[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0585537A1 - Korrosionsgeschütztes Tragelement für einen Erd- oder Felsanker, einen Druckpfahl oder dergleichen - Google Patents

Korrosionsgeschütztes Tragelement für einen Erd- oder Felsanker, einen Druckpfahl oder dergleichen Download PDF

Info

Publication number
EP0585537A1
EP0585537A1 EP93108410A EP93108410A EP0585537A1 EP 0585537 A1 EP0585537 A1 EP 0585537A1 EP 93108410 A EP93108410 A EP 93108410A EP 93108410 A EP93108410 A EP 93108410A EP 0585537 A1 EP0585537 A1 EP 0585537A1
Authority
EP
European Patent Office
Prior art keywords
element according
cladding tube
supporting element
support element
over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93108410A
Other languages
English (en)
French (fr)
Other versions
EP0585537B1 (de
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Walter Bau AG
Original Assignee
Dyckerhoff and Widmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyckerhoff and Widmann AG filed Critical Dyckerhoff and Widmann AG
Priority to US08/108,817 priority Critical patent/US5472296A/en
Priority to CA002104403A priority patent/CA2104403A1/en
Priority to NO932950A priority patent/NO932950L/no
Publication of EP0585537A1 publication Critical patent/EP0585537A1/de
Application granted granted Critical
Publication of EP0585537B1 publication Critical patent/EP0585537B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors

Definitions

  • the invention relates to a corrosion-protected support element for an earth or rock anchor, a pressure pile or the like according to the preamble of claim 1.
  • Components reaching into the subsoil such as earth and rock anchors, which are essentially subjected to tensile forces, or pressure piles, which are subject to compressive forces, are used to introduce loads, for example from structures, into deeper soil layers.
  • such structural members have at least one area over the course of their length in which the tensile or compressive forces acting therein are transmitted from the respective supporting member into the subsurface.
  • anchor length L v at the depth of the borehole; this is followed by the area of the free steel length L F on the air side, in which the tension member is freely stretchable.
  • the support member is usually brought into direct contact in the area in question with a hardening material, for example cement mortar, which fills the borehole, which ensures the connection to the borehole wall and thus to the subsurface.
  • the pressing with cement mortar inside and outside the piping creates an alkaline environment as a second barrier against corrosion.
  • the piping consists, at least in the area of the anchoring length L v, of a corrugated plastic casing over which a plastic pipe with a smooth surface can be pushed in order to maintain the longitudinal mobility of the support member in the adjoining area of the free steel length L F can (DE-PS 17 59 561). If the longitudinal mobility of the support member is ensured in another way, for example by using so-called fat strands for the tension member, the ribbed cladding tube at the transition from the anchoring length L v to the free steel length L F can also have been butted with a smooth cladding tube (DE company publication "DYWIDAG report ", No. 11, 1982, pp. 12 to 14).
  • the ribbing of the cladding tube in the region of the anchoring length L v has the purpose of ensuring the transmission of the forces from the support member via the compression body into the building ground via the discontinuity formed by the tubing.
  • This also applies analogously to pressure piles (DE company publication “DYWIDAG GEWI-Pfahl”, DYWIDAG-SYSTEMS INTERNATIONAL GmbH, D - 8000 Kunststoff, 1987).
  • the invention is therefore based on the object to provide a possibility for a support element of the type specified in order to create a possibility for corrosion protection also and above all without impairing the force transmission from the support member to the substrate, taking into account the discontinuity given by the piping to ensure in the field of power transmission in the long term and with certainty.
  • the invention is based on the finding that it is then possible to provide a smooth-walled, correspondingly thick and therefore little risk of injury plastic tube, as is usually arranged in the area of the free steel length L F , also in the power transmission area, if there is one of these at certain points the original, usually a circular cross-section, deviating cross-section is given with mutually different transverse dimensions, which, when longitudinal forces occur, wedges the deformed support member in which the borehole Filling hardening material and thus leads to reliable power transmission to the grout.
  • the distances between the deformed points and the type and extent of the deformations are determined depending on the quality of the floor and the load to be delivered per unit length.
  • the deformations can be carried out in a simple manner after the support element has been assembled by applying transverse pressure to the cladding tube, which, for example in the case of an originally circular cross section, leads to an approximately oval cross section at the relevant points.
  • the internal support member itself offers an internal limitation for the extent of the deformation.
  • plastic pipes develop restoring forces when external forces are applied, which endeavor to reverse deformations entered, it must be ensured that these deformations persist at least until the hardening material for forming the compression body is introduced and hardened.
  • This is done according to the invention in that at least at the points where deformations are to be provided there are plastically permanently deformable components which are deformed at the same time as the plastic tube and not only maintain the shape created by the deformation due to their material properties, but also prevent the plastic tube from returning to its original cross-sectional shape.
  • components within the plastic tube such as a helix made of steel wire or strip steel, which can even be embedded in the tube wall, also a metal tube provided with profiles, or outside of the plastic tube only rings arranged at the points to be deformed Steel that is deformed together with the plastic pipe.
  • components arranged in the plastic tube have the advantage that the outer surface of the plastic tube remains smooth, that is to say without discontinuities, so that the support element can be easily inserted into a borehole. In the case of components arranged inside the plastic tube, it must be ensured that the remaining cavity can be completely filled with hardening material.
  • FIG. 1 and 2 schematically indicate the main areas of application of a support element according to the invention, namely in FIG. 1 an earth or rock anchor and in Fig. 2 is a pressure pile.
  • Fig. 1 shows a longitudinal section through an earth anchor with a support element 1, which is inserted into a borehole 2.
  • the support element 1 consists of a support member, in this case a steel tension member 3, which can be a single steel rod or a bundle of steel wires or steel wire strands and which is surrounded over its entire length L by a plastic sheath 4.
  • the cladding tube 4 is provided over the region of the anchoring length L v with deformations of different transverse dimensions, partly in the form of depressions 6, partly in the form of elevations 7, which are only indicated schematically here; Over the area of the free steel length L F adjoining the anchoring area L v on the air side, the cladding tube 4 has a uniform, in particular circular, cross section.
  • the cavity remaining between the steel tension member 3 and the cladding tube 4 is filled with a hardening material 5, for example cement mortar.
  • the cavity between the steel tension member 3 and the cladding tube 4 can be injected before or after the support element 1 is inserted into the borehole 2.
  • the cavity then remaining in the borehole 2 is subsequently filled with hardening material 8, in particular cement mortar, which after hardening transfers the loads entered via the support element 1 to the surrounding floor 9.
  • the pressure pile shown schematically in FIG. 2 is designed in a corresponding manner.
  • a support element 11 is inserted into a borehole 12.
  • the support member consists of a steel pressure member 13, for example a ribbed reinforcing bar, and is surrounded over its entire length L by a cladding tube 14. Since the supporting element 11, in accordance with its function as a pressure member, releases force over the entire length L to the surrounding floor, the cladding tube 14 is also over Provide its entire length with deformations of different transverse dimensions, which are again indicated schematically as depressions 16 and elevations 17.
  • the cavity between the steel pressure member 13 and the cladding tube 14 is filled with hardening material 15.
  • the cavity remaining after the insertion of the support element 11 into the borehole 12 is pressed with hardening material 18, in particular cement mortar, which after hardening releases the loads entered by pile foot forces and wall friction onto the surrounding floor 19.
  • the steel tension member 3 consists of a bundle of steel wire strands 20 which are guided in their own sheaths 21 in the area of the free steel length to maintain the longitudinal mobility .
  • the arrangement is such that the - same - cross-sectional shape is pivoted by 90 degrees to each other at successive locations.
  • the swiveling could also take place by other angular amounts, for example at three successive positions each by 60 degrees.
  • the distances a between the deformation points can also be of different sizes; like the transverse expansion of the deformations, they can be adapted to the magnitude of the forces to be transmitted.
  • a coil 22 made of steel wire is arranged in the interior of the plastic tube 4 to fix the deformations achieved by using transverse pressure.
  • the helix could also consist of steel strip.
  • the individual turns of the coil 22 deform under the action of external transverse pressure in the same way as the plastic tube 4, but prevent the plastic tube 4 from returning to the originally circular position due to its elastic restoring forces due to their permanent plastic deformation.
  • the helix 22 also secures the important distance d between the steel tension member 3.1 and the inner wall of the plastic tube 4 for reasons of minimum concrete coverage and prevents the hardened material arranged in the interior of the plastic tube 4 from tearing open longitudinally under the effect of the tensile force of the anchor according to the principle of constrictive reinforcement.
  • FIGS. 5a-c to 7a-c indicate further embodiments of the components which can be used to fix the deformations of the plastic tube.
  • the right representations, FIGS. 5c to 7c each show a cross section of the support element in the deformed state.
  • steel rings 27 are placed on the points where deformations are to be carried out Plastic tube 4 pushed on.
  • the steel rings 27 must be dimensioned such that they can be deformed by transverse pressure and maintain the shape obtained in this way against the restoring forces of the plastic tube 4. Good experiences have been made with rings whose thickness is approximately 4 to 8% and whose width is approximately 35 to 40% of their diameter.
  • FIGS. 7a-c show another embodiment, again with a reinforcing bar 23 as a steel tension member 3, in which a helix 28 is incorporated into the wall of the plastic tube 4.
  • This has the advantage of a smooth inner wall of the cladding tube 4; however, care must be taken to ensure that in the case of the deformations to be subsequently applied, a sufficient distance is maintained between the inner wall of the cladding tube 4 and the steel tension member 3, which ensures its sufficient coverage with the cement mortar filling the remaining cavity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

Bei einem korrosionsgeschützten Tragelement (1) für einen Erd- oder Felsanker oder einen Druckpfahl aus einem Tragglied (3), das mit einer rohrförmigen Umhüllung (4) versehen und bei dem der Hohlraum zwischen dem Tragglied (3) und der Umhüllung (4) von einem erhärtenden Material (5), z.B. Zementmörtel, ausgefüllt ist, besteht die rohrförmige Umhüllung (4) aus einem sich über die gesamte Länge des Tragglieds (3) erstreckenden Hüllrohr aus Kunststoff, z.B. PE, mit einem über seine gesamte Länge gleichen Querschnitt, der im Bereich der Kraftübertragungslänge (Lv) an voneinander beabstandeten Stellen (6, 7) zu abweichenden Querschnitten mit unterschiedlicher Querausdehnung verformt ist. Dadurch kann ein glattwandiges, entsprechend dickes und wenig verletzungsgefährdetes Kunststoffrohr auch im Kraftübertragungsbereich (Lv) angeordnet werden, ohne die Kraftübertragung zu beeinträchtigen. <IMAGE>

