[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0570944A1 - Process for coating silver objects and coating made by this process - Google Patents

Process for coating silver objects and coating made by this process Download PDF

Info

Publication number
EP0570944A1
EP0570944A1 EP93108186A EP93108186A EP0570944A1 EP 0570944 A1 EP0570944 A1 EP 0570944A1 EP 93108186 A EP93108186 A EP 93108186A EP 93108186 A EP93108186 A EP 93108186A EP 0570944 A1 EP0570944 A1 EP 0570944A1
Authority
EP
European Patent Office
Prior art keywords
layer
gas
plasma
coating
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93108186A
Other languages
German (de)
French (fr)
Other versions
EP0570944B1 (en
Inventor
Klaus-Dieter Dipl.-Ing. Vissing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0570944A1 publication Critical patent/EP0570944A1/en
Application granted granted Critical
Publication of EP0570944B1 publication Critical patent/EP0570944B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • A44C27/001Materials for manufacturing jewellery
    • A44C27/005Coating layers for jewellery
    • A44C27/007Non-metallic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/142Pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/40Metallic substrate based on other transition elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2451/00Type of carrier, type of coating (Multilayers)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2507/00Polyolefins
    • B05D2507/01Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers

Definitions

  • the invention relates to a method for the surface coating of silver objects and a protective layer produced in this method.
  • Untreated silver objects tarnish over time if no suitable measures have been taken.
  • silver cutlery and silver jewelry For example silver cutlery and silver jewelry.
  • the low hardness of this material means that the surface is easily scratched in use and thus the appearance is impaired.
  • Another problem when handling silver objects is allergic skin reactions, which occur in many people.
  • DE 39 21 652 and DE 40 19 539 which are suitable for producing polymer coatings on metallic surfaces, in particular of nickel.
  • the method described in DE 40 19 539 A1 involves the generation of dewetting layers.
  • DE 39 21 652 A1 describes a method for generating a Coating on one side of a printer nozzle plate, it being essential that there is a sharp structuring, particularly in the area of openings.
  • the object of the present invention is to provide a method which is inexpensive and simple to carry out and at the same time allows the production of a layer on a silver object which protects the material from chemical or mechanical damage and is at the same time skin-friendly and non-toxic.
  • the layer should optionally be easily removable.
  • the coating must also be optically transparent and optically ineffective so that the silver character is not lost.
  • the process according to the invention is carried out in a plasma polymerization plant.
  • a monomeric gas is introduced into a vacuum container and excited by direct current or microwave energy so that a plasma is formed.
  • This plasma can produce a layer on a surface or, for example, remove impurities from a surface.
  • the entire coating process which includes the production of a plurality of continuously merging layers, and the surface treatment of the object to be coated which precedes the actual coating process, is carried out continuously, ie without switching off the system. This continuity of the process is essential, since even with a short interruption of the process, a thin layer forms on the surface, to which the subsequent layers no longer adhere properly.
  • a gas is introduced into the plasma polymerization system in which the objects to be treated are located, which gas remains in the process chamber until an ablating plasma has formed and the surface of the silver object is free of contaminants from the water layer and the like.
  • the substrate surface is activated by this plasma process and as many free bonds as possible are created on the surface.
  • this gas is continuously replaced by another gas replaced, which generates a plasma that builds up a coupling layer, ie a layer that converts in the atomic range from a metallic to a covalent bond.
  • a permeation-preventing layer is then applied continuously, as in the previous steps, by replacing the gas present in the process chamber with a next gas. This creates a hard, scratch-resistant surface seal.
  • the process parameters such as pressure, gas flow, power introduced, duration of the individual steps and distance of the surface to be treated from the plasma, are adapted to the requirements placed on the layer to be produced and the monomer introduced, since the plasma polymerization process is advantageously carried out continuously, the gas and possibly the other process parameters are changed after the completion of a process step.
  • a gas mixture is present in the reactor space for a certain time, so that the transition from, for example, an ethylene layer to an HMDSO layer does not take place interface-to-interface.
  • This transition would be a discontinuous process; the ethylene gas supply and the plasma are switched off, the residual gas is removed and new process gas, for example HMDSO, is introduced and the plasma is ignited again. Rather, the process according to the invention takes place in which the ethylene content decreases and the HMDSO content increases. In addition, not only is there a two-phase mixture side by side, but fragments of both gases also react with one another. This creates a layer, the individual layer components of which continuously merge into one another, so that they form a gradient layer on the coated object.
  • new process gas for example HMDSO
  • the method can be carried out in such a way that only one monomer is present in the process chamber during the entire treatment and the different plasmas, which are used to produce different layers which merge into one another, are produced from this one monomer by changing the process parameters.
  • the layer applied to the silver objects in the process described above is constructed in such a way that it can be easily removed; e.g. With silver cutlery, this layer can be removed by the first cleaning process in a dishwasher.
  • the cutlery is provided with a protective layer after its manufacture, which remains on it until it is in normal use, e.g. to be taken in a household.
  • a protective layer after its manufacture, which remains on it until it is in normal use, e.g. to be taken in a household.
  • such a layer is constructed in such a way that it is so resistant to chemicals that the coated objects are also dishwasher safe.
  • the properties of the coating can thus be influenced and adapted to the requirements by the suitable choice of the process parameters and the starting materials for the process control.
  • a layer is produced according to the invention, but which fulfills several functions simultaneously.
  • a firm connection with the metallic base is achieved with simultaneous tarnish protection, with simultaneous scratch resistance, chemical resistance and a simultaneous barrier effect for allergic skin reactions.
  • All layers are also optically transparent and, with a layer thickness of less than 100 ⁇ m, are also not optically effective.
  • Argon (Ar) was used to pretreat the surface to be coated, with a gas flow of 10 sccm and a pressure of 0.05 mbar. The duration of the process was 120 sec at a power of 600 W.
  • Ar / C2H4 was used as monomer at a gas flow of 10/10 sccm and a pressure of 0.05 mbar. The duration of this process step was 30 sec at a power of 600 W.
  • a permeation layer was continuously created by adding Ar / HMDSO at a gas flow of 10/3 scm and a pressure of 0.05 mbar. The duration of this process step was 20 sec at an output of 600 W.
  • the scratch-resistant layer was produced by using O2 / HMDSO at a gas flow of 20/2 sccm and a pressure of 0.1 mbar. The duration of the production of this layer was 80 sec at a power of 600 W. Subsequent treatment was then carried out by continuously adding Ar at a gas flow of 10 sccm and a pressure of 0.1 mbar. The aftertreatment lasted 120 seconds at a power of 600 W.
  • Argon (Ar) was used to pretreat the surface to be coated, with a gas flow of 10 sccm and a pressure of 0.2 mbar. The duration of the process was 120 sec at a power of 600 W.
  • VTMS was used as the monomer at a gas flow of 10 sscm and a pressure of 0.2 mbar. The duration of this process step was 30 seconds at a power of 400 W.
  • a permeation layer was again continuously created by adding Ar / HMDSO at a gas flow of 10/2 sccm and a pressure of 0.1 mbar. The duration of this process step was 30 sec at a power of 600 W.
  • the scratch-resistant layer was produced by using O2 / HMDSO at a gas flow of 10/2 sccm and a pressure of 0.1 mbar. The duration of the production of this layer was 60 sec at a power of 600 W. Subsequent treatment was then carried out by continuously adding Ar at a gas flow of 10 sccm and a pressure of 0.1 mbar. The aftertreatment lasted 120 seconds at a power of 600 W.
  • Argon (Ar) was used to pretreat the surface to be coated, with a gas flow of 10 sccm and a pressure of 0.1 mbar. The duration of the procedure was 120 sec at a power of 600 W.
  • Ar / C2H4 was used as the monomer at a gas flow of 10/10 sscm and a pressure of 0.1 mbar. The duration of this process step was 30 sec at a power of 500 W.
  • a permeation layer was continuously created by adding C2H4 at a gas flow of 10 sccm and a pressure of 0.2 mbar. The duration of this process step was 30 seconds at an output of 400 W.
  • the scratch-resistant layer was produced by using O2 / HMDSO at a gas flow of 10/2 sccm and a pressure of 0.05 mbar. The duration of the production of this layer was 75 sec at a power of 700 W. Subsequent treatment was then carried out by continuously adding Ar at a gas flow of 10 sccm and a pressure of 0.1 mbar. The aftertreatment lasted 120 seconds at a power of 600 W.
  • the treated silver cutlery was tested in comparison with uncoated materials in a sulfur-containing atmosphere and liquid and showed very good tarnish protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The invention relates to a process for the surface coating of silver objects, in which the coating operation is carried out in a plasma polymerisation plant, with continuous supply of gas and gas exchange of the monomer. In the first process step, the surface is pretreated, and in further process steps, the surface of the silver object is provided with a gradient layer.

