EP0524009B1 - Video signal processing apparatus for reducing aliasing interference - Google Patents
Video signal processing apparatus for reducing aliasing interference Download PDFInfo
- Publication number
- EP0524009B1 EP0524009B1 EP92306558A EP92306558A EP0524009B1 EP 0524009 B1 EP0524009 B1 EP 0524009B1 EP 92306558 A EP92306558 A EP 92306558A EP 92306558 A EP92306558 A EP 92306558A EP 0524009 B1 EP0524009 B1 EP 0524009B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- output signal
- field
- interpolating
- inter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/015—High-definition television systems
- H04N7/0152—High-definition television systems using spatial or temporal subsampling
Definitions
- This invention relates to a video signal processing apparatus for restoring a high definition television signal which has been subjected to bandwidth compression using a sub-Nyquist sub-sampling method and transmitted.
- a high definition television (HDTV) signal has a frequency bandwidth exceeding 20 MHz and is required to be subjected to bandwidth compression by any means when to be transmitted using a satellite or the like.
- a sub-Nyquist sub-sampling method As an effective method for broadly compressing a frequency bandwidth of HDTV signal, there has been known a sub-Nyquist sub-sampling method.
- MUSE multiple sub-Nyquist sampling encoding
- HD-MAC high definition-multiple analogue component
- an offset sub-sampling is carried out in an inter-field and inter-frame manner to transmit a quarter of the sample points of an original signal and as a result, the perfect picture is transmitted in a four-field mode; so that the bandwidth of the original signal is compressed quarterly.
- a sample point untransmitted is interpolated from the sample point transmitted, thus restoring the original signal.
- interpolation is made using all sample points of present field and past three fields.
- interpolation is made using only an intra-field sample point that is transmitted.
- the stationary area and moving area are different in interpolating method from each other.
- the motion of an image is detected and an image interpolated for the stationary area and an image interpolated for the moving area are mixed with each other in accordance with the motion of an image thus detected, thus restoring the image.
- an inputted MUSE signal is sent to an interpolating circuit to interpolate a non-sample point from an intra-field sample point in order to restore a bandwidth-compressed signal.
- the signal subjected to intra-field interpolating process which is equivalent to the moving image processing of an MUSE decoder, in the interpolating circuit has signal transmission characteristics as shown in a frequency characteristics chart of Fig. 12(a).
- a frequency characteristics chart of Fig. 12(a) As a result, for the stationary area, the high resolution component of a high definition television signal by offset sub-sampling of the MUSE system as shown in a frequency characteristics chart of Fig. 12(b) is reproduced as an aliasing interference, resulting in degradation in image quality.
- the signal thus processed through the interpolating circuit is sent to a frame memory to delay one frame period and then, the signal thus one-frame delayed and the signal thus processed interpolation are subjected to inter-frame averaging process through an adder, thus being obtainable such a signal that an aliasing interference due to inter-frame offset sub-sampling is eliminated.
- the inter-frame averaging process makes it possible to occur a double image, resulting in a degradation in image quality.
- an inputted MUSE signal is subjected to interpolation of non-sample point from an intra-field sample point in an interpolating circuit in order to restore a bandwidth-compressed signal.
- the signal thus interpolated is sent to field memories connected in series thereto, then, a median-value signal of three adjacent inter-field signals is taken out by a median-value signal selector, an output signal from the median-value signal selector and output signals from the field memories are averaged by an adder to obtain an average-value signal of the signals which are in an inter-field correlation with each other, thus being possible to obtain such a signal that the aliasing interference due to inter-field offset sub-sampling is eliminated.
- the averaging process of highly correlated inter-field signals between three adjacent signals is carried out adaptively, so that the aliasing interference due to inter-field offset sub-sampling of the MUSE system can be eliminated without giving any effect to the moving image.
- the aliasing interference due to inter-field offset sub-sampling can be eliminated and as a result, the flicker component of 30 Hz which is visibly appeared in a notched pattern in the vertical line area of an image so as to be adhesively formed thereto can be disappeared, however, the bandwidth-compressed MUSE signal contains the aliasing interference due to inter-frame offset sub-sampling still more, thus arising such a problem that a flicker component of 15 Hz is remained in the oblique component of the image.
