[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0507730B1 - Apparatus for the load-dependent regulation of the feedwater flow in a forced circulation steam generator - Google Patents

Apparatus for the load-dependent regulation of the feedwater flow in a forced circulation steam generator Download PDF

Info

Publication number
EP0507730B1
EP0507730B1 EP92810190A EP92810190A EP0507730B1 EP 0507730 B1 EP0507730 B1 EP 0507730B1 EP 92810190 A EP92810190 A EP 92810190A EP 92810190 A EP92810190 A EP 92810190A EP 0507730 B1 EP0507730 B1 EP 0507730B1
Authority
EP
European Patent Office
Prior art keywords
signal
feed water
output
load
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92810190A
Other languages
German (de)
French (fr)
Other versions
EP0507730A1 (en
Inventor
Rudolf Herzog
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Management AG
Original Assignee
ABB Management AG
ABB Asea Brown Boveri Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4200598&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0507730(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ABB Management AG, ABB Asea Brown Boveri Ltd filed Critical ABB Management AG
Publication of EP0507730A1 publication Critical patent/EP0507730A1/en
Application granted granted Critical
Publication of EP0507730B1 publication Critical patent/EP0507730B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • F22B35/101Control systems for steam boilers for steam boilers of forced-flow type of once-through type operating with superimposed recirculation during starting or low load periods, e.g. composite boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers

Definitions

  • the invention relates to a device for load-dependent regulation of the feed water quantity of a forced-flow steam generator having an economizer, an evaporator and at least one superheater according to the preamble of the single patent claim (see e.g. DE-A-1 401 348).
  • a feed water quantity measuring device is arranged in the feed water line of the steam generator, which sets the feed water quantity via a PID controller, for example by adjusting the speed of the feed pump or by adjusting a valve installed in the feed water line.
  • a steam temperature is controlled, which is recorded with a measuring element arranged in the superheater area of the steam generator and, together with a corresponding temperature setpoint, is likewise connected to the PID controller.
  • the steam enthalpy can also be regulated.
  • a load-dependent signal which comes from a function generator, acts on the feed control loop as a precontrol, in which the relationship between the feed amount and the amount of fuel to be supplied to the steam generator is defined.
  • the invention has for its object to provide a device for load-dependent control of the amount of feed water, which manages with improved performance without complex feedforward control.
  • This device allows two tasks to be performed simultaneously in a simple manner.
  • the observed transmission factor is simulated in the function generator and a corresponding signal is fed entirely to the multiplication element arranged at the output of the controller.
  • the transmission factor at the controller output acting between the input and the output of the controller correctly set depending on the load.
  • a change in the load setpoint also causes an immediate change in the quantity of feed water, which in terms of sign and amplitude gives a sensible first effect as a pilot.
  • the same transfer factor signal y from the function generator is in inverse form also supplied to the device acting as an observer.
  • the interaction of the multiplication element with the division element results in an optimal static and dynamic deformation of the signal at the controller output in response to a change in the load setpoint, that is to say an overall optimal control.
  • the dynamic deformation of the pilot control effect is not - as before - laboriously adjusted with a special dynamic filter, but instead the dynamic elements stored in the device acting as an observer are used, which simulate the process behavior in the required manner.
  • the steam generator in the form of a single-tube boiler has an economizer 1, an evaporator 2, a separator 3 and first and second superheaters 4 and 5, through which the working medium flows in succession. Additional superheaters can be provided between the superheater 5 and the consumer. Seen in the direction of flow of the working medium, an economizer 1 is connected to the economizer 1, which has a feed pump 8, a circulation pump 9 and a feed water quantity measuring element 10. Between the feed pump 8 and the circulation pump 9, a circulation line 11 opens into the feed line 7, which branches off from the lower end of the separator 3 and has a valve 12 and a non-return valve 13.
  • a line 14 with a valve 15 branches off from the line 11, the temporarily too much separated liquid working fluid, for example during start-up of the steam generator, leads back to a feed water tank, not shown.
  • an injection water line 16 branches off from the feed water line 7 and leads to the superheaters 4, 5 in a manner not shown.
  • the feed water quantity control device comprises, in addition to the quantity measuring element 10, a signal generator 10 'for the measured quantity of feed water and a temperature measuring element with signal generator 18 which is connected to the steam generator between the first and second superheaters 4 and 5.
  • This temperature measuring element can also be connected to the steam outlet of the separator 3.
  • a signal line 19 is connected, which leads to a comparison point 20, to which a setpoint for the temperature is supplied via a signal line 21.
  • a signal line 22 leads from the comparison point 20 to the input of an integrator 24, which is part of a state controller 23.
  • the signal line leads a signal corresponding to the deviation between the target value and the actual value of the temperature and amplified in the controller 23 by the constant factor f I to the integrator 24.
  • a signal line 25 leads to an addition point 26, the output of which leads to the input of a multiplication element 27 is connected.
  • the output of the multiplication element 27 is also the output of the controller 23, which is connected to a comparison point 43 via a signal line 28.
  • In the comparison point 43 also opens a signal line 29, which comes from the signal generator 10 'and a signal corresponding to the actual value of the feed water quantity leads by the factor fo.
  • the output of the comparison point 43 is connected via a signal line 44 to the feed pump 8, which forms the actuator of the feed water quantity control device.
  • a signal y is fed to the multiplication member 27 via a signal line 50, which signal is formed in a function generator 51, to which a load setpoint signal is fed via a signal line 52.
  • the signal line 44 feeds the feed pump 8 an actuating signal which is formed in the comparison point 43 from the difference between the output signal of the controller 23 which forms a setpoint for the feedwater quantity and the actual value signal for the feedwater quantity which is amplified by the factor fo.
  • the actuating signal in line 44 is amplified by the amplification factor -z o , which ensures that the two feed water quantities mentioned are of equal size in the stationary state.
  • the feed water quantity control device comprises a device 31 which operates in the manner of an observer and has two signal inputs and a plurality of signal outputs.
  • the first signal input is connected via a branching from the signal line 29 signal line 30 to the output of the quantity signal generator 10 '.
  • the signal line 30 leads the signal corresponding to the actual value of the feed water quantity to a division element 32, to which the signal y is also fed from the function generator 51 via a signal line 53.
  • the output of the division element 32 is connected via a signal line 38 to the input of a first delay element 33, which belongs to a series of further delay elements 34 and 35. The number of such delay elements varies from plant to plant between two and seven.
  • the second input of the device 31 is connected to a signal line 17 which branches off from the signal line 19 of the temperature signal transmitter 18.
  • the signal line 17 opens into a comparison point 37, to the output of which a signal line 36 is connected.
  • the second input of the comparison point 37 is connected to the output of the third delay element 35.
  • the signal line 36 thus carries a difference signal, which is corrected by a constant factor k1 and then additively applied to the signal in line 38.
  • the output of the first delay element 33 is connected to the addition point 26 in the controller 23 via a signal line 39.
  • the signal in line 39 is amplified in the controller 23 by the constant factor f1.
  • the output signal of the first delay element 33 is corrected with the difference signal in line 36, but corrected with the constant factor k2, and the signal thus formed is fed to the second delay element 34.
  • the output of the second delay element 34 is connected to the addition point 26 via a signal line 40, and the signal in the line 40 is amplified in the controller 23 by the constant factor f2.
  • the output signal of the second delay element 34 is also corrected with the difference signal of the line 36, but with the constant factor k3, additively combined and then fed to the third delay element 35.
  • the output of the third delay element 35 is connected to the addition point 26 via a signal line 41, the signal in line 41 being amplified by the constant factor f3.
  • the device 31 ensures that the respective state of the process taking place in the steam generator is taken into account in the feed water quantity control, without having to install intermediate measuring points in the steam generator, which would be very expensive.
  • feed water 8 is fed to the steam generator via the feed water line 7 by means of the feed pump, in which it - under the influence the amount of heat Q supplied to the steam generator is preheated in the economizer 1 and evaporated in the evaporator 2.
  • the feed pump in which it - under the influence the amount of heat Q supplied to the steam generator is preheated in the economizer 1 and evaporated in the evaporator 2.
  • superheated steam reaches the separator 3, so that no saturated water is returned via the circulation line 11.
  • the temperature measured by the signal generator 18 varies relatively freely because the temperature of the working medium in the separator can move independently of the saturation temperature. In this load range, an increase in the amount of feed water inevitably leads to a decrease in the temperature measured by the signal transmitter 18, so that the amount of feed water can be used to regulate the temperature.
  • the steam temperature at the outlet of the steam generator is regulated in a manner not shown here by supplying water via the injection water line 16.
  • a vapor / water mixture emerges from the evaporator 2, which is then separated into the two phases water and steam in the separator 3.
  • the separated water is returned to the economizer 1 and the evaporator 2 by means of the circulation pump 9 via the circulation line 11.
  • the steam separated in the separator 3 is superheated in the superheaters 4 and 5.
  • the observed transmission factor is simulated in the function generator 51 and, as a transmission factor signal, is fed entirely to one input of the multiplication element 27 arranged at the controller output.
  • the transmission factor existing between the input and the output of the controller 23 becomes close its output correctly set depending on the load.
  • a change in the load setpoint supplied via the signal line 52 additionally causes an immediate change in the quantity of feed water, which in terms of sign and amplitude gives a meaningful first effect as a pilot.
  • the same transmission factor signal y is also introduced in inverse form by the function generator 51 in the observer 31.
  • the interaction of the multiplication member 27 with the division member 32 results in an optimal static and dynamic deformation of the signal in the signal line 28 at the output of the controller 23 in response to a change in the load setpoint, that is to say an overall optimal pre-control.
  • the dynamic elements stored in the observer 31 are used, which simulate the process behavior in the required manner.
  • the embodiment shows a single-tube boiler with low-load circulation, in which the circulation pump 9 in the flow, i.e. lies in the main stream of the feed water.
  • the circulation pump can also be arranged in the circulation line 11, i.e. in the return.
  • the device according to the invention can be applied to all once-through steam generators, regardless of the circuit used for low-load operation with a wet separator, i.e. even for circuits that do not have a circulation pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

Die Erfindung betrifft eine Einrichtung zum lastabhängigen Regeln der Speisewassermenge eines einen Economiser, einen Verdampfer und mindestens einen Ueberhitzer aufweisenden Zwanglaufdampferzeugers nach dem Oberbegriff des einzigen Patentanspruchs (siehe z.B. DE-A-1 401 348).The invention relates to a device for load-dependent regulation of the feed water quantity of a forced-flow steam generator having an economizer, an evaporator and at least one superheater according to the preamble of the single patent claim (see e.g. DE-A-1 401 348).

