EP0570944A1 - Process for coating silver objects and coating made by this process - Google Patents
Process for coating silver objects and coating made by this process Download PDFInfo
- Publication number
- EP0570944A1 EP0570944A1 EP93108186A EP93108186A EP0570944A1 EP 0570944 A1 EP0570944 A1 EP 0570944A1 EP 93108186 A EP93108186 A EP 93108186A EP 93108186 A EP93108186 A EP 93108186A EP 0570944 A1 EP0570944 A1 EP 0570944A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- gas
- plasma
- coating
- silver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/62—Plasma-deposition of organic layers
-
- A—HUMAN NECESSITIES
- A44—HABERDASHERY; JEWELLERY
- A44C—PERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
- A44C27/00—Making jewellery or other personal adornments
- A44C27/001—Materials for manufacturing jewellery
- A44C27/005—Coating layers for jewellery
- A44C27/007—Non-metallic coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/14—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
- B05D3/141—Plasma treatment
- B05D3/142—Pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2202/00—Metallic substrate
- B05D2202/40—Metallic substrate based on other transition elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2451/00—Type of carrier, type of coating (Multilayers)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2507/00—Polyolefins
- B05D2507/01—Polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2518/00—Other type of polymers
- B05D2518/10—Silicon-containing polymers
Definitions
- the invention relates to a method for the surface coating of silver objects and a protective layer produced in this method.
- Untreated silver objects tarnish over time if no suitable measures have been taken.
- silver cutlery and silver jewelry For example silver cutlery and silver jewelry.
- the low hardness of this material means that the surface is easily scratched in use and thus the appearance is impaired.
- Another problem when handling silver objects is allergic skin reactions, which occur in many people.
- DE 39 21 652 and DE 40 19 539 which are suitable for producing polymer coatings on metallic surfaces, in particular of nickel.
- the method described in DE 40 19 539 A1 involves the generation of dewetting layers.
- DE 39 21 652 A1 describes a method for generating a Coating on one side of a printer nozzle plate, it being essential that there is a sharp structuring, particularly in the area of openings.
- the object of the present invention is to provide a method which is inexpensive and simple to carry out and at the same time allows the production of a layer on a silver object which protects the material from chemical or mechanical damage and is at the same time skin-friendly and non-toxic.
- the layer should optionally be easily removable.
- the coating must also be optically transparent and optically ineffective so that the silver character is not lost.
- the process according to the invention is carried out in a plasma polymerization plant.
- a monomeric gas is introduced into a vacuum container and excited by direct current or microwave energy so that a plasma is formed.
- This plasma can produce a layer on a surface or, for example, remove impurities from a surface.
- the entire coating process which includes the production of a plurality of continuously merging layers, and the surface treatment of the object to be coated which precedes the actual coating process, is carried out continuously, ie without switching off the system. This continuity of the process is essential, since even with a short interruption of the process, a thin layer forms on the surface, to which the subsequent layers no longer adhere properly.
- a gas is introduced into the plasma polymerization system in which the objects to be treated are located, which gas remains in the process chamber until an ablating plasma has formed and the surface of the silver object is free of contaminants from the water layer and the like.
- the substrate surface is activated by this plasma process and as many free bonds as possible are created on the surface.
- this gas is continuously replaced by another gas replaced, which generates a plasma that builds up a coupling layer, ie a layer that converts in the atomic range from a metallic to a covalent bond.
- a permeation-preventing layer is then applied continuously, as in the previous steps, by replacing the gas present in the process chamber with a next gas. This creates a hard, scratch-resistant surface seal.
- the process parameters such as pressure, gas flow, power introduced, duration of the individual steps and distance of the surface to be treated from the plasma, are adapted to the requirements placed on the layer to be produced and the monomer introduced, since the plasma polymerization process is advantageously carried out continuously, the gas and possibly the other process parameters are changed after the completion of a process step.
- a gas mixture is present in the reactor space for a certain time, so that the transition from, for example, an ethylene layer to an HMDSO layer does not take place interface-to-interface.
- This transition would be a discontinuous process; the ethylene gas supply and the plasma are switched off, the residual gas is removed and new process gas, for example HMDSO, is introduced and the plasma is ignited again. Rather, the process according to the invention takes place in which the ethylene content decreases and the HMDSO content increases. In addition, not only is there a two-phase mixture side by side, but fragments of both gases also react with one another. This creates a layer, the individual layer components of which continuously merge into one another, so that they form a gradient layer on the coated object.
- new process gas for example HMDSO
- the method can be carried out in such a way that only one monomer is present in the process chamber during the entire treatment and the different plasmas, which are used to produce different layers which merge into one another, are produced from this one monomer by changing the process parameters.
- the layer applied to the silver objects in the process described above is constructed in such a way that it can be easily removed; e.g. With silver cutlery, this layer can be removed by the first cleaning process in a dishwasher.
- the cutlery is provided with a protective layer after its manufacture, which remains on it until it is in normal use, e.g. to be taken in a household.
- a protective layer after its manufacture, which remains on it until it is in normal use, e.g. to be taken in a household.
- such a layer is constructed in such a way that it is so resistant to chemicals that the coated objects are also dishwasher safe.
- the properties of the coating can thus be influenced and adapted to the requirements by the suitable choice of the process parameters and the starting materials for the process control.
