Mixer
DE3920123C1 (en)
DE19724817B4 (en) gas burner
DE19647400A1 (en) Catalyst for reducing nitrogen oxide(s) in combustion plants
DE10324886B4 (en) Mixing element and static mixer with a number of such mixing elements
EP0697913B1 (en) Plate-type catalytic converter
DE102023103854A1 (en) Apparatus for producing ammonium nitrate from nitric acid and ammonia
DE2359192C3 (en) Mixer reactor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19930726

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SULZER CHEMTECH AG

17Q First examination report despatched

Effective date: 19941229

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 141827

Country of ref document: AT

Date of ref document: 19960915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SULZER MANAGEMENT AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960911

REF Corresponds to:

Ref document number: 59206987

Country of ref document: DE

Date of ref document: 19961002

ET Fr: translation filed
ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970702

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EUG Se: european patent has lapsed

Ref document number: 92810504.8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050714

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070713

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080722

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080725

Year of fee payment: 17

Ref country code: FR

Payment date: 20080715

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080722

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701