[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0579642B1 - Galvanizing method and zinc alloy for use therein - Google Patents

Galvanizing method and zinc alloy for use therein Download PDF

Info

Publication number
EP0579642B1
EP0579642B1 EP92907556A EP92907556A EP0579642B1 EP 0579642 B1 EP0579642 B1 EP 0579642B1 EP 92907556 A EP92907556 A EP 92907556A EP 92907556 A EP92907556 A EP 92907556A EP 0579642 B1 EP0579642 B1 EP 0579642B1
Authority
EP
European Patent Office
Prior art keywords
silicon
zinc
bath
calcium
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92907556A
Other languages
German (de)
French (fr)
Other versions
EP0579642A1 (en
Inventor
Richard Bruno Sokolowski
Jean Eugène Lucien Joseph WEGRIA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore NV SA
Original Assignee
Union Miniere NV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Miniere NV SA filed Critical Union Miniere NV SA
Publication of EP0579642A1 publication Critical patent/EP0579642A1/en
Application granted granted Critical
Publication of EP0579642B1 publication Critical patent/EP0579642B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Definitions

  • the present invention relates to a method of galvanizing by dipping a series of individual steel objects, according to which a zinc bath containing silicon is used at a concentration which can reach saturation.
  • a zinc bath containing silicon preferably saturated with silicon, is used not only when all the objects to be galvanized have a silicon content of more than 0.02%, but also when at least has objects to be galvanized to such a silicon content, that is to say when it is not excluded that among the objects to be galvanized there are some whose silicon content does not exceed 0.02%, because it has It has been found that galvanizing in such a bath, steels whose silicon content does not exceed 0.02%, leads to very good results which are quite comparable to those obtained with these types of steel in a bath classic.
  • the object of the present invention is to provide a method as defined above, which avoids this drawback.
  • the coating formed on a silicon-free steel immersed for 5 minutes in a conventional bath at 450 ° C has a "conventional" thickness of 66 "m, while one obtains on the same steel and in the same conditions a coating with a thickness of only 37 »m after addition of 0.03% of silicon to the bath.
  • zinc consumption decreases to the same extent as the thickness of the coating.
  • the reduction in thickness is already substantial when 0.005% of silicon is added to the bath.
  • a "conventional" thickness that is to say a thickness of about 70 ⁇ m, has become less and less necessary in many fields of technology. For example, for many applications, automakers would settle for a coating thickness of only about 40 ”m.
  • Part (a) of process of the present invention is therefore particularly advantageous when it is necessary to galvanize a series of steel objects without or with a low silicon content (up to 0.02%) and when one wants to obtain a coating thickness less than 1 'classic thickness, more particularly a thickness less than 50 »m.
  • the minimum silicon content (0.005%) is necessary on the one hand to reinforce the inhibitory effect of aluminum and nickel on the growth of the coating, in particular when the steel to be galvanized contains up to 0.20% of silicon, and on the other hand to avoid the formation in the bath of nickel-iron mattes.
  • the minimum calcium content (0.002%) is necessary to obtain a coating which is free or practically free from defects in the continuity of the coating. It has proven difficult to avoid these defects, even in the presence of calcium, when the aluminum content is greater than 0.06%.
  • a nickel content greater than 0.12% leads to the formation of interfering Ni-Zn compounds. Calcium added above 0.1% plays no role.
  • the galvanizing bath according to part (b) of the process of the present invention is particularly advantageous, not only when one has to galvanize a series of steel objects which all have a silicon content of more than 0.02%, but also when a mixed series must be galvanized, consisting partly of free or low silicon content objects (up to 0.02%) and partially of objects with higher content silicon, and therefore, when a series of steel objects whose composition is unknown is to be galvanized, which is generally the case in custom galvanizing.
  • a galvanizing bath consisting of 0.1% silicon, 0.2% aluminum, 0.1% nickel, 0.1% tin, the rest being zinc.
  • the Applicant has also found that the presence in the bath of at least 0.005% of silicon prevents the formation of bottom mattes (iron-zinc mattes), regardless of the silicon content of the steel to be galvanized, which makes the process of the invention even more attractive.
  • the bath contains in both cases at least 0.01% of silicon, on the one hand to obtain a considerable reduction in the coating thickness, more particularly on steels with 0-0.20% of silicon , and secondly to avoid the formation in the bottom mat bath. It is also desirable that the bath contains in both cases lead at a concentration which can go as far as saturation, for example 0.1 to 1.2%, this in order to reduce the surface tension of the bath. It is further desirable that the bath contains in the first case 0.001-0.015% aluminum and / or 0.002-0.1% calcium, this to protect the zinc against oxidation; otherwise a yellowish film forms on the surface of the bath, which dirty galvanized objects. For the same reason it is advantageous that the nickel bath used in the second case also contains 0.001-0.015% aluminum and / or 0.002-0.1% calcium. The preferential calcium content is 0.005-0.05%.
  • the zinc-based alloy defined above can be used for other applications than that described above.
  • This example concerns the galvanization of a steel having the following composition, in% by weight: 0.050 C, 0.28 Mn, 0.012 Si, 0.009 S, 0.014 P, 0.020 Al, 0.020 Ni, 0.020 Cr and 0.025 Cu.
  • a zinc bath is used and in a second test a zinc bath with 0.029% Si. In both cases the temperature of the bath is 450 ° C and the immersion time 5 minutes.
  • a coating with a thickness of 66 "m is obtained and in the second test, a coating with a thickness of only 39" m.
  • This example concerns the galvanization of a steel having the following composition, in% by weight: 0.144 C, 0.920 Mn, 0.092 Si, 0.010 S, 0.014 P, 0.048 Al, 0.020 Ni, 0.020 Cr, 0.025 Cu.
  • a zinc bath with 0.029% Si is used
  • a zinc bath with 0.10% Ni is used
  • a zinc bath with 0.10% Ni and in a third test a zinc bath with 0.10% Ni and 0.029% of Si.
  • the bath temperature is 450 ° C and the immersion time 5 minutes.
  • the first test we obtain a thickness of more than 200 »m
  • in the second test a thickness of 69» m
  • in the third test a thickness of only 50 »m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