- a layer is produced according to the invention, but which fulfills several functions simultaneously.
- a firm connection with the metallic base is achieved with simultaneous tarnish protection, with simultaneous scratch resistance, chemical resistance and a simultaneous barrier effect for allergic skin reactions.
- All layers are also optically transparent and, with a layer thickness of less than 100 ⁇ m, are also not optically effective.
- Argon (Ar) was used to pretreat the surface to be coated, with a gas flow of 10 sccm and a pressure of 0.05 mbar. The duration of the process was 120 sec at a power of 600 W.
- Ar / C2H4 was used as monomer at a gas flow of 10/10 sccm and a pressure of 0.05 mbar. The duration of this process step was 30 sec at a power of 600 W.
- a permeation layer was continuously created by adding Ar / HMDSO at a gas flow of 10/3 scm and a pressure of 0.05 mbar. The duration of this process step was 20 sec at an output of 600 W.
- the scratch-resistant layer was produced by using O2 / HMDSO at a gas flow of 20/2 sccm and a pressure of 0.1 mbar. The duration of the production of this layer was 80 sec at a power of 600 W. Subsequent treatment was then carried out by continuously adding Ar at a gas flow of 10 sccm and a pressure of 0.1 mbar. The aftertreatment lasted 120 seconds at a power of 600 W.
- Argon (Ar) was used to pretreat the surface to be coated, with a gas flow of 10 sccm and a pressure of 0.2 mbar. The duration of the process was 120 sec at a power of 600 W.
- VTMS was used as the monomer at a gas flow of 10 sscm and a pressure of 0.2 mbar. The duration of this process step was 30 seconds at a power of 400 W.
- a permeation layer was again continuously created by adding Ar / HMDSO at a gas flow of 10/2 sccm and a pressure of 0.1 mbar. The duration of this process step was 30 sec at a power of 600 W.
- the scratch-resistant layer was produced by using O2 / HMDSO at a gas flow of 10/2 sccm and a pressure of 0.1 mbar. The duration of the production of this layer was 60 sec at a power of 600 W. Subsequent treatment was then carried out by continuously adding Ar at a gas flow of 10 sccm and a pressure of 0.1 mbar. The aftertreatment lasted 120 seconds at a power of 600 W.
- Argon (Ar) was used to pretreat the surface to be coated, with a gas flow of 10 sccm and a pressure of 0.1 mbar. The duration of the procedure was 120 sec at a power of 600 W.
- Ar / C2H4 was used as the monomer at a gas flow of 10/10 sscm and a pressure of 0.1 mbar. The duration of this process step was 30 sec at a power of 500 W.
- a permeation layer was continuously created by adding C2H4 at a gas flow of 10 sccm and a pressure of 0.2 mbar. The duration of this process step was 30 seconds at an output of 400 W.
- the scratch-resistant layer was produced by using O2 / HMDSO at a gas flow of 10/2 sccm and a pressure of 0.05 mbar. The duration of the production of this layer was 75 sec at a power of 700 W. Subsequent treatment was then carried out by continuously adding Ar at a gas flow of 10 sccm and a pressure of 0.1 mbar. The aftertreatment lasted 120 seconds at a power of 600 W.
- the treated silver cutlery was tested in comparison with uncoated materials in a sulfur-containing atmosphere and liquid and showed very good tarnish protection.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Oberflächenbeschichtung von Silbergegenständen und eine in diesem Verfahren hergestellte Schutzschicht.The invention relates to a method for the surface coating of silver objects and a protective layer produced in this method.
Unbehandelte Gegenstände aus Silber laufen mit der Zeit an, wenn dagegen keine geeignete Maßnahmen getroffen wurden. Beispielsweise Silberbestecke und Silberschmuck. Zudem bedingt die geringe Härte dieses Materials, daß die Oberfläche im Gebrauch leicht verkratzt und damit das Aussehen beeinträchtigt wird. Ein weiteres Problem im Umgang mit Gegenständen aus Silber sind allergische Hautreaktionen, welche bei vielen Menschen auftreten.Untreated silver objects tarnish over time if no suitable measures have been taken. For example silver cutlery and silver jewelry. In addition, the low hardness of this material means that the surface is easily scratched in use and thus the appearance is impaired. Another problem when handling silver objects is allergic skin reactions, which occur in many people.
Bisher eingesetzte Verfahren, wie z.B. Vernieren und Zaponieren oder aber auch die Oberflächenveredelung mit Hilfe von Merkaptan sind unzureichend. Entweder sind sie nicht haftfest, nicht transparent und chemisch/mechanisch, nicht stabil oder sie sind giftig.Previously used processes, such as Vernieren and Zaponieren or also the surface finishing with the help of Merkaptan are insufficient. Either they are not adherent, not transparent and chemical / mechanical, not stable or they are toxic.
