[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0597233B1 - Method of producing a decay object - Google Patents

Method of producing a decay object Download PDF

Info

Publication number
EP0597233B1
EP0597233B1 EP93115823A EP93115823A EP0597233B1 EP 0597233 B1 EP0597233 B1 EP 0597233B1 EP 93115823 A EP93115823 A EP 93115823A EP 93115823 A EP93115823 A EP 93115823A EP 0597233 B1 EP0597233 B1 EP 0597233B1
Authority
EP
European Patent Office
Prior art keywords
target
effective
phosphorus
effective materials
rapid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93115823A
Other languages
German (de)
French (fr)
Other versions
EP0597233A1 (en
Inventor
Martin Fegg
Heinz Bannasch
Martin Wegscheider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buck Chemisch Technische Werke GmbH and Co
Buck Werke GmbH and Co
Original Assignee
Buck Chemisch Technische Werke GmbH and Co
Buck Werke GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buck Chemisch Technische Werke GmbH and Co, Buck Werke GmbH and Co filed Critical Buck Chemisch Technische Werke GmbH and Co
Publication of EP0597233A1 publication Critical patent/EP0597233A1/en
Application granted granted Critical
Publication of EP0597233B1 publication Critical patent/EP0597233B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H9/00Equipment for attack or defence by spreading flame, gas or smoke or leurres; Chemical warfare equipment
    • F41H9/06Apparatus for generating artificial fog or smoke screens

Definitions

  • the invention relates to a method for providing a dummy target body after the introduction of claim 1.
  • IR deception principles are currently used worldwide: Burning off fuel, pyrotechnic active materials with metallic components (e.g. magnesium / polytetrafluoroethylene), pyrotechnic active materials on carrier materials (flares) and "warm clouds", generated by an exothermic chemical reaction. All of these principles have the common disadvantage that they create points in the infrared or, at best, structureless clouds that have nothing in common with the contour and IR signature of a military object. The consequence of this fact is that these deceptive principles against "intelligent" imaging seekers, in particular IR seekers, of the so-called third generation are completely ineffective.
  • the invention has for its object to provide a method of the type mentioned, by means of which objects, such as ships, can be effectively protected against object contour sensitive "intelligent" seekers with spectral differentiation.
  • the invention is based on the surprising finding that it is possible to use a method, which is suitable in principle for all conceivable objects, for protection against imaging target seekers thereby to indicate that in particular computer-controlled under essentially continuous monitoring of the three-dimensional dummy target body active masses, for. B. in the form of rapid-fire ammunition relatively small caliber, so spatially or temporally offset at the location of the dummy target to be assembled for disassembly that the target signature of the object to be protected in "deceptive similarity" for imaging target seekers, such as IR heads, is simulated.
  • Different active masses are preferably used in this way, in this way differently warm surfaces of the object to be protected, e.g. B.
  • an object to be protected such as B. a destroyer, an ammunition transport or the like, with different spectral attractiveness for the target seeker, so that the most realistic simulation of the object to be protected is achieved in this way.
  • the IR signature of the destroyer 10 shown there has a fuselage area with a relatively uniform surface temperature and two "hot spots" in the form of two chimneys 12, 14.
  • FIG. 2 shows that, according to the method according to the invention, a dummy target body 10 'has a "fuselage part" with an essentially uniform surface temperature and two "hot spots" 12', 14 ', corresponding to the chimneys 12, 14 of FIG. 1.
  • the three-dimensional IR apparent target according to FIG. 2 has a specific similarity to the destroyer according to FIG. 1 for an “intelligent” IR seeker head, that the seeker head will attack the dummy target body instead of the destroyer if the overall apparent target is achieved by appropriate beam strengths and / or beam densities etc. is made more attractive to the seeker than the destroyer.
  • Figure 3 shows a destroyer with the conventional dummy target (torch) 11 without an object-like contour, so that this is not the real object, i.e. a third-generation "intelligent" IR seeker head. the destroyer 10 will be preferred.
  • FIG. 4 shows an ammunition transporter 16 with a single chimney 18. Accordingly, there is IR dummy target, shown according to the invention, again according to FIG. 5, a dummy target body 16 'with a single "hot spot"18'.
  • the invention has been explained above on the basis of the exemplary embodiments shown for the most common application, the protection of ships, but designs for other objects are only available in nunition caliber and ammunition composition, each of which must be optimized for the respective contour and spatial-spectral IR signature. differentiate.
  • the specific IR criteria of the object to be protected shape, area size, spatial spectral radiation distribution, movement behavior
  • the radiance of the dummy target body is increased compared to the object in order to represent the more attractive target for the IR seeker head.
  • the faithful, three-dimensional replica also has the advantage that the invention creates a dummy target body, which is effective for all threats and therefore for several simultaneous attacks from different directions.
  • a three-dimensional dummy target can be achieved by the rapid and continuous targeted firing of specific pyrotechnic active substances under the following Realize basic principles: firing sequence with high cadence, e.g. B. with more than three shots / sec., Small caliber, ie approx.
  • a sequence of shots with a high cadence is expedient when carrying out the method according to the invention in order to repair defects in the IR pattern which gradually become extinguished and sink as well as defects in the IR pattern which arise as a result of wind drift, and in order to be able to build up the apparent target as quickly as possible when an IR target seeker approaches.
  • a rate of 3 rounds / sec is required for ships. displayed in order to build up a three-dimensional apparent target with approx. 5 to 7 IR active masses in 2 seconds and to maintain it for the desired period.
  • the higher the cadence the more accurate the IR simulation of the object.
  • Small calibers (approx. 40 mm and smaller) are therefore used in order to be able to produce the shape, the area and the IR target signature as true to detail as possible.
  • small calibers offer the advantage of higher possible firing sequences. In general, the smaller the caliber, the more accurate (resolution) the IR replica of the object becomes.
  • a ship does not have a homogeneous surface temperature, but rather large areas with significant temperature differences.
  • the temperature zones most frequently recognizable on the thermal image in a ship are the solar-heated hull (approximately 40 to 60 ° C) and the hot chimney (s) (approx. 100 ° C), which form so-called "hot spots", whereby the chimneys stand out much more strongly due to their higher temperature (corresponding to the radiance).
  • two types of active masses can be fired which have different spectral properties.
  • the decomposition size of the active mass with a diameter of 10 m and more (depending on the decomposition load and the quantity of the active mass) produces the three-dimensional one Apparent target body and can be adapted to the object to be protected.
  • An ammunition 2 (active mass 2) is used for the spatial and spectral replication of the hot spots (chimneys), the characteristics of which are explained below with reference to FIG. 7.
  • the active mass of the ammunition 2 is intended to produce approximately the same spectral radiance.
  • the spatial extent is generated by the decomposition size of the active mass ( ⁇ 10 m or more, depending on the decomposition charge and the amount of active mass) and can be adapted to the dimensions of the object.
  • the types of ammunition are taped (ie all on one ammunition belt) and fired from a single launcher.
  • one launcher preferably deploys only one type of ammunition.
  • the control of the output is carried out in the most favorable case by a computer system in connection with the digital evaluation of an own thermal imaging device.
  • the computer control generates the dummy target pattern in accordance with the object shape and its IR signature.
  • the computer independently checks the fidelity to the original and compensates for imperfections in the pattern (due to wind drift or extinction of the active masses) by deliberately constantly reworking the apparent target.
  • Barr & Stroud IR 18 52 pixels, range 8 ... 13 ⁇ m
  • the computer can determine from the image coordinates together with the associated image indices both the firing coordinates and the type of ammunition for them next firing sequences in order to optimally match the (stored) IR ship pattern in Achieve shape and spectral signature.
  • the computer control sets the dummy target (in the best case) between the object and the IR target seeker at a distance of approx. 50 m to 100 m from the object.
  • the successive separation of the re-sewing and the maneuvers of the ship result in a progressive separation of the apparent target and the ship.
  • the IR beam seeker is "pulled away" from the ship by the increased beam strength of the dummy target compared to the ship.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Bereitstellen eines Scheinzielkörpers nach der Einleitung des Patentanspruches 1.The invention relates to a method for providing a dummy target body after the introduction of claim 1.