A method for hot-dip galvanizing a series of individual steel objects. When all the objects to be galvanized contain at most 0.4 % of silicon, a zinc bath containing at least 0.005 % of silicon is used. When some of the objects contain over 0.04 % of silicon, a zinc bath containing at least 0.005 % of silicon as well as either 0.02-0.06 % of aluminium and 0.002-0.1 % of Ca, or 0.05-0.12 % of nickel, is used. A zinc-based alloy for compensating the galvanizing bath's consumption is also provided. The method may be used for coating steel.

Description

La présente invention se rapporte à un procédé de galvanisation au trempé d'une série d'objets individuels en acier, suivant lequel on utilise un bain de zinc contenant du silicium à une concentration pouvant aller jusqu'à la saturation.The present invention relates to a method of galvanizing by dipping a series of individual steel objects, according to which a zinc bath containing silicon is used at a concentration which can reach saturation.

Un tel procédé est connu par le document DE-A-3734203. Ce document concerne essentiellement la galvanisation au trempé d'objets d'acier contenant plus de 0,02 % (en poids) de silicium. Selon ce document la galvanisation d'un tel acier pose de graves problèmes, lorsqu'on utilise le procédé de galvanisation classique, c'est-à-dire lorsqu'on utilise a bain constitué essentiellement de zinc. En effet, on obtient dans ce cas des revêtements de zinc, qui sont à la fois trop épais et trop fragiles et qui, en plus, apparaissent grisés. Cela tient au fait que la couche constituée d'alliages fer-zinc, qui se forme à la surface de l'acier au contact avec a bain de galvanisation classique, croît linéairement en fonction du temps pendant toute la durée de l'immersion, lorsque l'acier contient plus de 0,02 % de silicium. Ceci n'est pas le cas avec les aciers contenant moins de silicium, la vitesse de croissance étant ici proportionnelle à la racine du temps d'immersion.
Toujours selon ce document, il a été constaté que la croissance linéaire de la couche d'alliages fer-zinc sur les aciers à plus de 0,02 % de silicium est due à la perturbation du réseau cristallin des alliages constituant la couche, par du silicium ayant diffusé de l'acier dans la couche, cette perturbation facilitant la diffusion du fer de l'acier à travers la couche.
Dès lors, il est proposé dans ce document de contrarier la diffusion du silicium de l'acier dans la couche par l'augmentation de l'activité du silicium au sein du bain. A cet effet, on utilise a bain de zinc contenant du silicium, de préférence saturé de silicium, non seulement lorsque tous les objets à galvaniser ont une teneur en silicium de plus de 0,02 %, mais également lorsqu'au moins a des objets à galvaniser a une telle teneur en silicium, c'est-à-dire lorsqu'il n'est pas exclu que parmi les objets à galvaniser il y en a dont la teneur en silicium ne dépasse pas 0,02 %, car il a été trouvé que la galvanisation dans a tel bain, d'aciers dont la teneur en silicium ne dépasse pas 0,02 %, mène à des très bons résultats qui sont tout à fait comparables à ceux obtenus avec ces types d'acier dans un bain classique.
Such a process is known from document DE-A-3734203. This document essentially concerns the dip galvanizing of steel objects containing more than 0.02% (by weight) of silicon. According to this document, the galvanization of such a steel poses serious problems, when using the conventional galvanization process, that is to say when using a bath essentially consisting of zinc. In fact, zinc coatings are obtained in this case, which are both too thick and too fragile and which, in addition, appear grayed out. This is due to the fact that the layer made of iron-zinc alloys, which forms on the surface of the steel in contact with a conventional galvanizing bath, increases linearly as a function of time throughout the duration of the immersion, when the steel contains more than 0.02% silicon. This is not the case with steels containing less silicon, the growth rate here being proportional to the root of the immersion time.
Still according to this document, it has been observed that the linear growth of the layer of iron-zinc alloys on steels with more than 0.02% of silicon is due to the disturbance of the crystal lattice of the alloys constituting the layer, by silicon having diffused steel into the layer, this disturbance facilitating the diffusion of iron from the steel through the layer.
Consequently, it is proposed in this document to counter the diffusion of the silicon from the steel into the layer by increasing the activity of the silicon within the bath. For this purpose, a zinc bath containing silicon, preferably saturated with silicon, is used not only when all the objects to be galvanized have a silicon content of more than 0.02%, but also when at least has objects to be galvanized to such a silicon content, that is to say when it is not excluded that among the objects to be galvanized there are some whose silicon content does not exceed 0.02%, because it has It has been found that galvanizing in such a bath, steels whose silicon content does not exceed 0.02%, leads to very good results which are quite comparable to those obtained with these types of steel in a bath classic.

La demanderesse a trouvé que ce procédé connu présente l'inconvénient de répondre insuffisamment aux besoins actuels des galvaniseurs.The Applicant has found that this known method has the drawback of insufficiently meeting the current needs of galvanizers.

Le but de la présente invention est de fournir un procédé tel que défini ci-dessus, qui évite cet inconvénient.The object of the present invention is to provide a method as defined above, which avoids this drawback.