Aus der DE 39 21 652 und der DE 40 19 539 sind Verfahren bekannt, die zum Erzeugen von Polymerbeschichtungen auf metallischen Oberflächen, insbesondere aus Nickel geeignet sind. Bei dem in der DE 40 19 539 A1 beschriebenen Verfahren handelt es sich um Erzeugung von entnetzenden Schichten. Die DE 39 21 652 A1 beschreibt ein Verfahren zur Erzeugung einer Beschichtung auf einer Seite einer Drucker-Düsenplatte, wobei es wesentlich ist, daß insbesondere im Bereich von Öffnungen eine scharfe Strukturierung erfolgt.Methods are known from DE 39 21 652 and DE 40 19 539 which are suitable for producing polymer coatings on metallic surfaces, in particular of nickel. The method described in DE 40 19 539 A1 involves the generation of dewetting layers. DE 39 21 652 A1 describes a method for generating a Coating on one side of a printer nozzle plate, it being essential that there is a sharp structuring, particularly in the area of openings.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren anzugeben, welches preisgünstig und einfach durchführbar ist und gleichzeitig die Herstellung einer Schicht auf einem silbernen Gegenstand erlaubt, welche das Material vor chemischen oder mechanischen Beschädigung schützt und gleichzeitig hautverträglich und ungiftig ist. Darüber hinaus sollte die Schicht wahlweise einfach entfernbar sein. Schließlich muß die Beschichtung auch noch optisch transparent und optisch unwirksam sein, damit der Silbercharakter nicht verloren geht.The object of the present invention is to provide a method which is inexpensive and simple to carry out and at the same time allows the production of a layer on a silver object which protects the material from chemical or mechanical damage and is at the same time skin-friendly and non-toxic. In addition, the layer should optionally be easily removable. Finally, the coating must also be optically transparent and optically ineffective so that the silver character is not lost.
Diese Aufgabe ist durch das im Anspruch 1 angegebene Verfahren gelöst. Die Unteransprüche stellen vorteilhatte Weiterbildungen dar.This object is achieved by the method specified in claim 1. The subclaims represent advantageous developments.
Das erfindungsgemäße Verfahren wird in einer Plasmapolymerisationsanlage durchgeführt. Dabei wird in einen Unterdruckbehälter ein monomeres Gas eingeführt und durch Gleichstrom oder Mikrowellenenergie so angeregt, daß sich ein Plasma bildet. Dieses Plasma kann auf einer Oberfläche eine Schicht erzeugen oder eine Oberfläche, z.B. von Verunreinigungen befreien. Wesentlich dabei ist, daß der gesamte Beschichtungsprozeß, wozu die Herstellung mehrerer, kontinuierlich ineinander übergehenden Schichten gehört sowie die dem eigentlichen Beschichtungsprozeß vorausgehende Oberflächenbehandlung des zu beschichtenden Gegenstandes kontinuierlich, d.h. ohne Abschalten der Anlage durchgeführt wird. Diese Kontinuität des Verfahrens ist wesentlich, da schon bereits bei einer kurzen Unterbrechung des Verfahrens sich auf der Oberfläche eine dünne Schicht bildet, an der die Haftung der nachfolgenden Schichten nicht mehr einwandfrei ist. Zunächst wird in die Plasmapolymerisationsanlage, in der sich die zu behandelnden Gegenstände befinden ein Gas eingeführt, welches in der Prozeßkammer solange verbleibt, bis sich ein abtragendes Plasma gebildet hat und die Oberfläche des Silbergegenstandes frei von Verunreinigungen von Wasserschicht und dergleichen ist. Durch diesen Plasmaprozeß wird die Substratoberfläche aktiviert und es werden möglichst viele freie Bindungen an der Oberfläche geschaffen. Im nächsten Verfahrensschritt wird dieses Gas kontinuierlich durch ein nächstes Gas ersetzt, welches ein Plasma erzeugt, das eine Kopplungsschicht aufbaut, d.h. eine Schicht, die im atomaren Bereich von einer metallischen zu einer kovalenten Bindung überleitet. Anschließend wird kontinuierlich eine permeationsverhindernde Schicht aufgebracht, dies geschieht wie in den vorangegangenen Schritten wieder durch Ersetzen des in der Prozeßkammer vorhandenen Gases durch ein nächstes Gas. Dadurch wird eine harte, kratzfeste Oberflächenversiegelung aufgebracht. Während des gesamten Beschichtungverfahrens und des vorangehenden Oberflächenbehandlungsverfahrens bzw. Oberflächenreinigungsverfahrens werden die Prozeßparameter, wie Druck, Gasfluß, eingebrachte Leistung, Dauer der einzelnen Schritte und Abstand der zu behandelnden Oberfläche zum Plasma den an die zu erzeugende Schicht gestellten Anforderungen und dem eingebrachten Monomeren angepaßt, da der Plasmapolymerisationsprozeß vorteilhatterweise kontinuierlich durchgeführt wird, wird nach der Beendigung eines Prozeßschrittes das Gas und ggf. die übrigen Prozeßparameter geändert. Das bedeutet, daß für eine gewisse Zeit ein Gasgemisch im Reaktorraum vorliegt, so daß der Übergang von z.B. einer Ethylenschicht zu einer HMDSO-Schicht nicht Grenzfläche an Grenzfläche stattfindet. Dieser Übergang würde bei einem diskontinuierlichen Prozeß vorliegen; die Ethylengaszufuhr und das Plasma werden abgeschaltet, das Restgas entfemt und neues Prozeßgas z.B. HMDSO eingelassen und das Plasma wieder gezündet. Bei dem erfindungsgemäßen Verfahren findet vielmehr ein Übergang statt, bei dem der Ethylengehalt abnimmt und der HMDSO Gehalt zunimmt. Außerdem liegt hier nicht nur ein zwei Phasen Gemisch nebeneinander vor, sondern es reagieren noch zusätzlich Bruchstücke beider Gase miteinander. Dadurch entsteht eine Schicht, deren einzelne Schichtbestandteile