Aus der DE-A-3 311 530 ist ein derartiges Verfahren bekannt, bei dem der Scheinzielkörper, der eine Nachbildung einer schiffähnlichen Zielsignatur anstreben soll, mittels eines Unterwasserfahrzeuges in seine Position außerhalb des zu simulierenden Wasserfahrzeuges gebracht wird. Nachteilig ist dabei, daß der Scheinzielkörper insgesamt mittels einer entsprechenden einzigen Wirkmasse aufgebaut werden muß und somit die räumliche Signatur nur im entferntesten und ohne eine zeitliche Stabilisierung erreicht werden kann. Zudem ist eine räumlich-spektrale Verteilung der Wirkmasse ausgeschlossen. Einen ähnlichen Stand der Technik zeigt auch die EP-A-240 819.Such a method is known from DE-A-3 311 530, in which the dummy target body, which is intended to emulate a ship-like target signature, is brought into its position outside the watercraft to be simulated by means of an underwater vehicle. The disadvantage here is that the apparent target body must be built up by means of a corresponding single active mass and thus the spatial signature only in most distant and can be achieved without a temporal stabilization. In addition, a spatial-spectral distribution of the active mass is excluded. A similar prior art is also shown in EP-A-240 819.

Darüber hinaus ist es bekannt, als Scheinzielkörper für Flugzeuge, gepanzerte Fahrzeuge und Schiffe zwecks Täuschung von IR-Zielsuchköpfen einfache, heiße pyrotechnische Störstrahler einzusetzen, wobei die IR-Scheinziele in gewissem Umfang (Flächengröße, spektrale Strahlungsanteile) dem zu schützenden Objekt angenähert und, wie aus der DE-A-3 421 734 bekannt, gegebenenfalls in Abhängigkeit von der Zeit durch Einsatz einer Vielzahl von zeitlich aufeinanderfolgend zur Verlegung kommender Wirkmassen allmählich von dem zu schützenden Objekt weggeführt werden.In addition, it is known to use simple, hot pyrotechnic interference emitters as dummy targets for aircraft, armored vehicles and ships for the purpose of deceiving IR target seekers, the IR dummy targets being approximated to a certain extent (area size, spectral radiation components) and how are known from DE-A-3 421 734, possibly depending on the time, by gradually using a plurality of active masses which are successively to be laid, to be moved away from the object to be protected.

Weltweit kommen derzeit folgende IR-Täuschungsprinzipien zur Anwendung: Abbrennen von Treibstoff, pyrotechnische Wirkmassen mit metallischer Komponente (z. B. Magnesium/ Polytetrafluorethylen), pyrotechnische Wirkmassen auf Trägermaterialien (Flares) sowie "warme Wolken", erzeugt durch exotherme chemische Reaktion. Alle diese Prinzipien haben den gemeinsamen Nachteil, daß sie im Infraroten Punkte oder bestenfalls strukturlose Wolken erzeugen, die mit der Kontur und IR-Signatur eines militärischen Objekts nichts gemeinsam haben. Folge dieses Umstandes ist, daß diese Täuschungsprinzipien gegen "intelligent" abbildende Zielsuchköpfe, insbesondere IR-Zielsuchköpfe, der sogenannten dritten Generation völlig wirkungslos sind.The following IR deception principles are currently used worldwide: Burning off fuel, pyrotechnic active materials with metallic components (e.g. magnesium / polytetrafluoroethylene), pyrotechnic active materials on carrier materials (flares) and "warm clouds", generated by an exothermic chemical reaction. All of these principles have the common disadvantage that they create points in the infrared or, at best, structureless clouds that have nothing in common with the contour and IR signature of a military object. The consequence of this fact is that these deceptive principles against "intelligent" imaging seekers, in particular IR seekers, of the so-called third generation are completely ineffective.

Die Simulierung einer zweidimensionalen räumlichen und spektralen Zielsignatur des Objektes durch eine entsprechende Anzahl und Positionierung von Wirkmassen ist aus der WO-A-90/04750 bereits bekannt, wobei auch durch derartige Maßnahmen jedoch "intelligente" Zielsuchköpfe nicht hinreichend wirkungsvoll abgelenkt werden können.The simulation of a two-dimensional spatial and spectral target signature of the object by a corresponding number and positioning of active masses is already known from WO-A-90/04750, whereby also by such measures, however, cannot be sufficiently effectively distracted by "intelligent" homing heads.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, mittels dessen Objekte, wie Schiffe, auch gegen objektkonturempfindliche "intelligente" Zielsuchköpfe mit spektraler Unterscheidung wirksam geschützt werden können.The invention has for its object to provide a method of the type mentioned, by means of which objects, such as ships, can be effectively protected against object contour sensitive "intelligent" seekers with spectral differentiation.

Erfindungsgemäß wird diese Aufgabe durch die Kombination der Merkmale des Patentanspruches 1 gelöst.According to the invention, this object is achieved by the combination of the features of claim 1.

Besondere Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.Particular embodiments of the invention are the subject of the dependent claims.