- US-A-4 768 092 discloses the use of interpolation and averaging to convert a video signal to a higher resolution. Field and line differences are used to select various averaged signals.
- An object of this invention is to provide a video signal processing apparatus capable of eliminating both an aliasing interference due to inter-frame offset sub-sampling and aliasing interference due to inter-field offset sub-sampling.
- a video signal processing apparatus of this invention comprises an interpolating circuit for interpolating a non-sample point from intra-field sample points in order to restore a high definition television signal which has been bandwidth-compressed by offset sub-sampling, a first memory for delaying a signal thus interpolated for one field period, a second memory for delaying an output signal of the first memory for further one field period, a first adder for performing an adjacent inter-field averaging process from input and output signals of the first and second memories, a second adder for performing an inter-frame averaging process from an input signal of the first memory and an output signal of the second memory, a correlation discriminating circuit for detecting one field difference and one frame difference from input and output signals of the first and second memories and for outputting a switching signal in accordance with magnitudes of the differences thus detected, and a signal switching circuit for switching an output signal of the first adder and an output signal of the second adder in accordance with the output switching signal from the correlation discriminating
- this apparatus may further comprise a motion detection circuit for detecting a motion of an image from an input signal of the first memory and an output signal of the second memory, and a mixing circuit for mixing an output signal of the signal switching circuit and an input/output signal of the first memory in accordance with the motion of an image thus detected.
- a motion detection circuit for detecting a motion of an image from an input signal of the first memory and an output signal of the second memory
- a mixing circuit for mixing an output signal of the signal switching circuit and an input/output signal of the first memory in accordance with the motion of an image thus detected.
- Another video signal processing apparatus of this invention comprises a first memory for delaying the bandwidth-compressed high definition television signal for one field period, a second memory for delaying an output signal of the first memory for further one field period, first, second and third interpolating circuits for interpolating non-sample points from intra-field sample points in order to restore a sub-sampled signal in accordance with input and output signals of the first and second memories, a first adder for performing an adjacent inter-field averaging process from output signals of the first, second and third interpolating circuits, a second adder for performing an inter-frame averaging process from an output signal of the first interpolating circuit and an output signal of the third interpolating circuit, a correlation discriminating circuit for detecting one field difference and one frame difference from output signals of the first, second and third interpolating circuits and for outputting a switching signal in accordance with magnitudes of the differences thus detected, and a signal switching circuit for switching an output signal of the first adder and an output signal of the second adder in accordance with the
- a television signal subjected to intra-field interpolation is supplied to two memories. Then, an inter-field averaging process is performed between the present field and correlative adjacent field before or after for eliminating an aliasing interference due to inter-field offset sub-sampling, and an inter-frame averaging process is performed for eliminating an aliasing interference due to inter-frame offset sub-sampling. Larger one of these aliasing interferences is discriminated in accordance with the magnitudes of an inter-field difference and an inter-frame difference to be switched. Accordingly, not only the aliasing interference due to inter-field offset sub-sampling but also the aliasing interference due to inter-frame offset sub-sampling can be eliminated.
- the motion of an image Is detected, and the signal subjected to the inter-field averaging process between the present field and correlative adjacent field before or after, the signal subjected to the inter-frame averaging process, and the signal subjected to the intra-field interpolation are mixed with each other. Accordingly, even in case of a moving image, degradations including occurrence of double image can be prevented from being taken place.
- Fig. 2 is a block diagram showing in detail a circuit for detecting inter-field and inter-frame aliasing interferences to be taken place in the apparatus shown in Fig. 1.
- Fig. 4 is a block diagram of a video signal processing apparatus for reducing an aliasing interference according to a second embodiment of this invention.
- Fig. 5 is a block diagram of a video signal processing apparatus for reducing an aliasing interference according to a third embodiment of this invention.
- Fig. 6 is a block diagram of a video signal processing apparatus for reducing an aliasing interference according to a fourth embodiment of this invention.
- Fig. 7 is a block diagram of a median-value selection circuit in the apparatus shown in Figs. 2 and 4.