Description

  • Die Erfindung betrifft ein korrosionsgeschütztes Tragelement für einen Erd- oder Felsanker, einen Druckpfahl oder dergleichen gemäß dem Oberbegriff des Patentanspruchs 1.
  • In den Untergrund hineinreichende Bauglieder, wie im wesentlichen durch Zugkräfte beanspruchte Erd- und Felsanker, oder durch Druckkräfte beanspruchte Druckpfähle werden eingesetzt, um Lasten, z.B. aus Bauwerken, in tiefere Bodenschichten einzuleiten. Demzufolge weisen solche Bauglieder im Verlauf ihrer Länge zumindest einen Bereich auf, in dem die darin wirkenden Zug- oder Druckkräfte aus dem jeweiligen Tragglied in den Untergrund übertragen werden. Bei Zugankern ist dies in der Tiefe des Bohrloches die sogenannte Verankerungslänge Lv; an diese schließt sich zur Luftseite hin der Bereich der freien Stahllänge LF an, in dem das Zugglied frei dehnbar ist. Bei Druckpfählen erfolgt die Übertragung der Druckkräfte praktisch entlang der gesamten Länge des Druckglieds. Zur Übertragung dieser Kräfte wird das Tragglied üblicherweise in dem betreffenden Bereich unmittelbar in Verbund mit einem das Bohrloch im übrigen ausfüllenden erhärtenden Material, z.B. Zementmörtel, gebracht, das die Verbindung zur Bohrlochwandung und somit zum Untergrund gewährleistet.
  • Bei Baugliedern dieser Art, die nicht nur temporär, wie z.B. zur vorübergehenden Sicherung einer Baugrubenumschließung, sondern auf Dauer eingesetzt werden, spielt der Korrosionsschutz eines aus Stahl bestehenden Tragglieds eine ausschlaggebende Rolle. Die Hauptursache der Korrosion von Traggliedern aus Stahl ist neben dem Zutritt von Wasser und darin gelöstem Sauerstoff an die Stahloberfläche und etwa auftretenden Streuströmen die Bildung von Makroelementen. Die wichtigste Korrosionsschutzmaßnahme besteht demzufolge in einer das Stahltragglied auf seine gesamte Länge umschließenden korrosionssicheren Umhüllung in Form einer Verrohrung aus Kunststoff, die einen großen Diffusions- und elektrischen Durchgangswiderstand aufweist. Neben dieser Verrohrung als erste Barriere, die auch die elektrische Trennung zwischen Stahltragglied und Baugrund gewährleistet und damit die Überprüfbarkeit dieser Korrosionsschutzmaßnahme mittels einer elektrischen Widerstandsmessung ermöglicht, entsteht durch die Verpressung mit Zementmörtel innerhalb und außerhalb der Verrohrung ein alkalisches Milieu als zweite Barriere gegen Korrosion.
  • Bei einem bekannten Verpreßanker für bleibende Verankerungen besteht die Verrohrung zumindest im Bereich der Verankerungslänge Lv aus einem gerippten Hüllrohr aus Kunststoff, über das zur Erhaltung der Längsbeweglichkeit des Tragglieds in dem daran anschließenden Bereich der freien Stahllänge LF noch ein Kunststoffrohr mit glatter Oberfläche geschoben sein kann (DE-PS 17 59 561). Wird die Längsbeweglichkeit des Tragglieds auf andere Weise sichergestellt, beispielsweise durch Verwendung sogenannter Fettlitzen für das Zugglied, kann das gerippte Hüllrohr am Übergang von der Verankerungslänge Lv zur freien Stahllänge LF auch mit einem glatten Hüllrohr gestoßen sein (DE-Firmenschrift "DYWIDAG-Bericht", Nr. 11, 1982, s. 12 bis 14). In jedem Fall hat die Rippung des Hüllrohres im Bereich der Verankerungslänge Lv den Zweck, die Übertragung der Kräfte von dem Tragglied über den Verpreßkörper in den Baugrund über die durch die Verrohrung gebildete Diskontinuität hinweg zu gewährleisten. Dies gilt analog auch für Druckpfähle (DE-Firmenschrift "DYWIDAG GEWI-Pfahl", DYWIDAG-SYSTEMS INTERNATIONAL GmbH, D - 8000 München, 1987).
  • Abgesehen davon, daß ein Stoß von Hüllrohren am Übergang von der freien Stahllänge LF zur Verankerungslänge Lv eine Schwachstelle darstellt, haben sich in der bisherigen Praxis die verfügbaren gerippten Kunststoffrohre infolge ihrer herstellungsbedingt gegenüber glattwandigen Rohren geringeren Wanddicke als anfällig auf mechanische Verletzungen erwiesen, insbesondere beim Einbringen des Ankerelements in das Bohrloch. Die Beanspruchungen durch den Druck beim Verpressen mit Verpreßmaterial und die Dehnungen bzw. Verschiebungen beim Spannen von Zugankern wirken sich oft ebenfalls nachteilig auf die Dichtigkeit des Hüllrohrs und seinen elektrischen Durchgangswiderstand aus.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, bei einem Tragelement der eingangs angegebenen Art eine Möglichkeit zu schaffen, um ohne Beeinträchtigung der Kraftübertragung vom Tragglied auf den Untergrund unter Berücksichtigung der durch die Verrohrung gegebenen Diskontinuität eine Möglichkeit zu schaffen, um den Korrosionsschutz auch und vor allem in dem Bereich der Kraftübertragung auf lange Sicht und mit Sicherheit zu gewährleisten.
  • Gemäß der Erfindung wird diese Aufgabe durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale gelöst.
  • Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.