Bei bisher bekannten Regeleinrichtungen der genannten Art ist in der Speisewasserleitung des Dampferzeugers ein Speisewassermengenmessorgan angeordnet, das über einen PID-Regler die Speisewassermenge einstellt, z.B. durch Verstellen der Drehzahl der Speisepumpe oder durch Verstellen eines in die Speisewasserleitung eingebauten Ventils. Geregelt wird eine Dampftemperatur, die mit einem im Ueberhitzerbereich des Dampferzeugers angeordneten Messorgan erfasst wird und zusammen mit einem entsprechenden Temperatursollwert ebenfalls auf den PID-Regler geschaltet ist. Anstelle der Dampftemperatur kann auch die Dampfenthalpie geregelt werden. Schliesslich wirkt auf den Speiseregelkreis als Vorsteuerung ein lastabhängiges Signal, das von einem Funktionsgeber kommt, in dem die Beziehung zwischen Speisemenge und dem Dampferzeuger zuzuführende Brennstoffmenge festgelegt ist. Dabei ist zwischen dem Funktionsgeber und dem Speiseregelkreis ein verstellbares Glied eingeschaltet, in dem eine dynamische Verformung des lastabhängigen Signals stattfindet. Aufgrund der beschränkten Wirksamkeit des klassischen PID-Reglers muss die so gebildete Vorsteuerung den komplizierten zeitlichen Verlauf der Speisemenge auf wenige Prozente genau festlegen, so dass der Regler selbst nur eine Feinkorrektur vornehmen muss. Mit einem solchen Aufbau wird die erzielbare Regelgüte weitgehend durch die Genauigkeit und die Zuverlässigkeit der Vorsteuerung bestimmt. Die Einstellung des Funktionsgebers und des Gliedes zur dynamischen Verformung erfordert deshalb einen hohen Aufwand, insbesondere eine langwierige Inbetriebsetzung.In previously known control devices of the type mentioned, a feed water quantity measuring device is arranged in the feed water line of the steam generator, which sets the feed water quantity via a PID controller, for example by adjusting the speed of the feed pump or by adjusting a valve installed in the feed water line. A steam temperature is controlled, which is recorded with a measuring element arranged in the superheater area of the steam generator and, together with a corresponding temperature setpoint, is likewise connected to the PID controller. Instead of the steam temperature, the steam enthalpy can also be regulated. Finally, a load-dependent signal, which comes from a function generator, acts on the feed control loop as a precontrol, in which the relationship between the feed amount and the amount of fuel to be supplied to the steam generator is defined. There is a between the function generator and the feed control loop adjustable element switched on, in which a dynamic deformation of the load-dependent signal takes place. Due to the limited effectiveness of the classic PID controller, the feedforward control formed in this way must specify the complicated temporal course of the feed quantity to within a few percent, so that the controller itself only has to make a fine correction. With such a structure, the achievable control quality is largely determined by the accuracy and reliability of the pilot control. The setting of the function generator and the link for dynamic deformation therefore requires a lot of effort, in particular a lengthy commissioning.

Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung zum lastabhängigen Regeln der Speisewassermenge zu schaffen, die bei verbesserter Leistungsfähigkeit ohne aufwendige Vorsteuerung auskommt.The invention has for its object to provide a device for load-dependent control of the amount of feed water, which manages with improved performance without complex feedforward control.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs gelöst.This object is solved by the features of the patent claim.

Diese Einrichtung erlaubt es, auf einfache Weise zwei Aufgaben gleichzeitig zu erfüllen. Zum einen wird der beobachtete Uebertragungsfaktor im Funktionsgeber nachgebildet und ein entsprechendes Signal ganz dem am Ausgang des Reglers angeordneten Multiplikationsorgan zugeführt. Dadurch wird nicht nur der zwischen dem Eingang und dem Ausgang des Reglers wirkende Uebertragungsfaktor am Reglerausgang lastabhängig richtig eingestellt. Eine Aenderung des Lastsollwertes bewirkt zusätzlich eine sofortige Veränderung der Speisewassermenge, was in Vorzeichen und Amplitude eine sinnvolle erste Wirkung als Vorsteuerung ergibt. Zum andern wird dasselbe Uebertragungsfaktorsignal y vom Funktionsgeber in inverser Form auch der als Beobachter wirkenden Vorrichtung zugeführt. Durch das Zusammenwirken des Multiplikationsorgans mit dem Divisionsorgan ergibt sich eine optimale statische und dynamische Verformung des Signals am Reglerausgang als Antwort auf eine Aenderung des Lastsollwertes, also insgesamt eine optimale Vorsteuerung. Es wird die dynamische Verformung der Vorsteuerwirkung nicht - wie bisher - in mühseliger Weise mit einem speziellen dynamischen Filter eingestellt, sondern es werden dazu die in der als Beobachter wirkenden Vorrichtung abgelegten dynamischen Glieder verwendet, die das Prozessverhalten in der erforderlichen Weise nachbilden.This device allows two tasks to be performed simultaneously in a simple manner. On the one hand, the observed transmission factor is simulated in the function generator and a corresponding signal is fed entirely to the multiplication element arranged at the output of the controller. As a result, not only is the transmission factor at the controller output acting between the input and the output of the controller correctly set depending on the load. A change in the load setpoint also causes an immediate change in the quantity of feed water, which in terms of sign and amplitude gives a sensible first effect as a pilot. On the other hand, the same transfer factor signal y from the function generator is in inverse form also supplied to the device acting as an observer. The interaction of the multiplication element with the division element results in an optimal static and dynamic deformation of the signal at the controller output in response to a change in the load setpoint, that is to say an overall optimal control. The dynamic deformation of the pilot control effect is not - as before - laboriously adjusted with a special dynamic filter, but instead the dynamic elements stored in the device acting as an observer are used, which simulate the process behavior in the required manner.