Der Erfindung liegt die überraschende Erkenntnis zugrunde, daß es gelingt, ein prinzipiell für alle denkbaren Objekte geeignetes Verfahren zum Schutz gegen abbildende Zielsuchköpfe dadurch anzugeben, daß insbesondere rechnergesteuert unter im wesentlichen kontinuierlicher Überwachung des dreidimensional aufzubauenden Scheinzielkörpers Wirkmassen, z. B. in Form von Schnellfeuermunition verhältnismäßig kleinen Kalibers, derart räumlich bzw. zeitlich versetzt am Ort des aufzubauenden Scheinzielkörpers zur Zerlegung gebracht werden, daß die Zielsignatur des zu schützenden Objektes in "täuschender Ähnlichkeit" für abbildende Zielsuchköpfe, wie IR-Köpfe, simuliert wird. Vorzugsweise werden dabei unterschiedliche Wirkmassen eingesetzt, um auf diese Weise unterschiedlich warme Flächen des zu schützenden Objektes, z. B. den Rumpf einerseits und den Kamin oder die Kamine andererseits eines zu schützenden Objektes. wie z. B. eines Zerstörers, eines Munitionstransportes oder dergleichen, mit unterschiedlicher spektraler Attraktivität für den Zielsuchkopf darstellen zu können, damit auf diese Weise eine möglichst naturgetreue Simulation des zu schützenden Objektes erzielt wird.The invention is based on the surprising finding that it is possible to use a method, which is suitable in principle for all conceivable objects, for protection against imaging target seekers thereby to indicate that in particular computer-controlled under essentially continuous monitoring of the three-dimensional dummy target body active masses, for. B. in the form of rapid-fire ammunition relatively small caliber, so spatially or temporally offset at the location of the dummy target to be assembled for disassembly that the target signature of the object to be protected in "deceptive similarity" for imaging target seekers, such as IR heads, is simulated. Different active masses are preferably used in this way, in this way differently warm surfaces of the object to be protected, e.g. B. the fuselage on the one hand and the fireplace or chimneys on the other hand of an object to be protected. such as B. a destroyer, an ammunition transport or the like, with different spectral attractiveness for the target seeker, so that the most realistic simulation of the object to be protected is achieved in this way.

Weitere Merkamle und Vorteile der Erfindung ergeben sich aus der nachstehenden Beschriebung, in der Ausführungsbeispiele anhand der Zeichnungen im einzelnen erläutert sind. Dabei zeigt:

Fig. 1.
eine IR-Zielsignatur eines als zu schützendes Objekt gedachten Zerstörers;
Fig.2
ein dreidimensionales IR-Scheinziel des Zerstörers gemäß Fig.1, erzeugt mittels des Verfahrens nach der Erfindung,
Fig.3
einen herkömmlichen Scheinzielkörper zusammen mit einer Zerstörer entspreshend Fig. 1;
Fig. 4
eine IR-Zielsignatur eines als zu schützendes Objekt gedachten Munitionstransporters;
Fig. 5
ein dreidimensionales IR-Scheinziel des Munitionstransporters von Fig. 4, erzeugt nach dem erfindungsgemäßen Verfahren;
Fig. 6
die graphische Darstellung der spektralen Strahldichte eines Schwarzkörperstrahlers mit einer Oberflächentemperatur von 40°C; und
Fig. 7
die graphische Darstellung der spektralen Strahldichte eines Schwarzkörperstrahlers mit einer Oberflächentemperatur von 100°C.
Further features and advantages of the invention result from the following description, in which exemplary embodiments are explained in detail with reference to the drawings. It shows:
Fig. 1.
an IR target signature of a destroyer intended to be protected;
Fig. 2
a three-dimensional IR apparent target of the destroyer according to Figure 1, generated by means of the method according to the invention,
Fig. 3
a conventional dummy target body together with a destroyer corresponding to Fig. 1;
Fig. 4
an IR target signature of an ammunition transporter intended to be protected;
Fig. 5
a three-dimensional IR dummy target of the ammunition transporter of Fig. 4, produced by the method according to the invention;
Fig. 6
the graphical representation of the spectral radiance of a blackbody radiator with a surface temperature of 40 ° C; and
Fig. 7
the graphical representation of the spectral radiance of a blackbody radiator with a surface temperature of 100 ° C.

Wie Figur 1 erkennen läßt, weist die IR-Signatur des dort wiedergegebenen Zerstörers 10 einen Rumpfbereich mit verhältnismäßig gleichmäßiger Oberflächentemperatur sowie zwei "Hot Spots" in Form von zwei Kaminen 12, 14 auf.As can be seen in FIG. 1, the IR signature of the destroyer 10 shown there has a fuselage area with a relatively uniform surface temperature and two "hot spots" in the form of two chimneys 12, 14.

Figur 2 zeigt, daß nach dem erfindungsgemäßen Verfahrens ein Scheinzielkörper 10' einen "Rumpfteil" mit im wesentlichen gleichmäßiger Oberflächentemperatur sowie zwei "Hot Spots" 12', 14', den Kaminen 12, 14 von Figur 1 entsprechend, aufweist. Das dreidimensionale IR-Scheinziel gemäß Figur 2 hat für einen "intelligenten" IR-Suchkopf eine spezifische Ähnlichkeit mit dem Zerstörer gemäß Figur 1, daß der Suchkopf statt des Zerstörers den Scheinzielkörper angreifen wird, wenn durch entsprechende Strahlstärken und/oder Strahldichten etc. das Gesamtscheinziel für den Zielsuchkopf attraktiver gemacht wird als der Zerstörer.FIG. 2 shows that, according to the method according to the invention, a dummy target body 10 'has a "fuselage part" with an essentially uniform surface temperature and two "hot spots" 12', 14 ', corresponding to the chimneys 12, 14 of FIG. 1. The three-dimensional IR apparent target according to FIG. 2 has a specific similarity to the destroyer according to FIG. 1 for an “intelligent” IR seeker head, that the seeker head will attack the dummy target body instead of the destroyer if the overall apparent target is achieved by appropriate beam strengths and / or beam densities etc. is made more attractive to the seeker than the destroyer.

Figur 3 zeigt einen Zerstörer mit dem herkömmlichen Scheinziel (Fackel) 11 ohne objektähnliche Kontur, so daß dieses durch einer "intelligenten" IR-Suchkopf der dritten Generation nicht dem wirklichen Objekt, d.h. dem Zerstörer 10, vorgezogen werden wird.Figure 3 shows a destroyer with the conventional dummy target (torch) 11 without an object-like contour, so that this is not the real object, i.e. a third-generation "intelligent" IR seeker head. the destroyer 10 will be preferred.

Ähnliches ergibt sich aus einem Vergleich der Figuren 4 und 5, wobei Figur 4 einen Munitionstransporter 16 mit einem einzigen Kamin 18 zeigt. Dementsprechend gibt das IR-Scheinziel, erfindungsgemäß dargestellt, gemäß Figur 5 einen Scheinzielkörper 16' mit einem einzigen "Hot Spot" 18' wieder.Similar results from a comparison of FIGS. 4 and 5, FIG. 4 showing an ammunition transporter 16 with a single chimney 18. Accordingly, there is IR dummy target, shown according to the invention, again according to FIG. 5, a dummy target body 16 'with a single "hot spot"18'.