  • Der Erfindung liegt die Erkenntnis zugrunde, daß es dann möglich ist, ein glattwandiges, entsprechend dickes und deshalb wenig verletzungsgefährdetes Kunststoffrohr, wie es üblicherweise im Bereich der freien Stahllänge LF angeordnet ist, auch im Kraftübertragungsbereich vorzusehen, wenn dort an bestimmten Stellen diesem ein von dem ursprünglichen, meist einem Kreisquerschnitt, abweichender Querschnitt mit in Abständen voneinander unterschiedlicher Querausdehnung gegeben wird, der beim Auftreten von Längskräften zu einem Verkeilen des verformten Tragglieds in dem das Bohrloch ausfüllenden erhärtenden Material und so zu einer zuverlässigen Kraftübertragung auf den Verpreßkörper führt. Die Abstände der verformten Stellen voneinander sowie Art und Ausmaß der Verformungen werden in Abhängigkeit von der Qualität des Bodens und der pro Längeneinheit abzugebenden Last bestimmt. Die Verformungen können auf einfache Weise nach dem Zusammenbau des Tragelements durch Anwendung von Querdruck auf das Hüllrohr erfolgen, was z.B. bei einem ursprünglich kreisförmigen Querschnitt an den betreffenden Stellen zu einem etwa ovalen Querschnitt führt. Bei der nachträglichen Verformung bietet das innenliegende Tragglied selbst eine innere Begrenzung für das Ausmaß der Verformung.
  • Da Kunststoffrohre beim Aufbringen äußerer Kräfte Rückstellkräfte entwickeln, welche das Bestreben haben, eingetragene Verformungen rückgängig zu machen, muß sichergestellt werden, daß diese Verformungen zumindest so lange bestehen bleiben, bis das erhärtende Material zur Bildung des Verpreßkörpers eingebracht und erhärtet ist. Dies geschieht gemäß der Erfindung dadurch, daß zumindest an den Stellen, an denen Verformungen anzubringen sind, plastisch dauerhaft verformbare Bauteile vorgesehen sind, die zugleich mit dem Kunststoffrohr verformt werden und kraft ihrer Materialeigenschaft nicht nur selbst die durch die Verformung erzeugte Form beibehalten, sondern auch das Kunststoffrohr davon abhalten, seine ursprüngliche Querschnittsform wieder einzunehmen.
  • Dies können entweder innerhalb des Kunststoffrohres durchgehend angeordnete Bauteile sein, wie z.B. eine Wendel aus Stahldraht oder Bandstahl, die sogar auch in die Rohrwandung eingebettet sein kann, auch ein mit Profilierungen versehenes Metallrohr, oder außerhalb des Kunststoffrohres lediglich an den zu verformenden Stellen angeordnete Ringe aus Stahl, die zusammen mit dem Kunststoffrohr verformt werden. Innerhalb des Kunststoffrohres angeordnete Bauteile haben den Vorteil, daß die Außenfläche des Kunststoffrohres glatt, also ohne Unstetigkeitsstellen bleibt, so daß das Tragelement leicht in ein Bohrloch eingeführt werden kann. Bei innerhalb des Kunststoffrohres angeordneten Bauteilen muß sichergestellt werden, daß der verbleibende Hohlraum vollständig mit erhärtendem Material ausgefüllt werden kann. Dies ist bei einer Wendel ohne weiteres gegeben; bei einem durchgehenden Metallrohr kann dies durch eine Profilierung und Durchbrechungen in der Rohrwand erreicht werden. Innerhalb des Kunststoffrohres angeordnete Bauteile haben weiterhin den Vorteil, daß jederzeit ein vorgegebener Abstand zwischen dem Tragglied und der Rohrwandung eingehalten wird.
  • Die Erfindung wird nachstehend anhand der Zeichnungen näher erläutert. Es zeigt
  • Fig. 1
    schematisch einen Erdanker und
    Fig. 2
    einen Druckpfahl jeweils mit einem gemäß der Erfindung ausgebildeten Tragelement,
    Fig. 3
    einen teilweisen Längsschnitt durch ein Zugelement gemäß der Erfindung,
    Fig. 4a - c
    jeweils Schnitte entlang der Linien a-a, b-b und c-c in Fig. 3 sowie die
    Fig. 5a - c
    bis 7a - c andere Ausführungsformen eines erfindungsgemäßen Tragglieds jeweils in Längsschnitt, Querschnitt und im verformten Zustand.
  • In den Fig. 1 und 2 sind schematisch die wesentlichen Einsatzgebiete eines erfindungsgemäßen Tragelements angedeutet, nämlich in Fig. 1 ein Erd- oder Felsanker und in Fig. 2 ein Druckpfahl.
  • Fig. 1 zeigt einen Längsschnitt durch einen Erdanker mit einem Tragelement 1, das in ein Bohrloch 2 eingesetzt ist. Das Tragelement 1 besteht aus einem Tragglied, in diesem Falle einem Stahlzugglied 3, das ein einzelner Stahlstab oder auch ein Bündel aus Stahldrähten oder Stahldrahtlitzen sein kann und das auf seine gesamte Länge L von einem Hüllrohr 4 aus Kunststoff umgeben ist. Das Hüllrohr 4 ist über den Bereich der Verankerungslänge Lv mit Verformungen unterschiedlicher Querausdehnung, teils in Form von Einsenkungen 6, teils in Form von Erhebungen 7 versehen, die hier nur schematisch angedeutet sind; über den sich luftseitig an den Verankerungsbereich Lv anschließenden Bereich der freien Stahllänge LF hat das Hüllrohr 4 gleichförmigen, insbesondere kreisrunden Querschnitt. Der zwischen dem Stahlzugglied 3 und dem Hüllrohr 4 verbliebene Hohlraum ist durch ein erhärtendes Material 5, z.B. Zementmörtel, ausgefüllt. Die Injektion des Hohlraumes zwischen Stahlzugglied 3 und dem Hüllrohr 4 kann vor oder nach dem Einsetzen des Tragelements 1 in das Bohrloch 2 erfolgen. Der im Bohrloch 2 dann noch verbliebene Hohlraum wird nachträglich mit erhärtendem Material 8, insbesondere Zementmörtel, ausgefüllt, das nach dem Erhärten die über das Tragelement 1 eingetragenen Lasten auf den umgebenden Boden 9 überträgt.