A cet effet, suivant l'invention

  • (a) ou bien on constitue ladite série de manière que tous les objets soient en un acier contenant tout au plus 0,02 % de silicium et le bain contient dans ce premier cas au moins 0,005 % de silicium et facultativement un ou plusieurs des éléments suivants: du plomb à une concentration pouvant aller jusqu'à la saturation, 0,001-0,015% d'aluminium et 0,002-0,1% de calcium, le reste étant du zinc et des impuretés inévitables;
  • (b) ou bien on constitue ladite série de manière qu'au moins un des objets soit en un acier contenant plus de 0,02 % de silicium et le bain contient dans ce second cas au moins 0,005% de silicium ainsi que
    soit 0,02-0,06% d'aluminium et 0,002-0,1% de calcium et facultativement du plomb à une concentration pouvant aller jusqu'à la saturation,
    soit 0,05-0,12% de nickel et facultativement un ou plusieurs des éléments suivants : du plomb à une concentration pouvant aller jusqu'à la saturation, 0,001-0,015% d'aluminium et 0,002-0,1% de calcium,
    le reste étant du zinc et des impuretés inévitables.
To this end, according to the invention
  • (a) or else the said series is constituted so that all the objects are made of a steel containing at most 0.02% of silicon and the bath contains in this first case at least 0.005% of silicon and optionally one or more of the elements following: lead at a concentration up to saturation, 0.001-0.015% aluminum and 0.002-0.1% calcium, the rest being zinc and unavoidable impurities;
  • (b) or else the said series is constituted so that at least one of the objects is made of a steel containing more than 0.02% of silicon and the bath contains in this second case at least 0.005% of silicon as well as
    either 0.02-0.06% aluminum and 0.002-0.1% calcium and optionally lead at a concentration which may go as far as saturation,
    either 0.05-0.12% of nickel and optionally one or more of the following elements: lead at a concentration which may go up to saturation, 0.001-0.015% aluminum and 0.002-0.1% calcium,
    the remainder being zinc and unavoidable impurities.

En effet, en ce qui concerne la galvanisation au trempé des aciers contenant tout au plus 0,02 % de silicium, c'est-à-dire des aciers exempts de ou à faible teneur en silicium, la demanderesse a trouvé, au contraire de ce qui est suggéré par le document DE-A-3734203 précité, que l'addition de silicium à un bain de galvanisation classique, c'est-à-dire un bain constitué essentiellement de zinc, mène à l'obtention de revêtements, qui sont nettement plus minces que les revêtements "classiques", c'est-à-dire les revêtements que l'on obtient avec des aciers contenant tout au plus 0,02 % de silicium dans un bain de galvanisation classique. Ainsi, par exemple, le revêtement formé sur un acier sans silicium plongé pendant 5 minutes dans un bain classique à 450°C a une épaisseur "classique" de 66 »m, tandis que l'on obtient sur le même acier et dans les mêmes conditions un revêtement d'une épaisseur de seulement 37 »m après addition de 0,03 % de silicium au bain. Inutile de dire que la consommation de zinc diminue dans la même mesure que l'épaisseur du revêtement. La réduction d'épaisseur est déjà substantielle lorsqu'on ajoute 0,005 % de silicium au bain.
Il est à noter ici qu'une épaisseur "classique", c'est-à-dire une épaisseur d'environ 70 »m, est devenue de moins en moins nécessaire dans de nombreux domaines de la technique. C'est ainsi, par exemple, que les constructeurs d'automobiles se contenteraient pour de nombreuses applications d'une épaisseur de revêtement de seulement environ 40 »m. Le volet (a) du procédé de la présente invention est donc particulièrement intéressant lorsqu'on a à galvaniser une série d'objets en acier sans ou à faible teneur en silicium (jusque 0,02 %) et qu'on veut obtenir une épaisseur de revêtement plus faible que l'épaisseur classique, plus particulièrement une épaisseur inférieure à 50 »m.
Indeed, with regard to the dip galvanization of steels containing at most 0.02% silicon, that is to say steels free of or with a low silicon content, the applicant has found, on the contrary of which is suggested by the aforementioned document DE-A-3734203, that the addition of silicon to a conventional galvanizing bath, that is to say a bath consisting essentially of zinc, leads to obtaining coatings, which are considerably thinner than "conventional" coatings, that is to say the coatings obtained with steels containing at most 0.02% silicon in a conventional galvanizing bath. Thus, for example, the coating formed on a silicon-free steel immersed for 5 minutes in a conventional bath at 450 ° C has a "conventional" thickness of 66 "m, while one obtains on the same steel and in the same conditions a coating with a thickness of only 37 »m after addition of 0.03% of silicon to the bath. Needless to say, zinc consumption decreases to the same extent as the thickness of the coating. The reduction in thickness is already substantial when 0.005% of silicon is added to the bath.
It should be noted here that a "conventional" thickness, that is to say a thickness of about 70 μm, has become less and less necessary in many fields of technology. For example, for many applications, automakers would settle for a coating thickness of only about 40 ”m. Part (a) of process of the present invention is therefore particularly advantageous when it is necessary to galvanize a series of steel objects without or with a low silicon content (up to 0.02%) and when one wants to obtain a coating thickness less than 1 'classic thickness, more particularly a thickness less than 50 »m.