Ein Ausführungsbeispiel der Erfindung ist in der folgenden Beschreibung anhand der Zeichnung näher erläutert, die schematisch einen Zwanglaufdampferzeuger mit einer Speisewassermengenregeleinrichtung zeigt.An embodiment of the invention is explained in more detail in the following description with reference to the drawing, which schematically shows a forced-flow steam generator with a feed water quantity control device.

Der als Einrohrkessel ausgebildete Dampferzeuger weist einen Economiser 1, einen Verdampfer 2, einen Abscheider 3 sowie einen ersten und einen zweiten Ueberhitzer 4 bzw. 5 auf, die vom Arbeitsmittel nacheinander durchströmt werden. Zwischen dem Ueberhitzer 5 und dem Verbraucher können noch weitere Ueberhitzer vorgesehen sein. In Strömungsrichtung des Arbeitsmittels gesehen vor dem Economiser 1 ist an diesem eine Speisewasserleitung 7 angeschlossen, die eine Speisepumpe 8, eine Umwälzpumpe 9 und ein Speisewassermengenmessorgan 10 aufweist. Zwischen der Speisepumpe 8 und der Umwälzpumpe 9 mündet in die Speiseleitung 7 eine Umwälzleitung 11, die vom unteren Ende des Abscheiders 3 abzweigt und ein Ventil 12 sowie eine Rückschlagklappe 13 aufweist. Zwischen dem Abscheider 3 und dem Ventil 12 zweigt von der Leitung 11 eine Leitung 14 mit Ventil 15 ab, die vorübergehend zuviel abgeschiedenes flüssiges Arbeitsmittel, z.B. während des Anfahrens des Dampferzeugers, zu einem nicht dargestellten Speisewasserbehälter zurückleitet. Zwischen der Umwälzpumpe 9 und dem Speisewassermengenmessorgan 10 zweigt von der Speisewasserleitung 7 eine Einspritzwasserleitung 16 ab, die in nicht dargestellter Weise zu den Ueberhitzern 4, 5 führt.The steam generator in the form of a single-tube boiler has an economizer 1, an evaporator 2, a separator 3 and first and second superheaters 4 and 5, through which the working medium flows in succession. Additional superheaters can be provided between the superheater 5 and the consumer. Seen in the direction of flow of the working medium, an economizer 1 is connected to the economizer 1, which has a feed pump 8, a circulation pump 9 and a feed water quantity measuring element 10. Between the feed pump 8 and the circulation pump 9, a circulation line 11 opens into the feed line 7, which branches off from the lower end of the separator 3 and has a valve 12 and a non-return valve 13. Between the separator 3 and the valve 12, a line 14 with a valve 15 branches off from the line 11, the temporarily too much separated liquid working fluid, for example during start-up of the steam generator, leads back to a feed water tank, not shown. Between the circulating pump 9 and the feed water quantity measuring element 10, an injection water line 16 branches off from the feed water line 7 and leads to the superheaters 4, 5 in a manner not shown.

Die Speisewassermengenregeleinrichtung umfasst ausser dem Mengenmessorgan 10 einen Signalgeber 10′ für die gemessene Speisewassermenge sowie ein Temperaturmessorgan mit Signalgeber 18, das zwischen dem ersten und dem zweiten Ueberhitzer 4 bzw. 5 am Dampferzeuger angeschlossen ist. Dieses Temperaturmessorgan kann auch am Dampfaustritt des Abscheiders 3 angeschlossen sein. Am Ausgang des Signalgebers 18 für die Ist-Temperatur ist eine Signalleitung 19 angeschlossen, die zu einem Vergleichspunkt 20 führt, dem über eine Signalleitung 21 ein Sollwert für die Temperatur zugeführt wird. Vom Vergleichspunkt 20 führt eine Signalleitung 22 zum Eingang eines Integrators 24, der Bestandteil eines Zustandsreglers 23 ist. Die Signalleitung führt ein der Abweichung zwischen Sollwert und Istwert der Temperatur entsprechendes, im Regler 23 um den konstanten Faktor fI verstärktes Signal zum Integrator 24. Vom Ausgang des Integrators 24 führt eine Signalleitung 25 zu einem Additionspunkt 26, dessen Ausgang mit dem Eingang eines Multiplikationsorganes 27 verbunden ist. Der Ausgang des Multiplikationsorganes 27 ist zugleich der Ausgang des Reglers 23, der über eine Signalleitung 28 mit einem Vergleichspunkt 43 verbunden ist. In den Vergleichspunkt 43 mündet ausserdem eine Signalleitung 29, die vom Signalgeber 10′ kommt und ein dem Istwert der Speisewassermenge entsprechendes, um den Faktor fo verstärktes Signal führt. Der Ausgang des Vergleichspunktes 43 ist über eine Signalleitung 44 mit der Speisepumpe 8 verbunden, die das Stellorgan der Speisewassermengenregeleinrichtung bildet.The feed water quantity control device comprises, in addition to the quantity measuring element 10, a signal generator 10 'for the measured quantity of feed water and a temperature measuring element with signal generator 18 which is connected to the steam generator between the first and second superheaters 4 and 5. This temperature measuring element can also be connected to the steam outlet of the separator 3. At the output of the signal generator 18 for the actual temperature, a signal line 19 is connected, which leads to a comparison point 20, to which a setpoint for the temperature is supplied via a signal line 21. A signal line 22 leads from the comparison point 20 to the input of an integrator 24, which is part of a state controller 23. The signal line leads a signal corresponding to the deviation between the target value and the actual value of the temperature and amplified in the controller 23 by the constant factor f I to the integrator 24. From the output of the integrator 24, a signal line 25 leads to an addition point 26, the output of which leads to the input of a multiplication element 27 is connected. The output of the multiplication element 27 is also the output of the controller 23, which is connected to a comparison point 43 via a signal line 28. In the comparison point 43 also opens a signal line 29, which comes from the signal generator 10 'and a signal corresponding to the actual value of the feed water quantity leads by the factor fo. The output of the comparison point 43 is connected via a signal line 44 to the feed pump 8, which forms the actuator of the feed water quantity control device.