  • In entsprechender Weise ist der in Fig. 2 schematisch dargestellte Druckpfahl ausgebildet. Auch hier ist ein Tragelement 11 in ein Bohrloch 12 eingesetzt. Bei diesem Tragelement 11 besteht das Tragglied aus einem Stahldruckglied 13, z.B. einem gerippten Bewehrungsstab, und ist auf seine ganze Länge L von einem Hüllrohr 14 umgeben. Da das Tragelement 11 entsprechend seiner Funktion als Druckglied über seine gesamte Länge L Kraft auf den umgebenden Boden abgibt, ist das Hüllrohr 14 ebenfalls über seine gesamte Länge mit Verformungen unterschiedlicher Querausdehnung versehen, die auch hier wieder schematisch als Einsenkungen 16 und Erhebungen 17 angedeutet sind. Der Hohlraum zwischen dem Stahldruckglied 13 und dem Hüllrohr 14 ist von erhärtendem Material 15 ausgefüllt. Auch hier ist der nach dem Einsetzen des Tragelements 11 in das Bohrloch 12 verbliebene Hohlraum mit erhärtendem Material 18, insbesondere Zementmörtel, verpreßt, der nach dem Erhärten die eingetragenen Lasten durch Pfahlfußkräfte und Wandreibung auf den umgebenden Boden 19 abgibt.
  • Bei der in den Fig. 3 und 4 im Ausschnitt und in größerem Maßstab dargestellten Ausführungsform eines Erdankers gemäß Fig. 1 besteht das Stahlzugglied 3 aus einem Bündel von Stahldrahtlitzen 20, die im Bereich der freien Stahllänge zum Erhalt der Längsbeweglichkeit in eigenen Umhüllungen 21 geführt sind.
  • Während das das Stahlzugglied 3 umgebende Kunststoffrohr 4 im Bereich der freien Stahllänge LF noch den ursprünglichen kreisförmigen Querschnitt hat (Fig. 4a), ist dieser im Bereich der Verankerungslänge Lv an mehreren Stellen 6 bzw. 7 in - gleichen - Abständen a voneinander zu einem ovalen Querschnitt verformt (Fig. 4b bzw. 4c). Die Verformung muß groß genug sein, um eine sichere Verankerung des Tragelements 1 in dem - nicht dargestellten - Verpreßkörper zu gewährleisten; sie ist vorzugsweise so vorzunehmen, daß der geringere Durchmesser etwa 80 bis 90 % des ursprünglichen kreisförmigen Durchmessers beträgt.
  • Wie vor allem die Fig. 4b und 4c zeigen, ist die Anordnung so getroffen, daß an aufeinanderfolgenden Stellen die - gleiche - Querschnittsform jeweils um 90 Grad gegeneinander verschwenkt ist. Die Verschwenkung könnte auch um andere Winkelbeträge erfolgen, beispielsweise an jeweils drei aufeinanderfolgenden Stellen um jeweils 60 Grad.
  • Die Abstände a der Verformungsstellen voneinander können auch unterschiedlich groß sein; sie können, wie auch die Querausdehnung der Verformungen, der Größe der zu übertragenden Kräfte angepaßt werden.
  • Zur Fixierung der durch Anwendung von Querdruck erreichten Verformungen ist bei diesem Ausführungsbeispiel im Inneren des Kunststoffrohres 4 eine Wendel 22 aus Stahldraht angeordnet. In analoger Weise könnte die Wendel auch aus Bandstahl bestehen. Die einzelnen Windungen der Wendel 22 verformen sich unter der Einwirkung äußeren Querdrucks in gleicher Weise wie das Kunststoffrohr 4, hindern aber durch ihre plastische bleibende Verformung das Kunststoffrohr 4 daran, infolge seiner elastischen Rückstellkräfte in die ursprünglich kreisförmige Lage zurückzukehren. Die Wendel 22 sichert zugleich den aus Gründen der Betonmindestüberdeckung wichtigen Abstand d zwischen dem Stahlzugglied 3.1 und der Innenwand des Kunststoffrohres 4 und hindert nach dem Prinzip einer umschnürenden Bewehrung das im Inneren des Kunststoffrohres 4 angeordnete erhärtete Material am Längsaufreißen unter der Wirkung der Zugkraft des Ankers.
  • In den Fig. 5a - c bis 7a - c sind weitere Ausführungsformen der Bauteile angedeutet, die zur Fixierung der Verformungen des Kunststoffrohres herangezogen werden können. Dabei zeigen die linken Darstellungen, die Fig. 5a bis 7a, jeweils einen Längsschnitt, die mittleren Darstellungen, die Fig. 5b bis 7b, jeweils einen Querschnitt des Tragelements in unverformtem und die rechten Darstellungen, die Fig. 5c bis 7c, jeweils einen Querschnitt des Tragelements in verformtem Zustand.
  • Bei dem Ausführungsbeispiel gemäß Fig. 5a - c mit einem gerippten Bewehrungsstab 23 als Stahlzugglied 3 ist innerhalb des Kunststoffrohres 4 ein durchgehendes, mit Profilierungen 25 und Durchbrechungen 26 versehenes Blechrohr 24 angeordnet. Hier kann beispielsweise ein an sich bekanntes gewickeltes Ripprohr Verwendung finden, dessen Rippen in ähnlicher Weise wie die Wendel 22 einen Mindestabstand d zur Innenwand des Kunststoffrohres 4 sichert. Das innere Blechrohr 24 muß die Durchbrechungen 26 aufweisen, damit das erhärtende Material auch in den Raum zwischen dem Blechrohr 24 und der Innenwand des Kunststoffrohrs 4 eintreten und diesen ausfüllen kann.
  • Bei dem Ausführungsbeispiel gemäß Fig. 6a - c, bei dem das Stahlzugglied 3 wieder aus einem Bündel von Stahldrahtlitzen 20 besteht, sind zur Fixierung der durch Anwendung von Querdruck erzeugten Verformungen jeweils an den Stellen, an denen Verformungen vorgenommen werden sollen, Stahlringe 27 auf das Kunststoffrohr 4 aufgeschoben. Die Stahlringe 27 müssen so dimensioniert sein, daß sie sich durch Querdruck verformen lassen, und die so erhaltene Form gegen die Rückstellkräfte des Kunststoffrohres 4 beibehalten. Gute Erfahrungen wurden mit Ringen gemacht, deren Dicke etwa 4 bis 8 % und deren Breite etwa 35 bis 40 % ihres Durchmessers betragen.
  • Schließlich ist in Fig. 7a - c noch ein Ausführungsbeispiel, wiederum mit einem Bewehrungsstab 23 als Stahlzugglied 3, dargestellt, bei dem in die Wandung des Kunststoffrohres 4 eine Wendel 28 eingearbeitet ist. Dies hat den Vorteil einer glatten Innenwand des Hüllrohrs 4; allerdings muß darauf geachtet werden, daß bei den nachträglich aufzubringenden Verformungen ein ausreichender Abstand zwischen der Innenwand des Hüllrohrs 4 und dem Stahlzugglied 3 eingehalten wird, der dessen ausreichende überdeckung mit dem den verbliebenen Hohlraum ausfüllenden Zementmörtel sicherstellt.