En ce qui concerne la galvanisation au trempé des aciers contenant plus de 0,02% de silicium, la demanderesse a trouvé, également à l'inverse de ce que suggère le document DE-A-3734203 précité, qu'il ne suffit pas d'ajouter du silicium au bain de zinc pour résoudre convenablement le problème de la croissance excessive des revêtements, mais qu'il faut ajouter à cet effet, outre 0,005 % ou plus de silicium, soit 0,02-0,06 % d'aluminium et 0,002-0,1 % de calcium, soit 0,05-0,12 % de nickel.
Les teneurs minimums en aluminium (0,02%) et nickel (0,05%) sont requises pour obtenir une réduction substantielle de l'épaisseur du revêtement. La teneur miniumum en silicium (0,005 % ) est nécessaire d'une part pour renforcer l'effet inhibiteur de l'aluminium et du nickel sur la croissance du revêtement, notamment lorsque l'acier à galvaniser contient jusqu'à 0,20 % de silicium, et d'autre part pour éviter la formation dans le bain de mattes nickel-fer. La teneur minimum en calcium (0,002 %) est nécessaire pour obtenir un revêtement qui est exempt ou pratiquement exempt de défauts de continuité du revêtement. Il s'est avéré difficile d'éviter ces défauts, même en présence de calcium, lorsque la teneur en aluminium est supérieure à 0,06 %. Une teneur en nickel supérieure à 0,12 % mène à la formation de composés intermétalliques Ni-Zn qui gênent. Le calcium ajouté au-delà de 0,1 % ne joue aucun rôle.
Compte tenu de ce qui précède il est évident que le bain de galvanisation selon le volet (b) du procédé de la présente invention est particulièrement intéressant, non seulement lorsqu'on a à galvaniser une série d'objets d'acier qui ont tous une teneur en silicium de plus de 0,02 %, mais également lorsqu'on doit galvaniser une série mixte constituée partiellement d'objets exempts ou à faible teneur en silicium (jusque 0,02 %) et partiellement d'objets à plus forte teneur en silicium, et, par conséquent, lorsqu'on doit galvaniser une série d'objets d'acier dont on ignore la composition, ce qui est généralement le cas dans la galvanisation à façon.
Il est à noter ici qu'il est déjà connu par le document CN-A-85109366 d'utiliser un bain de galvanisation constitué de 0,1 % de silicium, 0,2 % d'aluminium, 0,1 % de nickel, 0,1 % d'étain, le reste étant du zinc. Il doit s'agir d'un bain saturé de silicium, car la solubilité du silicium dans le zinc à 450°C, c'est-à-dire la température utilisée normalement en galvanisation, n'est que d'environ 0,03 %. Il n'est pas spécifié à quel type d'acier ce bain est destiné. Il n'est pas spécifié non plus si le bain est destiné à la galvanisation continue ou à la galvanisation d'objets individuels. Quoi qu'il en soit, la demanderesse a trouvé qu'un tel bain ne convient nullement à la galvanisation d'objets individuels, ce bain menant à coup sûr à de multiples défauts de continuité du revêtement, quelle que soit la teneur en silicium des objets à galvaniser.
With regard to the dip galvanizing of steels containing more than 0.02% of silicon, the applicant has found, also contrary to what is suggested by the document DE-A-3734203 cited above, that it is not sufficient to '' add silicon to the zinc bath to adequately solve the problem of excessive growth of coatings, but must be added for this purpose, in addition to 0.005% or more of silicon, or 0.02-0.06% of aluminum and 0.002-0.1% calcium, or 0.05-0.12% nickel.
The minimum levels of aluminum (0.02%) and nickel (0.05%) are required to obtain a substantial reduction in the thickness of the coating. The minimum silicon content (0.005%) is necessary on the one hand to reinforce the inhibitory effect of aluminum and nickel on the growth of the coating, in particular when the steel to be galvanized contains up to 0.20% of silicon, and on the other hand to avoid the formation in the bath of nickel-iron mattes. The minimum calcium content (0.002%) is necessary to obtain a coating which is free or practically free from defects in the continuity of the coating. It has proven difficult to avoid these defects, even in the presence of calcium, when the aluminum content is greater than 0.06%. A nickel content greater than 0.12% leads to the formation of interfering Ni-Zn compounds. Calcium added above 0.1% plays no role.
In view of the above, it is obvious that the galvanizing bath according to part (b) of the process of the present invention is particularly advantageous, not only when one has to galvanize a series of steel objects which all have a silicon content of more than 0.02%, but also when a mixed series must be galvanized, consisting partly of free or low silicon content objects (up to 0.02%) and partially of objects with higher content silicon, and therefore, when a series of steel objects whose composition is unknown is to be galvanized, which is generally the case in custom galvanizing.
It should be noted here that it is already known from document CN-A-85109366 to use a galvanizing bath consisting of 0.1% silicon, 0.2% aluminum, 0.1% nickel, 0.1% tin, the rest being zinc. It must be a bath saturated with silicon, because the solubility of silicon in zinc at 450 ° C, i.e. the temperature normally used in galvanizing, is only about 0.03 %. It is not specified for what type of steel this bath is intended. It is also not specified whether the bath is intended for continuous galvanizing or for galvanizing individual objects. Be that as it may, the Applicant has found that such a bath is in no way suitable for the galvanization of individual objects, this bath certainly leading to multiple defects in the continuity of the coating, whatever the silicon content of the objects to be galvanized.

La demanderesse a constaté également que la présence dans le bain d'au moins 0,005 % de silicium empêche la formation de mattes de fond (mattes fer-zinc), quelle que soit la teneur en silicium de l'acier à galvaniser, ce qui rend le procédé de l'invention encore plus attractif.The Applicant has also found that the presence in the bath of at least 0.005% of silicon prevents the formation of bottom mattes (iron-zinc mattes), regardless of the silicon content of the steel to be galvanized, which makes the process of the invention even more attractive.