- Fig. 8 is a waveform diagram for explaining the operation of eliminating an inter-field aliasing interference in the apparatus shown in Figs. 2 and 4.
- Fig. 9 is a block diagram of a video signal processing apparatus for reducing an aliasing interference of the prior art.
- Fig. 10 is a block diagram of another video signal processing apparatus for reducing an aliasing interference of the prior art.
- Fig. 11 is a diagram for explaining the principle of a bandwidth compression method by MUSE system offset sub-sampling.
- Fig. 1 is a block diagram of a video signal processing apparatus for reducing aliasing interference according to a first embodiment of this invention, which comprises an input terminal 11 for receiving a high definition television signal which has been bandwidth-compressed by offset sub-sampling (hereinafter typically expressed as an MUSE signal), an interpolating circuit 12 for interpolating a non-sample point from an inter-field sample point in order to restore a bandwidth-compressed signal, field memories 13 and 14, adders 16 and 17 each for performing averaging process, a one field difference detection circuit 18 for detecting an aliasing interference due to inter-field offset sub-sampling, a one frame difference detection circuit 19 for detecting an aliasing interference due to inter-frame offset sub-sampling, a correlation discriminating circuit 20 for discriminating larger one of the inter-field and inter-frame aliasing interferences, and a signal switching circuit 21, and further comprising a motion detection circuit 22, a mixing circuit 23, and an output terminal 24 for taking out a high definition television signal having alia
- the MUSE signal inputted from the input terminal 11 is sent to the interpolating circuit 12 to interpolate a non-sample point from inter-field sample points in order to restore a bandwidth-compressed signal.
- the signal thus interpolated is sent to the field memories 13 and 14 connected in series.
- An output signal of the interpolating circuit 12 and an output signal of the field memory 13 is subjected to inter-field averaging process through the adder 16 to obtain a signal having an aliasing interference due to inter-field offset sub-sampling eliminated.
- the output signal of the interpolating circuit 12 and an output signal of the memory 14 are subjected to inter-frame averaging process through the adder 17 to obtain a signal having an aliasing interference due to inter-frame offset sub-sampling eliminated.
- input and output signals of the field memories 13 and 14 are respectively sent to the one field difference detection circuit 18 and one frame difference detection circuit 19 to detect an aliasing interference due to inter-field offset sub-sampling and an aliasing interference due to inter-frame offset sub-sampling, and sent to the correlation discriminating circuit 20 to discriminate larger one of the inter-field and inter-frame aliasing interferences.
- the signal switching circuit 21 controls the signal having an aliasing interference due to inter-field offset sub-sampling eliminated outputted from the adder 16 and the signal having an aliasing interference due to inter-frame offset sub-sampling eliminated outputted from the adder 17 so as to transmit the signal having eliminated the larger one of the inter-field and inter-frame aliasing interferences.
- the motion detection circuit 22 detects the motion of an image from the input signal of the field memory 13 and the output signal of the field memory 14.
- the signal outputted from the signal switching circuit 21, which is obtained by switching through the circuit 21 the signal subjected to inter-field averaging process before or after and the signal subjected to inter-frame averaging process, and the signal subjected to intra-field processing only outputted from the interpolating circuit 12 are mixed with each other through the mixing circuit 23 in accordance with the motion of an image thus detected. Accordingly, even in case of moving image, no degradation (occurrence of a double image) results, so that such a signal that aliasing interferences are substantially eliminated can be obtained from the output terminal 24.
- intra-field interpolation equivalent to the moving image process of an MUSE decoder is carried out in the interpolating circuit 12.
- the inter-field averaging process of the output signal of the interpolating circuit 12 and the output of the field memory 13 is carried out through the adder 16 to obtain such a signal that the aliasing interference due to inter-field offset sub-sampling is eliminated.
- the inter-frame averaging process of the output signal of the interpolating circuit 12 and the output signal of the field memory 14 is carried out through the adder 17 to obtain such a signal that the aliasing interference due to inter-frame offset sub-sampling is eliminated.