kontinuierlich ineinander übergehen, so daß sie auf dem beschichteten Gegenstand eine Gradientenschicht bilden.The process according to the invention is carried out in a plasma polymerization plant. A monomeric gas is introduced into a vacuum container and excited by direct current or microwave energy so that a plasma is formed. This plasma can produce a layer on a surface or, for example, remove impurities from a surface. It is essential here that the entire coating process, which includes the production of a plurality of continuously merging layers, and the surface treatment of the object to be coated which precedes the actual coating process, is carried out continuously, ie without switching off the system. This continuity of the process is essential, since even with a short interruption of the process, a thin layer forms on the surface, to which the subsequent layers no longer adhere properly. First, a gas is introduced into the plasma polymerization system in which the objects to be treated are located, which gas remains in the process chamber until an ablating plasma has formed and the surface of the silver object is free of contaminants from the water layer and the like. The substrate surface is activated by this plasma process and as many free bonds as possible are created on the surface. In the next process step, this gas is continuously replaced by another gas replaced, which generates a plasma that builds up a coupling layer, ie a layer that converts in the atomic range from a metallic to a covalent bond. A permeation-preventing layer is then applied continuously, as in the previous steps, by replacing the gas present in the process chamber with a next gas. This creates a hard, scratch-resistant surface seal. During the entire coating process and the preceding surface treatment process or surface cleaning process, the process parameters, such as pressure, gas flow, power introduced, duration of the individual steps and distance of the surface to be treated from the plasma, are adapted to the requirements placed on the layer to be produced and the monomer introduced, since the plasma polymerization process is advantageously carried out continuously, the gas and possibly the other process parameters are changed after the completion of a process step. This means that a gas mixture is present in the reactor space for a certain time, so that the transition from, for example, an ethylene layer to an HMDSO layer does not take place interface-to-interface. This transition would be a discontinuous process; the ethylene gas supply and the plasma are switched off, the residual gas is removed and new process gas, for example HMDSO, is introduced and the plasma is ignited again. Rather, the process according to the invention takes place in which the ethylene content decreases and the HMDSO content increases. In addition, not only is there a two-phase mixture side by side, but fragments of both gases also react with one another. This creates a layer, the individual layer components of which continuously merge into one another, so that they form a gradient layer on the coated object.
In einer vorteilhatten Ausgestaltung kann das Verfahren so durchgeführt werden, daß während der gesamten Behandlung nur ein Monomeres in der Prozeßkammer vorhanden ist und die unterschiedlichen, zur Herstellung von unterschiedlichen, ineinander übergehenden Schichten, Plasmen durch die Änderung der Prozeßparameter aus diesem einen Monomeren hergestellt werden.In an advantageous embodiment, the method can be carried out in such a way that only one monomer is present in the process chamber during the entire treatment and the different plasmas, which are used to produce different layers which merge into one another, are produced from this one monomer by changing the process parameters.
Besonders vorteilhaft ist, daß die an den silbernen Gegenständen im oben geschilderten Verfahren aufgebrachte Schicht so aufgebaut ist, daß sie leicht entfernt werden kann; z.B. beim Silberbesteck kann diese Schicht durch den ersten Reinigungsvorgang in einem Geschirrspüler entfernt werden. Die Bestecke werden also nach ihrer Herstellung mit einer Schutzschicht versehen, welche solange an diesen verbleibt, bis diese in normalen Gebrauch, z.B. in einem Haushalt genommen werden. Es kann selbstverständlich auch vorgesehen sein, daß eine solche Schicht derart aufgebaut ist, daß sie so weit chemikalienbeständig ist, daß die beschichteten Gegenstände auch spülmaschinenfest sind. Durch die geeignete Wahl der Prozeßparameter und der Ausgangsmaterialien für die Prozeßführung können also die Eigenschaften der Beschichtung beeinflußt und den Anforderungen entsprechend angepaßt werden.It is particularly advantageous that the layer applied to the silver objects in the process described above is constructed in such a way that it can be easily removed; e.g. With silver cutlery, this layer can be removed by the first cleaning process in a dishwasher. The cutlery is provided with a protective layer after its manufacture, which remains on it until it is in normal use, e.g. to be taken in a household. It can of course also be provided that such a layer is constructed in such a way that it is so resistant to chemicals that the coated objects are also dishwasher safe. The properties of the coating can thus be influenced and adapted to the requirements by the suitable choice of the process parameters and the starting materials for the process control.