Il est souhaitable que le bain contienne dans les deux cas au moins 0,01 % de silicium, d'une part pour obtenir une réduction considérable de l'épaisseur de revêtement, plus particlièrement sur des aciers à 0-0,20 % de silicium, et d'autre part pour éviter à coup sûr la formation dans le bain de mattes de fond.
Il est également souhaitable que le bain contienne dans les deux cas du plomb à une concentration pouvant aller jusqu'à la saturation, par exemple 0,1 à 1,2 %, ceci pour diminuer la tension superficielle du bain.
Il est en outre souhaitable que le bain contienne dans le premier cas 0,001-0,015 % d'aluminium et/ou 0,002-0,1 % de calcium, ceci pour protéger le zinc contre l'oxydation; autrement il se forme une pellicule jaunâtre à la surface du bain, qui salit les objets galvanisés. Pour la même raison il est avantageux que le bain nickelifère utilisé dans le second cas contienne également 0,001-0,015 % d'aluminium et/ou 0,002-0,1 % de calcium. La teneur préférentielle en calcium est de 0,005-0,05 %.
It is desirable that the bath contains in both cases at least 0.01% of silicon, on the one hand to obtain a considerable reduction in the coating thickness, more particularly on steels with 0-0.20% of silicon , and secondly to avoid the formation in the bottom mat bath.
It is also desirable that the bath contains in both cases lead at a concentration which can go as far as saturation, for example 0.1 to 1.2%, this in order to reduce the surface tension of the bath.
It is further desirable that the bath contains in the first case 0.001-0.015% aluminum and / or 0.002-0.1% calcium, this to protect the zinc against oxidation; otherwise a yellowish film forms on the surface of the bath, which dirty galvanized objects. For the same reason it is advantageous that the nickel bath used in the second case also contains 0.001-0.015% aluminum and / or 0.002-0.1% calcium. The preferential calcium content is 0.005-0.05%.

Il est évident que la composition du bain évoluera au cours des opérations, les vitesses de consommation, par oxydation et autres réactions, des composants, zinc et additifs, à la température d'utilisation (normalement voisine de 450°C) et en présence de flux (ZnCl₂ et NH₄Cl) étant différentes, et pratiquement d'autant plus élevées que le métal est oxydable. Les déficits d'additifs par suite de l'oxydation portent essentiellement sur le silicium et le calcium ainsi que sur l'aluminium lorsque le calcium est absent.
Or la demanderesse a trouvé que l'on peut maintenir la composition du bain au cours des opérations de galvanisation en compensant la consommation de bain par l'addition au bain d'un alliage à base de zinc contenant