- the one field difference detection circuit 18 for detecting the absolute value of an inter-field difference from these signals of the three adjacent fields, the one frame difference detection circuit 19 for detecting the absolute value of an inter-frame difference therefrom and the correlation discriminating circuit 20 for comparing these differences to detect larger one of them in magnitude are disposed as shown in Fig. 2. As shown in Fig. 2,
- the signal subjected to processing for which is larger in aliasing interference is switched by the switching circuit 21 to be outputted.
- Fig. 4 is a block diagram of a video signal processing apparatus for reducing aliasing interference according to a second embodiment of this invention.
- a median-value signal selector 15 for extracting a median-value signal of three adjacent inter-field signals is additionally provided to the apparatus of the first embodiment so as to be disposed before the adder 16, and other components are the same as those in the first embodiment and indicated at the same referential numerals as above.
- the median-value signal selector 15 compares, as shown in Fig. 7, the magnitudes of respective two signals of three signals inputted with each other to detect a median-value signal on an amplitude selection basis therefrom.
- the selection means is switched in accordance with the result thus detected to output the median-value signal.
- the median-value signal selector 15 is not limited to that shown in Fig. 7, but any circuit can be used for this purpose if it can extract a median-value signal.
- Theoretical values of median-value selection in the median-value signal selector 15 are tabulatedly shown below.
- Fig. 8 is a waveform diagram for explaining the operation of eliminating an aliasing interference as an example.
- a median-value signal X (shown at ⁇ marks in Fig. 8) taken out through the median-value signal selector 15 becomes a signal before or after a signal Y of the present field (shown at o ⁇ marks in Fig. 8) as shown in Figs. 8(a) and (b). Accordingly, by being subjected to the inter-field averaging process on the median-value signal X and the signal Y of the present field through the adder 16, the aliasing component due to inter-field offset sub-sampling can be eliminated. On the other hand, in a moving area where an inputted television signal has a motion, as shown in Fig.
- the median-value signal X taken out through the median-value signal selector 15 becomes the signal Y of the present field.
- the signal Y of the present signal itself can be obtained, resulting in obtaining no degradation in image quality.
- the averaging process is performed adaptively on inter-field signals high in correlation between adjacent three fields, so that the aliasing interference due to inter-field offset sub-sampling of the MUSE system can be eliminated without giving any effect to the moving image itself. Further, even if the motion detection circuit 22 fails to discriminate the motion of an image, the effect of the inter-field averaging process on the moving image can be made small.
- MUSE signal inputted from the input terminal 31 is stored in the field memories 32 and 33 connected in series. Then, subjected to interpolation of a non-sample point from an intra-field sample point for a bandwidth-compressed signal of each of three adjacent fields. Next, an output signal of the interpolating circuit 34 and an output signal of the interpolating circuit 35 are subjected to inter-field averaging process through the adder 38 to obtain a signal having an aliasing interference due to inter-field offset sub-sampling eliminated.
- an output signal of the interpolating circuit 34 and an output signal of the interpolating circuit 36 are subjected to inter-frame averaging process through the adder 39 to obtain a signal having an aliasing interference due to inter-frame offset sub-sampling eliminated.
- interpolated signals of three adjacent fields of the interpolating circuits 34, 35 and 36 are sent to the one field difference detection circuit 40 and one frame difference detection circuit 41 to respectively detect the aliasing interference due to inter-field offset sub-sampling and the aliasing interference due to inter-frame offset sub-sampling. And then, the inter-field and inter-frame aliasing interferences are discriminated larger one of them through the correlation discriminating circuit.
- the switching circuit 43 controls the signal outputted from the adder 38 and having eliminated the aliasing interference due to inter-field sub-sampling by performing inter-field averaging process between the present field and correlative adjacent one before or after and the signal outputted from the adder 39 and having eliminated the aliasing interference due to inter-frame offset sub-sampling, so that the signal having eliminated larger one of these inter-field and inter-frame aliasing interferences can be passed therethrough.