Vorstehend ist die Erfindung anhand der gezeigten Ausführungsbeispiele für den häufigsten Anwendungsfall, den Schutz von Schiffen, erläutert, wobei sich aber Ausführungen für andere Objekte lediglich in Nunitionskaliber und Munitionszusammensetzung, die jeweils auf die jeweilige Kontur und räumlich-spektrale IR-Signatur optimiert werden müssen, unterscheiden. Die spezifischen IR-Kriterien des zu schützenden Objektes (Form, Flächengröße, räumliche spektrale Strahlungsverteilung, Bewegungsverhalten) werden erfindungsgemäß originalgetreu nachgebildet. Gleichzeitig wird die Strahlstärke des Scheinzielkörpers gegenüber dem Objekt erhöht, um für den IR-Suchkopf das attrakivere Ziel darzustellen. Die originalgetreue, dreidimensionale Nachbildung bietet zudem den Vorteil, daß durch die Erfindung ein Scheinzielkörper geschaffen wird, der für alle Bedrohungsrichtungen und deshalb auch für mehere gleichzeitige Angriffe aus verschiedenen Richtungen wirksam ist.The invention has been explained above on the basis of the exemplary embodiments shown for the most common application, the protection of ships, but designs for other objects are only available in nunition caliber and ammunition composition, each of which must be optimized for the respective contour and spatial-spectral IR signature. differentiate. The specific IR criteria of the object to be protected (shape, area size, spatial spectral radiation distribution, movement behavior) are reproduced true to the original according to the invention. At the same time, the radiance of the dummy target body is increased compared to the object in order to represent the more attractive target for the IR seeker head. The faithful, three-dimensional replica also has the advantage that the invention creates a dummy target body, which is effective for all threats and therefore for several simultaneous attacks from different directions.

Im Fall von IR-Scheinzielkörper (natürlich läßt sich das Prinzip der Erfindung auch für z. B. radargesteuerte Zielsuchköpfe, schallgesteuerte Angriffskörper etc. verwenden) laßt sich nach dem erfindungsgemäßen Verfahren ein dreidimensionales Scheinziel durch das schnelle und fortwährende gezielte Verschießen spezifischer pyrotechnischer Wirkmassen unter folgenden Grundprinzipien realisieren: Schußfolge mit hoher Kadenz, z. B. mit mehr als drei Schuß/Sek., kleines Kaliber, d. h. ca. 40 mm und kleiner (mögliche Verwendung von Schnellfeuergranatwerfern), Verwendung von zwei oder noch mehr pyrotechnischen IR-Wirkmassen mit unterschiedlicher, objektähnlicher spektraler Strahlungscharakteristik, und schließlich Steuerung der Ausbringung im einfachsten Fall manuell, besser jedoch durch einen Rechner, wobei durch Einbeziehung der digitalen Bildverarbeitung eines Wärmebildgerätes am Ort des Verschusses das IR-Scheinziel gemäß einem vorgegebenen Muster erzeugt und durch kontinuierliches Nachnähern an pyrotechnischen Wirkmassen aufrechterhalten werden kann. Durch sukzessive Verschiebung der Ausbringungsrichtung kann eine Bewegung (Fahrt) des Scheinzieles bewirkt werden, dies im Sinne der DE-OS 34 21 734.In the case of IR dummy target bodies (of course, the principle of the invention can also be used for, for example, radar-controlled target seekers, sound-controlled attack bodies, etc.), according to the method according to the invention, a three-dimensional dummy target can be achieved by the rapid and continuous targeted firing of specific pyrotechnic active substances under the following Realize basic principles: firing sequence with high cadence, e.g. B. with more than three shots / sec., Small caliber, ie approx. 40 mm and smaller (possible use of rapid-fire grenade launchers), use of two or more pyrotechnic IR active materials with different, object-like spectral radiation characteristics, and finally control of the application in the simplest case manually, but better by a computer, whereby the inclusion of the digital image processing of a thermal imaging device at the point of firing generates the IR apparent target according to a predetermined pattern and can be maintained by continuous approaching pyrotechnic active materials. By successively shifting the direction of application, a movement (travel) of the apparent target can be effected, in the sense of DE-OS 34 21 734.

Eine Schußfolge mit hoher Kadenz ist bei der Durchführung des Verfahrens nach der Erfindung zweckmäßig, um durch allmählich verlöschende und absinkende Wirkmassen sowie durch Windabdrift entstehende Fehlstellen im IR-Muster schnellstmöglich ausbessern und um bei Annäherung eines IR-Zielsuchkopfes das Scheinziel möglichst schnell aufbauen zu können. Für schiffe ist eine Kadenz von 3 Schuß/Sek. angezeigt, um ein dreidimensionales Scheinziel mit ca. 5 bis 7 IR-Wirkmassen in 2 Sekunden aufzubauen und für den gewünschten Zeitraum aufrechtzuerhalten. Allgemein gilt, daß die IR-Nachbildung des objektes um so genauer wird, je höher die Kadenz gewählt wird.A sequence of shots with a high cadence is expedient when carrying out the method according to the invention in order to repair defects in the IR pattern which gradually become extinguished and sink as well as defects in the IR pattern which arise as a result of wind drift, and in order to be able to build up the apparent target as quickly as possible when an IR target seeker approaches. A rate of 3 rounds / sec is required for ships. displayed in order to build up a three-dimensional apparent target with approx. 5 to 7 IR active masses in 2 seconds and to maintain it for the desired period. In general, the higher the cadence, the more accurate the IR simulation of the object.

Kleine Kaliber (ca. 40 mm und kleiner) kommen deshalb zum Einsatz, um die Form, die Fläche und die IR-Zielsignatur möglichst detailgetreu erzeugen zu können. Zudem bieten kleine Kaliber den Vorteil höherer möglicher Schußfolgen. Allgemein gilt, daß die IR-Nachbildung des Objektes um so genauer (Auflösung) wird, je kleiner das Kaliber ist.Small calibers (approx. 40 mm and smaller) are therefore used in order to be able to produce the shape, the area and the IR target signature as true to detail as possible. In addition, small calibers offer the advantage of higher possible firing sequences. In general, the smaller the caliber, the more accurate (resolution) the IR replica of the object becomes.