  • (a) dans le premier cas 0,1-1,5 % de silicium et facultativement un ou plusieurs des éléments suivants : 0,1-1,2 % de plomb, 0,01-0,8 % d'aluminium et 0,02-1 % de calcium ; et
  • (b) dans le second cas 0,1-1,5 % de silicium ainsi que
    soit 0,1-0,8 % d'aluminium et 0,02-1 % de calcium et facultativement 0,1-1,2 % de plomb,
    soit 0,05-0,12 % de nickel et facultativement un ou plusieurs des éléments suivants : 0,1-1,2 % de plomb, 0,01-0,8 % d'aluminium et 0,02-1 % de calcium.
L'alliage à base de zinc à mettre en oeuvre, de préférence sous la forme de lingots, peut contenir, suivant le cas ,
soit 0,1-1,5 % de Si et 0,1-1,2 % de Pb ;
soit 0,1-1,5 % de Si et 0,02-1 % de Ca ;
soit 0,1-1,5 % de Si, 0,01-0,8 % d'Al et 0,02-1 % de Ca ;
soit 0,1-1,5 % de Si, 0,01-0,8 % d'Al et 0,1-1,2 % de Pb ;
soit 0,1-1,5 % de Si, 0,02-1 % de Ca et 0,1-1,2 % de Pb ;
soit 0,1-1,5 % de Si, 0,01-0,8 % d'Al, 0,02-1 % de Ca et 0,1-1,2 % de Pb ;
soit 0,1-1,5 % de Si, 0,1-0,8 % d'Al et 0,02-1 % de Ca ;
soit 0,1-1,5 % de Si, 0,1-0,8 % d'Al, 0,02-1 % de Ca et 0,1-1,2 % de Pb ;
soit 0,1-1,5 % de Si et 0,05-0,12 % de Ni ;
soit 0,1-1,5 % de Si, 0,05-0,12 % de Ni et 0,1-1,2 % de Pb ;
soit 0,1-1,5 % de Si, 0,05-0,12 % de Ni et 0,01-0,8 % d'Al ;
soit 0,1-1,5 % de Si, 0,05-0,12 % de Ni, 0,01-0,8 % d'Al et 0,1-1,2 % de Pb ;
soit 0,1-1,5 % de Si, 0,05-0,12 % de Ni et 0,02-1 % de Ca ;
soit 0,1-1,5 % de Si, 0,05-0,12 % de Ni, 0,02-1 % de Ca et 0,1-1,2 % de Pb ;
soit 0,1-1,5 % de Si, 0,05-0,12 % de Ni, 0,01-0,8 % d'Al et 0,02-1 % de Ca ;
soit 0,1-1,5 % de Si, 0,05-0,12 % de Ni, 0,01-0,8 % d'Al, 0,02-1 % de Ca et 0,1-1,2 % de Pb ;
le reste étant du zinc et des impuretés inévitables.
Il est évident qu'on peut substituer à l'alliage à base de zinc un équivalent sous la forme d'au moins un alliage-mère et de zinc ou sous la forme d'au moins un alliage-mère et d'un alliage moins chargé d'additifs que l'alliage à remplacer.
C'est ainsi, par exemple, qu'on pourrait utiliser comme équivalent de 100 kg d'alliage de zinc à 1 % de Si et 0,1 % d'Al (premier cas) :
   soit 10 kg d'alliage-mère à 10 % de Si et 1 % d'Al (préparé par la métallurgie des poudres) et 90 kg de Zn,
   soit 10 kg d'alliage-mère à 10 % de Si (ex métallurgie des poudres), 1 kg d'alliagemère à 10 % d'Al et 89 kg de Zn,
   soit 1 kg d'alliage-mère à 10 % d'Al et 99 kg d'alliage à 1,01 % de Si.It is obvious that the composition of the bath will change during the operations, the consumption rates, by oxidation and other reactions, of the components, zinc and additives, at the temperature of use (normally close to 450 ° C) and in the presence of flux (ZnCl₂ and NH₄Cl) being different, and practically all the higher as the metal is oxidizable. Additive deficits as a result of oxidation relate mainly to silicon and calcium as well as aluminum when calcium is absent.
However, the Applicant has found that it is possible to maintain the composition of the bath during the galvanizing operations by compensating for the consumption of bath by adding a zinc-based alloy containing to the bath.
  • (a) in the first case 0.1-1.5% of silicon and optionally one or more of the following elements: 0.1-1.2% of lead, 0.01-0.8% of aluminum and 0 , 02-1% calcium; and
  • (b) in the second case 0.1-1.5% of silicon as well as
    either 0.1-0.8% aluminum and 0.02-1% calcium and optionally 0.1-1.2% lead,
    or 0.05-0.12% of nickel and optionally one or more of the following elements: 0.1-1.2% of lead, 0.01-0.8% of aluminum and 0.02-1% of calcium.
The zinc-based alloy to be used, preferably in the form of ingots, may contain, depending on the case,
or 0.1-1.5% of Si and 0.1-1.2% of Pb;
or 0.1-1.5% of Si and 0.02-1% of Ca;
or 0.1-1.5% of Si, 0.01-0.8% of Al and 0.02-1% of Ca;
or 0.1-1.5% of Si, 0.01-0.8% of Al and 0.1-1.2% of Pb;
or 0.1-1.5% of Si, 0.02-1% of Ca and 0.1-1.2% of Pb;
or 0.1-1.5% of Si, 0.01-0.8% of Al, 0.02-1% of Ca and 0.1-1.2% of Pb;
or 0.1-1.5% of Si, 0.1-0.8% of Al and 0.02-1% of Ca;
or 0.1-1.5% of Si, 0.1-0.8% of Al, 0.02-1% of Ca and 0.1-1.2% of Pb;
or 0.1-1.5% of Si and 0.05-0.12% of Ni;
or 0.1-1.5% of Si, 0.05-0.12% of Ni and 0.1-1.2% of Pb;
or 0.1-1.5% of Si, 0.05-0.12% of Ni and 0.01-0.8% of Al;
or 0.1-1.5% of Si, 0.05-0.12% of Ni, 0.01-0.8% of Al and 0.1-1.2% of Pb;
or 0.1-1.5% of Si, 0.05-0.12% of Ni and 0.02-1% of Ca;
or 0.1-1.5% of Si, 0.05-0.12% of Ni, 0.02-1% of Ca and 0.1-1.2% of Pb;
or 0.1-1.5% of Si, 0.05-0.12% of Ni, 0.01-0.8% of Al and 0.02-1% of Ca;
or 0.1-1.5% of Si, 0.05-0.12% of Ni, 0.01-0.8% of Al, 0.02-1% of Ca and 0.1-1, 2% Pb;
the remainder being zinc and unavoidable impurities.
It is obvious that the zinc-based alloy may be substituted for an equivalent in the form of at least one master alloy and of zinc or in the form of at least one master alloy and of a less alloy loaded with additives as the alloy to be replaced.
Thus, for example, we could use as equivalent of 100 kg of zinc alloy with 1% Si and 0.1% Al (first case):
or 10 kg of master alloy with 10% Si and 1% Al (prepared by powder metallurgy) and 90 kg of Zn,
or 10 kg of master alloy with 10% Si (ex powder metallurgy), 1 kg of alloy with 10% Al and 89 kg of Zn,
or 1 kg of master alloy at 10% Al and 99 kg of alloy at 1.01% Si.

L'alliage à base de zinc défini ci-dessus peut être utilisé pour d'autres applications que celle décrite ci-dessus.The zinc-based alloy defined above can be used for other applications than that described above.

Dans ce qui précède tous les pourcentages sont en poids.In the above all percentages are by weight.

EXEMPLE 1EXAMPLE 1

Cet exemple concerne la galvanisation d'un acier ayant la composition suivante, en % en poids: 0,050 C, 0,28 Mn, 0,012 Si, 0,009 S, 0,014 P, 0,020 Al, 0,020 Ni, 0,020 Cr et 0,025 Cu.
Dans un premier essai on utilise un bain de zinc et dans un second essai un bain de zinc à 0,029 % de Si. Dans les deux cas la température du bain est de 450°C et la durée d'immersion de 5 minutes.
On obtient dans le premier essai un revêtement d'une épaisseur de 66 »m et dans le second essai un revêtement d'une épaisseur de seulement 39 »m.
This example concerns the galvanization of a steel having the following composition, in% by weight: 0.050 C, 0.28 Mn, 0.012 Si, 0.009 S, 0.014 P, 0.020 Al, 0.020 Ni, 0.020 Cr and 0.025 Cu.
In a first test a zinc bath is used and in a second test a zinc bath with 0.029% Si. In both cases the temperature of the bath is 450 ° C and the immersion time 5 minutes.
In the first test, a coating with a thickness of 66 "m is obtained and in the second test, a coating with a thickness of only 39" m.