Von einem besonderen Vorteil ist es, daß erfindungsgemäß eine Schicht hergestellt wird, welche jedoch mehrere Funktionen gleichzeitig erfüllt. So wird eine feste Verbindung mit der metallischen Unterlage bei gleichzeitigem Anlaufschutz, bei gleichzeitiger Kratzfestigkeit, Chemikalienresistenz und gleichzeitiger Barrierewirkung für allergische Hautreaktionen erreicht . Alle Schichten sind außerdem optisch transparent und bei einer Schichtdicke von weniger als 100 µm auch optisch nicht wirksam.It is of particular advantage that a layer is produced according to the invention, but which fulfills several functions simultaneously. In this way, a firm connection with the metallic base is achieved with simultaneous tarnish protection, with simultaneous scratch resistance, chemical resistance and a simultaneous barrier effect for allergic skin reactions. All layers are also optically transparent and, with a layer thickness of less than 100 µm, are also not optically effective.
Das vorliegende Verfahren wird nachstehend anhand einiger Beispiele näher erläutert: Die Untersuchungen wurden alle in einer Niederdruckplasmapolymerisationsanlage mit einer Mikrowellenkanone Typ Tepla der Firma Technics Plasma und einer Druck- und Gasflußregelung der Firma MKS durchgeführt:The present process is explained in more detail below with the aid of a few examples: The investigations were all carried out in a low-pressure plasma polymerization system with a Tepla microwave cannon from Technics Plasma and a pressure and gas flow control from MKS:
Zur Vorbehandlung der zu beschichtenden Oberfläche wurde Argon (Ar), bei einem Gasfluß von 10 sccm und einem Druck von 0,05 mbar verwendet. Die Verfahrensdauer betrug 120 sec bei einer Leistung von 600 W. Zur Herstellung der nächsten Schicht, der sogenannten Kopplungsschicht wurde als Monomeres Ar/C₂H₄ verwendet bei einem Gasfluß von 10/10 sccm und einem Druck von 0,05 mbar. Die Zeitdauer dieses Verfahrensschrittes betrug 30 sec bei einer Leistung von 600 W. Anschließend wurde wiederum kontinuierlich eine Permeationsschicht erstellt durch Zugabe von Ar/HMDSO bei einem Gasfluß von 10/3 sscm und einem Druck von 0,05 mbar. Die Dauer dieses Verfahrensschrittes betrug 20 sec bei einer Leistung von 600 W. Die kratzfeste Schicht wurde hergestellt durch den Einsatz von O₂/HMDSO bei einem Gasfluß 20/2 sccm und einem Druck von 0,1 mbar. Die Dauer der Herstellung dieser Schicht betrug 80 sec bei einer Leistung von 600 W. Anschließend fand durch kontinuierliche Zugabe von Ar bei einem Gasfluß von 10 sccm und einem Druck von 0,1 mbar eine Nachbehandlung statt. Die Nachbehandlung dauerte 120 sec bei einer Leistung von 600 W.Argon (Ar) was used to pretreat the surface to be coated, with a gas flow of 10 sccm and a pressure of 0.05 mbar. The duration of the process was 120 sec at a power of 600 W. To produce the next layer, the so-called coupling layer, Ar / C₂H₄ was used as monomer at a gas flow of 10/10 sccm and a pressure of 0.05 mbar. The duration of this process step was 30 sec at a power of 600 W. Then again a permeation layer was continuously created by adding Ar / HMDSO at a gas flow of 10/3 sscm and a pressure of 0.05 mbar. The duration of this process step was 20 sec at an output of 600 W. The scratch-resistant layer was produced by using O₂ / HMDSO at a gas flow of 20/2 sccm and a pressure of 0.1 mbar. The duration of the production of this layer was 80 sec at a power of 600 W. Subsequent treatment was then carried out by continuously adding Ar at a gas flow of 10 sccm and a pressure of 0.1 mbar. The aftertreatment lasted 120 seconds at a power of 600 W.
Zur Vorbehandlung der zu beschichtenden Oberfläche wurde Argon (Ar), bei einem Gasfluß von 10 sccm und einem Druck von 0,2 mbar verwendet. Die Verfahrensdauer betrug 120 sec bei einer Leistung von 600 W. Zur Herstellung der nächsten Schicht, der sogenannten Kopplungsschicht wurde als Monomeres VTMS verwendet bei einem Gasfluß von 10 sscm und einem Druck von 0,2 mbar. Die Zeitdauer dieses Verfahrensschrittes betrug 30 sec bei einer Leistung von 400 W. Anschließend wurde wiederum kontinuierlich eine Permeationsschicht erstellt durch Zugabe von Ar/HMDSO bei einem Gasfluß von 10/2 sccm und einem Druck von 0,1 mbar. Die Dauer dieses Verfahrensschrittes betrug 30 sec bei einer Leistung von 600 W. Die kratzfeste Schicht wurde hergestellt durch den Einsatz von O₂/HMDSO bei einem Gasfluß 10/2 sccm und einem Druck von 0,1 mbar. Die Dauer der Herstellung dieser Schicht betrug 60 sec bei einer Leistung von 600 W. Anschließend fand durch kontinuierliche Zugabe von Ar bei einem Gasfluß von 10 sccm und einem Druck von 0,1 mbar eine Nachbehandlung statt. Die Nachbehandlung dauerte 120 sec bei einer Leistung von 600 W.Argon (Ar) was used to pretreat the surface to be coated, with a gas flow of 10 sccm and a pressure of 0.2 mbar. The duration of the process was 120 sec at a power of 600 W. To produce the next layer, the so-called coupling layer, VTMS was used as the monomer at a gas flow of 10 sscm and a pressure of 0.2 mbar. The duration of this process step was 30 seconds at a power of 400 W. Subsequently, a permeation layer was again continuously created by adding Ar / HMDSO at a gas flow of 10/2 sccm and a pressure of 0.1 mbar. The duration of this process step was 30 sec at a power of 600 W. The scratch-resistant layer was produced by using O₂ / HMDSO at a gas flow of 10/2 sccm and a pressure of 0.1 mbar. The duration of the production of this layer was 60 sec at a power of 600 W. Subsequent treatment was then carried out by continuously adding Ar at a gas flow of 10 sccm and a pressure of 0.1 mbar. The aftertreatment lasted 120 seconds at a power of 600 W.