Description

Die Erfindung betrifft ein Verfahren zur Oberflächenbeschichtung von Silbergegenständen und eine in diesem Verfahren hergestellte Schutzschicht.The invention relates to a method for the surface coating of silver objects and a protective layer produced in this method.

Unbehandelte Gegenstände aus Silber laufen mit der Zeit an, wenn dagegen keine geeignete Maßnahmen getroffen wurden. Beispielsweise Silberbestecke und Silberschmuck. Zudem bedingt die geringe Härte dieses Materials, daß die Oberfläche im Gebrauch leicht verkratzt und damit das Aussehen beeinträchtigt wird. Ein weiteres Problem im Umgang mit Gegenständen aus Silber sind allergische Hautreaktionen, welche bei vielen Menschen auftreten.Untreated silver objects tarnish over time if no suitable measures have been taken. For example silver cutlery and silver jewelry. In addition, the low hardness of this material means that the surface is easily scratched in use and thus the appearance is impaired. Another problem when handling silver objects is allergic skin reactions, which occur in many people.

Bisher eingesetzte Verfahren, wie z.B. Vernieren und Zaponieren oder aber auch die Oberflächenveredelung mit Hilfe von Merkaptan sind unzureichend. Entweder sind sie nicht haftfest, nicht transparent und chemisch/mechanisch, nicht stabil oder sie sind giftig.Previously used processes, such as Vernieren and Zaponieren or also the surface finishing with the help of Merkaptan are insufficient. Either they are not adherent, not transparent and chemical / mechanical, not stable or they are toxic.