Dem Multiplikationsorgan 27 wird über eine Signalleitung 50 ein Signal y zugeführt, das in einem Funktionsgeber 51 gebildet wird, dem über eine Signalleitung 52 ein Last-Sollwertsignal zugeführt wird. Die Signalleitung 44 führt der Speisepumpe 8 ein Stellsignal zu, das im Vergleichspunkt 43 aus der Differenz des einen Sollwert für die Speisewassermenge bildenden Ausgangssignals des Reglers 23 und des um den Faktor fo verstärkten Istwert-Signals für die Speisewassermenge gebildet wird. Das Stellsignal in der Leitung 44 wird durch den Verstärkungsfaktor -zo verstärkt, der dafür sorgt, dass im stationären Zustand die beiden genannten Speisewassermengen gleich gross sind.A signal y is fed to the multiplication member 27 via a signal line 50, which signal is formed in a function generator 51, to which a load setpoint signal is fed via a signal line 52. The signal line 44 feeds the feed pump 8 an actuating signal which is formed in the comparison point 43 from the difference between the output signal of the controller 23 which forms a setpoint for the feedwater quantity and the actual value signal for the feedwater quantity which is amplified by the factor fo. The actuating signal in line 44 is amplified by the amplification factor -z o , which ensures that the two feed water quantities mentioned are of equal size in the stationary state.

Ausser den Regler 23 umfasst die Speisewassermengenregeleinrichtung eine Vorrichtung 31, die nach Art eines Beobachters arbeitet und zwei Signaleingänge sowie mehrere Signalausgänge aufweist. Der erste Signaleingang ist über eine von der Signalleitung 29 abzweigende Signalleitung 30 mit dem Ausgang des Mengensignalgebers 10′ verbunden. Die Signalleitung 30 führt das dem Istwert der Speisewassermenge entsprechende Signal zu einem Divisionsorgan 32, dem ausserdem über eine Signalleitung 53 das Signal y aus dem Funktionsgeber 51 zugeführt wird. Der Ausgang des Divisionsorgans 32 ist über eine Signalleitung 38 mit dem Eingang eines ersten Verzögerungsgliedes 33 verbunden, das zu einer Reihe von weiteren Verzögerungsgliedern 34 und 35 gehört. Die Anzahl solcher Verzögerungsglieder variiert von Anlage zu Anlage zwischen zwei und sieben. Der zweite Eingang der Vorrichtung 31 ist mit einer Signalleitung 17 verbunden, die von der Signalleitung 19 des Temperatursignalgebers 18 abzweigt. Die Signalleitung 17 mündet in einen Vergleichspunkt 37, an dessen Ausgang eine Signalleitung 36 angeschlossen ist. Der zweite Eingang des Vergleichspunktes 37 ist mit dem Ausgang des dritten Verzögerungsgliedes 35 verbunden. Die Signalleitung 36 führt also ein Differenzsignal, das durch einen konstanten Faktor k1 korrigiert und dann dem Signal in der Leitung 38 additiv aufgeschaltet wird. Der Ausgang des ersten Verzögerungsgliedes 33 ist über eine Signalleitung 39 mit dem Additionspunkt 26 im Regler 23 verbunden. Das Signal in der Leitung 39 wird im Regler 23 durch den konstanten Faktor f1 verstärkt. Ausserdem wird das Ausgangssignal des ersten Verzögerungsgliedes 33 mit dem Differenzsignal in der Leitung 36, jedoch mit dem konstanten Faktor k2 korrigiert, addiert und das so gebildete Signal dem zweiten Verzögerungsglied 34 zugeführt. Der Ausgang des zweiten Verzögerungsgliedes 34 ist über eine Signalleitung 40 mit dem Additionspunkt 26 verbunden, und das Signal in der Leitung 40 wird im Regler 23 um den konstanten Faktor f2 verstärkt. Analog der Schaltung zwischen dem ersten und dem zweiten Verzögerungsglied wird das Ausgangssignal des zweiten Verzögerungsgliedes 34 auch mit dem Differenzsignal der Leitung 36, jedoch mit dem konstanten Faktor k3 korrigiert, additiv vereinigt und dann dem dritten Verzögerungsglied 35 zugeführt. Der Ausgang des dritten Verzögerungsgliedes 35 ist ausser mit dem Vergleichspunkt 37 über eine Signalleitung 41 mit dem Additionspunkt 26 verbunden, wobei das Signal in der Leitung 41 um den konstanten Faktor f3 verstärkt wird.In addition to the controller 23, the feed water quantity control device comprises a device 31 which operates in the manner of an observer and has two signal inputs and a plurality of signal outputs. The first signal input is connected via a branching from the signal line 29 signal line 30 to the output of the quantity signal generator 10 '. The signal line 30 leads the signal corresponding to the actual value of the feed water quantity to a division element 32, to which the signal y is also fed from the function generator 51 via a signal line 53. The output of the division element 32 is connected via a signal line 38 to the input of a first delay element 33, which belongs to a series of further delay elements 34 and 35. The number of such delay elements varies from plant to plant between two and seven. The second input of the device 31 is connected to a signal line 17 which branches off from the signal line 19 of the temperature signal transmitter 18. The signal line 17 opens into a comparison point 37, to the output of which a signal line 36 is connected. The second input of the comparison point 37 is connected to the output of the third delay element 35. The signal line 36 thus carries a difference signal, which is corrected by a constant factor k1 and then additively applied to the signal in line 38. The output of the first delay element 33 is connected to the addition point 26 in the controller 23 via a signal line 39. The signal in line 39 is amplified in the controller 23 by the constant factor f1. In addition, the output signal of the first delay element 33 is corrected with the difference signal in line 36, but corrected with the constant factor k2, and the signal thus formed is fed to the second delay element 34. The output of the second delay element 34 is connected to the addition point 26 via a signal line 40, and the signal in the line 40 is amplified in the controller 23 by the constant factor f2. Analogous to the circuit between the first and the second delay element, the output signal of the second delay element 34 is also corrected with the difference signal of the line 36, but with the constant factor k3, additively combined and then fed to the third delay element 35. In addition to the comparison point 37, the output of the third delay element 35 is connected to the addition point 26 via a signal line 41, the signal in line 41 being amplified by the constant factor f3.