Zur Vorbehandlung der zu beschichtenden Oberfläche wurde Argon (Ar), bei einem Gasfluß von 10 sccm und einem Druck von 0,1 mbar verwendet. Die Verfahrensdauer betrug 120 sec bei einer Leistung von 600 W. Zur Herstellung der nächsten Schicht, der sogenannten Kopplungsschicht wurde als Monomeres Ar/C₂H₄ verwendet bei einem Gasfluß von 10/10 sscm und einem Druck von 0,1 mbar. Die Zeitdauer dieses Verfahrensschrittes betrug 30 sec bei einer Leistung von 500 W. Anschließend wurde wiederum kontinuierlich eine Permeationsschicht erstellt durch Zugabe von C₂H₄ bei einem Gasfluß von 10 sccm und einem Druck von 0,2 mbar. Die Dauer dieses Verfahrensschrittes betrug 30 sec bei einer Leistung von 400 W. Die kratzfeste Schicht wurde hergestellt durch den Einsatz von O₂/HMDSO bei einem Gasfluß 10/2 sccm und einem Druck von 0,05 mbar. Die Dauer der Herstellung dieser Schicht betrug 75 sec bei einer Leistung von 700 W. Anschließend fand durch kontinuierliche Zugabe von Ar bei einem Gasfluß von 10 sccm und einem Druck von 0,1 mbar eine Nachbehandlung statt. Die Nachbehandlung dauerte 120 sec bei einer Leistung von 600 W.Argon (Ar) was used to pretreat the surface to be coated, with a gas flow of 10 sccm and a pressure of 0.1 mbar. The duration of the procedure was 120 sec at a power of 600 W. To produce the next layer, the so-called coupling layer, Ar / C₂H₄ was used as the monomer at a gas flow of 10/10 sscm and a pressure of 0.1 mbar. The duration of this process step was 30 sec at a power of 500 W. Then again a permeation layer was continuously created by adding C₂H₄ at a gas flow of 10 sccm and a pressure of 0.2 mbar. The duration of this process step was 30 seconds at an output of 400 W. The scratch-resistant layer was produced by using O₂ / HMDSO at a gas flow of 10/2 sccm and a pressure of 0.05 mbar. The duration of the production of this layer was 75 sec at a power of 700 W. Subsequent treatment was then carried out by continuously adding Ar at a gas flow of 10 sccm and a pressure of 0.1 mbar. The aftertreatment lasted 120 seconds at a power of 600 W.
Das behandelte Silberbesteck wurde im Vergleich zu unbeschichteten Materialien in schwefelhaltiger Atmosphäre und Flüssigkeit getestet und wies einen sehr guten Anlaufschutz auf.The treated silver cutlery was tested in comparison with uncoated materials in a sulfur-containing atmosphere and liquid and showed very good tarnish protection.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4216999A DE4216999C2 (en) | 1992-05-22 | 1992-05-22 | Process for the surface coating of silver objects and protective layer produced by this process |
DE4216999 | 1992-05-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0570944A1 true EP0570944A1 (en) | 1993-11-24 |
EP0570944B1 EP0570944B1 (en) | 1998-08-19 |
Family
ID=6459515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93108186A Expired - Lifetime EP0570944B1 (en) | 1992-05-22 | 1993-05-19 | Process for coating silver objects and coating made by this process |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0570944B1 (en) |
DE (2) | DE4216999C2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997001656A1 (en) * | 1995-06-27 | 1997-01-16 | Behr Gmbh & Co. | Plasmapolymer surface coating, coating process therefor and heat exchanger coated therewith |
WO1999022878A2 (en) * | 1997-10-31 | 1999-05-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for corrosion-resistant coating of metal substrates by means of plasma polymerisation |
WO2000053823A1 (en) * | 1999-03-09 | 2000-09-14 | Centre National De La Recherche Scientifique | Method for treating polymer surface |
WO2002005972A2 (en) * | 2000-07-17 | 2002-01-24 | Acmos Chemie Gmbh & Co. | Method for producing a permanent demoulding layer by plasma polymerization on the surface of a moulded-part tool |
DE19732217C2 (en) * | 1997-07-26 | 2002-12-12 | Zsw | Multi-function encapsulation layer structure for photovoltaic semiconductor components and method for their production |
EP1312422A2 (en) * | 1997-11-21 | 2003-05-21 | Korea Institute of Science and Technology | Plasma polymerization on surface of material |
EP1462183A1 (en) * | 2003-03-28 | 2004-09-29 | Sulzer Markets and Technology AG | Method of treating the surface of a substrate and substrate thus treated |
WO2005048708A1 (en) * | 2003-11-17 | 2005-06-02 | Bio-Gate Ag | Antimicrobial composite material |
CZ300287B6 (en) * | 2001-07-17 | 2009-04-08 | Acmos Chemie Gmbh & Co. | Process for producing permanent separation layer facilitating removal of a molding from a mold by plasma polymerization on surface of the mold, a mold produced thereby and its use |
WO2010125178A1 (en) * | 2009-04-30 | 2010-11-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Metal substrates having a scratch-proof and extensible corrosion protection layer and method for the production thereof |