Aus der DE 39 21 652 und der DE 40 19 539 sind Verfahren bekannt, die zum Erzeugen von Polymerbeschichtungen auf metallischen Oberflächen, insbesondere aus Nickel geeignet sind. Bei dem in der DE 40 19 539 A1 beschriebenen Verfahren handelt es sich um Erzeugung von entnetzenden Schichten. Die DE 39 21 652 A1 beschreibt ein Verfahren zur Erzeugung einer Beschichtung auf einer Seite einer Drucker-Düsenplatte, wobei es wesentlich ist, daß insbesondere im Bereich von Öffnungen eine scharfe Strukturierung erfolgt.Methods are known from DE 39 21 652 and DE 40 19 539 which are suitable for producing polymer coatings on metallic surfaces, in particular of nickel. The method described in DE 40 19 539 A1 involves the generation of dewetting layers. DE 39 21 652 A1 describes a method for generating a Coating on one side of a printer nozzle plate, it being essential that there is a sharp structuring, particularly in the area of openings.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren anzugeben, welches preisgünstig und einfach durchführbar ist und gleichzeitig die Herstellung einer Schicht auf einem silbernen Gegenstand erlaubt, welche das Material vor chemischen oder mechanischen Beschädigung schützt und gleichzeitig hautverträglich und ungiftig ist. Darüber hinaus sollte die Schicht wahlweise einfach entfernbar sein. Schließlich muß die Beschichtung auch noch optisch transparent und optisch unwirksam sein, damit der Silbercharakter nicht verloren geht.The object of the present invention is to provide a method which is inexpensive and simple to carry out and at the same time allows the production of a layer on a silver object which protects the material from chemical or mechanical damage and is at the same time skin-friendly and non-toxic. In addition, the layer should optionally be easily removable. Finally, the coating must also be optically transparent and optically ineffective so that the silver character is not lost.

Diese Aufgabe ist durch das im Anspruch 1 angegebene Verfahren gelöst. Die Unteransprüche stellen vorteilhatte Weiterbildungen dar.This object is achieved by the method specified in claim 1. The subclaims represent advantageous developments.

Das erfindungsgemäße Verfahren wird in einer Plasmapolymerisationsanlage durchgeführt. Dabei wird in einen Unterdruckbehälter ein monomeres Gas eingeführt und durch Gleichstrom oder Mikrowellenenergie so angeregt, daß sich ein Plasma bildet. Dieses Plasma kann auf einer Oberfläche eine Schicht erzeugen oder eine Oberfläche, z.B. von Verunreinigungen befreien. Wesentlich dabei ist, daß der gesamte Beschichtungsprozeß, wozu die Herstellung mehrerer, kontinuierlich ineinander übergehenden Schichten gehört sowie die dem eigentlichen Beschichtungsprozeß vorausgehende Oberflächenbehandlung des zu beschichtenden Gegenstandes kontinuierlich, d.h. ohne Abschalten der Anlage durchgeführt wird. Diese Kontinuität des Verfahrens ist wesentlich, da schon bereits bei einer kurzen Unterbrechung des Verfahrens sich auf der Oberfläche eine dünne Schicht bildet, an der die Haftung der nachfolgenden Schichten nicht mehr einwandfrei ist. Zunächst wird in die Plasmapolymerisationsanlage, in der sich die zu behandelnden Gegenstände befinden ein Gas eingeführt, welches in der Prozeßkammer solange verbleibt, bis sich ein abtragendes Plasma gebildet hat und die Oberfläche des Silbergegenstandes frei von Verunreinigungen von Wasserschicht und dergleichen ist. Durch diesen Plasmaprozeß wird die Substratoberfläche aktiviert und es werden möglichst viele freie Bindungen an der Oberfläche geschaffen. Im nächsten Verfahrensschritt wird dieses Gas kontinuierlich durch ein nächstes Gas ersetzt, welches ein Plasma erzeugt, das eine Kopplungsschicht aufbaut, d.h. eine Schicht, die im atomaren Bereich von einer metallischen zu einer kovalenten Bindung überleitet. Anschließend wird kontinuierlich eine permeationsverhindernde Schicht aufgebracht, dies geschieht wie in den vorangegangenen Schritten wieder durch Ersetzen des in der Prozeßkammer vorhandenen Gases durch ein nächstes Gas. Dadurch wird eine harte, kratzfeste Oberflächenversiegelung aufgebracht. Während des gesamten Beschichtungverfahrens und des vorangehenden Oberflächenbehandlungsverfahrens bzw. Oberflächenreinigungsverfahrens werden die Prozeßparameter, wie Druck, Gasfluß, eingebrachte Leistung, Dauer der einzelnen Schritte und Abstand der zu behandelnden Oberfläche zum Plasma den an die zu erzeugende Schicht gestellten Anforderungen und dem eingebrachten Monomeren angepaßt, da der Plasmapolymerisationsprozeß vorteilhatterweise kontinuierlich durchgeführt wird, wird nach der Beendigung eines Prozeßschrittes das Gas und ggf. die übrigen Prozeßparameter geändert. Das bedeutet, daß für eine gewisse Zeit ein Gasgemisch im Reaktorraum vorliegt, so daß der Übergang von z.B. einer Ethylenschicht zu einer HMDSO-Schicht nicht Grenzfläche an Grenzfläche stattfindet. Dieser Übergang würde bei einem diskontinuierlichen Prozeß vorliegen; die Ethylengaszufuhr und das Plasma werden abgeschaltet, das Restgas entfemt und neues Prozeßgas z.B. HMDSO eingelassen und das Plasma wieder gezündet. Bei dem erfindungsgemäßen Verfahren findet vielmehr ein Übergang statt, bei dem der Ethylengehalt abnimmt und der HMDSO Gehalt zunimmt. Außerdem liegt hier nicht nur ein zwei Phasen Gemisch nebeneinander vor, sondern es reagieren noch zusätzlich Bruchstücke beider Gase miteinander. Dadurch entsteht eine Schicht, deren einzelne Schichtbestandteile kontinuierlich ineinander übergehen, so daß sie auf dem beschichteten Gegenstand eine Gradientenschicht bilden.The process according to the invention is carried out in a plasma polymerization plant. A monomeric gas is introduced into a vacuum container and excited by direct current or microwave energy so that a plasma is formed. This plasma can produce a layer on a surface or, for example, remove impurities from a surface. It is essential here that the entire coating process, which includes the production of a plurality of continuously merging layers, and the surface treatment of the object to be coated which precedes the actual coating process, is carried out continuously, ie without switching off the system. This continuity of the process is essential, since even with a short interruption of the process, a thin layer forms on the surface, to which the subsequent layers no longer adhere properly. First, a gas is introduced into the plasma polymerization system in which the objects to be treated are located, which gas remains in the process chamber until an ablating plasma has formed and the surface of the silver object is free of contaminants from the water layer and the like. The substrate surface is activated by this plasma process and as many free bonds as possible are created on the surface. In the next process step, this gas is continuously replaced by another gas replaced, which generates a plasma that builds up a coupling layer, ie a layer that converts in the atomic range from a metallic to a covalent bond. A permeation-preventing layer is then applied continuously, as in the previous steps, by replacing the gas present in the process chamber with a next gas. This creates a hard, scratch-resistant surface seal. During the entire coating process and the preceding surface treatment process or surface cleaning process, the process parameters, such as pressure, gas flow, power introduced, duration of the individual steps and distance of the surface to be treated from the plasma, are adapted to the requirements placed on the layer to be produced and the monomer introduced, since the plasma polymerization process is advantageously carried out continuously, the gas and possibly the other process parameters are changed after the completion of a process step. This means that a gas mixture is present in the reactor space for a certain time, so that the transition from, for example, an ethylene layer to an HMDSO layer does not take place interface-to-interface. This transition would be a discontinuous process; the ethylene gas supply and the plasma are switched off, the residual gas is removed and new process gas, for example HMDSO, is introduced and the plasma is ignited again. Rather, the process according to the invention takes place in which the ethylene content decreases and the HMDSO content increases. In addition, not only is there a two-phase mixture side by side, but fragments of both gases also react with one another. This creates a layer, the individual layer components of which continuously merge into one another, so that they form a gradient layer on the coated object.