EXEMPLE 2EXAMPLE 2

Cet exemple concerne la galvanisation d'un acier ayant la composition suivante, en % en poids : 0,144 C, 0,920 Mn, 0,092 Si, 0,010 S, 0,014 P, 0,048 Al, 0,020 Ni, 0,020 Cr, 0,025 Cu.
Dans un premier essai on utilise un bain de zinc à 0,029 % de Si, dans un deuxième essai un bain de zinc à 0,10 % de Ni et dans un troisième essai un bain de zinc à 0,10 % de Ni et 0,029 % de Si. Dans les trois essais la température du bain est de 450°C et la durée d'immersion de 5 minutes.
On obtient dans le premier essai une épaisseur de plus de 200 »m, dans le deuxième essai un épaisseur de 69 »m et dans le troisième essai une épaisseur de seulement 50 »m.
This example concerns the galvanization of a steel having the following composition, in% by weight: 0.144 C, 0.920 Mn, 0.092 Si, 0.010 S, 0.014 P, 0.048 Al, 0.020 Ni, 0.020 Cr, 0.025 Cu.
In a first test a zinc bath with 0.029% Si is used, in a second test a zinc bath with 0.10% Ni and in a third test a zinc bath with 0.10% Ni and 0.029% of Si. In the three tests the bath temperature is 450 ° C and the immersion time 5 minutes.
In the first test we obtain a thickness of more than 200 »m, in the second test a thickness of 69» m and in the third test a thickness of only 50 »m.

Claims (6)

  1. A process for hot dip galvanizing a series of individual articles of steel, according to which a zinc bath is used which contains silicon at a concentration that may attain saturation, characterized in that
    (a) either the series is constituted in such a way that all the articles are of a steel, the silicon content of which is lower than or equal to 0.02 %, and the zinc bath contains in this first case at least 0.005 % of silicon and optionally one or more of the following elements : lead at a concentration that may attain saturation, 0.001-0.015 % of aluminium and 0.002-0.1 % of calcium, the rest being zinc and unavoidable impurities ;
    (b) or the series is constituted in such a way that at least one of the articles is of a steel, the silicon content of which is higher than 0.02 %, and the zinc bath contains in this second case at least 0.005 % of silicon as well as
    either 0.02-0.06 % of aluminium and 0.002-0.1 % of calcium and optinally lead at a concentration that may attain saturation,
    or 0.05-0.12 % of nickel and optionally one or more of the following elements : lead at a concentration that may attain saturation, 0.001-0.015 % of aluminium and 0.002-0.1 % of calcium,
    the rest being zinc and unavoidable impurities,
    and the percents being expressed by weight.
  2. A process according to claim 1, characterized in that the bath contains in both cases at least 0.01 % of silicon.
  3. A process according to claim 1 or 2, characterized in that the bath contains 0.1-1.2 % of lead.
  4. A process according to any of the claims 1-3, characterized in that the bath contains in the second case 0.02-0.06 % of aluminium and 0.005-0.05 % of calcium.
  5. A process according to any of the claims 1-4, characterized in that the composition of the bath is maintained during the galvanizing operation by compensating the bath consumption through addition to the bath
    either of a zinc base alloy containing
    (a) in the first case 0.1-1.5 % of silicon and optionally one or more of the following elements : 0.1-1.2 % of lead, 0.01-0.8 % of aluminium and 0.02-1 % of calcium ; and
    (b) in the second case 0.1-1.5 % of silicon as well as
    either 0.1-0.8 % of aluminium and 0.02-1 % of calcium and optionally 0.1-1.2 % of lead,
    or 0.05-0.12 % of nickel and optionally one of more of the following elements : 0.1-1.2 % of lead, 0.01-0.8 % of aluminium and 0.02-1 % of calcium,
    or of an equivalent of said alloy in the form of at least one mother alloy and pure zinc or in the form of at least one mother alloy and a zinc base alloy containing less additives than said alloy.
  6. An ingot of zinc base alloy, especially for use in the process according to claim 5, characterized in that it contains, in percent by weight,
    either 0.1-1.5 % of Si and 0.02-1 % of Ca ;
    or 0.1-1.5 % of Si, 0.01-0.8 % of Al and 0.02-1 % of Ca ;
    or 0.1-1.5 % of Si and 0.1-1.2 % of Pb ;
    or 0.1-1.5 % of Si, 0.01-0.8 % of Al and 0.1-1.2 % of Pb ;
    or 0.1-1.5 % of Si, 0.02-1 % of Ca and 0.1-1.2 % of Pb ;
    or 0.1-1.5 % of Si, 0.01-0.8 % of Al, 0.02-1 % of Ca and 0.1-1.2 % of Pb ;
    or 0.1-1.5 % of Si, 0.1-0.8 % of Al and 0.02-1 % of Ca ;
    or 0.1-1.5 % of Si, 0.1-0.8 % of Al, 0.02-1 % of Ca and 0.1-1.2 % of Pb ;
    or 0.1-1.5 % of Si and 0.05-0.12 % of Ni ;
    or 0.1-1.5 % of Si, 0.05-0.12 % of Ni and 0.1-1.2 % of Pb ;
    or 0.1-1.5 % of Si, 0.05-0.12 % of Ni and 0.01-0.8 % of Al ;
    or 0.1-1.5 % of Si, 0.05-0.12 % of Ni, 0.01-0.8 % of Al and 0.1-1.2 % of Pb ;
    or 0.1-1.5 % of Si, 0.05-0.12 % of Ni and 0.02-1 % of Ca ;
    or 0.1-1.5 % of Si, 0.05-0.12 % of Ni, 0.02-1 % of Ca and 0.1-1.2 % of Pb ;
    or 0.1-1.5 % of Si, 0.05-0.12 % of Ni, 0.01-0.8 % of Al and 0.02-1 % of Ca ;
    or 0.1-1.5 % of Si, 0.05-0.12 % of Ni, 0.01-0.8 % of Al, 0.02-1 % of Ca and 0.1-1.2 % of Pb.
    the rest being zinc and unavoidable impurities.
EP92907556A 1991-04-12 1992-04-02 Galvanizing method and zinc alloy for use therein Expired - Lifetime EP0579642B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9104501A FR2675159B1 (en) 1991-04-12 1991-04-12 GALVANIZATION PROCESS AND ZINC ALLOY THAT CAN BE USED IN THIS PROCESS.
FR9104501 1991-04-12
PCT/EP1992/000740 WO1992018662A1 (en) 1991-04-12 1992-04-02 Galvanizing method and zinc alloy for use therein