WO2017051019A1 (en) * | 2015-09-24 | 2017-03-30 | Europlasma Nv | Polymer coatings and methods for depositing polymer coatings |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10130666A1 (en) * | 2001-06-28 | 2003-01-23 | Applied Films Gmbh & Co Kg | Softcoat |
DE10131156A1 (en) | 2001-06-29 | 2003-01-16 | Fraunhofer Ges Forschung | Articles with a plasma polymer coating and process for its production |
DE10324570A1 (en) * | 2003-05-30 | 2004-12-23 | Daimlerchrysler Ag | Surface treatment by spark erosion of metal or metal compounds, especially from the surface of an engine with an aluminum-silicate cylinder running surface, whereby the cylinder itself acts as the cathode for plasma formation |
DE102015115167B4 (en) | 2015-09-09 | 2017-03-30 | Lisa Dräxlmaier GmbH | Shaped body comprising a functional layer, process for its preparation and its use |
DE102016101197A1 (en) * | 2016-01-25 | 2017-07-27 | Hella Kgaa Hueck & Co. | Process for the surface coating of a component under vacuum and vacuum coating system for this purpose |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4524089A (en) * | 1983-11-22 | 1985-06-18 | Olin Corporation | Three-step plasma treatment of copper foils to enhance their laminate adhesion |
WO1991012092A1 (en) * | 1990-02-14 | 1991-08-22 | E.I. Du Pont De Nemours And Company | Method of coating steel substrate using low temperature plasma processes and priming |
DE4019539A1 (en) * | 1990-06-19 | 1992-01-02 | Siemens Ag | Permanent anti-wetting coating prodn. on surface esp. of orifice plate - for ink jet printing head, by coating with silicone oil and crosslinking in plasma |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3921652A1 (en) * | 1989-06-30 | 1991-01-17 | Siemens Ag | Producing polymer coating on nozzle plate e.g. for ink jet printer - with oxygen plasma ion etching from uncoated side |
-
1992
- 1992-05-22 DE DE4216999A patent/DE4216999C2/en not_active Expired - Fee Related
-
1993
- 1993-05-19 EP EP93108186A patent/EP0570944B1/en not_active Expired - Lifetime
- 1993-05-19 DE DE59308883T patent/DE59308883D1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4524089A (en) * | 1983-11-22 | 1985-06-18 | Olin Corporation | Three-step plasma treatment of copper foils to enhance their laminate adhesion |
WO1991012092A1 (en) * | 1990-02-14 | 1991-08-22 | E.I. Du Pont De Nemours And Company | Method of coating steel substrate using low temperature plasma processes and priming |
DE4019539A1 (en) * | 1990-06-19 | 1992-01-02 | Siemens Ag | Permanent anti-wetting coating prodn. on surface esp. of orifice plate - for ink jet printing head, by coating with silicone oil and crosslinking in plasma |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 015, no. 034 (C-799)28. Januar 1991 & JP-A-02 272 003 ( CITIZEN WATCH CO. LTD. ) 6. November 1990 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997001656A1 (en) * | 1995-06-27 | 1997-01-16 | Behr Gmbh & Co. | Plasmapolymer surface coating, coating process therefor and heat exchanger coated therewith |
DE19732217C2 (en) * | 1997-07-26 | 2002-12-12 | Zsw | Multi-function encapsulation layer structure for photovoltaic semiconductor components and method for their production |
WO1999022878A2 (en) * | 1997-10-31 | 1999-05-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for corrosion-resistant coating of metal substrates by means of plasma polymerisation |
WO1999022878A3 (en) * | 1997-10-31 | 1999-07-15 | Fraunhofer Ges Forschung | Method for corrosion-resistant coating of metal substrates by means of plasma polymerisation |
US6242054B1 (en) | 1997-10-31 | 2001-06-05 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E. V. | Method for corrosion-resistant coating of metal substrates by means of plasma polymerization |
CZ297047B6 (en) * | 1997-10-31 | 2006-08-16 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung | Method for corrosion-resistant coating of metal substrates by means of plasma polymerization |
US6528170B2 (en) | 1997-10-31 | 2003-03-04 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E. V. | Metal substrate with a corrosion-resistant coating produced by means of plasma polymerization |
EP1312422A3 (en) * | 1997-11-21 | 2006-02-08 | Korea Institute of Science and Technology | Plasma polymerization on surface of material |
EP1312422A2 (en) * | 1997-11-21 | 2003-05-21 | Korea Institute of Science and Technology | Plasma polymerization on surface of material |
WO2000053823A1 (en) * | 1999-03-09 | 2000-09-14 | Centre National De La Recherche Scientifique | Method for treating polymer surface |
US6949272B2 (en) | 2000-07-17 | 2005-09-27 | Acmos Chemie Gmbh & Co. | Method for producing a permanent demoulding layer by plasma polymerization on the surface of a moulded-part tool, a moulded-part tool produced by said method and the use thereof |
WO2002005972A3 (en) * | 2000-07-17 | 2002-09-26 | Acmos Chemie Gmbh & Co | Method for producing a permanent demoulding layer by plasma polymerization on the surface of a moulded-part tool |