In einer vorteilhatten Ausgestaltung kann das Verfahren so durchgeführt werden, daß während der gesamten Behandlung nur ein Monomeres in der Prozeßkammer vorhanden ist und die unterschiedlichen, zur Herstellung von unterschiedlichen, ineinander übergehenden Schichten, Plasmen durch die Änderung der Prozeßparameter aus diesem einen Monomeren hergestellt werden.In an advantageous embodiment, the method can be carried out in such a way that only one monomer is present in the process chamber during the entire treatment and the different plasmas, which are used to produce different layers which merge into one another, are produced from this one monomer by changing the process parameters.

Besonders vorteilhaft ist, daß die an den silbernen Gegenständen im oben geschilderten Verfahren aufgebrachte Schicht so aufgebaut ist, daß sie leicht entfernt werden kann; z.B. beim Silberbesteck kann diese Schicht durch den ersten Reinigungsvorgang in einem Geschirrspüler entfernt werden. Die Bestecke werden also nach ihrer Herstellung mit einer Schutzschicht versehen, welche solange an diesen verbleibt, bis diese in normalen Gebrauch, z.B. in einem Haushalt genommen werden. Es kann selbstverständlich auch vorgesehen sein, daß eine solche Schicht derart aufgebaut ist, daß sie so weit chemikalienbeständig ist, daß die beschichteten Gegenstände auch spülmaschinenfest sind. Durch die geeignete Wahl der Prozeßparameter und der Ausgangsmaterialien für die Prozeßführung können also die Eigenschaften der Beschichtung beeinflußt und den Anforderungen entsprechend angepaßt werden.It is particularly advantageous that the layer applied to the silver objects in the process described above is constructed in such a way that it can be easily removed; e.g. With silver cutlery, this layer can be removed by the first cleaning process in a dishwasher. The cutlery is provided with a protective layer after its manufacture, which remains on it until it is in normal use, e.g. to be taken in a household. It can of course also be provided that such a layer is constructed in such a way that it is so resistant to chemicals that the coated objects are also dishwasher safe. The properties of the coating can thus be influenced and adapted to the requirements by the suitable choice of the process parameters and the starting materials for the process control.

Von einem besonderen Vorteil ist es, daß erfindungsgemäß eine Schicht hergestellt wird, welche jedoch mehrere Funktionen gleichzeitig erfüllt. So wird eine feste Verbindung mit der metallischen Unterlage bei gleichzeitigem Anlaufschutz, bei gleichzeitiger Kratzfestigkeit, Chemikalienresistenz und gleichzeitiger Barrierewirkung für allergische Hautreaktionen erreicht . Alle Schichten sind außerdem optisch transparent und bei einer Schichtdicke von weniger als 100 µm auch optisch nicht wirksam.It is of particular advantage that a layer is produced according to the invention, but which fulfills several functions simultaneously. In this way, a firm connection with the metallic base is achieved with simultaneous tarnish protection, with simultaneous scratch resistance, chemical resistance and a simultaneous barrier effect for allergic skin reactions. All layers are also optically transparent and, with a layer thickness of less than 100 µm, are also not optically effective.