Die Kalibergröße andererseits beschränkt die Zahl der Wirkmassen (bzw. Positionen), aus der das Scheinziel aufgebaut ist, durch deren Brenndauer. Es ist z. B. nicht möglich, ein homogenes Scheinziel aufzubauen, wenn die Wirkdauer (= Brennzeit) einer Position (= eine Wirkmasse = ein Geschoß) etwa 3 Sek. beträgt, aufgrund der festgegebenen Kadenz aber erst nach 4 Sek. nachgenährt werden kann.The caliber size, on the other hand, limits the number of active masses (or positions) from which the apparent target is built by their burning time. It is Z. B. not possible to build a homogeneous apparent target if the The effective duration (= burning time) of a position (= an effective mass = one storey) is about 3 seconds, but due to the specified cadence it can only be replenished after 4 seconds.

Für die nachfolgende Berechnung gilt:

  • (3) K : Kadenz in Schuß pro Sekunde
  • (4) B : Wirkdauer der Wirkmasse in Sekunden
  • (1) Z : Maximal mögliche Positionen (= Wirkmassen) des Scheinziels einer Schußfolge
  • (5) n : Schußfolge (n = 1 entspricht dem Aufbau des Scheinziels, n = 2 entspricht dem 1ten Nachnähren, n = 3 dem 2ten Nachnähren usw.)
  • (6) m : Positionskennzahl der Wirkmasse im Scheinziel
  • (2) tn,m : Zerlegungszeit der Wirkmasse auf position m in der Schußfolge n nach der ersten Zerlegung
  • (7) Δ t : Zeit zwischen den Zerlegungen auf einer Position
Für die maximale Zahl der Wirkmassen einer Schußfolge gilt folgender Zusammenhang:
Figure imgb0001
Beispiel : K = 4 s -1 · B = 3s
Figure imgb0002
Z = 4 s -1 · 3 s = 12
Figure imgb0003
The following applies to the following calculation:
  • (3) K: Cadence in shots per second
  • (4) B: duration of action of the active mass in seconds
  • (1) Z: maximum possible positions (= effective masses) of the apparent target of a sequence of shots
  • (5) n: sequence of shots (n = 1 corresponds to the structure of the dummy target, n = 2 corresponds to the 1st re-feeding, n = 3 the 2nd re-feeding etc.)
  • (6) m: position index of the active mass in the apparent target
  • (2) t n, m : disassembly time of the active mass at position m in the weft sequence n after the first disassembly
  • (7) Δ t: time between the decompositions at one position
The following relationship applies to the maximum number of effective masses of a firing sequence:
Figure imgb0001
For example: K = 4 s -1 · B = 3s
Figure imgb0002
Z = 4 s -1 3 s = 12
Figure imgb0003

Für die zerlegungszeit der Wirkmasse auf Position m in der Schußfolge n nach der ersten Zerlegung wurde folgender Zusammenhang ermittelt:

Figure imgb0004
Beispiel: K = 4 s -1 B = 3 s m = 7 n = 3
Figure imgb0005
t n,m = 1 4 s -1 (7 -1) + 3 s (3 - 1) = 7,5 s
Figure imgb0006
für die Zeit zwischen den Zerlegungen auf einer Position gilt:
Figure imgb0007
The following relationship was determined for the disassembly time of the active mass at position m in the weft sequence n after the first disassembly:
Figure imgb0004
Example: K = 4 s -1 B = 3 sm = 7 n = 3
Figure imgb0005
t n, m = 1 4 s -1 (7 -1) + 3 s (3 - 1) = 7.5 s
Figure imgb0006
for the time between the splits in a position:
Figure imgb0007

Die folgende Zeittabelle zeight das Beispiel einer Schußfolge: K = 4 1 s ; B = 3 s ⇒ Z = 12 Δ t = 3 s

Figure imgb0008
Figure imgb0009
The following time table shows an example of a shot sequence: K = 4 1 s ; B = 3 s ⇒ Z = 12 Δ t = 3 s
Figure imgb0008
Figure imgb0009

Ferner ist zu beachten, daß ein Schiff (wie auch andere Fahrzeuge) keine homogene Oberflächentemperatur hat, sondern großflächige Zonen mit deutlichen Temperaturunterschieden. Die am häufigsten auf dem Wärmebild erkennbaren Temperaturzonen bilden bei einem Schiff, wie die Beispiele gemäß Figur 1 und 2 bzw. Figur 4 und 5 ebenso wie die dem Stand der Technik wiedergegebene Abbildung gemäß Figur 3 zeigen, der solar aufgeheizte Rumpf (etwa 40 bis 60°C) und der oder die heiße(n) Kamin(e) (ca. 100°C), welche sogenannte "Hot Spots" bilden, wobei aufgrund ihrer höheren Temperatur (entsprechend der Strahldichte) die Kamine deutlich stärker hervortreten. Um eine originalgetreue IR-Signatur zu erzeugen, können in diesem Fall zwei Arten von Wirkmassen verschossen werden, die unterschiedliche spektrale Eigenschaften aufweisen.It should also be noted that a ship (like other vehicles) does not have a homogeneous surface temperature, but rather large areas with significant temperature differences. The temperature zones most frequently recognizable on the thermal image in a ship, as the examples according to FIGS. 1 and 2 or FIGS. 4 and 5 as well as the illustration according to the prior art shown in FIG. 3 show, are the solar-heated hull (approximately 40 to 60 ° C) and the hot chimney (s) (approx. 100 ° C), which form so-called "hot spots", whereby the chimneys stand out much more strongly due to their higher temperature (corresponding to the radiance). In this case, in order to generate an IR signature true to the original, two types of active masses can be fired which have different spectral properties.

Zur räumlichen und spektralen Nachbildung des Schiffsrumpfes wird eine Munition 1 (Wirkmasse 1) verwendet, die nachstehend unter Bezugnahme auf Figur 6 erläutert wird. Wie Figur 6 zeigt, liegt nach Planck'schem Strahlungsgesetz bzw. Wien'schem Verschiebungsgesetz das Strahlungsmaximum (λmax) für die spektrale Strahldichte (entsprechend Temperatur) des Schiffsrumpfes in der Nähe von λmax = 10 µm. Die Wirkmasse der Munition 1 sollte deshalb also eine annähernd gleiche spektrale Strahldichte erzeugen.An ammunition 1 (active mass 1) is used for the spatial and spectral simulation of the ship's hull, which is explained below with reference to FIG. 6. As shown in FIG. 6, according to Planck's law of radiation or Vienna's law of displacement, the maximum of radiation (λ max ) for the spectral radiance (corresponding to temperature) of the hull is in the vicinity of λ max = 10 µm. The active mass of the ammunition 1 should therefore generate approximately the same spectral radiance.