WO2002005972A2 (en) * | 2000-07-17 | 2002-01-24 | Acmos Chemie Gmbh & Co. | Method for producing a permanent demoulding layer by plasma polymerization on the surface of a moulded-part tool |
CZ300287B6 (en) * | 2001-07-17 | 2009-04-08 | Acmos Chemie Gmbh & Co. | Process for producing permanent separation layer facilitating removal of a molding from a mold by plasma polymerization on surface of the mold, a mold produced thereby and its use |
EP1462183A1 (en) * | 2003-03-28 | 2004-09-29 | Sulzer Markets and Technology AG | Method of treating the surface of a substrate and substrate thus treated |
US9622471B2 (en) | 2003-11-17 | 2017-04-18 | Bio-Gate Ag | Coating material |
EP1790224A1 (en) * | 2003-11-17 | 2007-05-30 | Bio-Gate AG | Antimicrobial layered material |
WO2005048708A1 (en) * | 2003-11-17 | 2005-06-02 | Bio-Gate Ag | Antimicrobial composite material |
US10299472B2 (en) | 2003-11-17 | 2019-05-28 | Bio-Gate Ag | Coating material |
WO2010125178A1 (en) * | 2009-04-30 | 2010-11-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Metal substrates having a scratch-proof and extensible corrosion protection layer and method for the production thereof |
CN108141963A (en) * | 2015-09-24 | 2018-06-08 | 欧洲等离子公司 | Polymer coating and the method for deposited polymeric coatings |
WO2017051019A1 (en) * | 2015-09-24 | 2017-03-30 | Europlasma Nv | Polymer coatings and methods for depositing polymer coatings |
CN108141963B (en) * | 2015-09-24 | 2020-11-06 | 欧洲等离子公司 | Polymeric coating and method for depositing a polymeric coating |
US11419220B2 (en) | 2015-09-24 | 2022-08-16 | Europlasma Nv | Polymer coatings and methods for depositing polymer coatings |
Also Published As
Publication number | Publication date |
---|---|
EP0570944B1 (en) | 1998-08-19 |
DE4216999A1 (en) | 1993-11-25 |
DE4216999C2 (en) | 1996-03-14 |
DE59308883D1 (en) | 1998-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4216999C2 (en) | Process for the surface coating of silver objects and protective layer produced by this process | |
DE3402875C2 (en) | Plastic articles with a ceramic coating | |
DE69914222T2 (en) | Process for metallizing the surface of a solid polymer substrate and product thus obtained | |
DE102004036170B4 (en) | Vacuum coating system and method for vacuum coating and their use | |
DE3786800T2 (en) | System for continuous composite coating of strip-like goods. | |
EP1432529B1 (en) | Article having a plasmapolymer coating | |
EP2041332B1 (en) | Method and device for plasma-assisted chemical vapour deposition on the inner wall of a hollow body | |
DE60314634T2 (en) | TITANIUM DIOXIDE COATINGS MADE BY PLASMA CVD AT ATMOSPHERIC PRESSURE | |
DE4204082A1 (en) | METHOD FOR PRODUCING A ADHESIVE LAYER ON WORKPIECE SURFACES | |
EP2102381A1 (en) | Antimicrobial material, and a method for the production of an antimicrobial material | |
DE10224777A1 (en) | High-velocity cold gas particle-spraying process for forming coating on workpiece, intercepts, purifies and collects carrier gas after use | |
EP0753599B2 (en) | Method for producing corrosion and wear resistant protective coatings on iron based substrates | |
DE102004005313A1 (en) | Method for producing an ultra-barrier layer system | |
WO1997023661A2 (en) | Process for producing organically mofified oxide, oxynitride or nitride layers by vacuum deposition | |
DE3852939T2 (en) | Process for coating artificial optical substrates. | |
DE19953667B4 (en) | Layer with selectively functionalized surface, process for the preparation and their use | |
EP3013996B1 (en) | Process for manufacturing of decorative hipims hard material layers | |
DE10017846C2 (en) | Method of depositing and using a polymer layer | |
DE102006015591B3 (en) | Organic material with a catalytically coated surface and process for its production | |
WO2002076633A1 (en) | Coating for a handle | |
DE69314090T2 (en) | Ion-selective electrode and method for producing the same | |
EP0920340A1 (en) | Device for catalytically dissolving hydrogen peroxide | |
DE4025615C2 (en) | ||
DE3002643A1 (en) | METHOD FOR APPLYING COVER LAYERS TO REFLECTIVE SURFACES, AND SYSTEM FOR REALIZING THEM | |
EP1655385B1 (en) | Method for making optical coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19940113 |
|
17Q | First examination report despatched |
Effective date: 19970224 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 59308883 Country of ref document: DE Date of ref document: 19980924 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19981118 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060519 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060524 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070726 Year of fee payment: 15 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070519 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081202 |