Claims (13)

  1. Korrosionsgeschütztes Tragelement (1, 11) für einen Erd- oder Felsanker, einen Druckpfahl oder dergleichen, mit einem aus einem oder mehreren Einzelelementen bestehenden Tragglied (3, 13), das zum Korrosionsschutz zumindest über einen Teil seiner Länge von einer rohrförmigen Umhüllung umgeben und bei dem der Hohlraum zwischen dem Tragglied (3, 13) und der Umhüllung von einem erhärtenden Material (5, 15), z.B. Zementmörtel, ausgefüllt ist,
    wobei das Tragelement in ein Bohrloch (2, 12) eingesetzt und das Tragglied (3, 13) über einen sich über zumindest einen Teil seiner Länge erstreckenden Kraftübertragungsbereich durch Ausfüllen des Bohrlochs (2, 12) mit erhärtendem Material (8, 18), z.B. Zementmörtel, in kraftübertragende Verbindung mit dem Untergrund (9, 19) gebracht werden kann, dadurch gekennzeichnet,
    daß die rohrförmige Umhüllung (4) aus einem sich über die gesamte Länge des Tragglieds (3, 13) erstreckenden Hüllrohr (4) aus Kunststoff, z.B. PE, mit einem über seine gesamte Länge gleichen Querschnitt besteht und
    daß zumindest in den Bereichen der Übertragung der Kräfte aus dem Tragglied (3, 13) in den Untergrund der ursprünglich gleichförmige Querschnitt des Hüllrohrs (4) an voneinander beabstandeten Stellen (6, 7) zu abweichenden Querschnitten mit unterschiedlicher Querausdehnung verformt ist.
  2. Tragelement nach Anspruch 1, dadurch gekennzeichnet, daß die Verformungen (6, 7) in regelmäßigen Abständen (a) voneinander angeordnet sind.
  3. Tragelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Verformungen (6, 7) in Bereichen höherer Kraftübertragung in engeren Abständen voneinander angeordnet sind als in Bereichen geringerer Kraftübertragung.
  4. Tragelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der ursprünglich kreisförmige Querschnitt des Hüllrohrs (4) zu einem etwa ovalen Querschnitt verformt ist.
  5. Tragelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der geringere Durchmesser des ovalen Querschnitts etwa 80 bis 90 % des Durchmessers des ursprünglich kreisförmigen Querschnitts ist.
  6. Tragelement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Verformungen (6, 7) an aufeinanderfolgenden Stellen um jeweils 90 Grad um die Längsachse des Tragelements gegeneinander verschwenkt sind.
  7. Tragelement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Verformungen (6, 7) an aufeinanderfolgenden Stellen fortlaufend um jeweils 60 Grad um die Längsachse des Tragelements gegeneinander verschwenkt sind.
  8. Tragelement nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zur Fixierung der Verformungen (6, 7) des Hüllrohrs (4) zumindest an den zu verformenden Stellen plastisch dauerhaft verformbare Bauteile vorgesehen sind, die sich über den Umfang des Hüllrohrs (4) in formschlüssiger Verbindung mit diesem befinden und zusammen mit diesem verformbar sind.
  9. Tragelement nach Anspruch 8, dadurch gekennzeichnet, daß als plastisch verformbares Bauteil eine sich zumindest über die Länge des Kraftübertragungsbereichs erstreckende Wendel (22) aus Stahldraht vorgesehen ist.
  10. Tragelement nach Anspruch 9, dadurch gekennzeichnet, daß die Wendel (22) innerhalb des Hüllrohrs (4) angeordnet ist.
  11. Tragelement nach Anspruch 8, dadurch gekennzeichnet, daß als plastisch verformbares Bauteil innerhalb des Hüllrohrs (4) ein sich zumindest über die Länge des Kraftübertragungsbereichs erstreckendes inneres Hüllrohr (24) aus Metall vorgesehen ist, das durch Profilierungen (25) an seiner Oberfläche im Abstand von der Innenwand des äußeren Hüllrohrs (4) gehalten ist und dessen Wandung Durchbrechungen (26) aufweist.
  12. Tragelement nach Anspruch 8, dadurch gekennzeichnet, daß als plastisch verformbare Bauteile über das Hüllrohr geschobene Ringe (27) aus Stahl vorgesehen sind.
  13. Tragelement nach Anspruch 12, dadurch gekennzeichnet, daß die Ringe (27) eine Dicke von etwa 4 bis 8 % und eine Breite von etwa 35 bis 50 % ihres Durchmessers aufweisen.
EP93108410A 1992-08-20 1993-05-25 Korrosionsgeschütztes Tragelement für einen Erd- oder Felsanker, einen Druckpfahl oder dergleichen Expired - Lifetime EP0585537B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/108,817 US5472296A (en) 1992-08-20 1993-08-18 Corrosion protected support element for a soil anchor or a rock anchor, a pressure pile or the like
CA002104403A CA2104403A1 (en) 1992-08-20 1993-08-19 Corrosion protected support element for a soil anchor or a rock anchor, a pressure pile or the like
NO932950A NO932950L (no) 1992-08-20 1993-08-19 Korrosjonsbeskyttet baereelement for en jord- eller bergforankring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2589/92 1992-08-20
CH2589/92A CH683436A5 (de) 1992-08-20 1992-08-20 Verfahren zur Herstellung einer verbundwirksamen Kunststoffverrohrung.