- the motion detection circuit 44 detects the motion of an image according to the output signal of the interpolating circuit 34 and that of the interpolating circuit 36. Then, the signal outputted from the signal switching circuit 43 and subjected to inter-field or inter-frame averaging process and the signal outputted from the interpolating circuit 34 and subjected to the inter-field process only are mixed with each other through the mixing circuit 45 in accordance with the motion of an image thus detected. Accordingly, even in case of moving image, such a signal that no degradation (occurrence of double image or the like) results and aliasing interferences are substantially eliminated can be obtained from the output terminal 46.
- Fig. 6 is a block diagram of a video signal processing apparatus for reducing aliasing interference according to a fourth embodiment of this invention.
- the apparatus of this embodiment has a median-value signal selector 37 for extracting a median-value signal of three adjacent inter-field signals insertedly disposed before the adder 38 of the third embodiment.
- Other components are the same as those of the third embodiment and indicated at the same reference numerals as above.
- the median-value signal selector 37 In order to obtain a signal having eliminated an aliasing interference due to inter-field offset sub-sampling, the median-value signal selector 37 thus disposed extracts a median-value signal of the three adjacent inter-field signals from the output signals of the interpolating circuits 34, 35 and 36.
- the median-value signal thus obtained is subjected to averaging process with an output signal of the interpolating circuit 35 through the adder 38 to obtain a signal having an aliasing interference eliminated.
- the motion detection circuit 44 fails to discriminate the motion of an image, the effect on the moving image in the inter-field averaging process can be reduced.
- the one field difference detection circuit 18 in the first and second embodiments is arranged so as to use all the three adjacent-inter-field signals. However, it may be arranged so as to detect an inter-field difference either before or after the present field.
- the motion detection circuit 22 detects the motion of an image from one inter-frame signal. However, the circuit may detect the motion from two inter-frame signals by taking out further one inter-frame signal additionally.
- the one field difference detection circuit 40 is also arranged so as to use all the three adjacent inter-field signals. However, it may be arranged so as to detect an inter-field difference either before or after the present field.
- the motion detection circuit 44 detects the motion of an image from one inter-frame signal which is subjected to interpolating process. However, it may detect the motion from one inter-frame signal which is before interpolating process to be performed. Yet, it is needless to say that similar to the first and second embodiments, the motion may be detected from two inter-frame signals.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Television Systems (AREA)
Description
Magnitude relations of signals (ascending order) | Outputs of comparator | Selected signals | ||||
A | B | C | A>B | A>C | B>C | MID |
2 | 1 | 3 | 0 | 1 | 1 | A |
2 | 3 | 1 | 1 | 0 | 0 | A |
1 | 2 | 3 | 1 | 1 | 1 | |
3 | 2 | 1 | 0 | 0 | 0 | |
1 | 3 | 2 | 1 | 1 | 0 | |
3 | 1 | 2 | 0 | 0 | 1 | |
1 | 1 | 2 | 1 | 1 | 1 | |
2 | 2 | 1 | 1 | 0 | 0 | A |
1 | 2 | 1 | 1 | 1 | 0 | |
2 | 1 | 2 | 0 | 1 | 1 | A |
2 | 1 | 1 | 0 | 0 | 1 | |
1 | 2 | 2 | 1 | 1 | 1 | |
1 | 1 | 1 | 1 | 1 | 1 | B |
Claims (12)
- A video signal processing apparatus for reducing aliasing interference comprising:interpolating means (12) which receives a high definition television signal which has been bandwidth-compressed by offset sub-sampling for interpolating a non-sample point from intra-field sample points of a sub-sampled signal;field averaging means (16) for performing an inter-field averaging process from data of three adjacent fields of a signal thus interpolated;frame averaging means (17) for performing an inter-frame averaging process; anddifference detection means (18,19) for detecting one field difference and one frame difference and signal switching means (21) for switching an output signal of said inter-field averaging means and an output signal of said inter-frame averaging means in accordance with magnitudes of the differences thus detected.
- A video signal processing apparatus according to claim 1, further comprising:a motion detection circuit (22) for detecting a motion of an image from data of two fields out of three adjacent fields of an interpolated signal; anda mixing circuit (23) for mixing an output signal of said signal switching means and an output signal of said interpolating means in accordance with the motion of an image thus detected.