Publications (2)

Publication Number Publication Date
EP0579642A1 EP0579642A1 (en) 1994-01-26
EP0579642B1 true EP0579642B1 (en) 1995-06-28

Family

ID=9411774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92907556A Expired - Lifetime EP0579642B1 (en) 1991-04-12 1992-04-02 Galvanizing method and zinc alloy for use therein

Country Status (11)

Country Link
EP (1) EP0579642B1 (en)
AU (1) AU1447692A (en)
CA (1) CA2106763A1 (en)
DE (1) DE69203231T2 (en)
FI (1) FI98468C (en)
FR (1) FR2675159B1 (en)
IL (1) IL101384A0 (en)
NO (1) NO933666L (en)
PT (1) PT100376B (en)
TW (1) TW206262B (en)
WO (1) WO1992018662A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110318014A (en) * 2019-08-16 2019-10-11 四川电力设计咨询有限责任公司 Silvery white hot galvanizing plating solution and its preparation method and application

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010038947A1 (en) * 2010-08-05 2012-02-09 Aktiebolaget Skf Connecting arrangement and method for producing a sleeve-shaped connecting element
CN113881911A (en) * 2021-09-10 2022-01-04 湖南株冶有色金属有限公司 Silicon-tin alloy contained in hot galvanizing bath

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU81061A1 (en) * 1979-03-19 1980-10-08 Centre Rech Metallurgique GALVANIZATION PROCESS
EP0046458A1 (en) * 1980-08-14 1982-03-03 Th. Goldschmidt AG Process for high-temperature galvanizing
DE3734203A1 (en) * 1987-10-09 1989-04-20 Solms Juergen Process for hot galvanising steel articles having silicon contents above 0.02%
DE3911060A1 (en) * 1989-04-06 1990-10-11 Solms Juergen Process for reducing the iron content of molten zinc

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110318014A (en) * 2019-08-16 2019-10-11 四川电力设计咨询有限责任公司 Silvery white hot galvanizing plating solution and its preparation method and application
CN110318014B (en) * 2019-08-16 2020-11-24 四川电力设计咨询有限责任公司 Silvery white hot galvanizing plating solution and preparation method and application thereof

Also Published As

Publication number Publication date
FR2675159A1 (en) 1992-10-16
WO1992018662A1 (en) 1992-10-29
DE69203231D1 (en) 1995-08-03
EP0579642A1 (en) 1994-01-26
IL101384A0 (en) 1992-11-15
FR2675159B1 (en) 1993-07-23
CA2106763A1 (en) 1992-10-13
NO933666L (en) 1993-10-12
FI98468B (en) 1997-03-14
PT100376A (en) 1993-06-30
FI934469A (en) 1993-10-11
FI934469A0 (en) 1993-10-11
FI98468C (en) 1997-06-25
PT100376B (en) 1999-07-30
DE69203231T2 (en) 1996-02-08
NO933666D0 (en) 1993-10-11
AU1447692A (en) 1992-11-17
TW206262B (en) 1993-05-21

Similar Documents

Publication Publication Date Title
CA1106651A (en) Alloy for temper galvanizing of steel, silicium alloyed steels, and galvanizing method of said alloy
KR100515398B1 (en) Metal plated steel wire having excellent resistance to corrosion and workability and method for production thereof
JP2023504496A (en) Hot-dip galvanized steel sheet with excellent bending workability and corrosion resistance, and method for producing the same
EP0579642B1 (en) Galvanizing method and zinc alloy for use therein
EP0037143B1 (en) Hot dip coating process
KR20210135578A (en) galvanized steel
JP3737987B2 (en) Hot-dip galvanized steel wire with high corrosion resistance and excellent workability
EP0594520B1 (en) Galvanized steel products and method of making
US6006819A (en) Process for producing aluminum-based composite member
EP1029940B1 (en) Method of aluminizing steel for obtaining a thin interfacial layer
EP2456903B1 (en) Method of metallic hot dip coating of a long steel product, and coated long product
JPH11199956A (en) Zinc-aluminum-magnesium alloy for hot dip coating excellent in corrosion resistance
EP1327009B1 (en) Process and alloy for decorative galvanizing of steel
KR102031308B1 (en) Plated steel wire and manufacturing method for the same
CA2238831C (en) Method for galvanising a steel sheet containing oxidisable alloying elements
EP0148740A1 (en) Method for hot coating and bath composition therefor
JPH0860329A (en) Production of galvannealed steel sheet
JP3024967B1 (en) Hot-dip galvanizing method and galvanized material
EP0848076B1 (en) Method for hot-dip coating of a steel plate; galvanized or aluminized steel plate obtained therefrom
EP0095402A1 (en) Method and alloy for the hot dip galvanizing of silicon steel, and galvanized articles
WO1994009173A1 (en) Continuous galvanizing method
CA2565931C (en) Hot galvanizing bath for parts made of any grade of steel
CN114072533A (en) Plated steel wire and method for producing same
BE883724A (en) PROCESS FOR HOT COATING OF SILICON STEELS
FR2776672A1 (en) METHOD FOR GALVANIZING STEEL SHEETS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19940803

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950628

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19950628

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950628

REF Corresponds to:

Ref document number: 69203231

Country of ref document: DE

Date of ref document: 19950803

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950807

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980323

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980420

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980427

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980526

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

BERE Be: lapsed

Owner name: S.A. UNION MINIERE FRANCE

Effective date: 19990430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201