Publications (2)

Publication Number Publication Date
EP0585537A1 true EP0585537A1 (de) 1994-03-09
EP0585537B1 EP0585537B1 (de) 1996-09-25

Family

ID=4237183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93108410A Expired - Lifetime EP0585537B1 (de) 1992-08-20 1993-05-25 Korrosionsgeschütztes Tragelement für einen Erd- oder Felsanker, einen Druckpfahl oder dergleichen

Country Status (5)

Country Link
EP (1) EP0585537B1 (de)
AT (1) ATE143437T1 (de)
CH (1) CH683436A5 (de)
DE (1) DE59303955D1 (de)
HK (1) HK1005467A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4432128A1 (de) * 1994-09-09 1996-06-05 Dyckerhoff & Widmann Ag Verfahren zum Herstellen eines Ankerelements für einen Erd- oder Felsanker, Felsbolzen oder dergleichen aus einer Litze aus verdrillten Stahldrähten
DE19632356A1 (de) * 1996-08-10 1998-02-19 Bilfinger Berger Bau Temporäranker
EP0979899A1 (de) 1998-08-12 2000-02-16 Dyckerhoff &amp; Widmann Aktiengesellschaft Korrosionsgeschütztes Tragelement für einen Erd- oder Felsanker, einen Druckpfahl oder dergleichen
US8142109B2 (en) * 2008-03-18 2012-03-27 Dywidag-Systems International Gmbh Corrosion-protected, self-drilling anchor and anchor subunit and method for the production thereof
EP3943665A2 (de) 2020-07-24 2022-01-26 Herchenbach Industrial Buildings GmbH Erdnagel
DE202021000006U1 (de) 2021-01-03 2022-04-05 Herchenbach Industrial Buildings GmbH Erdnagel für ein lndustriezelt

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1227993A (de) * 1968-01-26 1971-04-15
DE1759561A1 (de) * 1968-05-15 1971-10-14 Dyckerhoff & Widmann Ag Verfahren zum Herstellen eines Bodenankers
CH521487A (de) * 1971-01-12 1972-04-15 Bauer Karlheinz Korrosionsgeschützter Zuganker zur Verankerung von Bauteilen im Erdreich sowie Verfahren zur Herstellung des Zugankers
DE2557978A1 (de) * 1974-12-24 1976-07-08 Stump Bohr Gmbh Anker zur verankerung von bauteilen im erdreich oder fels
GB1451452A (en) * 1973-01-16 1976-10-06 Cementation Co Ltd Anchor cables
FR2444756A1 (fr) * 1978-12-22 1980-07-18 Freyssinet Int Stup Dispositif de scellement profond d'un tirant dans le sol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1227993A (de) * 1968-01-26 1971-04-15
DE1759561A1 (de) * 1968-05-15 1971-10-14 Dyckerhoff & Widmann Ag Verfahren zum Herstellen eines Bodenankers
CH521487A (de) * 1971-01-12 1972-04-15 Bauer Karlheinz Korrosionsgeschützter Zuganker zur Verankerung von Bauteilen im Erdreich sowie Verfahren zur Herstellung des Zugankers
GB1451452A (en) * 1973-01-16 1976-10-06 Cementation Co Ltd Anchor cables
DE2557978A1 (de) * 1974-12-24 1976-07-08 Stump Bohr Gmbh Anker zur verankerung von bauteilen im erdreich oder fels
FR2444756A1 (fr) * 1978-12-22 1980-07-18 Freyssinet Int Stup Dispositif de scellement profond d'un tirant dans le sol