- A video signal processing apparatus for reducing aliasing interference comprising:interpolating means (12) which receives a high definition television signal which has been bandwidth-compressed by offset sub-sampling for interpolating a non-sample point from intra-field sample points to a sub-sampled signal;first memory means (13) for delaying a signal thus interpolated for one field period;second memory means (14) for delaying an output signal of said first memory means for further one field period;first adder means (16) for performing an inter-field averaging process from an input signal of said first memory means and an output signal of said first memory means;second adder means (17) for performing an inter-frame averaging process from an input signal of said first memory means and an output signal of said second memory means;correlation discriminating means (18,19,20) for detecting one field difference and one frame difference from input and output signals of said first and second memory means and for outputting a switching signal in accordance with magnitudes of the differences thus detected; andsignal switching means (21) for switching an output signal of said first adder means and an output signal of said second adder means in accordance with the switching signal from said correlation discriminating means.
- A video signal processing apparatus according to claim 3, further comprising:a motion detection circuit (22) for detecting a motion of an image from an input signal of said first memory and an output signal of said second memory; anda mixing circuit (23) for mixing an output signal of said switching means and an input signal of said first memory means in accordance with the motion of an image thus detected.
- A video signal processing apparatus for reducing aliasing interference comprising:first memory means (32) for delaying a high definition television signal which has been bandwidth-compressed by offset sub-sampling for one field period;second memory means (33) for delaying an output signal of said first memory means for further one field period;first, second and third interpolating means (34-36) for respectively interpolating non-sampling points from intra-field sample points of a sub-sampled signal in accordance with input and output signals of said first and second memory means;first adder means (38) for performing an inter-field averaging process from an output signal of said first interpolating means and an output signal of said second interpolating means;second adder means (39) for performing an inter-frame averaging process from an output signal of said first interpolating means and an output signal of said third interpolating means;correlation discriminating means (40-42) for detecting one field difference and one frame difference from output signals of said first, second and third interpolating means and for outputting a switching signal in accordance with magnitudes of differences thus detected; andsignal switching means (43) for switching an output signal of said first adder means and an output signal of said second adder means in accordance with the switching signal from said correlation discriminating means.
- A video signal processing apparatus according to claim 5, further comprising:a motion detection circuit (44) for detecting a motion of an image from an output signal of said first interpolating means and an output signal of said third interpolating means; anda mixing circuit (45) for mixing an output signal of said signal switching means and an output signal of said first interpolating means in accordance with the motion of an image thus detected.
- A video signal processing apparatus according to claim 5, further comprising:a motion detection circuit (44,22) for detecting a motion of an image from an input signal of said first memory means and an output signal of said second memory means; anda mixing circuit (45,23) for mixing an output signal of said signal switching means and an output signal of said first interpolating means in accordance with the motion of an image thus detected.
- A video signal processing apparatus for reducing aliasing interference comprising:interpolating means (12) which receives a high definition television signal which has been bandwidth-compressed by offset sub-sampling for interpolating a non-sample point from intra-field sample points of a sub-sampled signal;first memory means (13) for delaying a signal thus interpolated for one field period;second memory means (14) for delaying an output signal of said first memory means for further one field period;median-value signal selection means (15) for extracting a median-value signal of three adjacent inter-field signals from input and output signals of said first and second adder means;first adder means (16) for averaging an output signal of said first memory means (13) and an output signal of said medianvalue signal selection means (15);second adder means (17) for performing an inter-frame averaging process from an input signal of said first memory means and an output signal of said second memory means;correlation discriminating means (18-20) for detecting one field difference and one frame difference from input and output signals of said first and second memory means and for outputting a switching signal in accordance with magnitudes of differences thus detected; andsignal switching means (21) for switching an output signal of said first adder means an output signal of said second adder means in accordance with the switching signal from said correlation discriminating means.
- A video signal processing apparatus according to ciaim 8, further comprising:a motion detection circuit (22) detecting a motion of an image from an input signal of said first memory means and an output signal of said second memory means; andmixing means (23) for mixing an output signal of said signal switching means and an output signal of said first memory means in accordance with the motion of an image thus detected.