Das vorliegende Verfahren wird nachstehend anhand einiger Beispiele näher erläutert: Die Untersuchungen wurden alle in einer Niederdruckplasmapolymerisationsanlage mit einer Mikrowellenkanone Typ Tepla der Firma Technics Plasma und einer Druck- und Gasflußregelung der Firma MKS durchgeführt:The present process is explained in more detail below with the aid of a few examples: The investigations were all carried out in a low-pressure plasma polymerization system with a Tepla microwave cannon from Technics Plasma and a pressure and gas flow control from MKS:

Beispiel 1:Example 1:

Zur Vorbehandlung der zu beschichtenden Oberfläche wurde Argon (Ar), bei einem Gasfluß von 10 sccm und einem Druck von 0,05 mbar verwendet. Die Verfahrensdauer betrug 120 sec bei einer Leistung von 600 W. Zur Herstellung der nächsten Schicht, der sogenannten Kopplungsschicht wurde als Monomeres Ar/C₂H₄ verwendet bei einem Gasfluß von 10/10 sccm und einem Druck von 0,05 mbar. Die Zeitdauer dieses Verfahrensschrittes betrug 30 sec bei einer Leistung von 600 W. Anschließend wurde wiederum kontinuierlich eine Permeationsschicht erstellt durch Zugabe von Ar/HMDSO bei einem Gasfluß von 10/3 sscm und einem Druck von 0,05 mbar. Die Dauer dieses Verfahrensschrittes betrug 20 sec bei einer Leistung von 600 W. Die kratzfeste Schicht wurde hergestellt durch den Einsatz von O₂/HMDSO bei einem Gasfluß 20/2 sccm und einem Druck von 0,1 mbar. Die Dauer der Herstellung dieser Schicht betrug 80 sec bei einer Leistung von 600 W. Anschließend fand durch kontinuierliche Zugabe von Ar bei einem Gasfluß von 10 sccm und einem Druck von 0,1 mbar eine Nachbehandlung statt. Die Nachbehandlung dauerte 120 sec bei einer Leistung von 600 W.Argon (Ar) was used to pretreat the surface to be coated, with a gas flow of 10 sccm and a pressure of 0.05 mbar. The duration of the process was 120 sec at a power of 600 W. To produce the next layer, the so-called coupling layer, Ar / C₂H₄ was used as monomer at a gas flow of 10/10 sccm and a pressure of 0.05 mbar. The duration of this process step was 30 sec at a power of 600 W. Then again a permeation layer was continuously created by adding Ar / HMDSO at a gas flow of 10/3 sscm and a pressure of 0.05 mbar. The duration of this process step was 20 sec at an output of 600 W. The scratch-resistant layer was produced by using O₂ / HMDSO at a gas flow of 20/2 sccm and a pressure of 0.1 mbar. The duration of the production of this layer was 80 sec at a power of 600 W. Subsequent treatment was then carried out by continuously adding Ar at a gas flow of 10 sccm and a pressure of 0.1 mbar. The aftertreatment lasted 120 seconds at a power of 600 W.

Beispiel 2:Example 2:

Zur Vorbehandlung der zu beschichtenden Oberfläche wurde Argon (Ar), bei einem Gasfluß von 10 sccm und einem Druck von 0,2 mbar verwendet. Die Verfahrensdauer betrug 120 sec bei einer Leistung von 600 W. Zur Herstellung der nächsten Schicht, der sogenannten Kopplungsschicht wurde als Monomeres VTMS verwendet bei einem Gasfluß von 10 sscm und einem Druck von 0,2 mbar. Die Zeitdauer dieses Verfahrensschrittes betrug 30 sec bei einer Leistung von 400 W. Anschließend wurde wiederum kontinuierlich eine Permeationsschicht erstellt durch Zugabe von Ar/HMDSO bei einem Gasfluß von 10/2 sccm und einem Druck von 0,1 mbar. Die Dauer dieses Verfahrensschrittes betrug 30 sec bei einer Leistung von 600 W. Die kratzfeste Schicht wurde hergestellt durch den Einsatz von O₂/HMDSO bei einem Gasfluß 10/2 sccm und einem Druck von 0,1 mbar. Die Dauer der Herstellung dieser Schicht betrug 60 sec bei einer Leistung von 600 W. Anschließend fand durch kontinuierliche Zugabe von Ar bei einem Gasfluß von 10 sccm und einem Druck von 0,1 mbar eine Nachbehandlung statt. Die Nachbehandlung dauerte 120 sec bei einer Leistung von 600 W.Argon (Ar) was used to pretreat the surface to be coated, with a gas flow of 10 sccm and a pressure of 0.2 mbar. The duration of the process was 120 sec at a power of 600 W. To produce the next layer, the so-called coupling layer, VTMS was used as the monomer at a gas flow of 10 sscm and a pressure of 0.2 mbar. The duration of this process step was 30 seconds at a power of 400 W. Subsequently, a permeation layer was again continuously created by adding Ar / HMDSO at a gas flow of 10/2 sccm and a pressure of 0.1 mbar. The duration of this process step was 30 sec at a power of 600 W. The scratch-resistant layer was produced by using O₂ / HMDSO at a gas flow of 10/2 sccm and a pressure of 0.1 mbar. The duration of the production of this layer was 60 sec at a power of 600 W. Subsequent treatment was then carried out by continuously adding Ar at a gas flow of 10 sccm and a pressure of 0.1 mbar. The aftertreatment lasted 120 seconds at a power of 600 W.

Beispiel 3:Example 3:

Zur Vorbehandlung der zu beschichtenden Oberfläche wurde Argon (Ar), bei einem Gasfluß von 10 sccm und einem Druck von 0,1 mbar verwendet. Die Verfahrensdauer betrug 120 sec bei einer Leistung von 600 W. Zur Herstellung der nächsten Schicht, der sogenannten Kopplungsschicht wurde als Monomeres Ar/C₂H₄ verwendet bei einem Gasfluß von 10/10 sscm und einem Druck von 0,1 mbar. Die Zeitdauer dieses Verfahrensschrittes betrug 30 sec bei einer Leistung von 500 W. Anschließend wurde wiederum kontinuierlich eine Permeationsschicht erstellt durch Zugabe von C₂H₄ bei einem Gasfluß von 10 sccm und einem Druck von 0,2 mbar. Die Dauer dieses Verfahrensschrittes betrug 30 sec bei einer Leistung von 400 W. Die kratzfeste Schicht wurde hergestellt durch den Einsatz von O₂/HMDSO bei einem Gasfluß 10/2 sccm und einem Druck von 0,05 mbar. Die Dauer der Herstellung dieser Schicht betrug 75 sec bei einer Leistung von 700 W. Anschließend fand durch kontinuierliche Zugabe von Ar bei einem Gasfluß von 10 sccm und einem Druck von 0,1 mbar eine Nachbehandlung statt. Die Nachbehandlung dauerte 120 sec bei einer Leistung von 600 W.Argon (Ar) was used to pretreat the surface to be coated, with a gas flow of 10 sccm and a pressure of 0.1 mbar. The duration of the procedure was 120 sec at a power of 600 W. To produce the next layer, the so-called coupling layer, Ar / C₂H₄ was used as the monomer at a gas flow of 10/10 sscm and a pressure of 0.1 mbar. The duration of this process step was 30 sec at a power of 500 W. Then again a permeation layer was continuously created by adding C₂H₄ at a gas flow of 10 sccm and a pressure of 0.2 mbar. The duration of this process step was 30 seconds at an output of 400 W. The scratch-resistant layer was produced by using O₂ / HMDSO at a gas flow of 10/2 sccm and a pressure of 0.05 mbar. The duration of the production of this layer was 75 sec at a power of 700 W. Subsequent treatment was then carried out by continuously adding Ar at a gas flow of 10 sccm and a pressure of 0.1 mbar. The aftertreatment lasted 120 seconds at a power of 600 W.

Das behandelte Silberbesteck wurde im Vergleich zu unbeschichteten Materialien in schwefelhaltiger Atmosphäre und Flüssigkeit getestet und wies einen sehr guten Anlaufschutz auf.The treated silver cutlery was tested in comparison with uncoated materials in a sulfur-containing atmosphere and liquid and showed very good tarnish protection.

Claims (6)

Verfahren zur Oberflächenbeschichtung von Silbergegenständen, dadurch gekennzeichnet, daß der Beschichtungsvorgang in einer Plasmapolymerisationanlage durchgeführt wird, wobei eine kontinuierliche Gaszufuhr und Gasaustausch des Monomeren stattfindet, und daß im ersten Verfahrensschritt eine Oberflächenbehandlung stattfindet und in weiteren Schritten die Oberfläche mit einer Gradientenschicht versehen wird.Process for the surface coating of silver objects, characterized in that the coating process is carried out in a plasma polymerization system, with a continuous gas supply and gas exchange of the monomer taking place, and in the first process step a surface treatment takes place and in further steps the surface is provided with a gradient layer. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die einzelnen Schritte wie folgt durchgeführt werden: - Reinigung und Aktivierung der zu beschichtenden Oberfläche durch Bildung einer hohen Anzahl von freien Bindungen durch Zugabe von einem Gas, wie Argon, Sauerstoff oder Wasserstoff, durch welches ein abtragendes Plasma entsteht; - Bildung einer kovalente Bindungen enthaltenden Kopplungsschicht durch kontinuierliches Ersetzen des Gases des ersten Schrittes durch ein weiteres Gas, wie Ethylen, Vinyltrimethylsitan (VTMS) solange bis ein Plasma erzeugt wird, welches diese Schicht bildet; - kontinuierliches Ersetzen dieses Gases, vorzugsweise durch ein weiteres Gas, wie Ethylen zur Bildung eines Plasmas, welches eine permeationsverhindernde Oberflächenschicht entstehen läßt; - kontinuierliches Ersetzen des Gases des vorangegangenen Schrittes durch ein weiteres Gas, wie Hexamethyldisiloxan (HMDSO) in Verbindung mit Sauerstoff zur Bildung eines Plasmas für eine Oberflächenversiegelung; A method according to claim 1, characterized in that the individual steps are carried out as follows: - Cleaning and activation of the surface to be coated by forming a high number of free bonds by adding a gas, such as argon, oxygen or hydrogen, through which an ablating plasma is formed; Formation of a coupling layer containing covalent bonds by continuously replacing the gas of the first step with a further gas, such as ethylene, vinyltrimethylsitanium (VTMS), until a plasma is generated which forms this layer; continuous replacement of this gas, preferably by another gas, such as ethylene, to form a plasma which gives rise to a permeation-preventing surface layer; continuously replacing the gas of the previous step with another gas such as hexamethyldisiloxane (HMDSO) in combination with oxygen to form a plasma for surface sealing; Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die unterschiedlichen Schichten, welche die Gradientenschicht bilden, durch unterschiedliche Monomere erzeugt werden.Method according to claim 2, characterized in that the different layers which form the gradient layer are produced by different monomers. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß für die Erzeugung der unterschiedlichen Schichten, welche die Gradientenschicht bilden, ein Monomeres unter verschiedenen Prozeßparametern eingesetzt wird.A method according to claim 2, characterized in that a monomer is used under different process parameters for the production of the different layers which form the gradient layer. Schutzschicht für silberne Gegenstande hergestellt im Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie an der von Verunreinigungen befreiten und aktivierten Oberfläche des Gegenstandes aufgebracht ist und die Gradientenschicht bildet, welche im einzelnen aus einer Kopplungs-, permeationsverhindernden und Oberflächenversiegelungsschicht besteht.Protective layer for silver objects produced in the process according to one of claims 1 to 4, characterized in that it is applied to the surface of the object freed from impurities and activated and forms the gradient layer, which consists in particular of a coupling, permeation-preventing and surface sealing layer. Schutzschicht nach Anspruch 5, dadurch gekennzeichnet, daß sie chemisch resistent, kratzfest und transparent ist.Protective layer according to claim 5, characterized in that it is chemically resistant, scratch-resistant and transparent.
EP93108186A 1992-05-22 1993-05-19 Process for coating silver objects and coating made by this process Expired - Lifetime EP0570944B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4216999A DE4216999C2 (en) 1992-05-22 1992-05-22 Process for the surface coating of silver objects and protective layer produced by this process
DE4216999 1992-05-22