Realisierbar ist dies durch ein Gemisch aus Phosphorgranulat (warmer Rauch) und kleinen Phosphorflares im Verhältnis von ca. 80% (Granulat) und 20% (Flares). Dieses Verhältnis stellt einen Richtwert dar und kann auf die verschiedenen Schiffstypen (oder andere Fahrzeuge) angepaßt werden. Die Zerlegungsgröße der Wirkmasse mit einem Durchmesser von 10 m und mehr (Abhängigkeit von Zerlegerladung und Menge der Wirkmasse) erzeugt den dreidimensionalen Scheinzielkörper und kann dem zu schützenden Objekt angepaßt werden.This can be achieved using a mixture of phosphor granules (warm smoke) and small phosphor flares in a ratio of approx. 80% (granules) and 20% (flares). This ratio is a guideline and can be adapted to the different types of ship (or other vehicles). The decomposition size of the active mass with a diameter of 10 m and more (depending on the decomposition load and the quantity of the active mass) produces the three-dimensional one Apparent target body and can be adapted to the object to be protected.

Zur räumlichen und spektralen Nachbildung der Hot Spots (Kamine) dient eine Munition 2 (Wirkmasse 2), deren Charakteristiken nachstehend unter Bezugnahme auf Figur 7 erläutert werden.An ammunition 2 (active mass 2) is used for the spatial and spectral replication of the hot spots (chimneys), the characteristics of which are explained below with reference to FIG. 7.

Wie Figur 7 zeigt, liegt das Strahlungsmaximum hierfür laut Planck'schem Strahlungsgesetz bzw. Wien'schem Verschiebungsgesetz für die spektrale Strahldichte eines Kamines im Bereich von λmax = µm.As shown in FIG. 7, the radiation maximum for this is, according to Planck's radiation law or Vienna's displacement law, for the spectral radiance of a fireplace in the range of λ max = µm.

Eine annähernd gleiche spektrale Strahldichte soll die Wirkmasse der Munition 2 erzeugen.The active mass of the ammunition 2 is intended to produce approximately the same spectral radiance.

Die ist realisierbar durch die gleichen Substanzen wie in der Munition 1, jedoch in einem veränderten Mischungsverhältnis. Als Richtwert nimmt man hierfür ca 75% kleinere Flares mit 25% Phosphorgranulat. Die räumliche Ausdehnung wird durch die Zerlegungsgröße der Wirkmasse (⌀ 10 m oder mehr, abhängig von der Zerlegerladung und der Menge an Wirkmasse) erzeugt und kann den Ausdehnungen des Objekts angepaßt werden.This can be achieved using the same substances as in the ammunition 1, but in a different mixing ratio. As a guideline, approx. 75% smaller flares with 25% phosphor granulate are used. The spatial extent is generated by the decomposition size of the active mass (⌀ 10 m or more, depending on the decomposition charge and the amount of active mass) and can be adapted to the dimensions of the object.

Für andere Objekte können auch mehrere Munitionsarten mit variierenden Mischungverhältnissen von Phosphorgranulat zu Flares bzw. auch andere Wirkmassen (Zweifarb-Flares etc.) eingesetezt werden.For other objects, several types of ammunition with varying mixing ratios of phosphor granules to flares or other active materials (two-color flares etc.) can also be used.

Im einfachsten Fall werden die Munitionsarten gegurtet (d. h. alle auf einem Munitionsgurt) von einem einzigen Werfer aus abgefeuert, wobei hierbei eine vorher festgelegte Munitionsreihenfolge eingehalten werden muß, z. B.

Figure imgb0010
In the simplest case, the types of ammunition are taped (ie all on one ammunition belt) and fired from a single launcher. B.
Figure imgb0010

Möglich ist aber auch der Abschuß aus zwei oder mehreren Werfern, wobei dann vorzugsweise ein Werfer nur eine Munitionsart ausbringt.However, it is also possible to fire two or more launchers, in which case one launcher preferably deploys only one type of ammunition.

Die Steuerung der Ausbringung (Schußfolge, Schußirichtung) übernimmt im günstigsten Fall eine Rechneranlage in Verbindung mit der digitalen Auswertung eines eigenen Wärmebildgerätes. Entsprechend der Objektform und deren IR-Signatur erzeugt die Rechnersteuerung das Scheinzielmuster. Anhand des Wärmebildes kontrolliert der Rechner selbständig die Originaltreue und gleicht Fehlstellen im Muster (durch Windabdrift oder Verlöschen der Wirkmassen) durch gezieltes ständiges Nachnähren des Scheinzieles aus.The control of the output (shot sequence, shot direction) is carried out in the most favorable case by a computer system in connection with the digital evaluation of an own thermal imaging device. The computer control generates the dummy target pattern in accordance with the object shape and its IR signature. On the basis of the thermal image, the computer independently checks the fidelity to the original and compensates for imperfections in the pattern (due to wind drift or extinction of the active masses) by deliberately constantly reworking the apparent target.

Die Kontrolle des Wärmebildes erfolgt pixelweise (= kleinste Bildeinheit) über das ganze Wärmebild (z. B. Barr & Stroud IR 18 : 52 Pixel, Bereich 8 ...13 µm), wobei man jedes Pixel als quasi punktuelles Radiometer betrachten kann.The thermal image is checked pixel by pixel (= smallest image unit) over the entire thermal image (e.g. Barr & Stroud IR 18: 52 pixels, range 8 ... 13 µm), whereby each pixel can be viewed as a quasi-selective radiometer.

Behandelt mas das Wärmebild mit digitaler Bildverarbeitung, so erhält man für jedes Pixel den dazugehörenden Pixelindex (= Helligkeitswert). Dieser Index ist proportional zur Strahldichte des entsprechenden Bildausschnittes. Bezieht man die geometrischen Daten des Gesichtsfeldes des Wärmebildgerätes mit ein, so kann der Rechner aus den Bildkoordinaten zusammen mit den dazugehörigen Bildindizes sowohl die Abschußkoordinaten als auch die Munitionsart für sie nächsten Schußfolgen bestimmen, um die optimale Übereinstimmung mit dem (gespeicherten) IR-Schiffsmuster in Form und spektraler Signatur zu erreichen.If mas treats the thermal image with digital image processing, the corresponding pixel index (= brightness value) is obtained for each pixel. This index is proportional to the radiance of the corresponding image section. If one includes the geometric data of the field of view of the thermal imaging device, the computer can determine from the image coordinates together with the associated image indices both the firing coordinates and the type of ammunition for them next firing sequences in order to optimally match the (stored) IR ship pattern in Achieve shape and spectral signature.