- A video signal processing apparatus for reducing aliasing interference comprising:first memory means (32) for delaying a high definition television signal which has been bandwidth-compressed by offset sub-sampling for one field period;second memory means (33) for delaying an output signal of said first memory means for further one field period;first, second and third interpolating means (34-36) for respectively interpolating non-sample points from intra-field sample points of a sub-sampled signal in accordance with input and output signals of said first and second memory means;median-value signal selection means (37) for extracting a median-value signal of three adjacent inter-field signals from output signals of said first, second and third interpolating means (34-36);first adder means (38) for averaging an output signal of said second interpolating means and an output signal of said median-value signal selection means;second adder means (39) for performing an inter-frame averaging process from an output signal of said first interpolating means and an output signal of said third interpolating means;correlation discriminating means (40-42) for detecting one field difference and one frame difference from output signals of said first, second and third interpolating circuits and for outputting a switching signal in accordance with the magnitudes of differences thus detected; andsignal switching means (43) for switching an output signal of said adder means and an output signal of said second adder means in accordance with the switching signal from said correlation discriminating means.
- A video signal processing apparatus according to claim 10, further comprising:a motion detection circuit (44) for detecting a motion of an image from an output signal of said first interpolating means and an output signal of said third interpolating means; anda mixing circuit (45) for mixing an output signal of said signal switching means and an output signal of said second interpolating means in accordance with the motion of an image thus detected.
- A video signal processing apparatus according to claim 10, further comprising:a motion detection circuit (44,22) for detecting a motion of an image from an input signal of said first memory means and an output signal of said second memory means; anda mixing circuit (45,23) for mixing an output signal of said signal switching means and an output signal of said second interpolating means.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP179474/91 | 1991-07-19 | ||
JP3179474A JPH0817480B2 (en) | 1991-07-19 | 1991-07-19 | Video signal processing device |
JP3186115A JPH0815336B2 (en) | 1991-07-25 | 1991-07-25 | Video signal processing device |
JP186115/91 | 1991-07-25 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0524009A2 EP0524009A2 (en) | 1993-01-20 |
EP0524009A3 EP0524009A3 (en) | 1994-08-24 |
EP0524009B1 true EP0524009B1 (en) | 1998-09-16 |
Family
ID=26499321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92306558A Expired - Lifetime EP0524009B1 (en) | 1991-07-19 | 1992-07-17 | Video signal processing apparatus for reducing aliasing interference |
Country Status (3)
Country | Link |
---|---|
US (1) | US5327241A (en) |
EP (1) | EP0524009B1 (en) |
DE (1) | DE69226994T2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993000771A1 (en) * | 1991-06-27 | 1993-01-07 | Nippon Hoso Kyokai | Sub-sampling transmission system for improving transmitted picture quality in time-varying picture region of wide-band color picture signal |
US5446501A (en) * | 1992-10-22 | 1995-08-29 | Accom, Incorporated | Three-dimensional median and recursive filtering apparatus and method for video image enhancement |
KR0140674B1 (en) * | 1993-04-12 | 1998-06-15 | 모리시다 요이치 | Method for image signal processing |
JP3527259B2 (en) * | 1993-04-12 | 2004-05-17 | 松下電器産業株式会社 | Video signal processing apparatus and processing method |
US6137835A (en) * | 1993-11-16 | 2000-10-24 | Canon Kabushiki Kaisha | Picture coding apparatus using orthogonal transforms |
US5574512A (en) * | 1994-08-15 | 1996-11-12 | Thomson Consumer Electronics, Inc. | Motion adaptive video noise reduction system |
DE102004032783A1 (en) * | 2004-07-06 | 2006-02-16 | Conradi + Kaiser Gmbh | Plate for the formation of a covering, in particular for outdoor use, and covering |
JP4207009B2 (en) * | 2005-03-09 | 2009-01-14 | ソニー株式会社 | Image processing apparatus and method |