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4432128A1 (de) * 1994-09-09 1996-06-05 Dyckerhoff & Widmann Ag Verfahren zum Herstellen eines Ankerelements für einen Erd- oder Felsanker, Felsbolzen oder dergleichen aus einer Litze aus verdrillten Stahldrähten
DE4432128C2 (de) * 1994-09-09 2001-09-06 Dyckerhoff & Widmann Ag Verfahren zum Herstellen eines Ankerelements für einen Erd- oder Felsanker, Felsbolzen oder dergleichen aus einer Litze aus verdrillten Stahldrähten
DE19632356A1 (de) * 1996-08-10 1998-02-19 Bilfinger Berger Bau Temporäranker
EP0979899A1 (de) 1998-08-12 2000-02-16 Dyckerhoff &amp; Widmann Aktiengesellschaft Korrosionsgeschütztes Tragelement für einen Erd- oder Felsanker, einen Druckpfahl oder dergleichen
US8142109B2 (en) * 2008-03-18 2012-03-27 Dywidag-Systems International Gmbh Corrosion-protected, self-drilling anchor and anchor subunit and method for the production thereof
EP3943665A2 (de) 2020-07-24 2022-01-26 Herchenbach Industrial Buildings GmbH Erdnagel
DE102021003798A1 (de) 2020-07-24 2022-01-27 Herchenbach lndustrial Buildings GmbH Erdnagel für ein lndustriezelt
DE202021000006U1 (de) 2021-01-03 2022-04-05 Herchenbach Industrial Buildings GmbH Erdnagel für ein lndustriezelt

Also Published As

Publication number Publication date
CH683436A5 (de) 1994-03-15
DE59303955D1 (de) 1996-10-31
HK1005467A1 (en) 1999-01-08
EP0585537B1 (de) 1996-09-25
ATE143437T1 (de) 1996-10-15

Similar Documents

Publication Publication Date Title
DE2627524C3 (de) Verpreßanker
DE2041526C3 (de) Zugglied für einen Verpreßanker
DE2101236A1 (de) Korrosionsgeschützter Zuganker zur Verankerung von Bauteilen im Erdreich sowie Verfahren zur Herstellung von Zugverankerungen mit korrosionsgeschützten Zugankern
EP1505223A1 (de) Korrosionsgeschütztes Zugglied, insbesondere Spannglied für Spannbeton
DE19735457A1 (de) Injektions- oder Verpreßkörper
EP0585537B1 (de) Korrosionsgeschütztes Tragelement für einen Erd- oder Felsanker, einen Druckpfahl oder dergleichen
DE3320460C1 (de) Nachgiebiger Gebirgsanker
EP0979899B1 (de) Korrosionsgeschütztes Tragelement für einen Erd- oder Felsanker, einen Druckpfahl oder dergleichen
DE2557978C2 (de) Ausbaubarer Verpreßanker
DE1759561C3 (de) Verfahren zum Herstellen von Verpreßankem und Vorrichtung zum Durchführen des Verfahrens
DE3339058C2 (de) Freiliegendes spannbares Zugglied
DE2201950C3 (de) Verpreßanker zum Verankern von Bauteilen in erdigem oder felsigem Baugrund
DE1634273C3 (de) Verpreßanker
EP0473539B1 (de) Anordnung von Spannkabeln in einem Druckstollen
EP0350454A2 (de) Verfahren zum Herstellen eines im Erdreich verankerbaren Zugorganes
DE4437104C1 (de) Feste Verankerung von Spanndrahtlitzen in einem Betonbauteil
DE3115062C2 (de) Daueranker
DE2037061C3 (de) Vorrichtung zum Herstellen eines vorgespannten Verpreßankers
DE1634554A1 (de) Injektionszuganker
DE20314997U1 (de) Korrosionsgeschützter Verpressanker, insbesondere Felsdaueranker
DE3116619C2 (de) Verpreßanker, insbesondere Daueranker
DE29521197U1 (de) Ankerelement für einen temporären Verpreßanker
EP0908598A2 (de) Verfahren zum Verlegen einer Leitung sowie Leitung mit einem Mantelrohr und einem Produktrohr
DE4304606A1 (de) Bündelanker
DE2259648C3 (de) Vorrichtung zum Herstellen des Verpreßkörpers eines Zug- oder Druckpfahles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19940223

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19950609

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DYCKERHOFF & WIDMANN AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960925

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960925

REF Corresponds to:

Ref document number: 143437

Country of ref document: AT

Date of ref document: 19961015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59303955

Country of ref document: DE

Date of ref document: 19961031

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961225

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

Ref country code: BE

Effective date: 19970531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: DYCKERHOFF & WIDMANN A.G.

Effective date: 19970531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980429

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980518

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990505

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990531

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990612

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DYWIDAG-SYSTEMS INTERNATIONAL GMBH

Free format text: DYCKERHOFF & WIDMANN AG#POSTFACH 810280, ERDINGER LANDSTRASSE 1#D-81902 MUENCHEN (DE) -TRANSFER TO- DYWIDAG-SYSTEMS INTERNATIONAL GMBH#DYWIDAGSTRASSE 1#85609 ASCHHEIM (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090525

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531