Publications (2)

Publication Number Publication Date
EP0570944A1 true EP0570944A1 (en) 1993-11-24
EP0570944B1 EP0570944B1 (en) 1998-08-19

Family

ID=6459515

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93108186A Expired - Lifetime EP0570944B1 (en) 1992-05-22 1993-05-19 Process for coating silver objects and coating made by this process

Country Status (2)

Country Link
EP (1) EP0570944B1 (en)
DE (2) DE4216999C2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001656A1 (en) * 1995-06-27 1997-01-16 Behr Gmbh & Co. Plasmapolymer surface coating, coating process therefor and heat exchanger coated therewith
WO1999022878A2 (en) * 1997-10-31 1999-05-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for corrosion-resistant coating of metal substrates by means of plasma polymerisation
WO2000053823A1 (en) * 1999-03-09 2000-09-14 Centre National De La Recherche Scientifique Method for treating polymer surface
WO2002005972A2 (en) * 2000-07-17 2002-01-24 Acmos Chemie Gmbh & Co. Method for producing a permanent demoulding layer by plasma polymerization on the surface of a moulded-part tool
DE19732217C2 (en) * 1997-07-26 2002-12-12 Zsw Multi-function encapsulation layer structure for photovoltaic semiconductor components and method for their production
EP1312422A2 (en) * 1997-11-21 2003-05-21 Korea Institute of Science and Technology Plasma polymerization on surface of material
EP1462183A1 (en) * 2003-03-28 2004-09-29 Sulzer Markets and Technology AG Method of treating the surface of a substrate and substrate thus treated
WO2005048708A1 (en) * 2003-11-17 2005-06-02 Bio-Gate Ag Antimicrobial composite material
CZ300287B6 (en) * 2001-07-17 2009-04-08 Acmos Chemie Gmbh & Co. Process for producing permanent separation layer facilitating removal of a molding from a mold by plasma polymerization on surface of the mold, a mold produced thereby and its use
WO2010125178A1 (en) * 2009-04-30 2010-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metal substrates having a scratch-proof and extensible corrosion protection layer and method for the production thereof
WO2017051019A1 (en) * 2015-09-24 2017-03-30 Europlasma Nv Polymer coatings and methods for depositing polymer coatings

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10130666A1 (en) * 2001-06-28 2003-01-23 Applied Films Gmbh & Co Kg Softcoat
DE10131156A1 (en) 2001-06-29 2003-01-16 Fraunhofer Ges Forschung Articles with a plasma polymer coating and process for its production
DE10324570A1 (en) * 2003-05-30 2004-12-23 Daimlerchrysler Ag Surface treatment by spark erosion of metal or metal compounds, especially from the surface of an engine with an aluminum-silicate cylinder running surface, whereby the cylinder itself acts as the cathode for plasma formation
DE102015115167B4 (en) 2015-09-09 2017-03-30 Lisa Dräxlmaier GmbH Shaped body comprising a functional layer, process for its preparation and its use
DE102016101197A1 (en) * 2016-01-25 2017-07-27 Hella Kgaa Hueck & Co. Process for the surface coating of a component under vacuum and vacuum coating system for this purpose

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524089A (en) * 1983-11-22 1985-06-18 Olin Corporation Three-step plasma treatment of copper foils to enhance their laminate adhesion
WO1991012092A1 (en) * 1990-02-14 1991-08-22 E.I. Du Pont De Nemours And Company Method of coating steel substrate using low temperature plasma processes and priming
DE4019539A1 (en) * 1990-06-19 1992-01-02 Siemens Ag Permanent anti-wetting coating prodn. on surface esp. of orifice plate - for ink jet printing head, by coating with silicone oil and crosslinking in plasma

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3921652A1 (en) * 1989-06-30 1991-01-17 Siemens Ag Producing polymer coating on nozzle plate e.g. for ink jet printer - with oxygen plasma ion etching from uncoated side

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524089A (en) * 1983-11-22 1985-06-18 Olin Corporation Three-step plasma treatment of copper foils to enhance their laminate adhesion
WO1991012092A1 (en) * 1990-02-14 1991-08-22 E.I. Du Pont De Nemours And Company Method of coating steel substrate using low temperature plasma processes and priming
DE4019539A1 (en) * 1990-06-19 1992-01-02 Siemens Ag Permanent anti-wetting coating prodn. on surface esp. of orifice plate - for ink jet printing head, by coating with silicone oil and crosslinking in plasma