Mit der Vorrichtung 31 wird erreicht, dass der jeweilige Zustand des sich im Dampferzeuger abspielenden Prozesses bei der Speisewassermengenregelung berücksichtigt wird, ohne dass man im Dampferzeuger Zwischen-Messstellen anbringen müsste, was sehr aufwendig wäre.The device 31 ensures that the respective state of the process taking place in the steam generator is taken into account in the feed water quantity control, without having to install intermediate measuring points in the steam generator, which would be very expensive.

Die beschriebene Vorrichtung funktioniert wie folgt: Im Normalbetrieb des Dampferzeugers wird mittels der Speisepumpe 8 Speisewasser über die Speisewasserleitung 7 dem Dampferzeuger zugeführt, in dem es - unter dem Einfluss der dem Dampferzeuger zugeführten Wärmemenge Q - im Economiser 1 vorgewärmt und im Verdampfer 2 verdampft wird. Im oberen Lastbereich des Dampferzeugers, in dem reiner Zwangdurchlaufbetrieb herrscht, gelangt überhitzter Dampf in den Abscheider 3, so dass kein Sattwasser über die Umwälzleitung 11 zurückgeführt wird. Die vom Signalgeber 18 gemessene Temperatur variiert relativ frei, weil die Temperatur des Arbeitsmittels im Abscheider sich unabhängig von der Sättigungstemperatur bewegen kann. In diesem Lastbereich führt eine Erhöhung der Speisewassermenge zwangsläufig zu einer Absenkung der vom Signalgeber 18 gemessenen Temperatur, so dass die Speisewassermenge zur Regelung der Temperatur herangezogen werden kann. Die Dampftemperatur am Austritt des Dampferzeugers wird in hier nicht dargestellter Weise durch Zufuhr von Wasser über die Einspritzwasserleitung 16 geregelt.The device described works as follows: During normal operation of the steam generator, feed water 8 is fed to the steam generator via the feed water line 7 by means of the feed pump, in which it - under the influence the amount of heat Q supplied to the steam generator is preheated in the economizer 1 and evaporated in the evaporator 2. In the upper load range of the steam generator, in which there is pure forced operation, superheated steam reaches the separator 3, so that no saturated water is returned via the circulation line 11. The temperature measured by the signal generator 18 varies relatively freely because the temperature of the working medium in the separator can move independently of the saturation temperature. In this load range, an increase in the amount of feed water inevitably leads to a decrease in the temperature measured by the signal transmitter 18, so that the amount of feed water can be used to regulate the temperature. The steam temperature at the outlet of the steam generator is regulated in a manner not shown here by supplying water via the injection water line 16.