Entsprechend der momentanen taktischen Lage setzt die Rechnersteuerung das Scheinziel (im günstigsten Fall) zwischen Objekt und IR-Zielsuchkopf in einem Abstand von ca. 50 m bis 100 m vom Objekt. Durch sukzessives Verschieben des Nachnährens und durch die Fahrmanöver des Schiffes erfolgt eine fortschreitende Separation von Scheinziel und Schiff. Durch die erhöhte Strahlstärke des Scheinziels gegenüber dem Schiff wird der IR-Zielsuchkopf vom Schiff "weggezogen".Depending on the current tactical situation, the computer control sets the dummy target (in the best case) between the object and the IR target seeker at a distance of approx. 50 m to 100 m from the object. The successive separation of the re-sewing and the maneuvers of the ship result in a progressive separation of the apparent target and the ship. The IR beam seeker is "pulled away" from the ship by the increased beam strength of the dummy target compared to the ship.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

1010th
Zerstörerdestroyer
1212th
Hot Spot durch KaminHot spot by the fireplace
1414
Hot Spot durch KaminHot spot by the fireplace
10'10 '
Scheinzielkörper gem. ErfindungMock target according to invention
1111
Scheinziel nach dem Stand der Technik (Punktscheinziel)Prior art target (point target)
12'12 '
Hot Spot durch heiße WirkmasseHot spot through hot active mass
14'14 '
Hot Spot durch heiße WirkmasseHot spot through hot active mass
1616
MunitionstransporterAmmunition transporter
1818th
Hot Spot durch KaminHot spot by the fireplace
16'16 '
Scheinzielkörper gem. ErfindungMock target according to invention
18'18 '
Hot Spot durch heiße WirkmasseHot spot through hot active mass

Claims (13)

  1. Method for the purpose of providing a decoy target (10', 16') which simulates the target signature of an object (10, 16), such as a land craft, an aircraft or a water craft or the like, for a target-imaging radiation-sensitive homing head, such as an infrared homing head, characterised in that effective materials, which are composed according to the spectral radiation density to be simulated and which are spatially offset in their dispersement simulating in each case a part of the target signature of the object (10, 16) by emitting radiation in different spectral patterns in the sensitive range of the target-imaging homing head, are moved into the position of the decoy target to be produced (10', 16') and dispersed there in such a manner that a three-dimensional decoy target (10', 12', 14'; 16', 18') which simulates the spectral and spatial target signature of the object for the target homing head is produced.
  2. Method according to claim 1, characterised in that the effective materials are moved into the position of the decoy target (10', 16') offset with respect to time in such a manner that the three-dimensional decoy target is produced substantially continuously for a predetermined period of time.
  3. Method according to claim 1 or 2, characterised in that the positioning of the effective materials is computer controlled whilst substantially continuously monitoring the decoy target (10', 16').
  4. Method according to any one of the preceding claims, characterised in that the effective materials are moved into position by means of rapid-fire projectiles.
  5. Method according to claim 4 characterised in that the rapid-fire projectiles are fired from a single launcher.
  6. Method according to claim 4, characterised in that the rapid-fire projectiles are fired from several launchers.
  7. Method according to any one of claims 4 to 6, characterised in that the rapid-fire projectiles are discharged with a frequency such that new effective material (12', 14'; 18') is dispersed substantially at each predetermined site of the effective material at the latest at the point in time in which the previous effective material extinguishes.
  8. Method according to any one of claims 4 to 7, characterised in that projectiles of a calibre of a maximum 40 mm are used for the rapid fire.
  9. Method according to any one of the preceding claims, characterised in that different effective materials (12', 14'; 18') are used to create regions of the decoy target (10', 16') which demonstrate different attractive characteristics to the target homing head.
  10. Method according to any one of the preceding claims characterised in that infrared-active effective materials are used.
  11. Method according to claim 9 or 10, characterised in that the types of effective materials used are those which comprise in each case phosphorus granulate and phosphorus flares in different ratios, wherein the first type of effective material comprises a greater portion of phosphorus granulate in order to simulate relatively cooler surfaces of objects and the second type of effective material comprises a lower portion of granulated phosphorus in order to simulate relatively warmer surfaces of objects.
  12. Method according to claim 11, characterised in that the effective materials of the first type of effective material comprise approximately 80% of phosphorus granulate and approximately 20% of phosphorus flares and the effective materials of the second type of effective material comprise approximately 25% of phosphorus granulate and approximately 70 % phosphorus flares.
  13. Method according to any one of the preceding claims, characterised in that the effective materials are used with a dispersement area of at least 10 m.
EP93115823A 1992-11-11 1993-09-30 Method of producing a decay object Expired - Lifetime EP0597233B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4238038 1992-11-11
DE4238038A DE4238038C1 (en) 1992-11-11 1992-11-11 Method of providing a dummy target

Publications (2)

Publication Number Publication Date
EP0597233A1 EP0597233A1 (en) 1994-05-18
EP0597233B1 true EP0597233B1 (en) 1997-02-19

Family

ID=6472609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93115823A Expired - Lifetime EP0597233B1 (en) 1992-11-11 1993-09-30 Method of producing a decay object

Country Status (5)

Country Link
US (1) US5397236A (en)
EP (1) EP0597233B1 (en)
JP (1) JP2735779B2 (en)
DE (2) DE4238038C1 (en)
ES (1) ES2098614T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010060807A1 (en) 2010-11-25 2012-05-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Device for testing thermographic sensors of driving assistance system in motor car, has viewing object heated and detected by thermographic sensors of driving assistance system, where object is electrically heated by heating mats

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4327976C1 (en) * 1993-08-19 1995-01-05 Buck Chem Tech Werke Flare charge for producing decoys
DE19511825A1 (en) * 1995-03-30 1996-10-02 Georg Mainas Stealth and security system for fast stream-lined ships in environment protection
DE19605337C2 (en) * 1996-02-14 1998-12-03 Daimler Benz Aerospace Ag Process for changing the infrared signature of an aircraft
DE19951767C2 (en) 1999-10-27 2002-06-27 Buck Neue Technologien Gmbh Dual mode decoy
AUPQ413299A0 (en) * 1999-11-18 1999-12-09 Metal Storm Limited Forming temporary airborne images
DE10117007A1 (en) * 2001-04-04 2002-10-17 Buck Neue Technologien Gmbh Method and device for protecting mobile military equipment
DE10119970B4 (en) * 2001-04-24 2005-06-30 Blohm + Voss Gmbh Method for detecting a ship signature
US6767015B1 (en) * 2003-06-05 2004-07-27 The United States Of America As Represented By The Secretary Of The Navy Thermal target
DE10346001B4 (en) 2003-10-02 2006-01-26 Buck Neue Technologien Gmbh Device for protecting ships from end-phase guided missiles
DE102004005105A1 (en) * 2004-02-02 2005-09-01 Buck Neue Technologien Gmbh Object protection system and method for protecting objects
DE102004047231B4 (en) 2004-09-28 2008-08-21 Rheinmetall Waffe Munition Gmbh submunitions
US7154429B1 (en) * 2004-12-06 2006-12-26 Roberts Jr Charles C Device for protecting military vehicles from infrared guided munitions
US9341444B2 (en) 2005-11-23 2016-05-17 Robert Levine Thermal electric images
US20080206718A1 (en) * 2006-12-01 2008-08-28 Aai Corporation Apparatus, method and computer program product for weapon flyout modeling and target damage assessment
EP2204632A1 (en) * 2008-12-31 2010-07-07 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO A method of applying soft-kill deployment, a soft-kill deployment system and a computer program product
WO2012028257A1 (en) * 2010-08-31 2012-03-08 Rheinmetall Waffe Munition Gmbh Device and method for producing an effective fog wall or fog cloud
CN104596358A (en) * 2013-10-31 2015-05-06 北京航天长征飞行器研究所 Infrared smoke screen generation device
DE102015002737B4 (en) * 2015-03-05 2023-05-25 Rheinmetall Waffe Munition Gmbh Method and device for providing a decoy to protect a vehicle and/or object from radar-guided seekers
RU2617157C1 (en) * 2016-05-04 2017-04-21 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Device for adaptive masking objects