EP1837826A1 (en) * | 2006-03-20 | 2007-09-26 | Matsushita Electric Industrial Co., Ltd. | Image acquisition considering super-resolution post-interpolation |
JP4973031B2 (en) * | 2006-07-03 | 2012-07-11 | ソニー株式会社 | Noise suppression method, noise suppression method program, recording medium recording noise suppression method program, and noise suppression device |
US9300906B2 (en) * | 2013-03-29 | 2016-03-29 | Google Inc. | Pull frame interpolation |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4551753A (en) * | 1981-12-17 | 1985-11-05 | Nippon Hoso Kyokai | Picture signal processing system including spatio-temporal filter |
CA1213359A (en) * | 1983-10-19 | 1986-10-28 | Yoshinori Izumi | Multiplex subsampling transmission system for a high definition color television picture signal |
US4768092A (en) * | 1986-07-23 | 1988-08-30 | Canon Kabushiki Kaisha | Image signal conversion device |
JPH01320887A (en) * | 1988-06-22 | 1989-12-26 | Sharp Corp | Reproducing system for transmission television signal |
JPH0279574A (en) * | 1988-09-16 | 1990-03-20 | Atein Kaihatsu Kk | Video signal transmission system |
JP2576612B2 (en) * | 1988-12-28 | 1997-01-29 | 日本ビクター株式会社 | Signal converter |
JPH0683435B2 (en) * | 1989-02-03 | 1994-10-19 | 三洋電機株式会社 | Subsample video signal demodulator |
US4967271A (en) * | 1989-04-05 | 1990-10-30 | Ives C. Faroudja | Television scan line doubler including temporal median filter |
US4989090A (en) * | 1989-04-05 | 1991-01-29 | Yves C. Faroudja | Television scan line doubler including temporal median filter |
JPH03242098A (en) * | 1990-02-20 | 1991-10-29 | Sony Corp | Video signal transmission system |
EP0460928A3 (en) * | 1990-06-07 | 1993-09-01 | Matsushita Electric Industrial Co., Ltd. | Video signal converting apparatus |
-
1992
- 1992-07-17 DE DE69226994T patent/DE69226994T2/en not_active Expired - Fee Related
- 1992-07-17 EP EP92306558A patent/EP0524009B1/en not_active Expired - Lifetime
- 1992-07-20 US US07/915,551 patent/US5327241A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP0524009A2 (en) | 1993-01-20 |
US5327241A (en) | 1994-07-05 |
EP0524009A3 (en) | 1994-08-24 |
DE69226994D1 (en) | 1998-10-22 |
DE69226994T2 (en) | 1999-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0497222B1 (en) | Video noise reduction system employing plural frequency bands | |
EP0497221B1 (en) | Dual band progressive scan converter with noise reduction | |
US4739390A (en) | Television signal processing circuit | |
KR930002143B1 (en) | Television signal circuit | |
EP0524009B1 (en) | Video signal processing apparatus for reducing aliasing interference | |
US5365274A (en) | Video signal converting apparatus with reduced processing for aliasing interference | |
EP0381222A2 (en) | Decoder for subsampled video signal | |
EP0460928A2 (en) | Video signal converting apparatus | |
US4912556A (en) | Apparatus for compensating contour of television signal | |
CA2020871C (en) | Television signal converter | |
EP0273967B1 (en) | Improvements relating to television | |
KR100204441B1 (en) | The television receiver. | |
Ishizu et al. | Digital signal processing for improved NTSC television receiver | |
JP2819897B2 (en) | Motion detection circuit | |
JP2517652B2 (en) | Band-compressed television signal receiver | |
JP2906878B2 (en) | High-definition video signal processor | |
JP2989362B2 (en) | Motion detection circuit and motion detection method | |
JP2517651B2 (en) | Band-compressed television signal receiver | |
JP2861504B2 (en) | Motion detection circuit | |
JP2928561B2 (en) | Method and apparatus for forming television signal | |
JP2941415B2 (en) | Television signal processor | |
JPH01320887A (en) | Reproducing system for transmission television signal | |
JPH0530481A (en) | Video signal processing device | |
JPH0817480B2 (en) | Video signal processing device | |
JPH04142195A (en) | Video signal processing circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19950213 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19971112 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 69226994 Country of ref document: DE Date of ref document: 19981022 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040708 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040714 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040729 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060331 |