Bei Schwachlastbetrieb, der z.B. unterhalb 30% der Vollast des Dampferzeugers einsetzt, tritt aus dem Verdampfer 2 ein Dampf/Wasser-Gemisch aus, das dann im Abscheider 3 in die beiden Phasen Wasser und Dampf getrennt wird. Das abgeschiedene Wasser wird mittels der Umwälzpumpe 9 über die Umwälzleitung 11 in den Economiser 1 und den Verdampfer 2 zurückgeführt. Der im Abscheider 3 abgeschiedene Dampf wird in den Ueberhitzern 4 und 5 überhitzt.In low load operation, e.g. below 30% of the full load of the steam generator, a vapor / water mixture emerges from the evaporator 2, which is then separated into the two phases water and steam in the separator 3. The separated water is returned to the economizer 1 and the evaporator 2 by means of the circulation pump 9 via the circulation line 11. The steam separated in the separator 3 is superheated in the superheaters 4 and 5.

Mit der beschriebenen Einrichtung, die während des Zwangdurchlaufbetriebes in Funktion ist, wird es möglich, auf einfache Weise zwei Aufgaben gleichzeitig zu erfüllen. Einerseits wird der beobachtete Uebertragungsfaktor im Funktionsgeber 51 nachgebildet und als Uebertragungsfaktorsignaly ganz dem einen Eingang des am Reglerausgang angeordneten Multiplikationsorgan 27 zugeführt. Dadurch wird nicht nur der zwischen dem Eingang und dem Ausgang des Reglers 23 existierende Uebertragungsfaktor nahe seinem Ausgang lastabhängig richtig eingestellt. Eine Aenderung des über die Signalleitung 52 zugeführten Lastsollwertes bewirkt zusätzlich eine sofortige Veränderung der Speisewassermenge, die in Vorzeichen und Amplitude eine sinnvolle erste Wirkung als Vorsteuerung ergibt. Andererseits wird dasselbe Uebertragungsfaktorsignal y vom Funktionsgeber 51 in inverser Form auch im Beobachter 31 eingeführt. Durch das Zusammenwirken des Multiplikationsorgans 27 mit dem Divisionsorgan 32 ergibt sich eine optimale statische und dynamische Verformung des Signals in der Signalleitung 28 am Ausgang des Reglers 23 als Antwort auf eine Aenderung des Lastsollwertes, also insgesamt eine optimale Vorsteuerung. Zur dynamischen Verformung der Vorsteuerwirkung werden die im Beobachter 31 abgelegten dynamischen Glieder verwendet, die das Prozessverhalten in der erforderlichen Weise nachbilden.With the described device, which is in operation during the forced operation, it becomes possible to easily perform two tasks simultaneously. On the one hand, the observed transmission factor is simulated in the function generator 51 and, as a transmission factor signal, is fed entirely to one input of the multiplication element 27 arranged at the controller output. As a result, not only the transmission factor existing between the input and the output of the controller 23 becomes close its output correctly set depending on the load. A change in the load setpoint supplied via the signal line 52 additionally causes an immediate change in the quantity of feed water, which in terms of sign and amplitude gives a meaningful first effect as a pilot. On the other hand, the same transmission factor signal y is also introduced in inverse form by the function generator 51 in the observer 31. The interaction of the multiplication member 27 with the division member 32 results in an optimal static and dynamic deformation of the signal in the signal line 28 at the output of the controller 23 in response to a change in the load setpoint, that is to say an overall optimal pre-control. For dynamic deformation of the pilot control effect, the dynamic elements stored in the observer 31 are used, which simulate the process behavior in the required manner.

Das Ausführungsbeispiel zeigt einen Einrohrkessel mit Schwachlastumwälzung, bei dem die Umwälzpumpe 9 im Vorlauf, d.h. im Hauptstrom des Speisewassers liegt. Die Umwälzpumpe kann auch in der Umwälzleitung 11 angeordnet sein, d.h. im Rücklauf. Die erfindungsgemässe Einrichtung ist aber auf alle Zwangdurchlaufdampferzeuger anwendbar, unabhängig von der für den Schwachlastbetrieb mit nassem Abscheider angewandten Schaltung, d.h. auch bei Schaltungen, die keine Umwälzpumpe aufweisen.The embodiment shows a single-tube boiler with low-load circulation, in which the circulation pump 9 in the flow, i.e. lies in the main stream of the feed water. The circulation pump can also be arranged in the circulation line 11, i.e. in the return. However, the device according to the invention can be applied to all once-through steam generators, regardless of the circuit used for low-load operation with a wet separator, i.e. even for circuits that do not have a circulation pump.

Claims (1)

  1. Appliance for load-dependent feed water flow rate control of a forced-circulation steam generator comprising an economizer (1), an evaporator (2) and at least one superheater (4, 5), having a feed water flow rate measuring element (10, 10′), a controller (23) containing an integrator (24), and a regulating element (8) for the feed water flow rate, and having a temperature measuring element (18) which is disposed in the region of the superheater and whose output is input to the controller (23) which is also supplied with a setpoint (21) for the temperature, characterized in that the appliance comprises a device (31) which works in the way of a monitor, containing a plurality of delay elements (33, 34, 35) connected in series, and which is connected, at a first input, to the output of the feed water flow rate measuring element (10, 10′) and, at a second input, to the output of the temperature measuring element (18) and whose outputs (39, 40, 41) are fed to a summing junction (26) downstream of the output of the integrator (24), there further being arranged, between the summing junction (26) and the output of the controller (23), a multiplication element (27) which, in addition to the signal coming from the summing junction (26), is supplied with a signal (y) coming from a function generator (51), and there being connected, between the first input of the device (31) and the first delay element (33), an inverse division element (32) which, in addition to the signal coming from the feed water flow rate measuring element (10, 10′), is supplied with the signal (y) emitted by the function generator (51).
EP92810190A 1991-04-05 1992-03-17 Apparatus for the load-dependent regulation of the feedwater flow in a forced circulation steam generator Expired - Lifetime EP0507730B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1021/91 1991-04-05
CH102191 1991-04-05