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 034 (C-799)28. Januar 1991 & JP-A-02 272 003 ( CITIZEN WATCH CO. LTD. ) 6. November 1990 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001656A1 (en) * 1995-06-27 1997-01-16 Behr Gmbh & Co. Plasmapolymer surface coating, coating process therefor and heat exchanger coated therewith
DE19732217C2 (en) * 1997-07-26 2002-12-12 Zsw Multi-function encapsulation layer structure for photovoltaic semiconductor components and method for their production
WO1999022878A2 (en) * 1997-10-31 1999-05-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for corrosion-resistant coating of metal substrates by means of plasma polymerisation
WO1999022878A3 (en) * 1997-10-31 1999-07-15 Fraunhofer Ges Forschung Method for corrosion-resistant coating of metal substrates by means of plasma polymerisation
US6242054B1 (en) 1997-10-31 2001-06-05 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E. V. Method for corrosion-resistant coating of metal substrates by means of plasma polymerization
CZ297047B6 (en) * 1997-10-31 2006-08-16 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung Method for corrosion-resistant coating of metal substrates by means of plasma polymerization
US6528170B2 (en) 1997-10-31 2003-03-04 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E. V. Metal substrate with a corrosion-resistant coating produced by means of plasma polymerization
EP1312422A3 (en) * 1997-11-21 2006-02-08 Korea Institute of Science and Technology Plasma polymerization on surface of material
EP1312422A2 (en) * 1997-11-21 2003-05-21 Korea Institute of Science and Technology Plasma polymerization on surface of material
WO2000053823A1 (en) * 1999-03-09 2000-09-14 Centre National De La Recherche Scientifique Method for treating polymer surface
US6949272B2 (en) 2000-07-17 2005-09-27 Acmos Chemie Gmbh & Co. Method for producing a permanent demoulding layer by plasma polymerization on the surface of a moulded-part tool, a moulded-part tool produced by said method and the use thereof
WO2002005972A3 (en) * 2000-07-17 2002-09-26 Acmos Chemie Gmbh & Co Method for producing a permanent demoulding layer by plasma polymerization on the surface of a moulded-part tool
WO2002005972A2 (en) * 2000-07-17 2002-01-24 Acmos Chemie Gmbh & Co. Method for producing a permanent demoulding layer by plasma polymerization on the surface of a moulded-part tool
CZ300287B6 (en) * 2001-07-17 2009-04-08 Acmos Chemie Gmbh & Co. Process for producing permanent separation layer facilitating removal of a molding from a mold by plasma polymerization on surface of the mold, a mold produced thereby and its use
EP1462183A1 (en) * 2003-03-28 2004-09-29 Sulzer Markets and Technology AG Method of treating the surface of a substrate and substrate thus treated
US9622471B2 (en) 2003-11-17 2017-04-18 Bio-Gate Ag Coating material
EP1790224A1 (en) * 2003-11-17 2007-05-30 Bio-Gate AG Antimicrobial layered material
WO2005048708A1 (en) * 2003-11-17 2005-06-02 Bio-Gate Ag Antimicrobial composite material
US10299472B2 (en) 2003-11-17 2019-05-28 Bio-Gate Ag Coating material
WO2010125178A1 (en) * 2009-04-30 2010-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metal substrates having a scratch-proof and extensible corrosion protection layer and method for the production thereof
CN108141963A (en) * 2015-09-24 2018-06-08 欧洲等离子公司 Polymer coating and the method for deposited polymeric coatings
WO2017051019A1 (en) * 2015-09-24 2017-03-30 Europlasma Nv Polymer coatings and methods for depositing polymer coatings
CN108141963B (en) * 2015-09-24 2020-11-06 欧洲等离子公司 Polymeric coating and method for depositing a polymeric coating
US11419220B2 (en) 2015-09-24 2022-08-16 Europlasma Nv Polymer coatings and methods for depositing polymer coatings

Also Published As

Publication number Publication date
EP0570944B1 (en) 1998-08-19
DE4216999A1 (en) 1993-11-25
DE4216999C2 (en) 1996-03-14
DE59308883D1 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
DE4216999C2 (en) Process for the surface coating of silver objects and protective layer produced by this process
DE3402875C2 (en) Plastic articles with a ceramic coating
DE69914222T2 (en) Process for metallizing the surface of a solid polymer substrate and product thus obtained
DE102004036170B4 (en) Vacuum coating system and method for vacuum coating and their use
DE3786800T2 (en) System for continuous composite coating of strip-like goods.
EP1432529B1 (en) Article having a plasmapolymer coating
EP2041332B1 (en) Method and device for plasma-assisted chemical vapour deposition on the inner wall of a hollow body
DE60314634T2 (en) TITANIUM DIOXIDE COATINGS MADE BY PLASMA CVD AT ATMOSPHERIC PRESSURE
DE4204082A1 (en) METHOD FOR PRODUCING A ADHESIVE LAYER ON WORKPIECE SURFACES
EP2102381A1 (en) Antimicrobial material, and a method for the production of an antimicrobial material
DE10224777A1 (en) High-velocity cold gas particle-spraying process for forming coating on workpiece, intercepts, purifies and collects carrier gas after use
EP0753599B2 (en) Method for producing corrosion and wear resistant protective coatings on iron based substrates
DE102004005313A1 (en) Method for producing an ultra-barrier layer system
WO1997023661A2 (en) Process for producing organically mofified oxide, oxynitride or nitride layers by vacuum deposition
DE3852939T2 (en) Process for coating artificial optical substrates.
DE19953667B4 (en) Layer with selectively functionalized surface, process for the preparation and their use
EP3013996B1 (en) Process for manufacturing of decorative hipims hard material layers
DE10017846C2 (en) Method of depositing and using a polymer layer
DE102006015591B3 (en) Organic material with a catalytically coated surface and process for its production
WO2002076633A1 (en) Coating for a handle
DE69314090T2 (en) Ion-selective electrode and method for producing the same
EP0920340A1 (en) Device for catalytically dissolving hydrogen peroxide
DE4025615C2 (en)
DE3002643A1 (en) METHOD FOR APPLYING COVER LAYERS TO REFLECTIVE SURFACES, AND SYSTEM FOR REALIZING THEM
EP1655385B1 (en) Method for making optical coatings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19940113

17Q First examination report despatched

Effective date: 19970224

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59308883

Country of ref document: DE

Date of ref document: 19980924

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060519

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060524

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070726

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070519

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202