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331897A (en) * 1975-08-07 1994-07-26 The United States Of America As Represented By The Secretary Of The Navy Ship decoy
DE2911639A1 (en) * 1979-03-24 1982-12-02 Dynamit Nobel Ag, 5210 Troisdorf Heat-radiation emitting aerosol cloud generation - providing decoy using fluid supplied to several vaporisation jets
DE3311539A1 (en) * 1982-04-02 1983-10-13 Onkyo K.K., Neyagawa, Osaka CIRCUIT FOR A SMOOTHED DC VOLTAGE SOURCE
GB2121148A (en) * 1982-05-28 1983-12-14 Edward David Furze Radar decoys
DE3310616A1 (en) * 1983-03-24 1984-09-27 Precitronic Gesellschaft für Feinmechanik und Electronic mbH, 2000 Hamburg Method for camouflaging a sea-going craft against location by electromagnetic radiation and deception device for carrying out this camouflaging
DE3311530C2 (en) * 1983-03-30 1987-05-07 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Underwater vehicle
DE3421734A1 (en) * 1984-06-12 1985-12-12 Buck Chemisch-Technische Werke GmbH & Co, 7347 Bad Überkingen METHOD FOR PROTECTING INFRARED RADIATING DESTINATIONS, ESPECIALLY SHIPS, FROM AIRCRAFT EQUIPPED WITH INFRARED STEERING HEADS
DE3612183A1 (en) * 1986-04-11 1987-10-22 Wegmann & Co METHOD FOR DEFLECTING FLIGHT BODIES STEERED BY RADAR AND / OR INFRARED RADIATION, ESPECIALLY FOR THE PROTECTION OF SEA SHIPS AND SHIPPING APPLICATIONS, AND DEVICE FOR IMPLEMENTING THE METHOD
DE3835887C2 (en) * 1988-10-21 1997-10-02 Rheinmetall Ind Ag Cartridge for creating false targets
DE4007811C2 (en) * 1990-03-12 1994-05-19 Dornier Gmbh Infrared dummy target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010060807A1 (en) 2010-11-25 2012-05-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Device for testing thermographic sensors of driving assistance system in motor car, has viewing object heated and detected by thermographic sensors of driving assistance system, where object is electrically heated by heating mats

Also Published As

Publication number Publication date
EP0597233A1 (en) 1994-05-18
JP2735779B2 (en) 1998-04-02
JPH06235598A (en) 1994-08-23
US5397236A (en) 1995-03-14
ES2098614T3 (en) 1997-05-01
DE59305490D1 (en) 1997-03-27
DE4238038C1 (en) 1994-06-16

Similar Documents

Publication Publication Date Title
EP0597233B1 (en) Method of producing a decay object
EP1668310B1 (en) Method and device for protecting ships against end-stage guided missiles
DE69829776T2 (en) SYSTEM AND METHOD FOR SIMULATING THE EFFECT OF FLAT-COVERING WEAPONS
DE69812912T2 (en) Missile shooting simulator with immersion of the shooter in a virtual space
EP0664876B1 (en) Method for the creation of an artificial target
EP2612101B1 (en) Device and method for producing an effective fog wall or fog cloud
DE2907590A1 (en) METHOD AND DEVICE FOR EVALUATING SIMULATED SHOOTING EXERCISES WITH A WEAPON AT A TARGET
EP0240819B1 (en) Method of deceiving radar or infrared-guided missiles, particularly for boats and naval units, and apparatus therefor
DE60207376T3 (en) CHARACTERIZATION WHERE TARGET OBJECTS ARE ASSOCIATED WITH A PROTECTIVE OBJECT BY MEANS OF OWN COOPERATION BETWEEN THE TARGET OBJECTS AND THE PROTECTIVE OBJECTS CONCERNED
DE4115384A1 (en) METHOD FOR PROTECTING IRRADIATED OBJECTS AND TOUCH BODIES FOR IMPLEMENTING THE METHOD
DE4407294C2 (en) Steep fire display method on a training combat field
DE3835887A1 (en) CARTRIDGE FOR FOCUSING
EP0547391A1 (en) Method for increasing the success probability for an anti-aircraft defence system using remote-controlled scattering projectiles
EP3265742A1 (en) Method and device for providing a dummy target for protecting a vehicle and/or an object from radar-guided seeker heads
DE3531596A1 (en) METHOD FOR COMBATING DIFFERENT TYPES OF AIR TARGETS
Joffe “People's War under Modern Conditions”: A Doctrine for Modern War
EP0588015B1 (en) Camouflage method and material and its application
DE60027755T2 (en) METHOD FOR THE TEMPORARY MANUFACTURE OF AIRPIECES
DE19704070C2 (en) Camouflage and / or deception device
EP0173008A2 (en) Method for the protection of infrared radiating targets, especially ships, from missiles equipped with infrared homing guidance heads
DE3022460C2 (en)
EP0913661B1 (en) Device for protecting moving objects, in particular armoured vehicles, against projectiles
DE19617060C2 (en) Method and device for simulating the effects of steep arms on combat units
DE3905748A1 (en) Decoy target simulating aircraft - has radar reflector and propulsion drive designed to provide enlarged IR plume for deflecting target seeking missile
DE102020103249B4 (en) Method for protecting a helicopter with smoke and helicopter with smoke protection system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19940511

17Q First examination report despatched

Effective date: 19951012

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970219

REF Corresponds to:

Ref document number: 59305490

Country of ref document: DE

Date of ref document: 19970327

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2098614

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970909

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970922

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970929

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970930

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110923

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59305490

Country of ref document: DE

Effective date: 20130403