Publications (2)

Publication Number Publication Date
EP0507730A1 EP0507730A1 (en) 1992-10-07
EP0507730B1 true EP0507730B1 (en) 1995-03-01

Family

ID=4200598

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92810190A Expired - Lifetime EP0507730B1 (en) 1991-04-05 1992-03-17 Apparatus for the load-dependent regulation of the feedwater flow in a forced circulation steam generator

Country Status (4)

Country Link
EP (1) EP0507730B1 (en)
KR (1) KR100205516B1 (en)
DK (1) DK0507730T3 (en)
TW (1) TW211063B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042458A1 (en) 2010-10-14 2012-04-19 Siemens Aktiengesellschaft Method for operating a combined cycle power plant and for the implementation of the method prepared gas and steam turbine plant and corresponding control device
CN105020693B (en) * 2014-04-18 2017-08-25 上海明华电力技术工程有限公司 Once-through Boiler intellectuality feedwater separator temperature control method based on UCPS

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1263535A (en) * 1960-07-12 1961-06-09 Sulzer Ag Operating method of a heat transmission system
DE1401348A1 (en) * 1962-08-09 1969-10-02 Continental Elektro Ind Ag Fuel or feed water volume control device on once-through boilers
DE1526208A1 (en) * 1966-07-26 1970-01-29 Continental Elektro Ind Ag Device for feed water or fuel quantity control to Benson boilers or the like.
FR2401380A1 (en) * 1977-08-23 1979-03-23 Sulzer Ag Forced circulation steam generator - has injector supplied from tapping between economiser and evaporator and temperature controlled regulator controlling flow to evaporator

Also Published As

Publication number Publication date
TW211063B (en) 1993-08-11
KR100205516B1 (en) 1999-07-01
DK0507730T3 (en) 1995-07-31
KR920020121A (en) 1992-11-20
EP0507730A1 (en) 1992-10-07

Similar Documents

Publication Publication Date Title
DE2816636C3 (en) Steam generator system
DE3017659A1 (en) BOILER LEVEL CONTROL ARRANGEMENT
EP0639253B1 (en) Forced-flow steam generator
CH617494A5 (en)
DE2445525C3 (en) Method for influencing the outlet temperature of the steam flowing through a contact heating surface of a steam generator
DE2620734C3 (en) Monitoring arrangement for a continuous steam generator to determine the deviations between the amount of heat absorbed by the feed water and the amount of heat given off by the furnace
DE3784011T2 (en) BOILER CONTROL SYSTEM.
DE2544799A1 (en) GAS HEATED STEAM GENERATOR
DE2023748C3 (en) Feed water preheating device in a combined gas-steam power plant with downstream steam generator
EP0507730B1 (en) Apparatus for the load-dependent regulation of the feedwater flow in a forced circulation steam generator
DE1297624B (en) Steam power plant
DE1225199B (en) Heat transfer system of a nuclear reactor plant with a forced circulation heat transfer
EP0308596A1 (en) Method for the regulation of the feed water flow in a steam plant
DE1205979B (en) Method for regulating the steam temperature in a steam generator and arrangement for carrying out this method
DE3243578C2 (en)
DE2628101C3 (en) Forced steam generator, preferably for sliding pressure operation
DE1141731B (en) Process for generating superheated steam with the help of a steam-cooled reactor and atomic nuclear reactor system for carrying out this process
EP0549522B1 (en) Method of operating a forced circulation steam generator and forced circulation steam generator therefor
EP0544615A1 (en) Method of operating a once-through steam generator with low load recirculation
DE19619836B4 (en) Device for feeding water pilot control of a cooling air temperature controller for a cooling air cooler
DE565043C (en) Regulation of the supply of liquid heaters with forced circulation of the working medium
DE2006410A1 (en) Process for operating a steam power plant and system for carrying out the process
DE1145739B (en) Regulation of once-through steam generators
DE4217626A1 (en) Forced flow steam generator
CH338472A (en) Process for regulating once-through steam generators operated at high pressure and device for carrying out the process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DK LI NL

17P Request for examination filed

Effective date: 19930112

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB KESSELANLAGEN AG

17Q First examination report despatched

Effective date: 19940428

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB MANAGEMENT AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DK LI NL

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

26 Opposition filed

Opponent name: HARTMANN & BRAUN AKTIENGESELLSCHAFT

Effective date: 19951201

NLR1 Nl: opposition has been filed with the epo

Opponent name: HARTMANN & BRAUN AKTIENGESELLSCHAFT

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ASEA BROWN BOVERI AG

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ASEA BROWN BOVERI AG

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ABB MANAGEMENT AG ABT. TEI IMMATERIALGUETERRECHT -

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19970704

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19981214

Year of fee payment: 8

Ref country code: DK

Payment date: 19981214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990118

Year of fee payment: 8

Ref country code: BE

Payment date: 19990118

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

BERE Be: lapsed

Owner name: ABB MANAGEMENT A.G.

Effective date: 20000331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001001